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Abstract

We construct the XX and Hubbard-like models based on unitary superalgebras gl(N |M)
generalizing Shastry’s and Maassarani’s approach.

We introduce the R-matrix of the gl(N |M) XX-type model; the one of the Hubbard-like
model is defined by ”coupling” two independent XX models. In both cases, we show that the
R-matrices satisfy the Yang-Baxter equation. We derive the corresponding local Hamiltonian
in the transfer matrix formalism and we determine its symmetries.

A perturbative calculation ”à la Klein and Seitz” is performed. Some explicit examples are
worked out. We give a description of the two-particle scattering.
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1 Introduction

The Hubbard model was introduced in order to study strongly correlated electrons [1,2] and, since
then, it has been widely studied, essentially due to its connection with condensed matter physics. It
has been used to describe the Mott metal-insulator transition [3,4], high Tc superconductivity [5,6],
band magnetism [7] and chemical properties of aromatic molecules [8]. The literature on the
Hubbard model being rather large, we do not aim at being exhaustive and rather refer to the
books [9, 10] and references therein. Exact results have been mostly obtained in the case of the
one-dimensional model, which enters the framework of our study. In particular, the 1D model
eigenvalues have been obtained by means of the coordinate Bethe Ansatz in the celebrated paper
by Lieb and Wu [11].

One of the main motivations for the present study of the Hubbard model and its generalisa-
tions is the fact that it has recently appeared in the context of N = 4 super Yang-Mills theory.
Indeed, it was noticed in [12] that the Hubbard model at half-filling, when treated perturbatively
in the coupling, reproduces the long-ranged integrable spin chain of [13] as an effective theory. It
thus provides a localisation of the long-ranged spin chain model and gives a potential solution to
the problem of describing interactions which are longer than the length of the spin chain. The
Hamiltonian of this chain was conjectured in [13] to be an all-order description of the dilatation
operator of N = 4 super Yang-Mills in the su(2) subsector. That is, the energies of the spin chain
are conjectured to be the anomalous dimensions of the gauge theory operators in this subsector.
In relation to this, an interesting approach to the Hubbard model is given in [14] that leads to the
evaluation of energies for the antiferromagnetic state and allows one to control the order of the
limits of large coupling and large length of the operators/large angular momentum.

There may be the possibility that some integrable extension of the Hubbard model could be
put in relation to other subsectors of the N = 4 super Yang-Mills theory. Here we will discuss
a general approach to constructing a number of supersymmetric Hubbard models. Each of these
models can be treated perturbatively and thus gives rise to an integrable long-ranged spin chain as
an effective theory.

Other supersymmetric generalisations of the Hubbard model have been constructed, see e.g.
[15, 16]. These approaches mainly concern high Tc superconductivity models and their relation
with the t − J model. They essentially use the gl(1|2) or gl(2|2) superalgebras, which appear as
the symmetry algebras of the Hamiltonian of the model. Our approach however is different and is
based on the QISM framework. It ensures the integrability of the model and allows one to obtain
local Hubbard-like Hamiltonians for general gl(N |M) superalgebras. They can be interpreted in
terms of ‘electrons’ after a Jordan–Wigner transformation.

In this review paper we revisit and slightly extend the results of [17], our goal here being not
to reproduce the calculations but to focus on the main ideas of our approach.

The plan of the paper is as follows. Section 2 is devoted to sketch a number of facts for
the ordinary Hubbard model. In section 3, we define universal XX models. We introduce the
corresponding Hamiltonians and determine the symmetries of the model. In section 4, we summarise
the construction of the associated Hubbard-like model, in the Shastry and Maassarani approach.
From the transfer matrix we obtain the Hamiltonian; we also discuss the symmetries. In section 5
we perform a second order perturbative computation à la Klein and Seitz [18]. Then, we define the
Jordan-Wigner transformation, section 6, used in section 7 to give some examples where we write
explicitly the Hamiltonians in the gl(2|2), gl(4) and gl(4|4) cases. We finish in section 8 with a
study of two-particle interactions.
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2 Hubbard model

The 1 dimensional Hubbard model introduced by [1, 2] describes hopping electrons on a lattice,
with an ultralocal repulsive potential that implements a screened Coulomb repulsion, with U > 0.
The Hamiltonian is given by

H = −t

L∑

i=1

∑

ρ=↑,↓

(
eiφc†ρ,icρ,i+1 + e−iφc†ρ,i+1cρ,i

)
+ U

L∑

i=1

(
1 − 2n↑,i

)(
1 − 2n↓,i

)
(2.1)

We will always use periodic boundary conditions.
In N = 4-SYM theory this model was first observed in [12], where a magnetic flux φ of Aharonov-

Bohm type was included. In that paper, the potential term was written in a slightly different but
equivalent form. The relation between couplings was identified and the system was taken at half-
filling; for our needs we just observe that the ratio t/U corresponds to the coupling g

t

U
=

g√
2

. (2.2)

We observe that the Hamiltonian is Hermitian if φ ∈ R. In the following we will work with this
flux equal to zero.

The underling algebraic structure leads us to superalgebras: on each site i the fermionic struc-
ture

{cρ,i, c
†
ρ′,j} = δρ,ρ′δi,j {cρ,i, cρ′,j} = {c†ρ,i, c

†
ρ′,j} = 0 (2.3)

is a realisation of the super-Lie algebra gl(1|1) ⊕ gl(1|1). The full model algebra is obtained by L-
times the tensor product of the one site structure. We can easily represent the fermionic structure
by a graded tensor product of Pauli matrices, written here with the standard notation for basis
matrices Eαβ to emphasise the grading:

E12;ρ,i = cρ,i , E21;ρ,i = c†ρ,i , E22;ρ,i = nρ,i = c†ρ,icρ,i , E11;ρ,i = 1 − nρ,i = cρ,ic
†
ρ,i (2.4)

E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E11 =

(
1 0
0 0

)
, E22 =

(
0 0
0 1

)
.

When it occurs, the second pair of labels ρ, i indicates the spin polarisation ρ and the site i.
The matrices E12 , E21 are taken of fermionic character (they satisfy anticommutation relations
whatever their spin and space labels are) and E11 , E22 are taken of bosonic character (they always
enter commutation relations whatever their spin and space labels are). The relation (2.4) is a graded
Jordan-Wigner transformation1 and respects periodic boundary conditions2. We now rewrite the
Hamiltonian in the spin chain language

H = −t

L∑

i=1

∑

ρ=↑,↓

(E21;ρ,i E12;ρ,i+1 + E21;ρ,i+1 E12;ρ,i) + U

L∑

i=1

(
E11;↑,i − E22;↑,i

)(
E11;↓,i − E22;↓,i

)

1The ordinary Jordan-Wigner transformation is c
†
↑,i = σ

−
↑,i

∏

k>i

σ
z
↑,i for the up polarisation; an additional term

occurs for the down polarisation.
2The standard one violates periodicity.
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and we split it into the sum of the two polarisations

H = H↑
XX + H↓

XX + U

L∑

i=1

(
E11;↑,i − E22;↑,i

)(
E11;↓,i − E22;↓,i

)
; (2.5)

Hρ
XX = −t

L∑

i=1

(E21;ρ,i E12;ρ,i+1 + E21;ρ,i+1 E12;ρ,i) .

Taking one polarisation of the kinetic term we easily see that

E21;ρ,i E12;ρ,i+1 + E21;ρ,i+1 E12;ρ,i =
1

2

[
Ex;ρ,i Ex;ρ,i+1 + Ey;ρ,i Ey;ρ,i+1

]
(2.6)

Ex;ρ,i =

(
0 1
1 0

)

ρ,i

, Ey;ρ,i =

(
0 −i
i 0

)

ρ,i

namely we see the appearance of a (graded) XX spin chain Hamiltonian3 (or better two XX spin
chains, one for each polarisation) within the Hubbard model.

It turns out that the breaking of (2.5) into the Hamiltonian of two XX models plus a potential
will allow us to generalise this model to higher algebraic structures by maintaining its main property:
integrability4 .

A first hint of integrability of the Hubbard model came from the coordinate Bethe Ansatz
solution obtained by Lieb and Wu [11] but a full understanding of it by the existence of an infinite
set of commuting charges came much later. A complete set of eigenstates was constructed in [19]
using the SO(4) symmetry of the 1D Hubbard Hamiltonian. Within the framework of the quantum
inverse scattering method, an R-matrix was first constructed by Shastry [20, 21] and Olmedilla
et al. [22], by coupling (decorated) R-matrices of two independent XX models, through a term
depending on the coupling constant U of the Hubbard potential. The proof of the Yang–Baxter
relation for the R-matrix was given by Shiroishi and Wadati [23]. With a standard construction,
a transfer matrix can be constructed by taking the trace of a tensor product of R-matrices. The
Yang-Baxter equation guarantees that the transfer matrix is the generating functional of an infinite
set of commuting charges. One of these charges is the Hamiltonian (2.5) itself.

The construction of the R-matrix was then generalised in the gl(N) case by Maassarani et al.,
first for the XX model [24] and then for the gl(N) Hubbard model [25, 26]. Within the QISM
framework, the eigenvalues of the transfer matrix of the Hubbard model were found using the
algebraic Bethe Ansatz together with certain analytic properties in [27–29].

3 Universal XX models

We generalize the construction given in [17,24,29] to the case of an arbitrary representation space
V, possibly infinite dimensional. We will use the standard auxiliary space notation, i.e. to any
operator A ∈ End(V), we associate the operator A1 = A ⊗ I and A2 = I ⊗ A in End(V) ⊗ End(V).
More generally, when considering expressions in End(V)⊗k, Aj, j = 1, . . . , k will act trivially in all
spaces End(V), but the jth one.

To deal with superalgebras, we will also need a Z2 grading [.] on V, such that [v] = 0 will be
associated to bosonic states v ∈ V and [v] = 1 to fermionic ones.

3At this point it should be clear that the difference between graded and non graded cases appears when boundary
effects are observed; the thermodynamic limit usually ignores such terms, being sensitive to bulk contributions only.

4The flux φ does not affect integrability properties.
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We will also assume the existence of a (super-)trace operator, defined on a subset of End(V)
and obeying cyclicity. When V is finite dimensional, dim(V) = K, End(V) is a matrix algebra or
super-algebra so that the trace operator is the usual trace or supertrace of K ×K matrices. When
V is infinite dimensional, the definition of a trace operator is more delicate and we will just assume
that it exists and is cyclic, for the operators we use.

The construction of a universal XX model is mainly based on general properties of a given
projector and a permutation. Our main projectors are chosen in End(V) as being

π : V → W , π̃ = I − π : V → W̃ with V = W ⊕ W̃ (3.1)

In the tensor product of two vector spaces we take the (possibly graded) permutation

P12 :

{
V ⊗ V → V ⊗ V
v1 ⊗ v2 → (−1)[v1][v2] v2 ⊗ v1

(3.2)

For example, in the superalgebra gl(N |M) a possible choice is

π =
∑

j 6=N,N+M

Ejj , π̃ = I − π = ENN + EN+M,N+M (3.3)

3.1 R-matrix

From the previous operators, one can construct an R-matrix acting on V ⊗ V

R12(λ) = Σ12 P12 + Σ12 sin λ + (I ⊗ I − Σ12)P12 cos λ (3.4)

where Σ12 is built on the projection operators:

Σ12 = π1 π̃2 + π̃1 π2 (3.5)

It is easy to show that Σ12 is also a projector in V ⊗ V: (Σ12)
2 = Σ12.

Let us introduce the operator C:
C = π − π̃ . (3.6)

It obeys C2 = I and is related to the R-matrix through the equalities

Σ12 =
1

2
(1 − C1C2) and I ⊗ I − Σ12 =

1

2
(1 + C1C2) (3.7)

In [17] we gave proof of a number of useful properties of the R-matrix. Essentially the same proofs
work also for the slightly more general formulation given here. The main properties are unitarity,
regularity, and Yang–Baxter equation (YBE), that guarantees us that we have an integrable model

R12(λ12)R13(λ13)R23(λ23) = R23(λ23)R13(λ13)R12(λ12)

where λij = λi − λj . (3.8)

3.2 Monodromy and transfer matrix

With a very standard construction, from the R-matrix one constructs the (L sites) monodromy
matrix

L0<1...L>(λ) = R01(λ)R02(λ) · · ·R0L(λ) (3.9)

5



where we tensor product one R-matrix for each site of the theory. It obeys the relation

R00′(λ − µ)L0<1...L>(λ)L0′<1...L>(µ) = L0′<1...L>(µ)L0<1...L>(λ)R00′(λ − µ) . (3.10)

where 0 and 0′ are two copies of the auxiliary space. This relation allows us to construct an (L
sites) integrable XX spin chain through the transfer matrix

t1...L(λ) = str0 L0<1...L>(λ) = str0

(
R01(λ)R02(λ) · · ·R0L(λ)

)
. (3.11)

where, if V has infinite dimension, we assume the existence of the supertrace for the previous
operator. Indeed, the relation (3.10) implies that the transfer matrices for different values of the
spectral parameter commute

[t1...L(λ) , t1...L(µ)] = 0 . (3.12)

Here the cyclicity of the supertrace has been used.
Since the R-matrix is regular (namely it is a permutation in λ = 0), logarithmic derivatives in

λ = 0 give local operators. We choose the first one as XX-Hamiltonian

H = t1...L(0)−1 dt1...L

dλ
(0) (3.13)

=
L∑

j=1

Hj,j+1 with Hj,j+1 = Pj,j+1 Σj,j+1

where we have used periodic boundary conditions, i.e. identified the site L + 1 with the first site.
After (3.12), we see that any expansion of the transfer matrix in the spectral parameters λ, µ
generates a set of commuting operators. In particular they commute with the Hamiltonian (3.13),
so are conserved charges. This formally proves that the system is integrable.

Explicitly, the two sites Hamiltonian corresponding to the example (3.3) reads

Hj,j+1 =
∑

i6=N,N+M

∑

j=N,N+M

(
(−1)[j] Eij ⊗ Eji + (−1)[i] Eji ⊗ Eij

)
. (3.14)

3.3 Symmetries of the universal XX models

The choice of the fundamental projectors in (3.1) directly fixes the symmetries of the model.

One easily shows that an operator M ∈ End(W)⊕End(W̃) commutes with the projectors (3.1);
then it commutes with the R-matrix in the following sense

(M1 + M2)R12(λ) = R12(λ) (M1 + M2) . (3.15)

Commutation does not hold if the operator mixes the two subspaces.
As a consequence of (3.15), the transfer matrix also has a symmetry (super)algebra

S = End(W) ⊕ End(W̃) (3.16)

with generators given by
M<1...L> = M1 + M2 + . . . + ML . (3.17)

The same is true for any Hamiltonian H built from the transfer matrix so (3.17) commute with
the Hamiltonian5.

5In principle, this construction cannot exclude the existence of operators that commute with the Hamiltonian
but not with the R-matrix. In that case, these additional symmetries would have the strange feature of not being
symmetries of at least one conserved charge (by reconstructing the R-matrix from an expansion).
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We can reverse this construction: we require a symmetry algebra S from which we construct
the subspaces W and W̃ . This uniquely fixes the fundamental projector π that immediately leads
to obtain the XX model possessing S as symmetry.

The example (3.3) admits S = gl(N − 1|M − 1) ⊕ gl(1|1) as symmetry superalgebra whose
generators M have the form

Ejk , j, k 6= N,N + M for gl(N − 1|M − 1)
Ejk , j, k = N,N + M for gl(1|1). (3.18)

4 Universal Hubbard models

Starting with universal XX models, one can build universal Hubbard models, in the same way it
has been done for usual and super Hubbard models [10, 17]. The logic will be to start from two
possibly different universal XX models of section 3 and ”glue” them with the generalisation of the
construction given in section 2.

4.1 R-matrix

We start with the R-matrices of two universal XX models, R↑
12(λ) and R↓

12(λ), living in two different
sets of spaces that we label by ↑ and ↓. Let us stress that the two XX models can be based on two
different (graded) vector spaces V↑ and V↓, with two different projectors π↑ and π↓.

The Hubbard model is constructed from the coupling of these two XX models. Its R-matrix
has two spectral parameters λ1 , λ2 and reads:

R12(λ1, λ2) = R↑
12(λ12)R↓

12(λ12) +
sin(λ12)

sin(λ′
12)

tanh(h′
12)R↑

12(λ
′
12)C↑

1 R↓
12(λ

′
12)C↓

1 (4.1)

where λ12 = λ1 − λ2 and λ′
12 = λ1 + λ2. Moreover, h′

12 = h(λ1) + h(λ2) and the choice of the
function h(λ) is fixed by the proof of the Yang-Baxter equation. Indeed, when the function h(λ) is
given by sinh(2h) = U sin(2λ) for some free parameter U , the R-matrix (4.1) obeys YBE:

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2) . (4.2)

As remarked in [17] the proof relies only on some intermediate properties that are not affected by
the choice of the fundamental projectors (3.1). The proof follows the steps of the original proof
by Shiroishi [30], in the same way it has been done for algebras in [10]. Moreover, it was already
noticed in [10] that one can couple two XX models based on different gl(M) algebras: this naturally
extends to general (graded) vector spaces V.

The given R-matrix is regular but non symmetric. It satisfies unitarity (we correct here an
inconsequential typo that occurred in eq. 3.4 of [17]) in the form

R12(λ1, λ2)R21(λ2, λ1) =

(
cos4(λ12) −

(sin(λ12)

sin(λ′
12)

tanh(h′
12) cos2(λ′

12)
)2
)

I1 ⊗ I2 (4.3)

where Ii = I
↑ ⊗ I

↓ .

4.2 Monodromy and transfer matrix

We use the construction given in section 3.2 to obtain the Hamiltonian of the system, starting with
the ‘reduced’ monodromy matrix

L0<1...L>(λ) = R01(λ, µ) . . . R0L(λ, µ)
∣∣∣
µ=0

. (4.4)
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Any other choice for µ is possible but, at least in view of obtaining a local Hamiltonian, they do
not give new information. Provided the supertrace exists, the transfer matrix is given by

t1...L>(λ) = str0 L0<1...L>(λ)

Then, one gets

[H, t(λ)] = 0 , ∀λ , for H = H(0) = t(0)−1 t′(0) (4.5)

The ‘reduced’ R-matrices that enter in (4.4) take a particularly simple factorised form

R12(λ, 0) = R↑
12(λ)R↓

12(λ) I↑↓1 (h) (4.6)

where

I↑↓1 (h) = I ⊗ I + tanh(
h

2
)C↑

1 C↓
1 (4.7)

and we arrive at a Hubbard-like Hamiltonian

H =
L∑

j=1

Hj,j+1 =
L∑

j=1

[
Σ↑

j,j+1 P ↑
j,j+1 + Σ↓

j,j+1 P ↓
j,j+1 + U C↑

j C↓
j

]
(4.8)

where we have used periodic boundary conditions.

4.3 Symmetries

The transfer matrix of generalized Hubbard models admits as symmetry (super)algebra the direct
sum of the symmetry algebras of the XX components

S = End(W↑) ⊕ End(W̃↑) ⊕ End(W↓) ⊕ End(W̃↓) . (4.9)

To prove this symmetry, it is useful to remark that (3.15) can be now specialised to the cases up
and down. Moreover, the up R-matrix commutes with the down generators and viceversa. We also
check that

M Cσ = Cσ
M , σ =↑, ↓ (4.10)

where
M = M

↑ + M
↓ and M

σ ∈ End(Wσ) ⊕ End(W̃σ) . (4.11)

Thus, one gets
[R12(λ, 0) , M

↑
1 + M

↑
2] = 0 = [R12(λ, 0) , M

↓
1 + M

↓
2] (4.12)

that can be easily extended to hold for the monodromy and transfer matrices and for the Hamil-
tonian; the generators of the symmetry have the form

M
↑ =

L∑

j=1

M
↑
j and M

↓ =
L∑

j=1

M
↓
j (4.13)

The ordinary Hubbard case and all the cases where Vσ is two dimensional are special because, in
addition to the list of generators contained in (4.9), there are new generators given by

V ± = σ±
↑ ⊗ σ±

↓ , W± = σ±
↑ ⊗ σ±

↓ . (4.14)

To be precise, V ± commutes with the Hamiltonian if L is even while W± commutes in all cases.
These additional generators do not commute with H if dim(Vσ) > 2; they are responsible for the
SU(2) × SU(2) symmetry of the even Hubbard model.
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5 Perturbative expansion of the Hubbard-like Hamiltonian

We expand the Hamiltonian (4.8) in the inverse coupling 1
U

; according to (2.2), this corresponds to
the small coupling expansion of the gauge theory. Indeed, precisely that expansion has been used
in [12] to match the SU(2) dilatation operator with the effective Hamiltonian of the Hubbard model.
The system was taken at half-filling to guarantee the required spin chain behaviour. With the form
of the potential used in (2.1) the half-filled condition is enforced by the U → ∞ requirement itself.

We take the set of all Hamiltonian eigenstates whose leading energy term is −LU , for large
positive U . These states are selected by the following projector

Π0 =
∏

j

(
π↑

j − π↓
j

)2
=
∏

j

(
π̃↑

j − π̃↓
j

)2
= Π2

0 . (5.1)

that projects on the subspace where, on each site, one and only one among π̃↑
j , π̃↓

j has nonzero
action.

We follow the method introduced by Klein and Seitz [18] to obtain an effective Hamiltonian for
the corrections to the leading energy −LU :

Heff =
1

U
H

(2)
eff +

1

U3
H

(4)
eff + . . . (5.2)

For L > 2 the second order effective Hamiltonian is

H
(2)
eff =

∑

j

H
(2)
eff j,j+1 = 2

∑

j

(
1 + P ↑

j,j+1P
↓
j,j+1

)(
π↑

j π̃↓
j π̃↑

j+1 π↓
j+1 + π̃↑

j π↓
j π↑

j+1 π̃↓
j+1

)
(5.3)

For the ordinary Hubbard model this expression can be given in terms of Pauli matrices

H
(2)
eff =

L∑

i=1

(1 − σiσi+1) (5.4)

where the fermionic oscillators of (2.1) have disappeared and only spin degrees of freedom are left
(σ = (σx, σy, σz)).

The structure of the two-sites Hamiltonian H
(2)
eff i,i+1 can be obtained explicitly. In matricial

form, it has diagonal block structure, with blocks given by one of the two matrices

B− =

(
1 −1
−1 1

)
or B+ =

(
1 1
1 1

)
, (5.5)

all other entries being zero. The number of appearances of each block depends on the actual model
under examination.

6 Jordan-Wigner transformation

Let us consider p sets of fermionic oscillators c
(q)
i , c

(q)†
i (i = 1, . . . , L and q = 1, . . . , p) that satisfy

the usual anticommutation relations

{c(q)
i , c

(q′)†
j } = δij δqq′ {c(q)

i , c
(q′)
j } = {c(q)†

i , c
(q′)†
j } = 0 (6.1)

One defines the following matrix (where n
(q)
i = c

(q)†
i c

(q)
i is the usual number operator)

X
(q)
i =

(
1 − n

(q)
i c

(q)
i

c
(q)†
i n

(q)
i

)
(6.2)
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The entries X
(q)
i;αβ of this matrix have a natural gradation given by [α] + [β] where [1] = 1 and

[2] = 0.
In the gl(2p−1|2p−1) case, one defines at each site i the generators

Xi;α1...αp,α′
1
...α′

p
= (−1)s X

(1)
i;α1α′

1

. . . X
(p)
i;αpα′

p
where s =

p∑

a=2

[αa]
( a−1∑

b=1

(
[αb] + [α′

b]
))

(6.3)

It is easy to verify the following properties:

(
Xi;α1...αp,α′

1
...α′

p

)†
= Xi;α′

1
...α′

p,α1...αp
(6.4)

Xi;α1...αp,α′
1
...α′

p
Xi;β1...βp,β′

1
...β′

p
= δα′

1
β1

. . . δα′
pβp

Xi;α1...αp,β′
1
...β′

p
(6.5)

∑

α1,...,αp

Xi;α1...αp,α1...αp = 1 (6.6)

Xi;α1...αp,α′
1
...α′

p
Xj;β1...βp,β′

1
...β′

p
= (−1)gXj;β1...βp,β′

1
...β′

p
Xi;α1...αp,α′

1
...α′

p
(i 6= j) (6.7)

where g =
( p∑

a=1

(
[αa] + [α′

a]
))( p∑

b=1

(
[βb] + [β′

b]
))

This means that the operators Xi;α1...αp,α′
1
...α′

p
built out of fermionic oscillators are actually a real-

isation of the gl(2p−1|2p−1) superalgebra. A generic case gl(N |M) can be understood as contained
in the smallest superalgebra for which N,M < 2p−1. The unwanted states can be consistently
projected out.

7 Examples

It is possible to construct examples of both XX and Hubbard-like Hamiltonians. Clearly, the XX
ones are ”quasi-free models” because they do not contain external potentials and, if written with
fermionic oscillators, they only contain hopping terms. In spite of this, they show curious ”screening
effects” namely particles that are allowed to move only if particles of other types are present (or
absent, depending on the case). We will concentrate on universal Hubbard model examples.

The first example to cite is, of course, the original Hubbard model of section 2, that is described
in this formalism as gl(1|1) ⊕ gl(1|1) with the choice π↑ = π↓ = E11, π̃↑ = π̃↓ = E22.

7.1 gl(2|2) ⊕ gl(2|2) Hubbard Hamiltonian

This is a more complete example of the models under examination. It precisely implements two
copies (up and down) of the example (3.3) with N = M = 2. The kinetic term of the Hamiltonian
has a factorised form

HHub =

L∑

i=1

{ ∑

σ=↑,↓

(
c†σ,icσ,i+1 + c†σ,i+1cσ,i

)(
c′†σ,ic

′
σ,i+1 + c′†σ,i+1c

′
σ,i + 1 − n′

σ,i − n′
σ,i+1

)

+ U(1 − 2n↑,i)(1 − 2n↓,i)
}

(7.1)

where the factor
N ′

σ,i,i+1 =
(
c′†σ,ic

′
σ,i+1 + c′†σ,i+1c

′
σ,i + 1 − n′

σ,i − n′
σ,i+1

)
(7.2)

multiplies an ordinary Hubbard hopping term ; only unprimed particles enter into the potential.
There are four types of fermionic particles, respectively generated by c†↑,i , c

†
↓,i , c′†↑,i , c′†↓,i so that they
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define a 16 dimensional vector space on each site. The corresponding numbers of particles are
conserved.

The factor N ′
σ,i,i+1 works on a 4× 4 space and its eigenvalues are ±1 with two-fold multiplicity.

In particular this means that it cannot vanish, N ′
σ,i,i+1 6= 0. Moreover, if no primed particles are

present, N ′
σ,i,i+1 = 1 , ∀ σ, i. The same is true if the system is fully filled with primed particles in

which case N ′
σ,i,i+1 = −1 therefore two of the sectors described by this Hamiltonian are equivalent

to the ordinary Hubbard model. A Russian doll structure is appearing: if the projectors are well
chosen, a larger model contains the small ones.

If there are primed particles only, the energy vanishes (but not momentum). If the potential is
interpreted as a Coulomb repulsion, then unprimed particles only carry electric charge.

The compound objects formed by c†σ,i c′σ,i
† are rigid: no other term in the Hamiltonian can

destroy them. In this sense, we have four types of carriers, with the same charge but different
behaviours: two are the elementary objects c†σ,i in two polarisations σ =↑ , ↓, two are the compound
objects (in two polarisations).

The symmetry, according to (4.9), is gl(1|1) ⊕ gl(1|1) ⊕ gl(1|1) ⊕ gl(1|1).
At second order in 1

U
the following effective Hamiltonian appears

H
(2)
eff = − 1

U

L∑

i=1

[
(
1

2
− 2Sz

i Sz
i+1) − (S+

i S−
i+1 + S−

i S+
i+1)N ′

↑,i,i+1 N ′
↓,i,i+1

]
(7.3)

that looks like a deformation of an XXX model. It has an enhancement of symmetry with respect
to (7.1) in the sense that its symmetry is gl(2|2) ⊕ gl(2|2).

The two sites action of (7.3) is a 64× 64 matrix that can be easily disentangled leading to both
the blocks given in (5.5). In summary, it has eigenvalues 0 and 2, 0 with multiplicity 48, 2 with
multiplicity 16.

7.2 gl(4) ⊕ gl(4) Hubbard Hamiltonian

We consider the model based on gl(4) ⊕ gl(4) and take the projectors according to the example
(3.3) with N = 4 , M = 0, in two copies (up and down)

HHub =

L∑

i=1

{ ∑

σ=↑,↓

(
c†σ,icσ,i+1c

′†
σ,ic

′
σ,i+1 + c†σ,i+1cσ,ic

′†
σ,i+1c

′
σ,i +

+ n′
σ,in

′
σ,i+1(c

†
σ,icσ,i+1 + c†σ,i+1cσ,i) + nσ,inσ,i+1(c

′†
σ,ic

′
σ,i+1 + c′†σ,i+1c

′
σ,i)
)

+

+ U(1 − 2n↑,in
′
↑,i)(1 − 2n↓,in

′
↓,i)
}

. (7.4)

This model has the same vector space dimension of the gl(2|2) one (7.1), dim(V) = 16 but the
elementary projectors are different and lead to slightly different interactions. That the two Hamil-
tonians are different is manifest if one examines the original form (4.8) with the basis matrices Eαβ ,
before the Jordan-Wigner transformation.

Here there is complete symmetry between primed and non-primed particles; the effect of
Coulomb repulsion only appears when both primed and unprimed particles are on the same site; if
one of these types is alone, no Coulomb interaction is felt. Observe that if n′

σ,i = 1 everywhere and
for all polarisations (or else if nσ,i = 1), we re-obtain the gl(1|1) Hubbard model. The kinetic term
also has a strange feature: a particle is allowed to move only if it is accompanied by a particle of
the same polarisation (i.e. up with up) but opposite type (i.e. primed with unprimed).

11



7.3 gl(4|4) ⊕ gl(4|4) Hamiltonian

Following the example (3.3), the following Hubbard Hamiltonian is obtained

H
gl(4|4)
Hub =

L∑

i=1

{ ∑

σ=↑,↓

(
c†σ,icσ,i+1 + c†σ,i+1cσ,i + 1 − nσ,i − nσ,i+1

)(
c′†σ,ic

′
σ,i+1c

′′†
σ,ic

′′
σ,i+1

+ c′†σ,i+1c
′
σ,ic

′′†
σ,i+1c

′′
σ,i − n′

σ,in
′
σ,i+1(c

′′†
σ,ic

′′
σ,i+1 + c′′†σ,i+1c

′′
σ,i)

− n′′
σ,in

′′
σ,i+1(c

′†
σ,ic

′
σ,i+1 + c′†σ,i+1c

′
σ,i)
)

+ U(1 − 2n′
↑,in

′′
↑,i)(1 − 2n′

↓,in
′′
↓,i)
}

(7.5)

Here there are six types of fermions, c†σ, c′†σ , c′′†σ so the local (one site) space of states is 64 × 64.
One observes that this Hamiltonian exhibits a ‘Russian doll’ structure. Indeed, there are four

sectors in the space of states where the gl(4|4) Hamiltonian reduces to the gl(2|2) one, that also
reduces to the gl(1|1) one. For example, one sector is given by n′′

↑,i = n′
↓,i = 1 for 1 ≤ i ≤ L.

8 Two-particles interaction

We sketch here the preliminary effects that we observed studying two particles in interaction. It is
convenient to consider a reference state as being a particle ”vacuum” (pseudovacuum)

Ω = (e↑1 ⊗ e↓1)
1

⊗ (e↑1 ⊗ e↓1)
2

⊗ . . . (e↑1 ⊗ e↓1)
L

(8.1)

where index under the tensor product symbol labels the lattice sites. All other states are considered
excitations of this pseudovacuum. Then particles are distinguished by the type, according to the
subspaces W, W̃:

a, b, . . . ∈ W
ã, b̃, . . . ∈ W̃

and an upper index ↑, ↓ will be added to distinguish polarisation6.
Within the universal XX models, all particles satisfy the exclusion principle, namely they cannot

appear on the same site. If two particles are both from W or both from W̃ , they reflect each other;
if they are one from W, one from W̃, they traverse each other by tunnel effect.

In the universal Hubbard models, the coupling activates a sort of electrostatic interaction felt
by particles of opposite polarisation only. Indeed, the potential term in (4.8) squares to the identity
(3.6) so on one site states it has eigenvalues ±U . Which sign occurs is dictated by the membership

to W or W̃ according to the rule: with U > 0, equal type particles a↑a↓ or ã↑ã↓ repel each other
but different type particles a↑ã↓ or ã↑a↓ attract each other. Observe that the vacuum itself is in
the repulsive case so actually the only ”visible” effect is the attractive one.

9 Conclusions

We have constructed universal XX and Hubbard model Hamiltonians based on general properties
of projectors and permutations. The underling algebraic structure could be an ordinary or graded

6As already remarked, notice that particles of different polarisation or different type are not to be understood as
conjugated: for example, a↑ and a↓ are different objects
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algebra gl(N |M) or possibly and infinite dimensional algebra. We have full control of the symme-
tries of the models and we have performed the perturbative calculation à la Klein and Seitz [18] in
the large coupling limit.

We have emphasised that the gradation makes the Jordan–Wigner transformation a local iso-
morphism. Therefore, the interpretation of the graded models in terms of ‘electrons’ is more
natural.

We discussed some examples, with their phenomenology. There, it would be very nice to see if
the major screening effects observed (7.1) and (7.4) in the Hamiltonians can be interpreted in some
condensed matter context.

The next step in the study of our models is the determination of the spectrum and of the
Bethe equations, as they were constructed for Hubbard or generalisation, using the algebraic Bethe
ansatz [27–29, 31] and the coordinate Bethe Ansatz of Lieb-Wu [11]. This is an heavy calculation
which we postpone for further publication, but from the analytical Bethe ansatz approach, one can
guess their form. In particular, as for spin chain models, one expects as many presentations of the
Bethe equations as there are inequivalent Dynkin diagrams. All these presentations should lead
to the same spectrum. For more informations, we refer to [32, 33] where similar calculations were
performed in the case of XXX super spin chains.

Our models are graded by construction so they naturally contain bosonic as well fermionic
degrees of freedom. We are working on examples with bosonic particles, that necessarily will be on
infinite dimensional algebras.

Finally, the Bethe equations will allow us to keep in touch with super-symmetric gauge theories,
where integrability appears precisely in relation to the Hubbard model.
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