-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by HAL Université de Savoie

HAL

archives-ouvertes

Mixin modules in a call-by-value setting

Tom Hirschowitz, Xavier Leroy

» To cite this version:

Tom Hirschowitz, Xavier Leroy. Mixin modules in a call-by-value setting. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), ACM, 2005, 27 (5), pp.857 - 881.
<10.1145/1086642.1086644>. <hal-00310317>

HAL 1Id: hal-00310317
https://hal.archives-ouvertes.fr /hal-00310317
Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/47306778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00310317

Mixin modules in a call-by-value setting

Tom Hirschowitz and Xavier Leroy

September 11, 2002

Abstract

The ML module system provides powerful parameterization facilities, but lacks the ability
to split mutually recursive definitions across modules, and does not provide enough facilities for
incremental programming. A promising approach to solve these issues is Ancona and Zucca’s
mixin modules calculus CMS. However, the straightforward way to adapt it to ML fails, because
it allows arbitrary recursive definitions to appear at any time, which ML does not support.
In this paper, we enrich CMS with a refined type system that controls recursive definitions
through the use of dependency graphs. We then develop and prove sound a separate compilation
scheme, directed by dependency graphs, that translates mixin modules down to a CBV -
calculus extended with a non-standard let rec construct.

Authors’ address: INRIA Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay,
France. E-mail: Tom.Hirschowitz@Qinria.fr and Xavier.Leroy@inria.fr.

Publication history: a preliminary version of this article, excluding most of section 5 and all
proofs, was published in the LNCS proceedings of the ESOP 2002 symposium.

Contents

1 Introduction 3
2 Overview 4
2.1 The CMS calculusof mixins o o e e s e e 4
2.2 Controlling recursive definitions Lo oo L oL 5
3 The CMS, calculus 7
3.1 Syntax e e e e e e 7
3.2 Types and dependency graphs L L 9
3.3 Typingrules. L e e e 10
4 Compilation 12
4.1 Intultions o e e e e e e e e e e e e 12
4.2 The target language L L 12
4.3 The translation L e e e e e e 14
5 Type soundness of the translation 15
5.1 A type system for the target language 15
5.2 Soundness of the translation o L 18
6 Related work 19
7 Conclusions and future work 20
A Soundness of graph operations 24
B Soundness of the target language 25
B.1 Properties of degrees L e 25
B.2 Weakening lemmas 28
B.3 Substitution lemmas e e e e e e e e 30
B.4 Substitution by a variable oL oL 33
B.5 Soundness e e e e e e e e 35
C Soundness of the translation 37

1 Introduction

Modular programming and code reuse are easier if the programming language provides adequate
features to support them. Three important such features are (1) parameterization, which allows
reusing a module in different contexts; (2) overriding and late binding, which supports incremental
programming by refinements of existing modules; and (3) cross-module recursion, which allows
definitions to be spread across several modules, even if they mutually refer to each other. Many
programming languages provide two of these features, but not all three: class-based object-oriented
languages provide (2) and (3), but are weak on parameterization (1); conventional linkers, as well
as linking calculi [9], have cross-module recursion built in, and sometimes provide facilities for
overriding, but lack parameterization; finally, ML functors and Ada generics provide powerful
parameterization mechanisms, but prohibit cross-module recursion and offer no direct support for
late binding.

The concept of mizins, first introduced as a generalization of inheritance in class-based OO
languages [8], then extended to a family of module systems [13, 3, 15, 20], offers a promising
and elegant solution to this problem. A mixin is a collection of named components, either de-
fined (bound to a definition) or deferred (declared without definition). The basic operation on
mixins is the sum, which takes two mixins and connects the defined components of one with the
similarly-named deferred components of the other; this provides natural support for cross-mixin
recursion. A mixin is named and can be summed several times with different mixins; this allows
powerful parameterization, including but not restricted to an encoding of ML functors. Finally,
the mixin calculus of Ancona and Zucca [3] supports both late binding and early binding of defined
components, along with deleting and renaming operations, thus providing excellent support for
incremental programming.

Our long-term goal is to extend the ML module system with mixins, taking Ancona and Zucca’s
CMS calculus [3] as a starting point. There are two main issues: one, which we leave for future
work, is to support type components in mixins; the other, which we address in this paper, is to
equip CMS with a call-by-value semantics consistent with that of the core ML language. Shifting
CMS from its original call-by-name semantics to a call-by-value semantics requires a precise control
of recursive definitions created by mixin composition. The call-by-name semantics of CMS puts
no restrictions on recursive definitions, allowing ill-founded ones such as let rec x = 2 * y and
y = x + 1, causing the program to diverge when x or y is selected. In an ML-like, call-by-value
setting, recursive definitions are statically restricted to syntactic values, e.g. let rec £ = Ax...
and g = Ay... This provides stronger guarantees (ill-founded recursions are detected at compile-
time rather than at run-time), and supports more efficient compilation of recursive definitions.
Extending these two desirable properties to mixin modules in the presence of separate compilation
[9, 17] is challenging: illegal recursive definitions can appear a posteriori when we take the sum A
+ B of two mixin modules, at a time where only the signatures of A and B are known, but not their
implementations.

The solution we develop here is to enrich the CMS type system, adding graphs in mixin signa-
tures to represent the dependencies between the components. The resulting typed calculus, called
CMS,, guarantees that recursive definitions created by mixin composition evaluate correctly under
a call-by-value regime, yet leaves considerable flexibility in composing mixins. We then provide a
type-directed, separate compilation scheme for CMS,. The target of this compositional transla-
tion is Ap, a simple call-by-value A-calculus with a non-standard let rec construct in the style of
Boudol [6]. Finally, we prove that the compilation of a type-correct CMS, mixin is well typed in a
sound, non-standard type system for Ap that generalizes that of [6], thus establishing the soundness

of our approach.

The remainder of the paper is organized as follows. Section 2 gives a high-level overview of the
CMS and CMS, mixin calculi, and explains the recursion problem. Section 3 defines the syntax
and typing rules for CMS,, our call-by-value mixin module calculus. The compilation scheme (from
CMS, to Ap) is presented in section 4. In section 5, we equip Ap with a type system guaranteeing
the proper call-by-value evaluation of recursive definitions, and use it to show the correctness of
the compilation scheme. We review related work in section 6, and conclude in section 7. Detailed
proofs are provided in appendix.

2 Overview

2.1 The CMS calculus of mixins

We start this paper by an overview of the CMS module calculus of [3], using an ML-like syntax for
readability. A basic mixin module is similar to an ML structure, but may contain “holes”:

mixin Even = mix
? val odd: int -> bool (* odd is deferred *)
let even = Ax. x = 0 or odd(x-1) (* even is defined %)
end

In other terms, a mixin module consists of defined components, let-bound to an expression, and
deferred components, declared but not yet defined. The fundamental operator on mixin mod-
ules is the sum, which combines the components of two mixins, connecting defined and deferred
components having the same names. For example, if we define 0dd as

mixin 0dd = mix

? val even: int -> bool

let odd = Ax. x > 0 and even(x-1)
end

the result of mixin Nat = Even + 0dd is equivalent to writing

mixin Nat = mix

let even = Ax. x = 0 or odd(x-1)
let odd = Ax. x > 0 and even(x-1)
end

As in class-based languages, all defined components of a mixin are mutually recursive by default;
thus, the above should be read as the ML structure

module Nat = struct
let rec even = Ax. x = 0 or odd(x-1)
and odd = Ax. x > 0 and even(x-1)
end

Another commonality with classes is that defined components are late bound by default: the
definition of a component can be overridden later, and other definitions that refer to this component
will “see” the new definition. The overriding is achieved in two steps: first, deleting the component
via the \ operator, then redefining it via a sum. For instance,

mixin Nat’ = (Nat \ even) + (mix let even = Ax. x mod 2 = 0 end)
is equivalent to the direct definition

mixin Nat’ = mix

let even = A\x. xmod 2 =0

let odd Ax. x > 0 and even(x-1)
end

Early binding (definite binding of a defined name to an expression in all other components that
refer to this name) can be achieved via the freeze operator !. For instance, Nat ! odd is equivalent
to

mix
let even = let odd = Ax. x > 0 and even(x-1) in
Ax. x = 0 or odd(x-1)
let odd = Ax. x > 0 and even(x-1)
end

For convenience, our CMS,, calculus also provides a close operator that freezes all components
of a mixin in one step. Projections (extracting the value of a mixin component) are restricted to
closed mixins — for the same reasons that in class-based languages, one cannot invoke a method
directly from a class: an instance of the class must first be taken using the "new” operator.

A component of a mixin can itself be a mixin module. Not only does this provide ML-style
nested mixins, but it also supports a general encoding of ML functors [2]. Consider the following
ML functor definition and applications.

module F = functor (X : S) -> struct ... end
module R = F(A)
module S = F(B)

We can achieve the same effect in CMS, by representing F as a mixin with a deferred mixin
component representing its formal parameter, then summing it twice with the actual arguments A
and B.

mixin F = mix
? mixin Arg : S
mixin X = Arg
mixin Res = mix ... end
end
mixin R = close(F + mix mixin Arg = A end) .Res
mixin S = close(F + mix mixin Arg = B end).Res

2.2 Controlling recursive definitions

It is well known that general recursive definitions, whose right-hand sides involve arbitrary com-
putation, require call-by-name or call-by-need (lazy) evaluation, via on-demand unfolding. If the
recursive definition is not well founded, as in let rec x = y + 1 and y = 2 * x, the program
will diverge the first time the value of x or y is needed. In contrast, call-by-value evaluation of
recursive definitions is usually allowed only if the right-hand sides are syntactic values (e.g. A-
abstractions or constants), thus ruling out the example above. In return, the programmer obtains

the guarantee that the recursive definition is well-founded, evaluates in one step, and will not cause
divergence nor re-computation when the recursively-defined identifiers are used.

This semantic issue is exacerbated by mixin modules, which are in essence big mutual let rec
definitions. Worse, ill-founded recursive definitions such as the above can appear not only when
defining a basic mixin such as

mixin Bad = close(mix let x =y +1 lety=x * 2 end)

but also a posteriori when combining two innocuous-looking mixins:

mixin OK1
mixin OK2
mixin Bad

mix 7 valy : int letx=y+ 1 end
mix 7 val x : int let y = x * 2 end
close(0OK1 + 0K2)

Although 0K1 and 0K2 contain no ill-founded recursions, the sum 0K1 + O0K2 contains one. If the
definitions of 0K1 and OK2 are known when we type-check and compile their sum, we can simply
expand OK1 + OK2 into an equivalent monolithic mixin and reject the faulty recursion. But in a
separate compilation setting, 0K1 + 0K2 can be compiled in a context where the definitions of 0K1
and 0K2 are not known, but only their signatures are. Then, the ill-founded recursion cannot be
detected. This is the major problem we face in extending ML with mixin modules.

One partial solution, that we find unsatisfactory, is to rely on lazy evaluation to implement a
call-by-name semantics for modules, evaluating components only at selection or when the module
is closed. (This is the approach followed by the Moscow ML recursive modules [19], and also
by class initialization in Java.) This would have several drawbacks. Besides potential efficiency
problems, lazy evaluation does not mix well with ML, which is a call-by-value imperative language.
For instance, ML, modules may contain side-effecting initialization code that must be evaluated
at predictable program points; that would not be the case with lazy evaluation of modules. The
second drawback is that ill-founded recursive definitions (as in the Bad example above) would
not be detected statically, but cause the program to loop or fail at run-time. We believe this
seriously decreases program safety: compile-time detection of ill-founded recursive definitions is
much preferable.

Our approach consists in enriching mixin signatures with graphs representing the dependencies
between components of a mixin module, and rely on these graphs to detect statically ill-founded
recursive definitions. For example, the Nat and Bad mixins shown above have the following depen-
dency graphs:

<L P
Nat: even odd Bad: x Y
1 0

Edges labeled 0 represent an immediate dependency: the value of the source node is needed to
compute that of the target node. Edges labeled 1 represent a delayed dependency, occurring under
at least one A-abstraction; thus, the value of the target node can be computed without knowing
that of the source node. Ill-founded recursions manifest themselves as cycles in the dependency
graph involving at least one “0” edge. Thus, the correctness criterion for a mixin is, simply: all
cycles in its dependency graph must be composed of “1” edges only. Hence, Nat is correct, while
Bad is rejected.

(Notice that the weaker criterion “all cycles contain at least one edge labeled 17 is incorrect,
since it would allow ill-founded definitions such as let rec £ = Ax. x + y and y = £ 0.)

The power of dependency graphs becomes more apparent when we consider mixins that combine
recursive definitions of functions and immediate computations that sit outside the recursion:

Core terms: C:u=ux|cst variable, constant
| Az.C | Cy Cy abstraction, application
| E.X component projection

Mixin terms: E=C core term
| (;0) mixin structure
| E1 + Es sum
| E[X < Y] rename X to Y
| E'X freeze X
| E\ X delete X
| close(E) close

Input assignments: L= =y X; L injective

Output assignments: o0 ::= X =4 E;

Core types: T u=int |bool | T — T

Mixin types: Tu=r1 core type
| {Z; 0; D} mixin signature

Type assignments: Z,0 ::= X & Ti

Dependency graphs: D (see section 3.2)

Figure 1: Syntax of CMS,

mixin M1 = mix mixin M2 = mix

?7valg: ... ?val £ : .

let £ = Xx. ...g.. let g = Ax. ...f..

letu=£0 letv=gl1
end end

The dependency graph for the sum M1 + M2 is:
1
0 A 0

It satisfies the correctness criterion, thus accepting this definition; other systems that record a
global “valuability” flag on each signature, such as the recursive modules of [11], would reject this

definition.

3 The CMS, calculus

We now define formally the syntax and typing rules of CMS,, our call-by-value variant of CMS.

3.1 Syntax

The syntax of CMS, terms and types is defined in figure 1. Here, z ranges over a countable set
Vars of (a-convertible) variables, while X ranges over a countable set Names of (non-convertible)

names used to identify mixin components.

Free variables:

FV(z) = {z} FV(est)y = 0
FV(Az.C) = FV(C)\{z} FV(Ci Cy) = FV(C)UFV(Cs)
FV((;0) = FV(o)\ dom(c) FV(X;' S) = (Jrv(E)
el
FV(E, +Ey) = FV(E)UFV(E) FV(E!X) = FV()E)
FV(E.X) = FV()E) FV(EX «+Y]) = FV()E)
FV(E\X) = FV(()E) FV(close(E)) = FV(()E)
Substitution:
y{z + E} = F ify=z,y otherwise
cst{z <+ E} = cst

My.C{x <+~ E} = My.C{z <+ E}ify¢ FV(E)U{z}
(Cl C2){.’E — E} Cl{.’E < E} CQ{.’I,‘ — E}
(t;0){z «+ E} (t;of{x «+ E}) if £ ¢ dom(1)
(X; & E){z « E} X, ¥ Bz « E}
(E1 + EQ){.T — E} El{.T — E} + EQ{.T — E}
E'X + Y|{z < E} E'{z + E}[X < Y]
E'\X{z «+ E} E{z+ E}\ X
E''X{z« E} = E{z+ E}!X
E'X{z « E} = E'{z+ E}.X
close(E'){z + E} = close(E'{z + E})

Figure 2: Operations on terms

Although our module system is largely independent of the core language, for the sake of speci-
ficity we use a standard simply-typed A-calculus with constants as core language. Core terms can
refer by name to a (core) component of a mixin structure, via the notation E.X.

Mixin terms include core terms (proper stratification of the language is enforced by the typing
rules), structure expressions building a mixin from a collection of components, and the various
mixin operators mentioned in section 2: sum, rename, freeze, delete and close.

A mixin structure (1; 0) is composed of an input assignment . and an output assignment o. The
input assignment associates internal variables to names of imported components, while the output
assignment associates expressions to names of exported components. These expressions can refer
to imported components via their associated internal variables. This explicit distinction between
names and internal variables allows internal variables to be renamed by a-conversion, while external
names remain immutable, thus making projection by name unambiguous [18, 2, 20].

The notation z; e X, denote the unique surjective, finite map ¢ such that for all i € I,

t(z;) = X;. Tt is valid only if for all i,5 € I, if i # j, then wz # xj. Then, dom(:) denotes

{z; | i € I} and cod(c) denotes {X; | i € I}. X; ZE+—>I E;, and X; i€/ 7; are defined similarly.

The notions of free and bound variables, and of substitution are defined in a standard way in
figure 2.

Terms are identified up to structural equivalence, as defined in figure 3. The equivalence rule
(core-alpha) is standard a-conversion on A-bound variables. Rule (mixin-alpha) expresses that

y ¢ FV(C)
Az.C = \y.C{z + y}
y & FV (o) Udom(:)
(t+{z = X}0) =t +{y = X} 0{z < y})

(core-alpha)

(mixin-alpha)

Figure 3: Structural equivalence

variables bound by the input assignment of a mixin structure can be renamed if no capture occurs.
In this rule, we write ¢; + to for the unique finite map ¢ such that for all z € dom(e1), t(z) =
t1(z) and for all z € dom(t2), t(x) = t2(x). This map is defined only if ¢1(xz) = to(x) for all
z € dom(v1) N dom(Le).

Due to late binding, a virtual (defined but not frozen) component of a mixin is both imported
and exported by the mixin: it is exported with its current definition, but is also imported so that
other exported components refer to its final value at the time the component is frozen or the mixin
is closed, rather than to its current value. In other terms, a component X of (1;0) is deferred when
X € cod(t) \ dom(o), virtual when X € cod(¢) N dom (o), and frozen when X € dom(o) \ cod(s).

For example, consider the following mixin, expressed in the ML-like syntax of section 2:

mix ?val x: int let y=x+ 2 letz=y+ 1 end

It is expressed in CMS, syntax as the structure (¢;0), where + = [z — X; y — Y; z — Z] and
o=[Y = z+2; Z+— y+1]. The names X, Y, Z correspond to the variables in the ML-like syntax,
while the variables z, y, z bind them locally. Here, X is only an input, but Y and Z are both input
and output, since these components are virtual. The definition of Z refers to the imported value
of Y, thus allowing later redefinition of Y to affect Z.

3.2 Types and dependency graphs

Types T are either core types (those of the simply-typed A-calculus) or mixin signatures {Z; O; D}.
The latter are composed of two mappings Z and O from names to types, one for input components,
the other for output components; and a safe dependency graph D.

A dependency graph D is a directed multi-graph whose nodes are external names of imported

or exported components, and whose edges carry a valuation x € {0,1}. An edge X L Y means
that the term E defining Y refers to the value of X, but in such a way that it is safe to put F in a

recursive definition that simultaneously defines X in terms of Y. An edge X % Y means that the
term E defining Y cannot be put in such a recursive definition: the value of X must be entirely
computed before E is evaluated. It is generally undecidable whether a dependency is of the 0 or
1 kind, so we take the following conservative approximation: if F is an abstraction Az.C, then all
dependencies for Y are labeled 1; in all other cases, they are all labeled 0. (Other, more precise
approximations are possible, but this one works well enough and is consistent with core ML.)
More formally, for z € FV(E), we define v(z, E) =1 if E = \y.C and v(z, E) = 0 otherwise.
Given the mixin structure s = (; 0), we then define its dependency graph D(s) as follows: its nodes
are the names of all components of s, and it contains an edge X % Y if and only if there exist E
and z such that o(Y) = F and «(z) = X and z € FV(F) and x = v(z, E). We then say that a
dependency graph D is safe, and write - D, if all cycles of D are composed of edges labeled 1. This

captures the idea that only dependencies of the “1” kind are allowed inside a mutually recursive
definition.

In order to type-check mixin operators, we must be able to compute the dependency graph
for the result of the operator given the dependency graphs for its operands. We now define the
graph-level operators corresponding to the mixin operators.

Sum: the sum D; + Dy of two dependency graphs is simply their union:
Di+D={X5Y|(X5Y)eDor (X 5Y)eDy}

Rename: assuming Y is not mentioned in D, the graph D[X < Y] is the graph D where the node
X, if any, is renamed Y, keeping all edges unchanged.

DX «V]={A{X Y} S B{X«VY}| (45 B) e D}
Delete: the graph D\ X is the graph D where we remove all edges leading to X.

D\X =D\ {Y % X | Y € Names, x € {0,1}}

Freeze: operationally, the effect of freezing the component X in a mixin structure is to replace
X by its current definition E in all definitions of other exported components. At the dependency

level, this causes all components Y that previously depended on X to now depend on the names on

which F depends. Thus, paths Y Xy X X2 Z in the original graph become edges Y M) Z

in the result graph.

DX = (D U Pa’round) \ Dremove
where Dyouna = {V 20X 71 (v X4 ¥) e D, (X X% Z) € D}
and Dremove = {X 5 Y |Y € Names, x € {0,1}}

The sum of two safe graphs is not necessarily safe (unsafe cycles may appear); thus, the typing
rules explicitly check the safety of the sum. However, it is interesting to note that the other graph
operations preserve safety:

Lemma 1 If D is a safe dependency graph, then the graphs D[X < Y], D\X and D!X are safe.

The proof is given in appendix A.

3.3 Typing rules

The typing rules for CMS, are shown in figure 4. The typing environment I" is a finite map from
variables to types. We assume given a mapping T'C from constants to core types. All dependency
graphs appearing in the typing environment and in input signatures are assumed to be safe.

The rules resemble those of [3], with additional manipulations of dependency graphs. Projection
of a structure component requires that the structure has no input components. Structure construc-
tion type-checks every output component in an environment enriched with the types assigned to
the input components; it also checks that the corresponding dependency graph is safe. For the sum
operator, both mixins must agree on the types of common input components, and must have no
output components in common; again, we need to check that the dependency graph of the sum is
safe, to make sure that the sum introduces no illegal recursive definitions. Freezing a component

10

F+{z:n}FC:m

T+ z:D(z) (var) T+ c:TC(c) (const) (abstr)
T'FXx.C:11 — 1
rECi:7"—>71 THCy: 7 T'FE:{0;0;0}
(app) (select)
'ECLCy:7 'k E.X:0(X)

FD(;0) dom(o) = dom(O)
T+ {z:Z((z)) | z € dom(1)} F o(X) : O(X) for X € dom(o)

I'F (i 0) : {Z; 0; D{t;0)}

' E; :{Il;(Dl;Dl} PI‘EQZ{IQ;OQ;DQ} F Dy + Ds
dom(O1) Ndom(O2) =0 Zy(X) = Zp(X) for all X € dom(Zy) N dom(Zy)

I'HEi + E>: {I1 4+ Zo; 01 4+ O2; D4 +'D2}
'E:{Z;0;D} ZI(X)=0(X) 'FE:{Z;0;D} X € dom(O)

(struct)

(sum)

(freeze) (delete)
I'FE!'X:{I\x;0;DX} F'FE\X:{Z;0\x;D\ X}
T'FE:{Z;0;D} Y ¢ dom(Z)U dom(O)
(rename)
FFEX <Y]:{Zo[Y » X;00[Y » X|;D[X < Y]}
'FE:{Z;0;D} dom(Z)C dom(O) ZI(X)=0O(X) forall X € dom(Z) (close)

[+ close(E) : {0;0;0}

Figure 4: Typing rules

requires that its type in the input signature and in the output signature of the structure are iden-
tical, then removes it from the input signature. In contrast, deleting a component removes it from
the output signature. Finally, closing a mixin is equivalent to freezing all its input components,
and results in an empty input signature and dependency graph.

For simplicity, the rules (sum), (freeze) and (close) require strict syntactic equality of types.
Although we will not do it here, it is possible to introduce a notion of subtyping [3] corresponding
to adding input components, removing output components, and adding “fake” dependencies in
dependency graphs.

Our goal is to translate well-typed terms of CMS,, into a simple calculus with let rec, relying
on the dependency graphs. To do this in a sound way, it is crucial to only have to deal with safe
dependency graphs. For this purpose, we define the notion of a well-formed type, as described in
figure 5. A core type is always well-formed, whereas a mixin type is well-formed if all the graphs
appearing in it are safe. Our type system satisfies the following well-formedness property.

Lemma 2 IfT'+ E: T is derivable, and - T'(x) for all x € dom(()T), then - T.
Proof: The proof is a simple induction on the proof tree, relying on the condition that all the

dependency graphs appearing in the environment and in input signatures are safe, on lemma 1,
and on the safety checks in the rules (sum) and (struct). OJ

11

Pred(D) C dom(Z) Succ(D) C dom(O)
FZ(X) for all X € dom(Z) F O(X) for all X € dom(O) +D

F{Z;0;D}

7 (core) (mixin)

Figure 5: Well-formed types

4 Compilation

We now present a compilation scheme translating CMS, terms into call-by-value A-calculus ex-
tended with records and a let rec binding. This compilation scheme is compositional, and type-
directed, thus supporting separate compilation.

4.1 Intuitions

A mixin structure is translated into a record, with one field per output component of the structure.
Each field corresponds to the expression defining the output component, but A-abstracts all input
components on which it depends, that is, all its direct predecessors in the dependency graph. These
extra parameters account for the late binding semantics of virtual components. Consider again the
M1 and M2 example at the end of section 2. These two structures are translated to:

ml={f=Xg.Xx. ...g...; u
m2={g=XAM.Ix. ...f...; v

M. £ 0}
g gl}

The sum M = M1 + M2 is then translated into a record that takes the union of the two records m1
and m2:

m={f=ml.f; u=ml.u; g=m2.g; v=m2v}

Later, we close M. This requires connecting the formal parameters representing input components
with the record fields corresponding to the output components. To do this, we examine the de-
pendency graph of M, identifying the strongly connected components and performing a topological
sort. We thus see that we must first take a fixpoint over the £ and g components, then compute u
and v sequentially. Thus, we obtain the following code for close (M):

let rec f =m.f gand g = m.g £ in
let u = m.u f in
v g in

let v = m.
{f=f;g=giu=u; v=v}

Notice that the let rec definition we generate is unusual: it involves function applications in the
right-hand sides, which is usually not supported in call-by-value A-calculi. Fortunately, Boudol [6]
has already developed a non-standard call-by-value calculus that supports such let rec definitions;
we adopt a variant of his calculus as our target language.

4.2 The target language

The target language for our translation is the Ap calculus, a variant of the A-calculus with records
and recursive definitions introduced by Boudol [6]. Its syntax is as follows:

12

Values

v = | daM|{(.. X;=v ...)]c
Evaluation contexts
E o= [JM[o[]][].X
| letrec ... i1 =v;-1andz; =[] and ... z, = M, in M
| letz=[]in M
| (X =0 X =[] X = Miga;..0)
Parallel substitution by p=... z; < M; ...

z{p} = M; ife=u
z{p} x otherwise
(Az.M){p} Az (M{p}) ifx ¢ U;({zi} U FV (M)
(My My){p} = Mi{p} Ma{p}
(let rec ... yp =Ni ... in M){p} = letrec ... yp = Ni{p} ... in M{p}
it (U () 0 Uy (e} U FV (M) £ 0
(... Xs=M; ..) {p} = (.. X;=M{p}i ...)

Reduction rules

Ax.M)v — M{z+ v} (beta)
letz=vin M — M{z+«+ v} (bind)
(Xi=v1...Xp=v).X; — v (select)
letrec ...z1=v1...ap=v,in M — M{x1 <+ Mi...z, < M,} (mutrec)
where M; =let rec 1 =v1 ...z, =v, ... inv; for j=1,...,n.
M — M
(context)
E[M] - E[M']

Figure 6: Dynamic semantics of Ap

M:=uz|cst| Az M | My M,

| (X1 =My;...; X, =My) | M.X

| let z = M1 in M

| let rec z1 = My and ... and z,, = M, in M
Compared with Boudol’s calculus, ours lacks references and extensible records, but features mu-
tual recursion. The dynamic semantics of this calculus is given by Boudol’s reduction rules [6].
Although they implement a call-by-value strategy, these rules are able to evaluate correctly recur-
sive definitions involving function applications, such as:

let rec z = (A\yz.(zy))z in z — let rec x = Az.(zz) in z
— let rec z = Az.(zx) in Az.(zx)
— Az.(z(let rec z = Az.(zz) in Az.(z1)))

The dynamic semantics of the calculus is defined in figure 6. The only difference from stan-
dard call-by-value evaluation is that variables are considered values, allowing to reduce recursive

13

(E:ThX:T]=[E:TX
[(¢0) : {Z;0; D}] =

(X = X" HD X)) [o(X) : O(X)] | X € dom(O))
[(E1 : {Z1;01;D1}) + (B2 : {Z2; 02; Do}) : {Z; O; D} =

let e; = [E1 : {Z1;01;D1}] in let ex = [Ey : {Z2; O2; D2}] in

(X =e1.X | X € dom(O,);

Y =e.Y |Y € dom(O5))
[(E:A{Z; 0" D'\ X : {Z; 0; D}] =

lete=[E:{Z;0;D'}]in (Y =eY |Y € dom(0))
[(E:{T; 0 DYX + Y] :{Z;0;D}] =

let e=[E:{Z;0";D'}] in

(Z{X+Y}=XD Y Z{X « Y }.(e.Z D"YZ)){X «+ Y} | Z € dom(O"))
[(E:{T;0 D} X : {Z;0;D}] =

let e=[E:{Z';0;D'}] in

(Z=eZ|Z € dom(0), X ¢ D1(2);

Y =XD (Y)let rec X =e.X D 1(X) ineY DY) | X € D' 1(Y))
[close(E : {Z'; 0 D'}) : {B; O; 0}] =

let e =[E:{Z;0";D'}] in

let rec X! = e.X] D'-1(X]) and ... and X—}L1 =eX,, WX}“) in

let rec X7 = e.X? D'"1(X?) and ... and X}, = e.X2 D'~ }(X},) in
(X =X | X € dom(0))
where ({X{... X} },... . {XV... X} }) is a serialization of dom(Q') against D’

Figure 7: The translation scheme

definitions such as the one above. Notice that the (mutrec) rule crucially relies on parallel capture-
avoiding substitution, also defined in figure 6.

4.3 The translation

The translation scheme for our language is defined in figure 7. The translation is type-directed
and operates on terms annotated by their types. For the core language constructs (variables,
constants, abstractions, applications), the translation is a simple morphism; the corresponding
cases are omitted from figure 7.

Access to a structure component E.X is translated into an access to field X of the record
obtained by translating E. Conversely, a structure (1;0) is translated into a record construction.
The resulting record has one field for each exported name X € dom(o), and this field is associ-
ated to o(X) where all input parameters on which X depends are A-abstracted. Some notation
is required here. We write D~ !(X) for the list of immediate predecessors of node X in the de-

14

pendency graph D, ordered lexicographically. (The ordering is needed to ensure that values for
these predecessors are provided in the correct order later; any fixed total ordering will do.) If
(X1,...,X,) = D7}(X) is such a list, we write 1+ ~}(D~!(X)) for the list (z1,...,z,) of variables
associated to the names (X71,...,X,) by the input mapping ¢. Finally, we write X(wl, ey Ty).M
as shorthand for Az ... A\x,.M. With all this notation, the field X in the record translating (:; o)
is bound to X (D 1(X)).[o(X) : O(X)].

The sum of two mixins Ej + Ejy is translated by building a record containing the union of the
fields of the translations of E; and Ey. For the delete operator E \ X, we return a copy of the
record representing F in which the field X is omitted. Renaming F[X < Y] is harder: not only do
we need to rename the field X of the record representing F into Y, but the renaming of X to Y in
the input parameters can cause the order of the implicit arguments of the record fields to change.
Thus, we need to abstract again over these parameters in the correct order after the renaming, then
apply the corresponding field of [E] to these parameters in the correct order before the renaming.
Again, some notation is in order: to each name X we associate a fresh variable written X, and
similarly for lists of names, which become lists of variables. Moreover, we write M (z1,...,z,) as
shorthand for M =1 ... z,.

The freeze operation FE'! X is perhaps the hardest to compile. Output components Z that do
not depend on X are simply re-exported from [E]. For the other output components, consider a
component Y of F that depends on Y7,...,Y,, and assume that one of these dependencies is X,
which itself depends on Xj,...,X,. In E! X, the Y component depends on ({Y;} U {X;}) \ {X}.
Thus, we A-abstract on the corresponding variables, then compute X by applying [E].X to the
parameters Y] Since X can depend on itself, this application must be done in a let rec binding
over X. Then, we apply [E].Y to the parameters that it expects, namely Y;, which include X.

The only operator that remains to be explained is close(F). Here, we take advantage of the fact
that close removes all input dependencies to generate code that is more efficient than a sequence
of freeze operations. We first serialize the set of names exported by E against its dependency graph
D. That is, we identify strongly connected components of D, then sort them in topological order.
The result is an enumeration ({X{... X} },....{X7... X% }) of the exported names where each
cluster {X? ... X}.} represents mutually recursive definitions, and the clusters are listed in an order
such that each cluster depends only on the preceding ones. We then generate a sequence of let rec
bindings, one for each cluster, in the order above. In the end, all output components are bound to
values with no dependencies, and can be grouped together in a record.

5 Type soundness of the translation

5.1 A type system for the target language

The translation scheme defined above can generate recursive definitions of the form let rec z =
M z in In Ap, these definitions can either evaluate to a fixpoint (i.e. M = Az.\y.y), or get
stuck (i.e. M = Az.z+1). In preparation for showing that no term generated by the translation can
get stuck, we now equip Ap with a sound type system that guarantees that all recursive definitions
are correct. Boudol [6] gave such a type system, however it does not type-check curried function
applications with sufficient precision for our purposes. Hence we now define a refinement of Boudol’s
type system.
The type system for Ap is defined in figure 8. Types, written 7, have the following syntax:

Ap types: 7 :=int | bool base types

| 71 i) Ty annotated function types

15

v(z) =0
Fkz:T(z) /v
F+{z:7}FM:7/(y=1[z—d

(var) C'kc:TC(c) /v (const)

(abstr)

T M M:7 %7/

THFMy 7S 7 /v TEM:t /vy (app) TFM:r'%7/y T()=r
app
PEM My:7/(m1—1)AdQr, F'FMz:7/(y—1)A(z—d)

TEM:7" /)y TH+{z:7}FN:7/7y[z—d

(appvar)

(let)

F'Fletz=MinN:7/yAdQY

P+{...zj:m ..JFEM:7/7[.. zj—=d; ..]

Vi,j . dij Z 1 Vi,j, k: dik: S dij Q djk (rec)

I'kletrec ... z; = M; ... inM:T/'y/\(/\di@'yi)/\(/\dz-@dz-j@'yj)
{ 1,J
Vi:T'EM;:7 /v
PH(..Xs=M; ...): (.. Xs:m ...)]~
F'EM:(..X;:15 ...) /vy 1<i<n

(record)

(sel)

Figure 8: Typing rules for A\p

| (... X;:7 ...) record types

Arrow types are annotated with degrees d, indicating how a function uses its argument. For instance,
a function such as Az.z + 1 has type int LN int, because the value of x is immediately needed after

application, whereas Azyz.z 4+ 1 has type int 2, ..., because the value of z is not needed unless
at least 2 more function applications are performed. Formally, a degree can be either a natural
number or co, meaning that the variable is not used. Similarly, the typing judgment is of the form
'+ M: 7/, where v is a (total) mapping from variables to degrees, indicating how M uses each
variable: y(z) = oo means that z is not free in M; y(z) = 0 means that the value of z is needed
to evaluate M; and y(z) = n + 1 means that the value of z is needed only after n + 1 function
applications, e.g. £ occurs in M under at least n + 1 function abstractions.

Rule (var) expresses that the variable z is immediately used via the side condition y(z) = 0.
Function abstraction (rule (abstr)) increments by 1 the degree of all variables appearing in its body,
except for its formal parameter z, whose degree is retained in the type of the function. We write
~v — 1 for the function y — ~y(y) — 1, with the convention that 0 —1 = 0 and oo — 1 = co. We write
(v = 1)[z > d] for the function that maps z to d, and otherwise behaves like (y — 1).

Rule (app) deals with general function application. In the function part M, all variable degrees
are decremented by 1, since the application removes one level of abstraction. The degrees of the

16

argument part My are combined with the d annotation on the arrow type of M; via the @ operation,
defined as follows:
d@0=0 dQoo=00 dQ(n+1)=d

Because of call-by-value, immediate dependencies in My (vy2(z) = 0) are still immediate in the
application. Variables not free in My (y2(z) = o0) do not contribute any dependency to the
application. The interesting case is that of a variable z with degree n+1 in Ms, i.e. not immediately
needed. We do not know how many times the function M; is going to apply its argument inside
its body. However, we know that it will not do so before d more applications of M; M,. Hence, we
can take d for the degree of = in M; M. Finally, the contributions from the function part (y; — 1)
and the argument part (d @Q 7) are combined with the A operator, which is point-wise minimum.

When the argument of an application is a variable, as in M z, a more precise type-checking
is possible (rule (appvar)). Namely, the variable z is not needed immediately, but only when the
function M needs its argument. Hence, the degree of z in the application is (y(z) — 1) A d, while
all other variables y have degree y(y) — 1.

The most complex rule is (rec) for mutual recursive definitions. Intuitively, the right-hand sides
M; ... M, must not depend immediately on any of the recursively defined variables z;...z,. In
other terms, the dependency d;; of M; on x; must satisfy d;; > 1. However, we must also take into
account indirect dependencies: for instance, M7 may depend on 9, whose definition M5 in turn
depends on z3, making M; depend on z3 as well. We account for these indirect dependencies via
the triangular inequality d;; < d;; @d;j. Finally, the dependencies of the whole let rec are obtained
by combining those of its body M with those arising from the uses of the z; in M, either direct
(d; @y;) or one-step indirect (d; @d;; @y;). Longer indirect dependencies such as d; Qd;; Q@d;, @y,
need not be taken into account because of the triangular inequality.

Finally, the (let) rule is a combination of the (abstr) and (app) rules, and the rules for record
operations (record) and (sel) are straightforward.

Theorem 1 (soundness of A\g) IfT'+ M :7 /v and y(z) > 1 for all x free in M, then M either
reduces to a value or diverges, but does not get stuck.

Proof: The theorem follows from the following lemmas, which are proved in appendix B. The
first three lemmas are substitution lemmas for general one-variable substitution, substitution of
one variable by another, and parallel substitution. They play a crucial role for proving subject
reduction for the typing rules (app), (appvar) and (rec) respectively.

Lemma 3 (substitution) If T+ {z — 7'} - My : 7 / [z — d], and T F My : 7' | v, with
xz ¢ FV (M) U dom(vys2), then T+ My{z <~ M} : 7/ y1 Ad Q.

Lemma 4 (substitution by a variable) IfT'+{z— 7'} F M : 7 / y[z—d] and T'(y) = 7/, then
F'F-M{z+y}:7/vA(y—d).

Lemma 5 (parallel substitution) IfT'+{... z;:7 ..} M :7 [yy[... zi—d; ...], and for
allje{l...n}, ' M;:1; /v with for all 3,3, z; ¢ FV(M;) U dom(v;), then T' = M{... z; <

M; ...}:T/’)’M/\/\di@"yi.
i

The soundness of Ap then follows from the well-known properties of subject reduction (reduction
preserves typing) and progress (well-typed terms are not stuck).

17

DY(X) = (X1,...,X,) is the list of the predecessors of X in D, ordered lexicographically.

D(X,Y) =min{x | X 5 Y € D} (with the convention that D(X,Y) = oo if D contains ng
edges from X to Y)

FCTp(X,I) = (T{*,...,TX"), for Pred(D) C dom(Z), where

- DIX) = (X, Xo)
—forallie{l...n}, Z(X;) = T; and D(X;, X) = x;-

Pred(D) ={X | X 5 Y € D, X,Y € Names, x € Vals}

Suce(D) ={Y | X %Y € D,X,Y € Names, x € Vals}

Figure 9: Operations on graphs

[[7'1 — 7'2]] = T 3) T2
[int] = int
[bool] = bool

HT;0;DY] = (X:[0(X)]xpz | X € dom(O)) if F {T;0; D}

[Mxpzr = [A] 202) 202D, 17 X2 17
where (T7%,...,Ta") = FCTp(X,)

Figure 10: Translation of types

Lemma 6 (subject reduction) If T+ M:7 /v and M — M', then T+ M : 7] 4.

Lemma 7 (progress) IfT'+ M :7 /v and v > 1, then either M is a value, or there exists M’
such that M — M'.

|

5.2 Soundness of the translation

The goal of this section is to prove the soundness of our approach, in the sense that a well-typed
CMS, expression translates to a well-typed Ap expression. The soundness of Ap then ensures that
the translation evaluates correctly.

To state the soundness of the translation, we need to set up a translation from source types
to Ap types. We start by defining useful operations on graphs and signatures in figure 9. We
define FCOTp(X,Z) as the list of the types and valuations of the predecessors of X in D according
to Z, ordered lexicographically. Then, Pred(D) and Succ(D) are simply the sets of predecessors
and successors of any node in D. The translation of types is presented in figure 10. A natural
translation for environments follows, defined by [I'] = [-]oI". Moreover, we define the initial degree
environment corresponding to a type environment as d°(I') = 00T, that is to say the function equal
to 0 on dom(I') and oo elsewhere. In the sequel, we will often use valuations as degrees. It is worth
noticing that for all valuations x1, and x2, min(x1, x2) = x1 A X2 = X1 @ x2.

18

Core terms: Cu=2zT |estT variables, constants
| Az.C" | (C1 C3)7T abstraction, application

| E.XT component projection
Mixin terms: E:=C core term

| (1;0)T mixin structure

| (B1+ E9)7 sum

| (E[X «+ YT rename X to Y

(B X)T freeze X

|[(E\X)T delete X

| (close(E))T close

Output assignments: 0 ::= X; = E;

Figure 11: Syntax of type-annotated terms

As the translation operates on annotated well-typed terms, we define an annotated syntax in
figure 11. The type system for annotated terms is exactly the same, except that it looks more like a
well-formedness judgment I' - E. Thus a derivation for a standard term yields a correct derivation
for the corresponding annotated term. We denote by E the annotated term corresponding to a
derivation of E, which should be clear from the context. A well-formed annotated term is a term
whose annotations are all well-formed types. We consider only well-formed annotated terms in the
following.

We define IsRec(E) as 1 if E is an abstraction Az.C, and 0 otherwise, and extend this definition
to annotated expressions.

Theorem 2 (soundness of the translation) IfT' - E : T, then [I'] + [E] : [T] / d°(T) +
IsRec(E).

See appendix C for the full proof. Notice that this result holds for non-empty contexts I'; in
conjunction with the compositional nature of the translation, this ensures that our compilation
scheme is applicable (and sound) not only to closed programs, but also to terms with free variables
as can arise during separate compilation.

6 Related work

Mixin-based language designs Bracha [8, 7] introduced the concept of mixin as a general-
ization of (multiple) inheritance in class-based OO languages, allowing more freedom in deferring
the definition of a method in a class and implementing it later in another class than is normally
possible with inheritance and overriding.

Duggan and Sourelis [13, 14] were the first to transpose Bracha’s mixin concept to the ML
module system. Their mixin module system supports extensible functions and datatypes: a function
defined by cases can be split across several mixins, each mixin defining only certain cases, and
similarly a datatype (sum type) can be split across several mixins, each mixin defining only certain
constructors; a composition operator then stitches together these cases and constructors. The
problem with ill-founded recursions is avoided by allowing only functions (A-abstractions) in the

19

combinable parts of mixins, while initialization code goes into a separate, non-combinable part of
mixins. Their compilation scheme (into ML modules) is less efficient than ours, since the fixpoint
defining a function is computed at each call, rather than only once at mixin combination time as
in our system.

The units of Flatt and Felleisen [15] are a module system for Scheme. The basic program
units import names and export definitions, much like in Ancona and Zucca’s CMS calculus. The
recursion problem is solved as in [13] by separating initialization from component definition.

Mixin calculi Ancona and Zucca [1, 2, 3] develop a theory of mixins, abstracting over much of
the core language, and show that it can encode the pure A-calculus, as well as Abadi and Cardelli’s
object calculus. The emphasis is on providing a calculus, with reduction rules but no fixed reduction
strategy, and nice confluence properties. Another calculus of mixins is Vestergaard and Wells’ m-
calculus [20], which is very similar to CMS in many points, but is not based on any core language,
using only variables instead. The emphasis is put on the equational theory, allowing for example
to replace some variables with their definition inside a structure, or to garbage collect unused
components, yielding a powerful theory. Neither Ancona-Zucca nor Vestergaard-Wells attempt to
control recursive definitions statically, performing on-demand unwinding instead. Still, some care
is required when unwinding definitions inside a structure, because of confluence problems [4].

Recursive modules in ML Crary et al [11, 12] and Russo [19] extend the Standard ML module
system with mutually recursive structures via a structure rec binding. Like mixins, this construct
addresses ML’s cross-module recursion problem; unlike mixins, it does not support late binding and
incremental programming. The structure rec binding does not lend itself directly to separate
compilation (the definitions of all mutually recursive modules must reside in the same source file),
although some amount of separate compilation can be achieved by functorizing each recursive
module over the others. ML structures contain type components in addition to value components,
and this raises delicate static typing issues that we have not yet addressed within our CMS,
framework. Crary et al formalize static typing of recursive structure using recursively-defined
signatures and the phase distinction calculus, while Russo remains closer to Standard ML’s static
semantics. Concerning ill-founded recursive value definitions, Russo does not attempt to detect
them statically, relying on lazy evaluation to catch them at run-time. Crary et al statically require
that all components of recursive structures are syntactic values. This is safe, but less flexible than
our component-per-component dependency analysis.

Connections with object-oriented type systems Bono et al [5] use a notion of dependency
graph in the context of a type system for extensible and incomplete objects. However, they do
not distinguish between “0” and “1” dependencies, since the late binding semantics for objects
precludes immediate dependencies between methods.

7 Conclusions and future work

As a first step towards a full mixin module system for ML, we have developed a call-by-value
variant of Ancona and Zucca’s calculus of mixins. The main technical innovation of our work is the
use of dependency graphs in mixin signatures, statically guaranteeing that cross-module recursive
definitions are well founded, yet leaving maximal flexibility in mixing recursive function definitions
and non-recursive computations within a single mixin. Dependency graphs also allow a separate

20

compilation scheme for mixins where fixpoints are taken as early as possible, i.e. during mixin
initialization rather than at each component access.

In this paper, the dynamic semantics of CMS, is given by translation. A direct reduction se-
mantics is desirable to allow finer reasoning on the evaluation of mixins. Such a reduction semantics
is technically challenging in a call-by-value setting, because allowed reductions are determined by
reference to the dependency graphs, which evolve during reduction. To address this issue, we plan
to embed dependency information within the mixin terms being reduced.

A drawback of dependency graphs is that programmers must (in principle) provide them ex-
plicitly when declaring a mixin signature, e.g. for a deferred sub-mixin component. This could
make programs quite verbose. Future work includes the design of a concrete syntax for mixin
signatures that alleviate this problem in the most common cases. A more ambitious approach is to
infer dependency graphs entirely, by generating constraints between formal variables ranging over
dependency graphs, and solving these constraints incrementally.

Our Ap target calculus can be compiled efficiently down to machine code, using the “in-place
updating” trick described in [10] to implement the non-standard let rec construct. However, this
trick assumes constant-sized function closures; some work is needed to accommodate variable-sized
closures as used in the OCaml compiler among others.

The next step towards mixin modules for ML is to support type definitions and declarations
as components of mixins. While these type components account for most of the complexity of ML
module typing, we are confident that we can extend to mixins the body of type-theoretic work
already done for ML modules [16, 17] and recursive modules [11, 12].

Acknowledgements. We thank Elena Zucca and Davide Ancona for discussions, and Vincent
Simonet for his technical advice on the typing rules for Ap.

21

References

1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Ancona. Modular formal frameworks for module systems. PhD thesis, Universita di Pisa,
1998.

D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nadathur, editor,
International Conference on Principles and Practice of Declarative Programming, volume 1702
of Lecture Notes in Computer Science, pages 62-79. Springer-Verlag, 1999.

D. Ancona and E. Zucca. A calculus of module systems. Journal of functional programming,
2001. To appear.

Z. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Annals of pure
and applied logic, 2001. To appear.

V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping for extensible, incom-
plete objects. Fundamenta Informaticae, 38(4):325-364, 1999.

G. Boudol. The recursive record semantics of objects revisited. Research report 4199, INRIA,
2001. Preliminary version presented at ESOP’01, LNCS 2028.

G. Bracha. The programming language Jigsaw: mizins, modularity and multiple inheritance.
PhD thesis, University of Utah, 1992.

G. Bracha and W. Cook. Mixin-based inheritance. In Object- Oriented Programming Systems,
Languages and Applications90, volume 25(10) of SIGPLAN Notices, pages 303-311. ACM
Press, 1990.

L. Cardelli. Program fragments, linking, and modularization. In 2/th symposium Principles
of Programming Languages, pages 266-277. ACM Press, 1997.

G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. Science of
Computer Programming, 8(2):173-202, 1987.

K. Crary, R. Harper, and S. Puri. What is a recursive module? In Programming Language
Design and Implementation 1999, pages 50-63. ACM Press, 1999.

D. Dreyer, K. Crary, and R. Harper. Toward a practical type theory for recursive modules.
Technical Report CMU-CS-01-112, Carnegie Mellon University, 2001.

D. Duggan and C. Sourelis. Mixin modules. In International Conference on Functional Pro-
gramming 96, pages 262-273. ACM Press, 1996.

D. Duggan and C. Sourelis. Recursive modules and mixin-based inheritance. Unpublished
draft, 2001.

M. Flatt and M. Felleisen. Units: cool modules for HOT languages. In Programming Language
Design and Implementation 1998, pages 236—248. ACM Press, 1998.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with sharing.
In 21st symposium Principles of Programming Languages, pages 123-137. ACM Press, 1994.

X. Leroy. Manifest types, modules, and separate compilation. In 21st symposium Principles
of Programming Languages, pages 109-122. ACM Press, 1994.

22

[18] M. Lillibridge. Translucent sums : a foundation for higher-order module systems. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1997.

[19] C. Russo. Recursive structures for Standard ML. In International Conference on Functional
Programming 01, pages 50-61, 2001.

[20] J. Wells and R. Vestergaard. Equational reasoning for linking with first-class primitive modules.
In Programming Languages and Systems, 9th European Symp. Programming, volume 1782 of
Lecture Notes in Computer Science, pages 412-428. Springer-Verlag, 2000.

23

A Soundness of graph operations

In the following, we write fst(P) and last(P) for the first (respectively, last) node of a path p. We
write [X] for the zero-length path consisting of node X. If fst(P) =Y, we write (X % Y) :: P for
the path obtained by prepending the edge X XY to the path p. The valuation v(P) of a path P
is defined inductively by v([X]) = 1 and v((X % Y) :: P) = min(x,v(P)). Thus, a graph D is safe
if and only if all paths p of D such that fst(P) = last(P) are such that v(P) = 1.

Lemma 1 If D is a safe dependency graph, then the graphs D[X < Y|, D\X and D!X are safe.

Proof: For each operation, we show that for all path in the result graph, there exists a corre-
sponding path with the same valuation in D.

Renaming: Let D' = D[X + Y] = {A{X « Y} 5% B{X «+ Y} | A% B e D}, and let P be a
path of D', with valuation x, and fst(P) = A and last(P) = B. By induction on the length of P, we
find a path with same valuation in D, such that fst(P) = A{Y < X} and last(P) = B{Y + X}.

Consider first the base case P = [Z] for some name Z mentioned in D'. But all edges of D' are
of the form A{X « Y} % B{X « Y}, where the corresponding edge A % B is in D. So there is
a name Z' mentioned in D such that Z = Z'{X « Y}. If Z =Y, then Z’' = X, because Y cannot
be mentioned in D by definition of the renaming operation, and then the path [X] in D has same
valuation as P, and the right first and last nodes. If Z # Y, then Z = Z' and the path [Z'] of D
has the expected valuation, first and last nodes.

Now, assume the result for P’ and consider P = (A % B) = P', with fst(P') = B. Let
last(P') = C and x' = v(P'). By induction hypothesis, there is a path P” of D, from B{Y + X}
to C{Y « X}, with valuation x’. But by definition of D’ the edge A{Y + X} % B{Y « X} is
in D, so that the path (A{Y « X} % B{Y <« X}) :: P" is too. It has the expected first and last
nodes, and its valuation is min(x, x') = v(P).

It follows that every cycle in D’ corresponds to a cycle in D with the same valuation. Since D
is safe, D' is safe as well.

Deletion: The result is straightforward, since all edges of the resulting graph D’ are already present
in D.

Freezing: Let D'=D!X = (D U Daround) \ Dremove; Where Dyroyng and Dremove are defined in
section 3.2, and let P be a path of D', with valuation x, and fst(P) = A and last(P) = B. By
induction on the length of P, we construct a path from A to B in D with the same valuation.

For the base case P = [A], we have A = B. Since the freezing operation does not introduce
new names, all names appearing in D' are already in D, so P is a path of D too, obviously with
valuation 1.

Consider now P = (A % C) :: P!, with fst(P') = C and last(P') = B. By induction hypothesis,
there is a path P” in D from C to B such that v(P") = v(P'). We now argue b cases on the edge
A% C: by definition of the freeze operation, it can either be in D or in Dgppyng- If the edge A X C
comes from D, the path 4 % C :: P" is then clearly a path of D, with the expected valuation and
endpoints. If the edge A X € comes from Doaround, there exist x1 and xs such that A X X eD
and X 2% C € D and x = min(x1, x2). Hence, the path (4 X% X) : (X X% C) :: P" is a path of
D from A to B, with valuation min(min(x1, x2), 7(P")) = min(x, v(P')) = v(P). O

24

Degrees Minimum Composition
d == n|oo d N oo = d d Q oo = o
oo A d = d d @ 0 =0
m A n = min(m,n) d @ n+1 = d
Plus Minus
© + n = © 0o - n = X
m 4+ n = m4nNn m — n = m-yn ifm>n
m — n = 0 ifm<mn

Figure 12: Summary of degree operations

B Soundness of the target language

To simplify the proofs, we prove the soundness on a subset Az of Ag that excludes constants, record
construction and access, and the let binding. It is entirely straightforward to extend the proofs to
the omitted constructs.

B.1 Properties of degrees

We start the proof with a number of algebraic lemmas on degrees and degree operations. Figure 12
re-states the definitions of the operations on degrees. The following lemmas should be read as
universally quantified over the degrees d, d', di, d2, d3. We adopt the convention that @ has
highest precedence, followed by A, and then + and —.

Lemma 8

1. (di+1)@Qdy <dy@dy + 1.
(di Ndy) Qd3 = dy Qd3 A dy Qds3.
di @ (dy ANd3) =d; Qdy A dy Qds.
(dy @dy) @Qds = d; Q (dy @Qds).

v o

d—n)@d =dad —n.

Ifd+1=d, thend >1andd=4d —1.
Ifd#0, thend—1+1=d.

0@d<d.

AN S)

Ifd<d thend+1<d +1.
10. Ifd+1<d —1 thend+2<d.
11. Ifngl, then d1@d3§d1@d2@d3.

Proof: 1. If dy = 0, we obtain 0 < 1 which is true. If do = 0o we obtain co < co. Otherwise,
the claim reduces to di +1 < dy + 1.

25

10.

11.

O

. If d3 = 0, we obtain 0 on both sides of the equality. If d3 = oo, both sides are equal to co.

Otherwise we get di A da on both sides.

. If dy = 0, both sides are equal to 0. If dy = oo, then dy A d3 = d3 and d; @ dy = oo, so both

sides are equal to d; @ d3. Otherwise, we argue by case on dz. If d3 = 0, then we obtain 0 on
both sides, and if d3 = 0o, we obtain dy @ dy for both sides. Otherwise, do A d3 = n # 0, so
dy @ (de Nd3) =dy =dy Ndy =dy Qdy ANdy Qds.

. If d3 = 0, both sides are equal to 0. If d3 = co, we obtain oo on both sides. Otherwise, both

sides are equal to dy @ ds.

. Both sides reduce to co if d' = 0o, to 0 if d’ =0, and to d — 1 otherwise.
. By definition of +.

. By definition of + and —.

. By definition of Q.

. By definition of +.

Since d + 1 is strictly positive, d cannot be 0. Thus, d = d — 1 + 1 by property 7, and the
result follows by applying property 9 tod +1 < d' — 1.

If d3 = oo or d3 = 0, both sides reduce to d3. Otherwise, write d3 = n+1. Then, di Qds = d;
and d; Qds @ ds = di @Qdo, hence it simply remains to prove that d; < d; @ds. Since dy > 1,
we have only two cases: either do = oo, in which case di @ do = oo which cannot be less than
di; or do = m + 1, in which case d; @ dy = dq, and the result holds.

Lemma 9 Ify < (y1 — 1) Ad @y, then there exists v} and) such that v = (v — 1) Ad @~} and
7 < m and v < 7.

Proof: We define ;| and 7} pointwise. Consider a variable z. Let d' = vy(z), di = yn(z), do =
v2(z). We construct d} and db, such that d' = (d} — 1) Ad@d;, and d} < dy and d}, < do.

O

e If d' =0, then we can take d| = d, = 0.

e If d' = 0o, then we can take d| = d; and d, = da, because only oo is greater than d'.

e Ifd =n+1,let df =n+ 2 and d), = dy. By hypothesis we know that d’ < d @dy. Since

di—1=n+1=4d, wehave (d| —1)ANd@Qd, =d| — 1 =d'. Moreover, since d' < d; — 1,
we have that n +1 < d; — 1, and therefore (d] = n + 2 < d; by lemma 8. Finally, d}) < d
trivially holds.

Lemma 10 Ify < (y1—1)A(z+>d), then there exists v, such that v} < v1 and v = (v] —1)A(z—d).

Proof: We proceed as in the previous proof. Consider a variable y and let d' = y(y) and d; =
71 (y). We construct d| such that d} < d; and d' = (d] — 1) A ((z — d)(y)).

e If d; =0, then d} = 0 works.

26

e Otherwise, we take d} = d’ 4+ 1. This d is suitable because:
— Sinced' <d; —1,wehave d' +1 <d; — 1+ 1 and d; # 0. By lemma 8, it follows that
di —1+1=dj, hence d| < dj.

—Fromd <(d+1-1)<(d} —1) and d' < (d1 — 1) A (z—d)(y) < (z+ d)(y) it follows
that d' < (d} — 1) A ((z — d)(v))-

— Since d} — 1 =d', we have that (d] — 1) A ((z — d)(y)) < d'.

O

Lemma 11 Let n € N. If
7 <A A d; Qd;; Qy; A A d; Q ~y;
ije{l..n} ie{l..n}
then there exist vy,7,- .-,y such that v, <~;, fori=0,...,n and

Y=wnr N dad;ayin N di@s
i,je{l..n} ic{l..n}

Proof: Simply take y) = ' and v = ~; for ¢ = 1,...,n. By transitivity we have v < 7 and
trivially 4} < ;. It is easy to check that

wA N\ di@deyian N\ diay <oy
i,j€{1..n} ic{l..n}

by definition of 4. Moreover, by hypothesis, we know that

/\ di@djj@q;>4 and N\ di@qy>~
i,j€{l..n} ic{l..n}

hence
Y<wun N\ dediayia N\ di@y
ijefl..n} ie{l..n}

and the expected equality follows. (I

Lemma 12 Ify[z—d] = (v1—1) Ado @~y then there exist v, 75, d1, d2 such that y1 = vi[z+—>di],
Yo = yylz > do], and v = (v} — 1) Adp @ 3.

Proof: Let di = (z) and da = y2(x). Let] be the function associating 7 (y) to every variable
y # z and such that v} (z) = y(z) + 1, which we can write v [z — y(z) 4+ 1]. Let v} be the function
associating 2 (y) to every variable y # z and such that v4(x) = oo, which we can write o[z +— 00].
We have trivially y; = v{[z — di] and 2 = [z — d2]. We now check the third property. On =,

v(z) = (v(z) + 1 = 1) Ado @oo = (71(z) — 1) Adp @yy(z)

Ony # z,
V() = (n(y) —1) Ado @ya(y) = (71 (y) — 1) A do @ v5(y)

O

27

Lemma 13 Ify[z+—d] = v A (/\ d; Q@d;; Q;) A (/\ d; @ ;) then there ezist v} and a v, for
ije{l..n} i
each i, such that yylx—>do] = yo, Yi[z—d}] = i, and v = 'y(’)/\(/\ d; Qd;; @ 'y;)/\(/\ d; @ 'yé),
ije{l..n} i
with dy = yo(z) and d, = ~;(z) for all i.

Proof: Take v = yo[z+>7(z)] and y; = 7;[z+> o0] for all 7. We check that the expected properties
hold as in the previous proof. [

B.2 Weakening lemmas

We now prove two “weakening” lemmas showing that the typing judgement still holds if the degree
environment <y is replaced by another environment v’ < «, or if the degree y(z) of an unused
variable z is changed.

Lemma 14 (degree restriction) If v <~y andTH-M:7 /v, then THM:7]+

Proof: We reason by induction on the typing derivation of M, and by case on the last typing
rule used.

Rule (var), M = z. We know that I'(z) = 7 and v(z) = 0 > +'(z), so ¥'(z) = 0 and we can apply
the axiom (var) again.

Rule(abstr), M = Az.M;. Given the typing rules, we have a derivation of I' + {z + 7} F M :

7o/ (y—1D[z—d] withT =7 4y 1. But it is easy to notice that (7 — 1)[z+—d] < (y —1)[z —d],
so by induction hypothesis, we have a derivation of ' + {z +— 71} F My : 7o / (v — 1)[z — d]. The
expected result follows by another application of the rule (abstr).

Rule (app), M = M; M,. By typing hypothesis, we have derivations for I' - M; : 7/ 4 / m
and ' My : 7' [v, with v = (71 — 1) Ad @y9. By lemma 9, we construct] and ~}, such that
Yy <71, ¥5 < y2 and ' = (] — 1) Ad @~}. Applying the induction hypothesis twice, we obtain

derivations for T F My : 7' % 7 /v and T My : 7' / 44, and we can apply the rule (app) again
to obtain the expected result.

Rule (appvar), M = M; z. We have a derivation for T' - My : 7/ 4 7 / 71 with I'(z) = 7’ and
v = (71 —1)Ad. Hence, 7' < (11 —1) A (z+d). Applying lemma 10, we obtain] such that v] <7
and 7' = (y] — 1) A (z — d). We can apply rule (appvar) again to derive the expected judgment.

Rule (rec), M =letrec ... z; = M; ... in N. By typing hypothesis, we have
P+{..zj:7 ..JFEN:7/%wl.. zj—d; ..]
F—I—{ Tj:Tj }"M,Tz/’yz[le—)d”]
for all 4, 7, d;; > 1
for all ’i,j,k‘, dik < dij@djk

v=7A(N\di@y)A(/\di@dy;any)
i irj

28

Using lemma 11, we take vy, = 7' and for all i, 4/ = ~;, knowing that v}, < 7 and v =~y A
(/\ di Qv)) A (/\ d; @d;; @~}). By induction hypothesis, we know how to derive I' + {... z;:

]
Tj ..} FN:7 [/ A\[.. zj—d; ...]. Hence we can derive ' M : 7 /+'. O
Lemma 15 (degree weakening) IfT'+ M :7 /y[z+—d] and x ¢ FV (M), then T HM : 7 /[7.

Proof: The proof is by induction on the typing derivation of M and by case on the last rule used.

Rule (var), M =y. Since z ¢ FV (M), x # y. By typing hypotheses, y(y) =0 and I'(y) = 7. It
follows that '+ M : 7 / 7.
Rule (abstr), M = A\y.M;, where y is fresh. The premise of the typing rule holds: '+ {y — 71} -

My 7o/ (ylz—d]-1)[y—dp] and T =1, Dy 1. But, obviously (y[z+—d]—1)[y—dy] = (y—1)[y—
dp][z — d — 1]. Hence, by induction hypothesis we obtain I' + {y — 71} - My : 72 / (v — 1)[y > do]
and the expected result follows by rule (abstr).

Rule (app), M = My My. We have T' + My : 7/ d—0>7'/')q and '+ My : 7' | v with y[z — d] =
(11 —1) Adp @9. Applying lemma 12, we obtain d1, da, 7] and 4 such that v = (7§ — 1) Adp @},

Yi[z — d1] = 71 and [z — da] = ¥2. By induction hypothesis we can derive I' - M7 : 7/ D, 7 /"
and T'+ Ms : 7' / 4). The expected result follows by rule (app).
Rule (appvar), M = My, with y # x by hypothesis z ¢ FV(M). We have a derivation of

THM:n % n / m with y[z— d] = (11 — 1) A (y — dy). Take v = yi[z — vy(z) + 1].
We have vi[z — v1(z)] = 71 and v = (7] — 1) A (y — dp). The first equality is straightforward,
and the second equality follows from the facts that y(z) = v(z) + 1 — 1, and for any z # =,
(v = 1) A(y+—do))(z) = ((v; —1) A (y+—>dp))(z). We then conclude by induction hypothesis as
above.

Rule (rec), M =letrec ... z; = M; ... in N. We have
F+{...zj:7 ...} FN:7/yNn[... zj—=d; ...]
and for all ¢
P+{...zj:7 .} M:7 [vil.. z5j0>di ...]
with for all 4,7, k, dix < d;; Qdj and for all 4,5, djj > 1 and yjz = d] = v A (/\di@'yi) A

7
(/\ d; @d;; @ ;). Lemma 13 shows the existence of 7} and +] for all i such that vy [z+—dn] = v,
(]
and for all i 4}[z > d}] = v;, and v = 7y A (\ di @}) A (/\ di @dy; @+}), with dy = yy(x) and
(2%
for all 4, d; = ~}(z). Applying the induction hypothesis, we derive
P—|—{... Tj:Tj ...}FN:T/”)/;V[... :L‘jb—)dj]
and for all ¢
The result follows by rule (rec). O
Lemma 16 (type weakening) IfT+{z — 7'} FM:7 /vy andz ¢ FV(M), thenT - M : 7 [7.

Proof: Straightforward by induction on the typing derivation. [J

29

B.3 Substitution lemmas

We now establish the traditional substitution lemma: a variable can be substituted by a term of the
same type without affecting the type of the program. This lemma provides a semantic justification
for our definition of @ in relation with what really happens during the reduction of an application.

Lemma 3 (substitution) If T +{z — 7'} - My : 7 / [z —d], and T = My : 7'] o, with
z ¢ FV (M) U dom(vy2), then '+ My{z <~ M} : 7 / 1 Ad Q.

Proof: We proceed by induction on the typing derivation of M; and case analysis on the last
typing rule used. We write M = My{z + M}, IV =T+ {z — 7'}, and v = 11 Ad Q 5.

Rule (var), M; =y. We have I''(y) = 7 and v [z — d](y) = 0.

If y =z, then M = My, d =0, 7 = 7’ and by hypothesis ' M : 7 / 5. So by lemma 14, it is
enough that vy < 3 or 1 A0 @Q s < 79, which is true by lemma, 8.

Ify#z thenz ¢ FV(M)and T+ {z — 7'} b M : 7 / v1[z — d], so by lemmas 15 and 16,
'+ M:7 /v, and it suffices that vy < 71, which is trivially true.

Rule (abstr), M; = \y.Ms, with y fresh. By typing hypothesis, we have
'+ {y = m} - Ms: 7 [3y do]

with 7 = 71 %% 75 and vy = do] = (mlz—d] — 1)y—do] = (11 — D[z — (d — 1);y — dp]. Take
M} = Ms3{z < Ms}. By induction hypothesis, we have T'+ {y — 71} b Mj : 7o / (y1 — 1)[y — do] A
(d — 1) @~y,. Since y is fresh, it does not occur in v, hence

(m =Dy do] A (d—1) @y,

=((m -1 A(d-1)Qy)[y+— do]

=((11 —1)A(dQ~ — 1))y +— dp] by lemma 8
=((m AdQ@y) —1)[y > do] = (70 — 1)[y > do]

Hence, rule (abstr) concludes T' - Ay. M3 : 7y o, T2 / 70, which is the expected result.

Rule (app), M; = M3 My;. We have IV - M3 : 7" do, / y3and IV - My : 7" / 44 and
y[z—d = (y3 — 1) Ady Q4. By lemma 12, if d3 = y3(z) and ds = y4(z), there exists 5 and v}
such that vy4[z — d3] = v3, V4[z — d4] = v4, and 1 = (75 — 1) A dp @ 7). By induction hypothesis,

if My = Ms{z < My} and Mj = My{z < M}, then ' - M3 : 7" LN / 75 A ds @y and
T'EMy:7" [/~ ANds @y, so by rule (app)
Fl—M:T/((’yé/\d?,@’)/g)—1)/\d0@(’)’2/\d4@’)’2)

Moreover, by lemma 8, the degree environment is equal to

(73 = 1) A(d3 Qy2 — 1) A (do @) A (dg @dy Q)
= ’71/\(d3@’)’2—1)/\(d0@d4@’)’2)
= 7 A ((d3 —1prdo @dy) Qg
= mAdQy
= 7

30

Rule (appvar), M; = M3 y. As in the (var) case, we argue by case, according to whether y is
equal to z or not.

Case y = z. Then, M = M} My, where Mj = Ms3{z < Ms}. The typing hypothesis implies
T/ - My:r" %7 /vs (*) and I'(y) =T'(z) = 7' = 7" and y1 [z — d] = (y3 — 1) A (y = dp). Take
75 = v3lz — y1(z) + 1]. We have v = (75 — 1) and 5[z — v3(z)] = 3. Thus we can write the
premise (*) as follows

'k My w2 1 [Afylz s pa(a)]

n Hence, by induction hypothesis we have
F"Mé:TIld—())T/’)’é/\dg@’}’Q
with d3 = y3(z). Then by rule (app), we obtain
TEM:7/((v3Ads Q) —1)Adp @y
But 70 = (74 — 1) Ad @y. Since d = (d3 — 1) A dy, it follows that
Yo=(v—1)A(d3Qy—1)AdyQryp

Hence, we have derived the desired judgment.

Case y # z. Then, M = Mj y, where Mj = M3z{z < M,}. By typing hypothesis, we have
' F My %, / 73 (*) and I(y) = T'(y) = 7 and [z —d] = (y3 — 1) A (y — dp). Take
75 = y3[z — 11 (x) + 1]. We have ;1 = (5 — 1) A (y+— dp), and v4[z — y3(x)] = 3. Thus we rewrite
the premise (*) as follows:

T'F My i7" 2 1) e s y3(2)]

By induction hypothesis, it follows that
F"Mé:T”d—O>T/’)’§/\d3@’}’2
with d3 = y3(z). Then by rule (appvar), we get
TEM:7/((v3Ad3Qy)—1) Ay do)
which yields by lemma, 8
TEM:7/(—1)A(d3s@Qy —1) A (y+—> dp)

Moreover,

Yo = 1 AdQy
(v3— 1) A(y—do) NdQ@ry,
= (=1 A(y—do) A(ds—1)Qnp
(because y1[z — d] = (3 — 1) A (y = do))
= (=D A(y—=do)A(d3@ry,—1) (by lemma 8)

Thus, the expected result holds.

31

Rule (rec), M =let rec 1 = N7 and ... and z,, = N,, in N, where the z; are fresh. By typing
hypothesis,

'+{...zj:1 ..} FN:7/yn[... zj—d; ..]
foralls, '+ {... zj:7j ...} FN;j:7 [G- T dij ...
for all 4, 7, dijj > 1
for all 4, j, k, dix, < d;; Qdjy,

We write N' = N{z < My} and for all i, N = N;{z < Ms}. We have yi[z — d] = yn A
(/\ di Q&) A (/\ d; @d;; @ §;). Lemma 13 shows that we can construct v}, and a ¢} for all 7 such
i Y]
that vy [z — dy] = yn, and iz +— d?] = §; for all i and v, = vy A (/\ d; @ &;) A (/\ d; @ dy; @ 5%),
i 1,
with dy = yn(x) and d) = 6;(z) for each i. Thus, the two premises can be rewritten as follows:
'+{...zj:75 ..}FEN:7/N[.. zj—=d; ..]z dy]
foralli, '+ {... zj:7; ..} F N7 [.. zj>diy ..)z d)]

By induction hypothesis, it follows that

P+{..zj:7 ..} N:7 /N[. zj—=d; ..]ANdy Qy,
foralli, T+ {... zj:7; ..}F N7 /i[... zj~>dij ...]Ad} Q@
Since the ;s are fresh we have Yy [... ;= d; ...]Ady Qv = (Yy ANdN Qy)[... z;—d; ...] and

for all i, 8i[... zj > dij; ..JAd) Qv = (6, Ad) @)[... zj+>di; ...]. We can therefore apply
rule (rec) to obtain

TM:7 /vy Ady @y Ndi@dy; @ (55 Ad) @) A [\ d; @ (67 Adf @)
i,j i
According to lemma 8, the degree environment above is equal to
Y A (dv @)
A (N\di@d; Q)

i,J

A (N\di@di;@d) @)

%]
A (\di@d)

(2
A (N\di@d] @)
i

To obtain the expected result, it suffices to prove that this degree environment is equal to ~yy. Since
’)’1[.’E'—>d] =9n A (/\dz @(51) A (/\dz @d” @5])
(1,J

we know that
d= ’YN(.T) A (/\ d; @ (SZ(.’L‘)) A (/\ d; Q dij @ 5](56))

1,

32

Therefore, d = dy A (/\ di @dJ) A (/\ di @di; @dY). It follows that
i ,J
Y = MAdQy
= WA (N\di@d) A (N\d@dyad)
i ij
ANdn A (N\di@d)) A (N\di@d; @d))) @,
1 ,J
= WA (Ndi@ds) A (N di@d;ad))

Zi]
Ndy @72) A (N di@d) @) A (/\ di @di; @ d @)
i i,j

This completes the proof. [J

We now extend the previous lemma to the case of parallel substitution, exploiting the fact that
M{... z « M; ...} isequal to M{z1 < y1} ... {zn < yoH{y1 < M1} ... {y, < M,}, where
the y; are fresh. To support this reduction, we first show the stability of the typing judgement
under substitution of one variable by a fresh variable.

Lemma 17 If T+ {z:7}F M :7 /~v[x—d andy ¢ FV(M), thenT + {y:7} - M{z <y} : 7/
Yy~ d].

Proof: Easy induction on the typing derivation of M. O

Lemma 5 (parallel substitution) Assume '+ {... zj:7 ...} F M :7 [ypm[... zi—d; ..],
and for all j € {1...n}, T' & M; : 7; / v; with for all 3,5, z; ¢ FV(M;) U dom(y;). Then,
TEM{.. g M ...}:r [yunN\di@ry,.

i

Proof: Write M{... z; «+ M; ...} as M{z1 < n1} ... {zn < {1 < M1} ... {yn < M,}
where the y; are fresh. We first apply lemma 17 n times to obtain '+ {... y;:7; ...} - M{z; «
yi} oo {zn —yn}t 7/ yMm[--- yi—> d; ...]. We then apply lemma 3 n times again, successively
using the n typing hypotheses for the M;. This leads to the desired judgment. [J

B.4 Substitution by a variable

We now state and prove a stronger variant of lemma 3 for the case where we substitute a variable
by another variable. This alternate substitution lemma is distinct from lemma 17: here, y is not
supposed to be fresh, and this is why former occurences of ¥y must be taken into account, which is
done through the A operation.

Lemma 4 (substitution by a variable) IfT'+{z— 7'} F M : 7 / y[z—d] and T'(y) = 7/, then
F'F-M{z+y}:7/vA(y—d).

Proof: We write " =T+ {z + 7'} and M' = M{z « y} and proceed by induction on the typing
derivation of M and case analysis on the last typing rule used.

Rule (var) We distinguish the three sub-cases M =z, M =y, and M = z with z # z and z # y.
All three cases are straightforward.

33

Rule (abstr), M = Az.M; where z is fresh. By typing hypothesis, we have
UV+{z=7m}E M 7/ (y[z—d — 1)z~ do]
with =7 d—0> To. This is equivalent to
U+ {z=7m}EM 7/ (y—1Dz—do][z—d—1]
Applying the induction hypothesis, we then have
FT+{zon}t-M{z—y}t:/(v—1Dz—dAN(y—d—1)

which yields
F+{zen}ttM{z+y}:n/ (YA (y—d)—1)[z+— do]

We conclude I' - M{z <y} : 7 / v A (y — d) by rule (abstr).

Rule (app), M = M; M,. The typing hypothesis entails TV - M; : 7/ o, 7 /m and TV = My :
7" [y2 with y[z +— d] = (71 — 1) Adp @ 7y5. Take v} = y1[z — v(z) + 1] and v4 = y2[z > oc]. These
degree environments enjoy the following properties:

n=mz=rn@)] mEplterE)] y=01-1)Ad@Y,
By induction hypothesis, we can derive
THM{z <yl /Y Ay () TrMizeyl: ™/ AAYe ()

TEM 7/ (n -1 A=) —1)) Ado @ (7, A (y = 72(x)))

The degree environment in the conclusion is equal to

(M =D Ado @y A(yr= ((11(2) — 1) Adp @y2(x))) =7 A (y > d)

The desired result follows.

Rule (appvar), M = M; z We have I -+ M; : 7" Dy . / 71 and I'(z) = 7" and y[z — d] =
(71 — 1) A (2 dp). We consider the two cases z = z and z # z separately.

Case z = z. In this case, 7" = 7". Consider vy; = y1[z — v(z) + 1]. We have 7f — 1 = v and
1|z + v1(x)] = 71. By induction hypothesis, we obtain

DMz ey} :r' 7 /o Ay =)
Since T'(y) = 7/, rule (appvar) concludes
PEM:r /(=1 Aye (n(@) —1) Ay do)

But the degree environment in this conclusion is equal to (7] — 1) A (y = ((y1(z) — 1) A dp)), that
is, 7 A (y — d). This is the expected result.

Case z # . Define] = y1[z+— v(z) +1]. We have v = (] —1) A(z+—dp) and vj[z+— 11 (z)] = 7.
By induction hypothesis, we obtain

T M{z—y}: " L7 /4 Ay ()

34

Since I'(z) = 7", we derive by rule (appvar)
TEM 7/ (V=1 Aly— (n(z) — 1)) Az do)

The latter degree environment is equal to v A (y — (71 (z) — 1)), that is, ¥ A (y — d), as required to
establish the result.

Rule (rec), M =letrec ... z; = M; ... in N where the x; are fresh. The premises of rule (rec)
hold:

U+{...zi:7mi ..} FMj:7; /... zj—>dji ...] forall j
V4+{ ..z .JEN:7 /N[mi>d; ..]
for all 4,7, d;j > 1
for all 4,5, k, diy < d;j Q@dj,

Moreover, y[z +— d] = yn A (/\ d; @v;) A (/\ d; @d;; @+;). By lemma 13, we can construct v}
i i,J
and «} for each i satisfying the following conditions: v = v} A (/\ di @) A (/\ d; @d;; @),
1 2
YN = YN[z dy], and for all 4, y; = ~i[z+—> d}], with dy = yn(z) and for all 7, d; = ~;(z). Applying
the induction hypothesis, we obtain derivations for the following judgments:

C+{.. o . YEM{z<y}:m /vil.. zidj .. A (y—d) for all j
C+{...z:7 ..} FN{z <y} :7/YN][--- mi=>di ...]A(y—dn)

From these premises, rule (rec) derives ' - M’ : 7 / o', where

!

v = WAy~ dn)

A(Adi@dij@(V}A(yr—)d;-)))

/\(x d; @ () A (y > df)))
- ry/\i(yr—>(dN/\(/\di@dij@dg)A(/\di@dg)))
= YA (y—d) N Z

This concludes the proof. [J

B.5 Soundness

The soundness of Ap’s type system (theorem 1) is, as usual, a corollary of two properties: subject
reduction (lemma 6) and progress (lemma 7). We start with a technical lemma on recursive
definitions arising from the reduction of a let rec term.

Lemma 18 AssumeDI'+{... z;:7; ...} - Mj:7; [yl... mi—=dj ...] forallj € {1...n}. Further
assume that for alli,j, dij > 1 and for all i,j,k, dix, < d;j Qdji. Then, for any ig € {1...n},

I'letrec ... z; = M; ... in M, :Tio/'}go/\/\dioi@%
i

35

Proof: By application of rule (rec), we obtain

Fkletrec ... z; =M; ... in M;, : Ty / Vio /\/\dioi@dij @'Yj/\/\dioi@')’i
i i
Since dioj < d;yi @ dz'j, we have dz’oj Q v < diyi @ dij Q Yj- Thus,
/\dioi @dij @’)’j /\/\dioi @’)’Z‘ = /\dioi @'Yi
2,J g g
and the expected result follows. [
Lemma 6 (subject reduction) IfT'FM:7 /v and M — M', then T+ M : 7 /7.

Proof: The proof is by case analysis on the reduction rule used.

Reduction rule (beta), M = Az.M; v. The typing derivation for M can end either with an
application of the (app) rule or with the (appvar) rule.

In the (appvar) case, we have v = y. We rename z if necessary to ensure x # y. The typing
derivation for M is of the following form

PC+{z—71}EM 7/ (y0—1)[z+—d

T M 7 S/ T(y) =7

TEM:7/(vw—1)A(y—d
Moreover, v = (y9 — 1) A (y+— d) and M’ = M {z < y}. By lemma 4, we have
TEM:7/(v—1)A(y—d)

which is the expected result.
In the (app) case, the typing derivation for M is

C+{z=1} M7/ (11— 1)z d

PI—/\:C.M1:T'£>T/71 ThFv:7 [y

PEM:7/(n-1)AdQy

Moreover, M' = M {z + v} and v = (71 — 1) Ad Q. By lemma 3, it follows that T - M’ : 7 / ~,
as expected.

Reduction rule (mutrec), M =let rec ... z; = v; ... in N, where the z; are fresh. We have
M'=M{... zj < M; ...} with, for all i, M; = let rec ... z; =v; ... in v;. By typing, we have

F+{...zj:75 ...} FN:7/yn[... zj—=d; ...]
foralld, T+ {... zj:7; ...} Fw:7 [yl zj=>dij -..]
for all 4,7, d;j > 1
for all 4,7, k, di < d;; @djy,

36

By lemma 18, it follows that
Fl—Mi:Ti/’)’i/\/\dij@’yj
J

By lemma 5, we obtain

TEM 7 /yvA(N\di@ (v A Ndij @)
t J

which is identical to the expected result

TEM 7/ yvA(Ndi@y) A (N\di@dy @)
% i

Reduction rule (context), M = E[M;], M; — M{ and M' = E[M]]. The result follows by
structural induction and case analysis over the context E. The only point worth mentioning is that
in the case E = v [] and the typing derivation ends with rule (appvar), then M; can only be a
variable, and therefore cannot reduce. OJ

Lemma 7 (progress) If ' M : 7 /v and v > 1, then either M is a value, or there exists M’
such that M — M'.

Proof: The proof is a standard inductive argument on the typing derivation of M, and case
analysis on the last typing rule used.

Rule (var). M is a variable, i.e. a value.

Rule (abstr). M is a A-abstraction, i.e. a value.

Rule (app), M = M; My;. We have I' - M; : 7/ 4 / mmand T'F My : 7' / 9. Moreover,
y=(mn—-1)AdQnry.

Applying the induction hypothesis to M; and M, either both terms are values or at least one
reduces. If M; reduces, M also reduces via the context [| Ms. If M; is a value and My reduces,
M also reduces via the context M; []. If both My and My are values, the type 7/ 4 1 of M,
guarantees that M; is either a variable or an abstraction. But M; cannot be a variable, because
~v > 1 implies y; > 2. Hence, M; is an abstraction and we can apply the (beta) rule to reduce M.

Rule (appvar). Same reasoning as in the (app) case.

Rule (rec), M =letrec ... z; = M; ... in N. If all M; are values, M reduces by rule (mutrec).
Otherwise, M reduces via the rule (context). O

C Soundness of the translation

We now turn to proving theorem 2: the translation of a well-typed source term is a well-typed
Ap-term.

We start by stating three typing rules that are admissible in Ap, and help type-check the terms
arising from the translation scheme. We omit the proofs of admissibility, which are straightforward.

37

Lemma 19 (single let rec) The following typing rule is admissible for the type system of Ap.

F+{z—7}FM:7/ 7z~ d
FT+{z—7}EN:7 [/ pz—d] d>1

Fkletrecz=NinM:7 /v ANdQry,

Lemma 20 (n abstractions) The following typing rule is admissible for the type system of Ap.
F+{..zi:m ..}FM:7/(y=—n)... zi—>d; ...]

< dy+(n— da+(n—
CEX#1,.ym0)-M i m), oy Lt 2)>...Tnd—">7/7

Lemma 21 (n applications) The following typing rule is admissible for the type system of Ap.
-1 da2+(n—2
'M:n i+)> Ty 2t)> . Th d—”)T/q/
D(z;)) =7 fori=1,...,n

FM(zi,...,zn): 7/ (y—n)A(.. zi—>d; ...)

We now prove two technical lemmas on the typing of sub-expressions that occur when translating
the close and freeze operators.

Lemma 22 (translation of close) AssumeI' & e: [{Z;0;D}] / d°(T). Let X4,...,X, be names
such that X; ¢ dom(T) and O(X;) = Z(X;) and D(X;,X;) # 0 for i,j € {1,...,n}. Further
assume that for all immediate predecessors X of one of the X; in D, either X is one of the X;,

or T'(X) = Z(X). Let M be an expression and T be a type such that T'' = M : 7 [/ d°(T"), where
I"=T+{X;:0(X1),..., Xy : O(Xy)}. Then,

[+ let rec X; =e.X; D-}(X;) and ... and X, = e.X,, D~ 1(X,) in M : 7 / d°(T)

Proof: By definition of the translation of a mixin signature, and the hypotheses on I, the condi-
tions of lemma 21 are met, and we obtain

I'FeX; D-UX;) : O(X;) [d°(T) A (X = D(X,X;) | X € D7HX,))

Since X; ¢ dom(T) for all j, the degree environment above is pointwise greater or equal to
d°(T)[X; — D(X;,X;) | 7 € {1,...,n}]. Thus, by lemma 14, it follows that

I'Fe.X; DL(X;) : O(X:) / d°(D)[X; — D(X;,X;) | j € {1,...,n}]

Moreover, D(X;, X;) € {1, 00} for all and j. Hence, the premises of the (rec) typing rule are met.
Applying the weakening lemma 14 to its conclusion, we obtain the desired result. O

Lemma 23 (translation of freeze) Assume I' - e : [{Z;0;D}]/d°(T"), where e is a variable
distinct from X for all names X. Let X be a name such that Z(X) = O(X). Write D' = D'X and
T'=1\x. Then, for all names Y € dom(0), if X ¢ D~L(Y) we have

F |— e.Y : [[O(Y)]]Y,DI,II / dO(F)

and if X € D™YY), we have

T+ XD L(Y)let rec X = e.X D 1(X) in e.Y D 1Y) : [O(Y)]y.prz / d°(T)

38

Proof: Recall the definition of D':
D'=DIX = (D U Daround) \ Dremove
X1/\X2
where Dyround = {Z —
Names, x € {0,1}}.
Thus, in the case X ¢ D~!(Y), no edges leading to Y are added nor removed. Hence, D'~}(Y) =
D~Y(Y'), which implies [O(X)]x,pr x,zx = [O(X)]x,p,z and the expected result.
Consider now the case X € D 1(Y). We have D' 1(Y) = (D YY) UD }(X)) \ {X}. Define

I'=T+{Z:[Z(Z2)] | Z € D*(Y)}. By lemma 21, and using the fact that e is not one of the Z,
it follows that

Y[(ZX X)eD, (X 25 Y) € D} and Drgpove = {X B Y | Y €

'+ eX DUX): [0X]) {e—0,Z—D(Z,X) | Z €D (X)}

and

'+ {X:[ZX)}FeY DY) :[0Y] /{e—=0;Z—D(Z,Y)| Z € DY)}

Notice that D(X, X) > 1, because otherwise the graph D would not be safe, making the signature
{Z; 0; D} ill-formed. In addition, O(X) = Z(X). The conditions of lemma 19 are therefore met,
and we obtain I' |- let rec X = e.X D—1(X) ine.Y D1(Y) : [O(Y)] / v where

v = {e—m0;Z—D(Z,X)|Z+X,ZcD (X)}
ANMem0,Z—=D(ZY)| Z#X,ZeDHY)}

By definition of D' = D!X, v is equal to {e—0; Z—D'(Z,Y) | Z € D'~}(Y)}. Applying lemma, 20,
we obtain

T XD 1(Y)let rec X =e.X D L(X) ineY D L(Y): [O(X)]x.p.z / {e~ 0}
which implies the desired result by weakening. O

Theorem 2 (soundness of the translation) If T = E : T, then [I'] & [E] : [T] / d°(T) +
IsRec(E).

Proof: The proof is by structural induction on F, and case analysis on F.

Function abstraction: £ = Az.C and 7 = 71 — 7». By induction hypothesis, [I'] + {z : 71} -
[C] : 72 / d°(T)[z — O] + IsRec(C). Applying the degree weakening lemma if IsRec(C) is not zero,
we obtain [I'] + {z : 1} F [C] : 2 / d°(T")[z — 0]. From this, the (abstr) typing rule shows that

[TTF [Az.C] = 7 % / d°(T") + 1, which is the expected result since IsRec(Az.C) = 1.

Other core language constructs: the result follows immediately from the induction hypothesis,
since IsRec(E) = 0 in these cases.

Structure construction: F = (;;0) and T = {Z;O; D}. By typing, we have D = D(;0), - D,
dom(o) = dom(O), and for all X € dom(0), ' +Z ot o(X): O(X).

Let o= X; ' B;, 0 = X; ' Ti, xi = IsRec(E;) and o = y; 'S ;, with Z(Y;) = T/ for all j,

with the X;s and Yjs ordered lexicographically, that is, if 71 < 49, then X, <j; Xj,, and similarly
for the Ys.

39

By induction hypothesis, for all i, we have [TI] + [Z o] & [E;] : [Ti] / d°(T +Z o) + xi.

But FV([E;]) = FV(E;) and FV(E;) N dom(1) = .~ (D7(X;)), so we can apply lemma 20,
and weakening lemmas 15 and 16 to eliminate variables of dom(:) that are not free in E;. Let
(Z1,...,Zy) =D }(X;) and for all k € {1...n}, T} = Z(Z;). We obtain

- X0 x0)[E] : [77] 22 7 X5 (7] d(n)

But [Tilx,pz = [777 X0 [X5 [7i], because D(Zy, Xi) = v(:~Y (%), Ei) =
IsRec(E;) = xi. The desired result follows.

Closing: F = close(E') and T = {Z;0;D}. We apply lemma 22 repeatedly to each let rec
group in the translation, starting with the innermost one. Since the let rec are generated following
a serialisation of the graph D, all free variables in a let rec are bound earlier, and dependencies
between the variables bound in the same let rec cannot have degree 0 (otherwise the graph D
would not be safe, and 7 would be ill-formed). The expected result follows.

Freezing: F = F;! X. The result follows from the induction hypothesis applied to Fi, and
lemma, 23 applied to each component of the record generated by the translation.

Delete: E = E; \ X. The result follows immediately from the induction hypothesis applied to E;.

Renaming: F = E1[X «+ Y]. We apply the induction hypothesis to E;, then use lemmas 20 and 21
to handle the rearrangement of the parameters of the record components. [

40

