
Processorless Smart Sensors with Distributed

Intelligence

Eric Benoit, Chotin Eric, Laurent Foulloy

To cite this version:

Eric Benoit, Chotin Eric, Laurent Foulloy. Processorless Smart Sensors with Distributed Intel-
ligence. 14th IMEKO World Congress, Jun 1997, Tampere, Finland. IMEKO, pp.60-65, 1997,
Vol. V. <hal-00147227>

HAL Id: hal-00147227

https://hal.archives-ouvertes.fr/hal-00147227

Submitted on 16 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47310534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00147227

tware
 these
esource
change
s been
er to
ns a

ich will
nt cells.
age are
ple is

ork in
itted
ch as

ns are
rs are
de a

ions.
 when

lity to
work.
other
lligent
ICAS.
lement

lace a
 with

es or
ation,

onal

Proc. of the 14th IMEKO World Congress, vol. V, Tampere, Finland, June 1997, pp. 60--65.
PROCESSORLESS SMART SENSORS WITH DISTRIBUTED
INTELLIGENCE

Eric Benoit, Eric Chotin and Laurent Foulloy
Laboratoire d’Automatique et de MicroInformatique Industrielle,

Université de Savoie, Annecy, France

Abstract: In the proposed approach, smart sensors own the definition of the sof
functionalities but are no longer able to execute them locally. Thanks to the network,
software functionalities are sent to a smart sensor, to a smart actuator or to a common r
that has computation facilities. Due to the wide range of possible processing units, the ex
of software functionalities takes place at the source level. A dedicated language, ha
especially developed to design smart sensor integrating fuzzy functionalities. In ord
perform the remote execution of the code, each unit with computing capabilities ow
compiler. Processorless smart sensors send the source code to a computing unit wh
execute the code and send back the results. This paper presents the concept of intellige
Then processorless smart cells are introduced. The main topics of the dedicated langu
presented. A hardware solution for the implementation is detailed. An illustrative exam
provided.

Keywords: intelligent sensor, distributed intelligence, field bus

1. INTRODUCTION
Since the eighties, the concept of smart cells communicating over a field bus netw

order to drive an industrial process has been developed [1][2][3][4]. It is commonly adm
that smart cells (i.e. smart sensors or smart actuators) include functionalities su
measurement, communication, configuration and validation. Generally several functio
performed by hardware like basic measurement or network interfacing while the othe
performed by software like signal processing or diagnostic. Usually, smart cells inclu
processing unit whose computing ability allows them to perform all software funct
However, including a processor into each smart cell is sometimes expensive especially
the cost of the processor is high compared to the cost of the sensing unit.

Our approach is to consider that an intelligent cell does not need to own the abi
compute its own functionalities if another cell can perform them instead of it over the net
In fact, an intelligent cell only needs to owns its functionality definitions assuming that an
one can perform them. In order to implement this concept, we propose to code the inte
functionalities of each cell into a source code written in a dedicated language called PL
This code can contain configuration parameters and definition processes used to imp
intelligence. This source code can then be transmitted to another cell to be executed.

The aim of this approach is to increase the interchangeability i.e. the possibility to rep
cell by another one, and the interoperability i.e. the possibility for cells to communicate
other cells [5].

2. INTELLIGENT CELLS

2.1 Functional description
An intelligent cell is a material unit which owns functionalities in addition to sensor on

actuator ones. Common functionalities can be communication over a network, valid
diagnostic, measurement, signal processing, control.

In order to implement such cells, we will consider two distinct levels in the functi

description of a cell, each one being implemented separately: The first level is the general
behavioural description. It consists of a state machine describing the different functionalities to
be executed by the cell according the occurring events. This state machine is implemented
locally. The second level corresponds to the functionalities which are available in the cell, like
signal processing, diagnosis. These functionalities are performed by software and are
implemented as source codes containing configuration parameters and computing routines.
This code is stored in a local memory and requires a processing unit to be executed. This
processing unit can be local or somewhere else over the network.

In a general way, the set of offered functionalities can be considered as a set of one or more
services among the following :

Communication, including local communication and communication over a network.
Validation, including functional validation, technological validation, historic and

diagnosis. The functional validation allows cells to get information about the
correctness of the produced values. With technological validation, cells can verify the
correctness of the hardware. The historic service is needed for validation and
diagnosis. Diagnosis allows cells to find the origin of a problem.

Configuration, including technological and functional configuration. The technological
configuration is usually performed before the installation of the cell in the application.
This configuration is relevant to all parameters which depend on the general use of the
cell. The functional configuration is the in line configuration used to adapt the cell to
a specified application, or to adapt it to a modification of the application context.

Measurement, including basic sensing, signal processing, correction.
The method chosen to implement these functionalities is to use a dedicated language. This

language called PLICAS (Prototype of Language for linguistic Actuators and Sensors) is a
language initially dedicated to fuzzy control applications [6][7].

2.2 Processorless cell
Generally, the concept of intelligence is associated with the possession of a dedicated

processing unit. We propose in our approach, to share the processing units over the network,
and then to reformulate the intelligence concept as the ability for a cell to use a processing unit
that could be its own or a delocalized one. Thus in the case of a processorless cell, the
intelligence consists of a behavioural description of the cell that allows the use of the network
resources to carry out the various cell functionalities. The PLICAS code will be sent by the state
machine level to a computing resource over the network, and the execution results will be sent
back.

The interest of storing the functionality codes locally in the processorless cell, is to allow
easy changes in the process assignment on computing cells. This is in opposition with a scheme
where the code would be resident on a pre-defined computing cell.

The structural description of a cell is mapped from the functional description: the general
behaviour of a processorless cell is implemented using a FPGA carrying out the management
system of the cell. The choice of a FPGA illustrates the weak processing resource such a cell
needs. The functionalities of the cell are implemented as PLICAS code stored in a read only
memory. These codes are transmitted through the network by the FPGA state machine, using a
network interface implementing the data-link and the physical layers of the fieldbus protocol.
When the cell used must be interfaced with the physical world, it also need transducers,
conditioners and analog-to-numeric converters or numeric-to-analog converters.

2.3 Computing cell
The role of a computing cell is to carry out its own treatments as well as the treatments

submitted by other cells. To do this, the functional description of the cell is similar to that of a
processorless cell, except that the general behavioural description is implemented as a
multitasking system, in order to execute simultaneously the local and the delocalized tasks.

These cells include computing resources like microprocessor or dedicated processors like
DSP (Digital Signal Processor) or FFT circuits (Fast Fourier Transform). In this case, the cell
can compute a piece or all of its functionalities. It can also use its computing resource to
compute the functionalities of another cell.

Figure 1. Structural description of intelligent cells

3. PLICAS ENVIRONMENT

3.1 The main shell
In order to perform functionalities coded in PLICAS, each computing cell contains an

operating system which allows the management of PLICAS code, the execution of the code and
the communication with other cells. This operating system is based on a usual multitasking
operating system, a compiler of the PLICAS language and an executive manager.

Figure 2. Example of two simultaneous tasks created to manage different PLICAS codes

In the initial state, a main task is running on the cell, waiting for PLICAS source codes. For
each received source code, a new task is launched. These codes can be local or coming from the

transducers

functions
RAM/ROM

transducers

processorless cell

network interface

functions
ROM

management
unit

FPGA

network interface

processing
unit

PLICAS
compiler

cell with processor

compilation

initialisation
block

supervisor
block

stopstop

compilation

initialisation
block

supervisor
block

stopstop

network
interface

data values

source source

End of taskEnd of task

Task i Task j

e at
uted
er the
hich is
p” is

er to
oes not
ent of
m this
 to the
mitive
m can
)” can
lue is
ends a

ased
TC is

lity. In
ometric
 colour
l
lculator
network. The new task compiles the code by creating a structure in memory which includes the
sequence of all its actions. Then the task executes the actions by running the executive manager.

After the compilation phase, the executive manager performs actions coded in the structure.
A PLICAS source code is a set of blocks of actions. It needs to own two special blocks called
an “initialization block” and a “supervisor block”. The initialization block is executed onc
the beginning. After the initialization block is executed, the supervisor block is exec
periodically. Each of these blocks can own network instructions to get or send values ov
network. This is especially the case when the code is issued from a processorless cell w
waiting for a result. After each execution of the supervisor block a variable called “sto
tested. If this variable is set then the task ends.

3.2 The language
The PLICAS language owns basic functionalities of sequential programming. In ord

minimize the size of the compiler code, the language uses only global variables and d
allow new function definitions. It’s a language created to manage the sequencem
predefined functions. It includes basic arithmetic and logical functions needed to perfor
sequencement. Specialized functions like FFT or rule based controller can be added
language during a technological configuration. Added functions are then used as pri
functions of the language. Each networked variable is managed by a number. A progra
then get a variable on the network or diffuse another one. The function “get(var_number
perform two actions depending on the localization of the value of the variable. If this va
already present, the function simply returns it. If the value is not present, the function s
request for this variable over the network.

Figure 3. Example of a PLICAS code

4. APPLICATION
This concept is applied on a VAN fieldbus (Vehicle Area Network). A computing unit b

on a PC104 is connected to this network. On this unit the multitask operating system R
implemented in order to compute simultaneously 16 source codes.

A processorless cell is implemented as a colour sensor, owning a diagnostic functiona
normal mode, the sensor performs the colour measurement based on three phot
transducers which return three basic measurements X,Y and Z. In most applications,
measurement is expressed in the Lab coordinates instead of the XYZ ones. In this way, usua
colour sensors are composed with a perceptive head measuring X,Y,Z and a deported ca
performing the mapping between these two colorimetric coordinates :

declarations
double X,Y,Z,Xn,Yn,Zn;
double L,a,b;

block light_measure
Xn=get(3);
Yn=get(4);
Zn=get(5);

block measure
X=get(0)/Xn;
if X>0.008856 then

X=pow(X,1/3);

else
X=7.787*X+(16/116);

Y=get(1)/Yn;
if Y>0.008856 then

Y=pow(Y,1/3);
else

Y=7.787*Y+(16/116);
Z=get(2)/Zn;
if Z>0.008856 then

Z=pow(Z,1/3);
else

Z=7.787*Z+(16/116);

block initialization
execute(light_measure);

block supervisor
if exist(4) then

execute(light_measure);
execute(measure);
L=116*Y-16
a=500*(X-Y);
b=500*(Y-Z);
diffuse(L,6);
diffuse(a,7);
diffuse(b,8);

ts of
k layer
lues
ith the

ample,
 it can
In our application, the perceptive head is included in a processorless cell. During
initialization, the cell performs the Xn,Yn,Zn value measurements, which are characteristic
values of the light source integrated in the perceptive head. Then these values are sent to the
computing cell together with the PLICAS code of the Lab transformation.

Once initialization is done, the processorless cell enters into normal mode consisting of
cyclic measurement of the X,Y,Z values, and their transmission to the computing cell.

The diagnostic functionality of the processorless cell is the following : when the
characteristic values of the light source change, the new values of Xn,Yn,Zn are sent to the
computing cell. This is done by the cyclic measurement of the most characteristic value, Yn,
and its comparison with the previous memorized value.

The state machine implementing the general behavioural description of the processorless
cell is very simple, even with the network management. This is due to the VAN network
functionalities which allow a very convenient mechanism for the response to a network request.
This mechanism is call “reply request with immediate reply” or “in frame reply”. It consis
including the response in the request frame, and is completely managed by the data lin
network interface component (29C461A by MHS). The cyclic transmission of the X,Y,Z va
is done with this scheme. Thus it only requires storing the responding value together w
frame request identifier in the RAM of the network interface component.

The general state machine of the processorless cell is shown in figure 4.

Figure 4. State machine of the processorless sensor

Other data calculation or diagnosis function can be implemented in this sensor. For ex
the sensor can verify if the measured colour is included in the set of real colours. If not,

L 116f
Y

Yn
------ 

  16–=

a 500 f
X

Xn
------ 

  f
Y

Yn
------ 

 – 
 =

b 200 f
Y
Yn
------ 

  f
Z
Zn
------ 

 – 
 =

where
f d() d

1
3

= when d 0.008856>

f d() 7.787 d() 16
116
---------+= when d 0.008856≤

Initialization

storage of the
 X,Y,Z values

X,Y,Z values
in-frame reply of

transmission of
the new Xn,Yn,Zn

wait

diag

diagnostic := 0

(va).diag

(va).diag

diag : diagnosis (Yn != Yn-memorized)

va : X,Y,Z values availables

conclude that one or more of its transducers is out of order. In another example, the sensor can
calculate a fuzzy description of the colour. The way to add these functionalities is to implement
the PLICAS source code into the memory of the processorless module, making sure that
another cell can perform these functionalities.

5. CONCLUSION
The proposed approach shows the advantage of separating the concept of intelligent process

and processing resource. Actually, the confusion between these two concepts implies making
considerable changes on an intelligent cell when a new functionality is added on to it. The
processorless approach allows the increase in cell functionnalities without any hardware
modification. A second advantage of this approach is to improve the interchangeabilty of cells.

REFERENCES
[1] Siebert M., Thomesse J.P., Interworking of Fielddevices, in: Proc. of the 2nd IFAC Symposium on Intelligent

Components and Instruments for Control Applications, SICICA 94, (Budapest june 94), Hungary, 1994,p. 98-
103.

[2] Yagsu T., Support system to construct distributed communication networks - Implementation, in: Proc. of
the 1st European Congress on Fuzzy and Intelligent Technologies, EUFIT 93, (Aachen Sept. 93), Germany,
1993, p. 532-536.

[3] Iyengar S.S., Kayshyap R.L., Madan R.N., Distributed sensor networks - introduction to the special section,
IEEE Trans. in: Systems, Man, and Cybernetics, Vol. 21, No 5, Sept-Oct. 1991, p. 1027-1031.

[4] Navaro J.L., Benet G., Albertos P.,Intelligent Distributed Control : A System Architecture, in: International
Conference on Fault Diagnosis, (Toulouse 5-7. April 1993), France, 1993, pp 127-131.

[5] Staroswiecki M., Bayart M., Models and Languages for the Interoperability of Smart Instruments, in: Proc.
of the 2nd IFAC Symposium on Intelligent Components and Instruments for Control Applications, SICICA
94, (Budapest June 94), Hungary, 1994, p 1-12.

[6] Foulloy L., Galichet S., Josserand J.F., Fuzzy components for fuzzy control, in: Proc of the 2nd IFAC Sym-
posium on Intelligent Components and Instruments for Control Applications, SICICA 94, (Budapest June 94),
Hungary, 1994.

[7] Josserand J.F., Mauris G., Benoit E., Foulloy L., Fuzzy components network for distributed intelligent sys-
tems, in: Proc. of the International Workshop on Intelligent Robotic Systems, IRS 94, Grenoble, july 94.

[8] Ren C. Luo, M.H. Lin, R.S. Scherp, Dynamic multisensor data fusion system for intelligent robots, in: IEEE
Journal of robotics and automation, Vol. 4, No 4, Aug. 1988, p. 386-396.

Contact point: Eric Benoit, LAMII/CESALP, 41 av. de la Plaine, B.P. 806, F-74016 Annecy Cedex, France.
Phone +33 450 66 60 44, Fax +33 450 66 60 63, E-mail benoit@univ-savoie.fr

	Titre - Processorless smart sensors with distributed intel...
	Titre1 - 1. Introduction
	Titre1 - 2. intelligent cells
	Titre2 - 2.1 Functional description
	Titre2 - 2.2 Processorless cell
	Titre2 - 2.3 Computing cell

	Titre1 - 3. Plicas environment
	Titre2 - 3.1 The main shell
	Titre2 - 3.2 The language

	Titre1 - 4. Application
	Titre1 - 5. conclusion

