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Abstract 

 
This study presents a mathematical formalism describing diffraction effects from 

periodic and mixed-layer minerals in which the outer surface layers of crystals differ from 

layers forming the core of the crystals. XRD patterns calculated for structure models of chlorite 

and irregular chlorite-smectites terminated on both sides of the crystals by either brucite-like or 

2:1 layers show the strong influence that different outer surface layers make on the distribution 

of basal reflection intensities. Simulation of the experimental XRD patterns from two chlorite 

samples having different Fe-content shows that in these two samples the chlorite crystals were 

terminated by brucite-like layers on both sides. In contrast, crystals in a corrensite sample were 

terminated by water molecules and exchangeable cations. The nature of diffraction effects due 

to outer surface layers is discussed. 

 

INTRODUCTION 

 

Mixed-layer structures (MLSs) are remarkable examples of one-dimensional order-

disorder commonly observed in lamellar crystals. They are composed of layers with different 

stacking sequences and compositions that alternate in variable proportions and with different 

distributions. Interstratification effects have been found in structures of various natural and 

synthetic compounds: layer silicates, phyllomanganates, hydrotalcites and synthetic layered 

double hydroxides, sulfides, high-temperature superconductors, intercalated graphites, and 

other lamellar compounds. In natural environments, interlayering is especially widespread 

among clay minerals (phyllosilicates) which differ in the type of interstratified layers and in 

their stacking sequences. Two categories may be singled out depending on the distribution of 

interstratified layer types: first, regular structures in which different layer types alternate 

periodically along the c* axis and, second, irregular MLSs in which different layer types may 

either alternate at random or tend to some sort of ordering or segregation.  
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Conventional X-ray diffraction (XRD) methods are unsuitable for the structural study of 

irregular MLSs because of their non-periodic structures, and indirect methods based on the 

simulation of XRD patterns for different MLS models have been developed. In particular, a 

matrix formalism has been developed to describe the intensity diffracted by a set of crystals 

containing different layer types both for basal and hkl reflections (Kakinoki and Komura, 

1952, 1954a, b, 1965; Drits and Sakharov, 1976; Plançon and Tchoubar, 1976; Plançon, 1981, 

2002; Sakharov et al., 1982a, b). In these works it has been systematically assumed that the 

layers constituting the outer surfaces of the crystals are identical to those in the core of the 

crystals. 

Another approach for calculation of XRD patterns from mixed-layer clay minerals was 

developed by Reynolds (1967, 1980). It is based on the direct summation of the contributions 

to diffracted intensity coming from waves scattered by all possible layer subsequences existing 

in the mixed-layer crystals. In the derived algorithm it was assumed that mixed-layer illite-

smectites and chlorite-smectites always end on 2:1 layers. Thus, neither formalism can account 

for the possibility that in natural environments the structure and composition of surface layers 

of crystals may differ from those of “core” layers. However, according to high-resolution 

transmission electron microscopy (HRTEM) illite crystals consisting of 2:1 layers may 

terminate on a 1:1 kaolinite layer (Tsipursky et al., 1992) whereas kaolinite crystals may have 

pyrophyllite or smectite 2:1 layers as surface terminations (Ma and Eggleton, 1999).  

This article proposes a mathematical formalism to simulate XRD patterns from periodic 

and irregular two-component mixed-layer crystals having any kind of outer surface layers 

(OSLs). Two useful applications may be related to this formalism. First, it allows estimating 

the effect of OSLs on diffracted intensity and taking it into account during simulation of the 

experimental XRD patterns; second, determination of the nature of the microcrystal outer 

surfaces is essential to the study of their surface properties. 
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THEORY 

 

Amplitude and intensity diffracted by a crystal consisting of N layers 

The amplitude diffracted by a layer can be expressed as the product of the layer 

structure factor Fi , and of the shape factor D. Therefore, the amplitude diffracted by a crystal 

is: 

)sD()rsi2exp()s(F)sA(
N

1j
ojj

rrrrr
∑ π−=
=

 (1) 

where  is the diffusion vector. s
r

ojr
r  defines the positions of the jth layer relative to an arbitrary 

origin, and N is the number of layers in the crystal. Note that all layers have the same )sD(
r and 

this term will be omitted in the following developments. In this case, the intensity diffracted by 

a crystal is: 
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where is the complex amplitude conjugate of )s(F*
k
r
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This double summation can be transformed as: 
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At a fixed j value, the two terms in each bracket are conjugates, and equation (3) 

becomes:  
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where Re is the real part of the terms in the double summation. 

As can be seen in equation (3) the development of the double summation leads to N 

terms corresponding to structure factors of individual layers in the crystal and to 2(N-n) terms 
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corresponding to the product of structure factors of the first and final layers in all possible 

(n+1) layer subsequences. Each product is multiplied by the corresponding phase term which 

takes into account the phase difference of waves scattered by the terminal layers in each of the 

(n+1) layer subsequences. As follows from equation (3), n varies from 0 to N-1 and equation 

(3) thus consists of:  

- N terms for n=0 (j=1, 2, …, N) 

- 2(N-1) terms for n=1 (j=1, 2, …, N) 

- and 2(N-n) terms for a given nth neighbour of a layer (2 ≤ n ≤ N-1). 

The intensity diffracted by a set of M crystals each containing N layers can be written: 

[ ] [ ] [ ] [ ]
mM

1m

M21 )sI()s(I...)s(I)s(I)sInt( ∑=+++=
=

rrrrr
 (5) 

The calculation of  requires knowing the nature of the layers at each level of the 

crystal and for all crystals. Obviously this is never possible and intensity calculations should be 

carried out for models characterized by average structural parameters. As in previous works 

(Kakinoki and Komura, 1965; Drits and Sakharov, 1976; Plançon and Tchoubar, 1976; 

Plançon, 1981; Sakharov et al., 1982a, b) it is assumed in the present study that the layer type 

distributions in powdered mixed-layer samples obey Markovian statistics.  

)sInt(
r

An important parameter in this model is the short-range order factor R defined as the 

number of preceding layers that influence the occurrence probability for a final layer of a given 

type. If two layer types, A and B, alternate with R=1, then six probability parameters (WA, WB, 

PAA, PAB, PBA, PBB) are necessary to describe the layer stacking sequence. Wj is the occurrence 

probability for layers of type j, Pjk is the conditional probability of a layer type k following a 

layer type j (j,k = A,B). Using this set of probability parameters the occurrence probability for 

any layer subsequence can be easily calculated for a given R value. For example, when R=1: 

WAA = WAPAA, WAB = WAPAB, WABA = WAPABPBA, etc 

In addition: 
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∑ =
j

j 1W , ∑ =
k

jk 1P , and ∑ =
j

kjkj WPW  (j,k = A,B) (6) 

To further develop equation (3) let us consider at first the term with n=1, then n = 2, 

then deduce a general term for 1 ≤ n ≤ N-2, and finally calculate the two particular cases with 

n = 0 and n = N-1. 

 

Contribution of the 1st neighbor term, T1, to the diffracted intensity. Let us assume that the 

“core” of the crystals (i.e. apart from the OSLs) consist of A and B layers and that Nc = N-2 is 

the number of layers in the “core” of the crystal. A' and B' represent the type of layers on one of 

the outer surfaces (j = 1) and A'' and B'' the layer types of the other outer surface (j = N). The 

contribution of all layer pairs in the crystal is then: 
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=
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 (7) 

which is the sum of the contributions from all layer pairs in the cores of the crystals as well as 

from layer pairs formed by each OSL with the other layers of the crystals. Using the Markovian 

statistics the contribution of the “core” layer pairs can be represented as: 

( )( )BB
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BBBBBA

*
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where )tsi2exp())rr(si2exp( jkokojjk

rrrrr
π−=−π−=ϕ  and jkt

r
 are the translations relating j- and k-

type layers (j,k = A,B). 

To obtain the total term T1, contributions of the two OSLs should be added:  

[
BB

*
BBBBAB

*
ABABBA

*
BABAAA

*
AAAA1 '''''''''''' FFWFFWFFWFFWReM2T ϕ+ϕ+ϕ+ϕ=  

( )( )BB
*
BBBBBA

*
ABBAAB

*
BAABAA

*
AAAAC FFWFFWFFWFFW1N ϕ+ϕ+ϕ+ϕ−+  (9) 

]'''''''''''''''''''''''' BB
*
BBBBBA

*
ABBAAB

*
BAABAA

*
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In addition, occurrence probability and phase terms of the A'A layer pairs are identical 

to that of AA layer pairs (the A' layer is merely a “scratched” or “covered” A layer) so that 
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WA'A= WAA. The same is true for A'B and AB, B'A and BA, B'B and BB, for AA'' and AA, 

AB'' and AB, BA'' and BA, and for BB'' and BB. Then, 
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Thus, the term T1 can be presented using the matrix formalism proposed by different 

authors (Drits and Sakharov, 1976; Plançon and Tchoubar, 1976; Plançon, 1981, Sakharov et 

al., 1982a) for crystals without specific outer surfaces. 

T1 = 2 M Spur(Re((Φ1C + (NC-1)ΦCC + ΦCN)WQ1)) (11) 

where matrices of the second rank Φ1C, ΦCC, ΦCN, W and Q are presented as: 
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 (12) 

where the subscript C refers to layers in the “core” of the crystals, 1 refers to the first (i.e. one 

of the outer surfaces) and N to the Nth layer (i.e the other outer surface). 

 

Contribution of the 2nd neighbor terms, T2, to the diffracted intensity. The term T2 which 

includes the contributions of all layer triplets in the crystals is equal to: 
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+ [ "'''''''''''''''''''''' ABB
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As for T1, the term T2 can also be expressed using the matrix formalism: 

T2 = 2 M Spur(Re((Φ1C + (NC-2)ΦCC + ΦCN)WQ2)) (15) 

 

Contribution of the nth neighbor term, Tn (1 ≤ n ≤ N-2), to the diffracted intensity. This term can 

be obtained recursively and may be expressed as: 

Tn = 2 M Spur(Re((Φ1C + (NC-n)ΦCC + ΦCN)WQn)) (16) 

 

Contribution to the diffraction of the (N-1)th neighbor term. This term involves only the layers 

of the two outer surfaces: 

TN-1 = 2 M Spur(Re(Φ1NWQN-1)) (17) 

 

with Φ1N = . ⎟
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Contribution of the 0th neighbor term, T0, to the diffracted intensity. This term describes the 

contribution of individual layers without interactions with neighboring layers. 

T0 = M Spur(Re((Φ11 + NCΦCC + ΦNN)W)) (18) 

 

with Φ11 = , and Φ⎟
⎟
⎠
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Grouping all terms together. Summing up all the above Tn terms, the intensity equation 

becomes: 
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If the layers of the outer surfaces are the same as those of the core of the crystals (i.e. 

A'≡A≡A'' and B'≡B≡B''), then the intensity equation is simplified because Φ11 = ΦCC = ΦNN = 

Φ1C = ΦCN = Φ1N = Φ and becomes, as described earlier (Drits and Sakharov, 1976; Plançon 

and Tchoubar, 1976; Plançon, 1981, 2003; Sakharov et al., 1982a): 
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where E is the unit matrix. 

The average intensity diffracted by a crystal consisting of N layers is thus equal to 

. M/)s(Int)s(Int
____ rr

=

If the range of interaction between layers is greater than 1 the basis of the formalism 

remains the same, but the rank of the matrices increases as explained by Drits and Sakharov 

(1976), Plançon (1981), Sakharov et al. (1982a), and Drits and Tchoubar (1990). In particular, 

for a two-component MLS with R=2 the matrices are: 
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, and (26) 
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In this case, Pijk defines the probability of layer type k to follow a layer pair ij, and the 

following relationships , ∑∑ =
j k

jk 1W ∑ =
l

jkl 1P , and ∑ =
j

kljkljk WPW  complement equation (6). 

In terms of the Markovian statistics the probability parameters are interrelated and the number 

of independent parameters for a given R value is therefore relatively small. For example, in a 

structure with R=1 and WA>WB two independent parameters are required to determine all other 

probability parameters and thus to describe any layer subsequence. Similarly, for a two-

component system with R=2 and WA>WB only four independent parameters are required (Drits 

and Tchoubar, 1990). 

 

Alternate model 

This model describes the case when the OSL is defined by the type of the preceding or 

following “core” layer. For example, if we assume that an A-type layer is the final core layer, 

A'–type and A''-type layers are respectively after and before the A-type core layer and it is then 
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possible to define new OSLs. Each of the A'-, B'-, A''- and B''-type layers can be combined with 

the nearest core layer (A- or B-type) to form new layers: Au = A + A', Bu =B + B', Al = A''+ A, 

and Bl = B'' + B, where u and l denote the upper and lower surface layers of the crystal. This 

modification makes it possible to keep the junction probabilities (Pij) constant over the whole 

crystal, which in turn facilitates the calculation using the proposed matrix formalism. New 

structural amplitudes FAu , FBu , FAl and FBl are introduced in the matrices Φ1C, ΦCN, ΦNN, Φ11 

and Φ1N to replace , ,  and . The intensity equation is the same as (19) but the 

number of core layers in a crystal is reduced to N

'A
F 'B

F ''A
F ''B

F

c-2. 

 

Intensity diffracted by a set of crystals having different number of layers 

If p(Ni) is the proportion of crystals containing Ni layers, and Nmin and Nmax are the 

minimum and the maximum number of layers in the crystals, then . N∑ =
=

max

minj

N

NN
j 1)N(p min can be 

chosen as 1 (p(1) = 0 if there is no isolated layers). The case Nmin = 1 is a particular case 

because an isolated layer is not A, Aˈ, Aˈˈ, or B, Bˈ, Bˈˈ. An isolated A layer must have one 

surface like Aˈ and its other surface like Aˈˈ; it is an Aˈˈˈ layer with a structure factor  and 

the same is true for B. As a consequence, a new matrix must be introduced: 

'''AF

''11
φ  = ,⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
*
BB

*
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''''''

''''''
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In turn: 

⎜
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= ReSpur)s(Int

____ r
)W)(1(p ''11φ  
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)WQ2WQ)(2W))((3(p 2
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1
CNC1NNCC11 φ+φ+φ+φ+φ+φ+  (29) 

...+  
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⎟
⎠
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j
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...+  

⎟⎟
⎠
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⎠
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⎟
⎠
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=

−
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All terms can be grouped together as a function of the exponent of Q (i.e. as a function 

of n): 
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This can be defined recursively for the first Nmax-3 terms as: 
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In addition, we have two specific expressions: 
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RESULTS 

 

Calculation of XRD patterns for hypothetical structure models having different outer surface 

layers of the crystals 

The formalism described above was used to implement an algorithm for the calculation 

of XRD patterns containing only 00l basal reflections. Corrections for the Lorentz-polarization 

factor and instrumental variables such as horizontal and vertical beam divergences, goniometer 

radius, and dimension and thickness of samples have been introduced according to the 

recommendation of Reynolds (1986) and Drits et al. (1993). These corrections allow the 

simulation of XRD patterns that can be directly compared with experimental ones (Drits et al., 

1997a; Sakharov et al., 1999; Lindgreen et al., 2000; Claret et al., 2002, 2004).  

XRD patterns showing the influence of different OSLs were calculated for chlorite and 

mixed-layer chlorite-smectite (Ch-S) structure models. Chlorite is usually a trioctahedral 

mineral and the idealized composition for its 2:1 and 0:1 layers may be represented as (Si4-

xAlx)(Mg,Fe2+)3O10(OH)2 and (Mg,Fe2+)3-xAlx(OH)6, respectively. z-coordinates of the 

constituting atoms were taken from Moore and Reynolds (1989). Three chlorite models which 

differ from each other by their OSLs were considered. In the first two models chlorite crystals 
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are terminated by 2:1 and 0:1 layers, respectively, whereas the third model corresponds to a 

periodic chlorite structure in which each crystal is terminated by a 2:1 layer on the one side and 

by a 0:1 layer on the other. XRD patterns calculated for such (Fe-free) chlorite models are 

shown on Figure 1. A dramatic redistribution of 00l reflections intensities is observed when 

only one outer 0:1 layer is added to the 2:1 surface layer of the periodic chlorite crystals. In 

particular, relative intensity of 001 reflection is strongly increased or decreased when both 

surface layers of the chlorite crystals are represented by 2:1 or 0:1 layers, respectively. XRD 

patterns calculated for different cation compositions of 2:1 and 0:1 layers demonstrate the same 

effect. For each given composition and mean thickness of chlorite crystals the intensity of the 

001 reflection significantly decreases when OSLs are 0:1 layers, even if the mean and 

maximum numbers of chlorite layers are high. Similarly, a strong increase of the 001 reflection 

intensity is observed when 2:1 layers are present on the outer surface whatever the chlorite 

composition. 

In a chlorite-smectite (Ch-S) mixed-layer clay, 2:1 layers are separated from each other 

either by brucite-like sheets (chlorite interlayers) or by exchangeable cations and water or 

ethylene glycol (EG) molecules (smectite interlayers). Structure models were constructed using 

the parameters given by Moore and Reynolds (1989). In addition, three different types of OSLs 

were considered for Ch-S crystals when both their sides are terminated by 2:1 layers, by 

smectite interlayers and by brucite-like sheets. Ch-S structures terminated by 2:1 layers 

correspond to Reynolds model of Ch-S. XRD patterns were calculated for Ch-S core models in 

which 60% of chlorite and 40% of smectite interlayers are interstratified at random. Figure 2 

shows that only the reflection near 15-16 Å is sensitive to the OSL nature in Ch-S crystals. Its 

intensity significantly decreases for the model in which both OSLs are 0:1 layers. This is true 

whatever the amount and the distribution of Fe atoms in the 2:1 and 0:1 layers. Figure 2 shows 

two other varieties along with Fe-free Ch-S (top part of figure 2). In the first one, Fe atoms are 
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located only in the 2:1 layers (middle part of figure 2) and only in 0:1 sheets in the other model 

(bottom part of figure 2). 

Analysis of XRD patterns calculated for Ch-S differing by the content and cation 

composition of their interstratified layers has revealed the following features: (1) the influence 

of different OSLs is significant even for relatively high smectite content (40%), but decreases 

with increasing smectite content; (2) the nature of OSLs modifies mostly the intensity of the 

first low-angle basal reflections whereas the relative intensities of the other reflections are 

mostly unaffected by the terminating layer type, independently on the layer type, cation 

composition and distribution; (3) for a given Ch:S ratio the intensity of the first basal reflection 

decreases for Ch-S crystals terminated by a 0:1 layer, whereas more subtle differences are 

observed between XRD patterns calculated for Ch-S crystals that end on 2:1 layers or smectite 

interlayers; (4) different terminating layers change not only the intensity but also the position of 

the first basal reflection. 

On the other hand, XRD patterns calculated for EG-solvated kaolinite-smectite MLSs 

(K-S) differing by their OSLs are almost identical for a given composition, whatever the nature 

of the OSL (kaolinite or smectite layer – data not shown). Likewise, similar XRD patterns are 

calculated for EG-solvated illite-smectite MLSs (I-S) with either 2:1 layers on both sides or 

with a 2:1 layer on one side and either smectite or illite layer (depending on the I-S 

composition) on the other. When I-S crystals are terminated on both sides by one sheet of EG 

molecules significant modifications of position and profile are observed for the second order 

basal reflection at 8.5-10.0 Å (data not shown). However, according to our experience, similar 

diffraction effects may be result from the modification of other structural, chemical and 

probability parameters describing such I-S structures, and it is not clear if the nature of OSLs 

can be determined from XRD modelling for I-S MLSs.  
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Simulation of the experimental XRD patterns 

The actual structure of OSLs was studied for two monomineralic chlorites and one 

regular Ch-S (corrensite). The two chlorite samples have different contents of octahedral Fe 

cations and their structural formulae are given in Table 1. For structure models of chlorite z-

coordinates of atoms have been derived from the single-crystal refinements of chlorite 

structures with cation compositions close to those of the studied samples (Drits and Smoliar-

Zvyagina, 1992). XRD patterns were calculated for chlorite models having the three possible 

combinations of layer terminations mentioned above. For each model the number of layers in 

crystals was described by a log-normal distribution with mean and maximum N equal to 30 and 

150 layers (Drits et al., 1997b). Figures 3 and 4 show that for both samples the best fit to the 

experimental intensity distribution is obtained when crystals are terminated by brucite layers on 

both ends. For the other two models a significant disagreement between experimental and 

calculated intensities of 00l reflections is observed (Figures 3b,c, and 4b,c). 

Similar calculations were carried out for a corrensite sample in both air-dried and EG-

solvated states. Corrensite structural formula is given in Table 1 and z-coordinates of atoms for 

smectite and chlorite layers were taken from Moore and Reynolds (1989). XRD patterns were 

calculated for structure models having different OSLs: brucite-like sheets; 2:1 layers or 

smectite interlayers. Comparison of experimental and calculated XRD patterns shows that for 

both EG-solvated and air-dried states the best fit is obtained when corrensite crystals are 

terminated by smectite interlayers (Figures 5, 6). Thus, the nature of crystal outer surfaces 

depends on a mineral structure and can reflect physico-chemical conditions of its formation. 

For the studied chlorite crystals it is represented by (OH) groups and for corrensite crystals by 

exchangeable cations and water molecules. 
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DISCUSSION 

 

For irregular MLSs the influence of OSLs on diffraction intensities cannot be predicted 

because it is not possible to consider separately the contributions to diffraction of the 

interference function and of the scattering power for different layer types in such structures. In 

contrast, the influence of OSL nature on diffracted intensity can be estimated for structures 

containing only one L-type layer. One can show that an intensity distribution along the c* axis 

for a microcrystal consisting of N identical layers and ending on one side by Ll and on the other 

side by Lu layers can be expressed as: 

[ ]+∑ π−−+=
−

=

1N

1n
001

*** )dinz2exp()nN(Re2NFF)z(I  

+∑ π−+++
−
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where F, Fl and Fu are the structure factors of L, Ll and Lu layers, z* is the coordinate along the 

c* axis, and d001 is the periodicity of the core crystal along the c* axis. When z*d001 = l this 

intensity may be expressed as: 

I = N2 F2 + Fl
2 + Fu

2 + 2NRe(Fl
* F + F* Fu) + 2Re(Fl

* Fu) (39) 

In this formula numerical values of each term can be calculated separately for each 

given z* if structures of the core layers and of each OSL are known. For example, Tables 2 and 

3 contain these values calculated for chlorite crystals differing from each other by their OSLs. 

It is remarkable that the values reflecting the interaction of an outer brucite-like layer with core 

layers of the core crystal in all layer subsequences in which the first one is the outer brucite-like 

layer (2NRe(Fb
* F) – 4th column, Table 2) are compatible with those corresponding to the core 

layers (NF2(00l) – 2nd column, Table 2). Moreover, the former values may be positive or 

negative for different l values. These specific features explain why adding only one brucite-like 

sheet to the core chlorite crystals (5 layers – 70 Å) dramatically modifies the intensity 
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distribution of basal reflections when both sides of the chlorite crystals are terminated by 

brucite-like layers (see the 2nd and last two columns in Table 2). 

In Table 3, similar calculations are reported for chlorite crystals (four 2:1:1 layers in the 

core crystal) with 2:1 layers as OSLs. Despite the low values of Ft
2 corresponding to the 2:1 

layer, the interaction of such OSLs with core layers contributes significantly to the diffracted 

intensity (2NRe(Ft
* F) – 4th column, Table 3). This is especially so for the first two reflections 

as the term 2NRe(F* Ft) is respectively positive and negative signs for the first and second 

order reflections. As a consequence chlorite crystals terminated on both sides by 2:1 layers 

have stronger 001 reflection than purely periodic chlorite crystals with one 2:1 layer on one 

side and a brucite layer on the other side. 

Equation (39) can be used in a similar way to calculate diffraction effects for any 

periodic layer structure whatever their OSLs. For example, the 001 reflection calculated for 10-

layer thick periodic kaolinite crystals is ~30% more intense than that calculated for the same 

kaolinite crystals assuming a pyrophillite-like outer layer forming hydrogen bonds with the last 

kaolinite core layer. 

It is also clear from equation (39) that the influence of OSLs on the calculated XRD 

patterns decreases with the increasing number of core layers. However, this influence depends 

on the structure of both core and OS layers and significant modifications of the basal-reflection 

intensity distribution may be observed even for 30-layer thick (>420 Å) chlorite crystals 

(Figures 3, 4). 

Finally, equation (39) shows that the main influence on the diffracted intensity 

distribution arises from the interaction of OSLs with crystal core layers. The effect resulting 

from these interactions strongly depends on the structural amplitudes of both core and OS 

layers and may be significant even when the scattering power of OSLs is negligible. For 

periodic structures the diffraction effects resulting from the presence of different OSLs may be 

predicted whereas such a prediction is not possible for MLSs even though similar interactions 
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are involved. Preliminary calculations have shown that among the three main groups of natural 

mixed-layer clays (I-S, Ch-S, and K-S) the influence of OSLs on XRD patterns is significant 

only for MLSs containing chlorite layers. For other MLSs, additional hindrance to the 

characterization of OSL nature by XRD is related to the influence of chemical and structural 

parameters on XRD patterns, as diffraction effects similar to those resulting from the presence 

of different OSLs can be obtained, for example, by varying the layer chemistry and/or stacking 

sequence. 

 

CONCLUSION 

 

The theoretical approach described in the present work provides the opportunity to 

determine the nature of OSLs in MLS from the simulation of XRD patterns. With this respect 

the results obtained in the present study for the chlorite samples are remarkable as they 

demonstrate that relative intensities of the odd reflections depend not only on the distribution of 

Fe in the chlorite structure over the 2:1 and 0:1 layers, but also on the nature of these OSLs. 

For periodic structures containing only one layer type, the influence OSLs may be 

predicted from simple calculations, and is independent of the scattering power of the OSL. 

Such a prediction is not possible for MLSs. In addition, comparison of the OSL nature 

determined from XRD profile modeling with that deduced from direct observations using 

electron or atomic force microscopies (e.g.) is crucial for MLSs because of the similar 

diffraction effects that may be obtained by varying structural and chemical parameters of the 

MLS on the one hand and the OSL nature on the other. Among the usual MLSs found in 

natural samples, most significant effects have been calculated for those containing elementary 

chlorite layers. 

The knowledge of the OSL nature may be used to understand better surface properties 

of MLSs, and more especially of layer silicates, and/or to derive constrains on their growth 
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conditions. Accordingly, the systematic presence of 0:1 layers on the two sides of crystals in 

the reported chlorite structures may reflect specific growth conditions of these chlorites. 
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FIGURE CAPTION 

 

Figure 1. XRD patterns calculated for Fe-free periodic chlorite crystals (b) and crystals 

terminated by 2:1 (a) and 0:1 (c) layers. XRD patterns were calculated using the following 

parameters: size of both Soller slits was 2.3º, length of the sample - 30 mm, angular 

aperture of the divergence slit - 0.5º, goniometer radius – 175 mm, orientation parameter 

σ* - 12°, mean and maximum number of chlorite layers were 8 and 50, respectively, for all 

calculations. Layer structure models were constructed using the parameters given by 

Moore and Reynolds (1989) and a layer thickness of 14.2 Å. 

Figure 2. XRD patterns calculated for random mixed-layer chlorite-smectite models containing 

60% of chlorite layers. The models differ from each other by amount and distribution of Fe 

in 2:1 and 0:1 layers. For each given content and distribution of Fe the upper, middle and 

lower XRD patterns correspond to Ch-S crystals terminated by 2:1 layers, smectite 

interlayers, or brucite sheets, respectively. Layer thickness for EG-solvated smectite layers 

was assumed to be 16.9 Å, whereas mean and maximum numbers of layers building up 

coherent scattering domains were 8 and 20, respectively, for all calculations. Other 

calculation parameters as in Figure 1. 

Figure 3. Comparison of the experimental XRD pattern of chlorite 1 (see Table 1 for 

composition) with those calculated for chlorite crystals terminated by brucite sheets (a), 

one 2:1 layer and one brucite sheet (b) and 2:1 layers (c). Experimental and calculated 

XRD patterns are shown as crosses and solid line, respectively, whereas intensities of 00l 

reflections are indicated by solid and dashed arrows for calculated and experimental 

patterns, respectively. Difference plots are shown below the compared XRD patterns. 

Experimental XRD patterns of these samples were recorded using CuKα radiation with 

Scintag powder diffractometer equipped with Kevex Si (Li) solid detector. Two Soller slits 

(2.5o) and one divergence slit (0.5o) have been used. Intensity of 00l reflections were 
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measured for 30 sec. per 0.02o 2θ step in the interval 1.5 – 35.0o 2θ. Length of samples was 

35 mm. Layer thickness for chlorite layers was 14.165 Å, whereas mean and maximum 

numbers of chlorite layers were 30 and 150, respectively. Other calculation parameters as 

in Figure 1.  

Figure 4. Comparison of the experimental XRD pattern of chlorite 2 (see Table 1 for 

composition) with those calculated for chlorite crystals terminated by brucite sheets (a), 

one 2:1 layer and one brucite sheet (b) and 2:1 layers (c). Patterns and calculation 

parameters as in Figure 3, except for the chlorite layer thickness (14.190 Å). 

Figure 5. Comparison of the experimental XRD pattern of EG-solvated corrensite sample with 

those calculated for corrensite crystals terminated by smectite interlayers (a), brucite sheets 

(b) and 2:1 layers (c). Patterns as in Figure 3. Experimental XRD patterns were recorded 

using CoKα radiation with Philips PW3040 powder diffractometer equipped with a curved 

graphite diffracted-beam monochromator. Two Soller slits (2.5o), one divergence slit 

(0.25o) and one anti-scatter slit (0.25o) have been used. Intensity of 00l reflections were 

measured for 10 sec. per 0.02o 2θ step in the interval 1.5 – 35.0o 2θ. Length of samples was 

35 mm. Layer thickness for chlorite and EG-solvated smectite layers were 14.20 Å and 

16.80 Å, respectively, whereas mean and maximum number of layers building up coherent 

scattering domains were 12 and 70, respectively, for both calculations. A 50:50 

smectite:chlorite ratio, and maximum possible degree of ordering (R=1) were assumed to 

describe layer stacking in corrensite. Other calculation parameters as for Figure 1. 

Figure 6. Comparison of the experimental XRD pattern of corrensite sample in air-dried state 

with those calculated for corrensite crystals terminated by smectite interlayers (a), brucite 

sheets (b) and 2:1 layers (c) . Patterns as in Figure 3. Layer thickness for AD smectite 

layers was 15.20 Å. Other calculation parameters as in Figure 5. 
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Table 1. Structural formulae of the two chlorite and of the corrensite samples. 

2:1 layer  0:1 layer interlayer Sample 

Si AlIV AlVI Fe Mg AlVI Fe Mg Ca 

Chlorite 1 2.95 1.05 - 0.33 2.67 1.11 0.24 1.61 - 

Chlorite 2 2.78 1.22 - 1.10 1.90 1.26 0.81 0.91 - 

Corrensite 6.80 1.20 - 0.44 5.56 0.80 0.24 1.96 0.20 

Note: Chemical compositions were determined from wet chemical analysis 

after dissolution using strong acids to quantify independently Fe2+ and Fe3+

 

 

Table 2. Respective contributions of core layers (NF2), outer brucite layers (Fb
2), and outer 

brucite layers interacting with core layers (2NReFb
*F) to the diffracted intensity of 00l 

reflections. 

00l NF2 

(× 103) 

Fb
2

(× 103) 

2NReFb
*F 

(× 103) 

Σ Σ 

(norm.) 

001 96 27 -102 21 2 

002 440 16 169 625 45 

003 843 6.2 145 994 72 

004 1302 1.2 78 1381 100 

005 742 0.01 -5.9 736 53 
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Table 3. Respective contributions of core layers (NF2) outer 2:1 layers (Ft
2), and outer 2:1 

layers interacting with core layers (2NReFtF*) to the diffracted intensity of 00l reflections. 

 

00l NF2 

(× 103) 

Ft
2

(× 103) 

2NReF*Ft 

(× 103) 

Σ Σ 

(norm.) 

001 74 42 110 226 18 

002 337 1.9 -51 288 24 

003 645 1.3 58 704 58 

004 996 12 216 1224 100 

005 568 12 168 748 61 
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Sakharov et al., Fig. 3
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Sakharov et al., Fig. 4
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Sakharov et al., Fig. 5
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Sakharov et al., Fig. 6
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