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October 28, 2008

CREMONA TRANSFORMATIONS

AND

DIFFEOMORPHISMS OF SURFACES

JÁNOS KOLLÁR AND FRÉDÉRIC MANGOLTE

The simplest Cremona transformation of projective 3-space is the involution

σ : (x0 : x1 : x2 : x3) 7→
( 1

x0

:
1

x1

:
1

x2

:
1

x3

)

,

which is a diffeomorphism outside the tetrahedron (x0x1x2x3 = 0). More generally,
if Li :=

∑

j ajixj are linear forms defining the faces of a tetrahedron, we get the
Cremona transformation

σL : (x0 : x1 : x2 : x3) 7→
( 1

L0

:
1

L1

:
1

L2

:
1

L3

)

·
(

aij

)−1
,

which is a diffeomorphism outside the tetrahedron (L0L1L2L3 = 0). The vertices
of the tetrahedron are called the base points. If Q is a quadric surface in P3, its
image under a Cremona transformation is, in general, a sextic surface. However, if
Q passes through the 4 base points, then its image σL(Q) is again a quadric surface
in P3 passing through the 4 base points. In many cases, we can view σL as a map
of Q to itself.

The aim of this paper is to show that these Cremona transformations generate
both the group of automorphisms and the group of diffeomorphisms of the sphere,
the torus and of all non-orientable surfaces.

Let us start with the sphere S2 := (x2 + y2 + z2 = 1) ⊂ R3 and view this as
the set of real points of the quadric Q := (x2 + y2 + z2 = t2) ⊂ P

3 in projective
3-space. Pick 2 conjugate point pairs p, p̄, q, q̄ on the complex quadric Q(C) and
let σp,q denote the Cremona transformation with base points p, p̄, q, q̄. As noted
above, σp,q(Q) is another quadric surface. The faces of the tetrahedron determined
by these 4 points are disjoint from S2, hence σp,q is a diffeomorphism from S2 to
the real part of σp,q(Q). Thus Q and σp,q(Q) are projectively equivalent and the
corresponding Cremona transformation σp,q can be viewed as a diffeomorphism of
S2 to itself, well defined up to left and right multiplication by O(3, 1). It is also
convenient to allow the points p, q to coincide; see (9) for a precise definition. Let
us call these the Cremona transformations with imaginary base points. Our first
result is that, algebraically, these generate the automorphism group.

Theorem 1. The Cremona transformations with imaginary base points σp,q and
O(3, 1) generate Aut(S2).

Most diffeomorphisms of S2 are not algebraic, so the best one can hope for is
that these Cremona transformations generate Diff(S2) as topological group. Equiv-
alently, that Aut(S2) is a dense subgroup of Diff(S2). The results of [Lukackīı77,
Lukackīı79], pointed out to us by M. Zaidenberg, imply that the group of algebraic
automorphisms is dense in the group of diffeomorphisms for the sphere and the
torus. His methods, reviewed in (15), use the SO(3,R) action on the sphere and
the torus action on itself.
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2 JÁNOS KOLLÁR AND FRÉDÉRIC MANGOLTE

In order to go futher, first we need to deal with diffeomorphisms with fixed
points. Building on [Biswas-Huisman07], it is proved in [Huisman-Mangolte08a]
that Aut(S2) is n-transitive for any n ≥ 1. Using this, it is easy to see (19) that
the density property also holds with assigned fixed points.

Corollary 2. Aut(S2, p1, . . . , pn) is dense in Diff(S2, p1, . . . , pn) for any finite set
of distinct points p1, . . . , pn ∈ S2, where Aut( ) denotes the group of algebraic
automorphisms of S2 fixing p1, . . . , pn and Diff( ) the group of diffeomorphisms
fixing p1, . . . , pn.

Note that, for a real algebraic variety X , the semigroup of algebraic diffeomor-
phisms is usually much bigger than the group of algebraic automorphisms Aut(X).
For instance, x 7→ x + 1

x2+1
is an algebraic diffeomorphism of R (and also of

RP1 ∼ S1), but its inverse involves square and cube roots. The difference is best
seen in the case of the circle S1 = (x2 + y2 = 1).

Essentially by the Weierstrass approximation theorem, any differentiable map
φ : S1 → S1 can be approximated by polynomial maps Φ: S1 → S1. By con-
trast, the group of algebraic automorphisms of S1 is the real orthogonal group
O(2, 1) ∼= PGL(2,R), which has real dimension 3. Thus Aut(S1) is a very small
closed subgroup in the infinite dimensional group Diff(S1).

The Cremona transformations with real base points do not give diffeomorphisms
of S2; they are not even defined at the real base points. Instead, they give generators
of the mapping class groups of non-orientable surfaces.

Let Rg be a non-orientable, compact surface of genus g without boundary. Com-
ing from algebraic geometry, we prefer to think of it as S2 blown up at g points
p1, . . . , pg ∈ S

2. Topologically, Rg is obtained from S2 by replacing g discs centered
at the pi by g Möbius bands. Up to isotopy, a blow-up form of Rg is equivalent to
giving g disjoint embedded Möbius bands M1, . . . ,Mg ⊂ Rg.

There are two ways to think of a Cremona transformation with real base points
as giving elements of the mapping class group of Rg.

Let us start with the case when there are four real base points p1, . . . , p4. We
can factor the Cremona transformation σp1,...,p4

as

σp1,...,p4
: Q

π1← Bp1,...,p4
Q

π2→ Q

where on the left π1 : Bp1,...,p4
Q→ Q is the blow up of Q at the 4 points p1, . . . , p4

and on the right π2 : Bp1,...,p4
Q → Q contracts the birational transforms of the

circles Q∩Li where the {Li} are the faces of the tetrahedron with vertices {pi}. In
Figure 1, the • represent the 4 base points. On the left hand side, the 4 exceptional
curves Ei lie over the four points marked •. On the right hand side, the images of
the Ei are 4 circles, each passing through 3 of the 4 base points. Since σp1,...,p4

is
an involution, dually, the four points marked • on the right hand side map to the
4 circles on the left hand side.

A Cremona transformation σp1,p2,q,q̄ with 2 real and a conjugate complex pair
of base points act similarly. Here only two Möbius bands are altered.

In general, we can think of the above real Cremona transformation σp1,...,p4
as

a topological operation that replaces the set of g Möbius bands
(

M1, . . . ,Mg

)

by a

new set
(

M ′

1, . . . ,M
′

4,M5, . . . ,Mg

)

. In this version, σp1,...,p4
is the identity on the

surfaces but acts nontrivially on the set of isotopy classes of g disjoint Möbius bands.
One version of our result says that the transformations σp1,...,p4

and σp1,p2,q,q̄ act
transitively on the set of isotopy classes of g disjoint Möbius bands.
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Figure 1. Cremona transformation with four real base points.

The other way to view σp1,...,p4
is as follows. First, we obtain an isomorphism

σ′

p1,...,p4
: Bp1,...,pg

S2 ∼= Bq1,...,qg
S2

for some q1, . . . , qg ∈ S
2. Under this isomorphism, the exceptional curve E(pi) ⊂

Bp1,...,pg
S2 is mapped to the exceptional curve E(qi) ⊂ Bq1,...,qg

S2 for i ≥ 5 and to
the circle passing through the points {qj : 1 ≤ j ≤ 4, j 6= i} for i ≤ 4. As we noted
above, there is an automorphism Φ ∈ Aut(S2) such that Φ(qi) = pi for 1 ≤ i ≤ n.
Thus

Φ ◦ σ′

p1,...,p4
: Bp1,...,pg

S2
∼=
−→ Bp1,...,pg

S2

is an automorphism of Bp1,...,pg
S2 which maps E(pi) to E(qi) for i ≥ 5 and to a

simple closed curve passing through the points {pj : 1 ≤ j ≤ 4, j 6= i} for i ≤ 4.

Theorem 3. For any g, the Cremona transformations with 4, 2 or 0 real base points
generate the (non-orientable) mapping class group Mg.

Finally, we can put these results together to obtain a general approximation
theorem for diffeomorphisms of such real algebraic surfaces.

Theorem 4. Let R be a compact, smooth, real algebraic surface birational to P2 and
q1, . . . , qn ∈ R distinct marked points. Then the group of algebraic automorphisms
Aut(R, q1, . . . , qn) is dense in Diff(R, q1, . . . , qn).

As a topological manifold, here R can be the sphere, the torus or any non-
orientable surface RP2# · · ·#RP2.

5 (Other algebraic varieties). Similar assertions definitely fail for most other al-
gebraic varieties. Real algebraic varieties of general type have only finitely many
birational automorphisms. (See [Ueno75] for an introduction to these questions.)
For varieties whose Kodaira dimension is between 0 and the dimension, every bira-
tional automorphism preserves the Iitaka fibration. If the Kodaira dimension is 0
(e.g., Calabi-Yau varieties, Abelian varieties), then every birational automorphism
preserves the canonical class, that is, a volume form, up to sign. The automorphism
group is finite dimensional but may have infinitely many connected components.
In particular, using [Comessatti14], for surfaces we obtain the following.

Proposition 6. Let S be a smooth real algebraic surface. If S(R) is an orientable
surface of genus ≥ 2 then Aut(S) is not dense in Diff

(

S(R)
)

. �

If X has Kodaira dimension −∞, then every birational automorphism preserves
the MRC fibration [Kollár96, Sec.IV.5]. Thus the main case when density could
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hold is when the variety is rationally connected [Kollár96, Sec.IV.3]. It is clear that
the analog of (1) fails even for most geometrically rational real algebraic surfaces.
Consider, for instance, the case when R→ P1 is a minimal conic bundle with at least
8 singular fibers. Then Aut(R) is infinite dimensional, but every automorphism of
R preserves the conic bundle structure [Iskovskikh96, Thm. 1.6(iii)]. Conic bundles
with 4 singular fibers are probably the only other case where the analog of (4) holds.

The results of [Lukackīı77] imply that Aut(Sn) is dense in Diff(Sn) for every
n ≥ 2 and, similarly, Aut(T n) is dense in Diff(T n) for every n ≥ 2, where T n is
the n-dimensional torus. It is not clear to us what happens with other varieties
birational to Pn.

7 (History of related questions). There are many results in real algebraic geometry
that endow certain topological spaces with a real algebraic structure or approxi-
mate smooth maps by real algebraic morphisms. In particular real rational models
of surfaces were studied in [Bochnak-Coste-Roy87], [Mangolte06] and approxima-
tions of smooth maps to spheres by real algebraic morphisms were investigated in
[Bochnak-Kucharz87a, Bochnak-Kucharz87b], [Bochnak-Kucharz-Silhol97], [Kucharz99],
[Joglar-Kollár03], [Joglar-Mangolte04], [Mangolte06].

An indication that Aut(S2) is surprisingly large comes from [Biswas-Huisman07],
with a more precise version developed in [Huisman-Mangolte08a].

8 (Plan of the proofs). In Section 1 we prove that the Cremona transformations
with imaginary base points generate Aut(S2). Next, in Section 2, we prove (4) for
the identity components. If φ : R → R is homotopic to the identity, then φ can be
written as the composite of diffeomorphisms φi : R → R such that each φi is the
identity outside a small open set Wi ⊂ R. Moreover, we can choose the Wi in such
a way that for every i there is a morphism πi : R → S2 that is an isomorphism
on Wi. The map φi then pushes down to a diffeomorphism of S2. We take an
approximation there and lift it to R.

The case R = S1 × S1 follows from [Lukackīı79].
Generators of the mapping class group of non-orientable surfaces have been writ-

ten down by [Chillingworth69] and [Korkmaz02]. In Section 3 we describe a some-
what different set of generators. We thank M. Korkmaz for his help in proving
these results.

Theorem 3 is proved in Section 4. We show by explicit constructions that our
generators are given by Cremona transformations.

Acknowledgments . We thank W. Browder, N. A’Campo, S. Cantat, D. Gabai,
J. Huisman, I. Itenberg, V. Kharlamov and A. Okounkov for many useful conver-
sations. We are especially grateful to M. Korkmaz for his help with understanding
the non-orientable mapping class group. M. Zaidenberg called our attention to the
papers of Lukackĭı. These enabled us to shorten the proofs and to improve the
results.

Partial financial support for JK was provided by the NSF under grant number
DMS-0500198. The research of FM was partially supported by the ANR grant
“JCLAMA” of the french “Agence Nationale de la Recherche.” He also benefited
from the hospitality of Princeton University.
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1. Generators of Aut(S2)

Max Noether proved that the involution (x, y, z) 7→
(

1

x
, 1

y
, 1

z

)

and PGL3 generate

the group of birational self-maps Bir(P2) over C. Using similar ideas, [Ronga-Vust05]
proved that Aut(P2(R)) is generated by linear automorphisms and certain real al-
gebraic automorphisms of degree 5. In this section, we prove that Aut(S2) is
generated by linear automorphisms and by the σp.q. The latter are real algebraic
automorphisms of degree 3.

Example 9 (Cubic involutions of P3). On P3 take coordinates (x, y, z, t). We need
two types of cubic involutions of P3. Let us start with the Cremona transformation

(x, y, z, t) 7→
(

1

x
, 1

y
, 1

z
, 1

t

)

= 1

xyzt
(yzt, ztx, txy, xyz)

whose base points are the 4 “coordinate vertices”. We will need to put the base
points at complex conjugate point pairs, say (1,±i, 0, 0), (0, 0, 1,±i). Then the
above involution becomes

τ : (x, y, z, t) 7→
(

(x2 + y2)z, (x2 + y2)t, (z2 + t2)x, (z2 + t2)y
)

.

Check that

τ2(x, y, z, t) = (x2 + y2)2(z2 + t2)2 · (x, y, z, t),

thus τ is indeed a rational involution on P3.
Consider a general quadric passing through the points (1,±i, 0, 0), (0, 0, 1,±i).

It is of the form

Q = Qabcdef (x, y, z, t) := a(x2 + y2) + b(z2 + t2) + cxz + dyt+ ext+ fyz.

By direct computation,

Qabcdef

(

τ(x, y, z, t)
)

= (x2 + y2)(z2 + t2) ·Qabcdfe(x, y, z, t).

(Note that ef changes to fe. Thus, if e = f , then τ restricts to an involution of
the quadric (Q = 0) but not in general.)

Assume now that we are over R. We claim that τ is regular on the real points
if a, b 6= 0. The only possible problem is with points where (x2 + y2)(z2 + t2) = 0.
Assume that (x2 + y2) = 0. Then x = y = 0 and so Q(x, y, z, t) = 0 gives that
b(z2 + t2) = 0 hence z = t = 0, a contradiction.

Whenever Q has signature (3, 1), we can view (Q = 0) as a sphere and then τ
gives a real algebraic automorphism of the sphere S2, which is well defined up to
left and right multiplication by O(3, 1). A priori the automorphisms depend on
a, b, c, d, e, f , so let us denote them by τabcdef .

Given S2, the above τabcdef depends on the choice of the base points, that is,
2 conjugate pairs of points on the complex quadric S2(C). The group O(3, 1) has
real dimension 6. Picking 2 complex points has real dimension 8. So the τabcdef

should give a real 2-dimensional family of automorphisms modulo O(3, 1).
We also need a degenerate version of the Cremona transformation when the 4

base points come together to a pair of points. With base points (1, 0, 0, 0) and
(0, 1, 0, 0), we get

(x, y, z, t) 7→ (xz2, yt2, zt2, z2t).

If we put the base points at (1,±i, 0, 0) then we get the transformation

σ′ : (x, y, z, t) 7→
(

y(z2 − t2) + 2xzt, x(t2 − z2) + 2yzt, t(z2 + t2), z(z2 + t2)
)

.
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Take any quadric of the form

Q = Q′

abcdef(x, y, z, t) := a(x2 + y2) + bz2 + czt+ dt2 + e(xt+ yz) + f(xz − yt).

By direct computation,

Q′

abcdef

(

σ′(x, y, z, t)
)

= (z2 + t2)2 ·Q′

adcbef(x, y, z, t).

As before, if Q′ has signature (3, 1), we can view (Q′ = 0) as a sphere and then
σ′ gives a real algebraic automorphism of the sphere S2, which is well defined up
to left and right multiplication by O(3, 1). Let us denote them by σabcdef . Despite
the dimension count, the group O(3, 1) does not act with a dense orbit on the set
of complex conjugate point pairs and complex conjugate directions. Indeed, after
complexification, the quadric becomes P1 × P1 and we can chose the two points to
be p1 := (0, 0) and p2 := (∞,∞). The subgroup fixing these two points is C∗ ×C∗

and the diagonal acts trivially on the tangent directions at both of the points pi.
Thus the σabcdef form a 1-dimensional family.

Theorem 10. The group of algebraic automorphisms of S2 is generated by O(3, 1),
the τabcdef and σabcdef .

Remark 11. It is possible that the τabcdef alone generate Aut(S2). In any case,
as the 4 base points come together to form 2 pairs, the τabcdef converge to the
corresponding σabcdef . Thus the τabcdef generate a dense subgroup of Aut(S2) (in
the C∞-topology.)

One reason to use the σabcdef is that, as the proof shows, the τabcdef and σabcdef

together generate Aut(S2) in an “effective manner.” By this we mean the following.
Any rational map Φ: S2

99K S2 can be given by 4 polynomials

Φ(x, y, z, t) =
(

Φ1,Φ2,Φ3,Φ4

)

.

Note that Φ does not determine the Φi uniquely, but there is a “minimal” choice.
We can add any multiple of x2 + y2 + z2− t2 to the Φi and we can cancel common
factors. We choose maxi{deg Φi} to be minimal and call it the degree of Φ. It
is denoted by deg Φ. (It is easy to see that these minimal Φi are unique up to a
multiplicative constant.) Note that deg Φ = 1 iff Φ ∈ O(3, 1).

By “effective” generation we mean that given any Φ ∈ Aut(S2) with deg Φ > 1,
there is a ρ which is either of the form τabcdef or σabcdef such that

deg
(

Φ ◦ ρ) < deg Φ.

12 (Proof of (10)). The proof is an application of the Noether-Fano method. See
[Kollár-Smith-Corti04, Secs. 2.2–3] for details.

Let k be a field and Q ⊂ P
3 a quadric defined over k. Assume that Pic(Q) = Z[H ]

where H is the hyperplane class. Let Q′ be any other quadric and Φ: Q 99K Q′

a birational map. Then Γ := Φ∗|HQ′ | is a 3-dimensional linear system on Q and
Γ ⊂ |dHQ| for some d. Let pi be the (possibly infinitely near) base points of Γ
(over k̄) and mi their multiplicities. As in [Kollár-Smith-Corti04, 2.8], we have the
equalities

Γ2 −
∑

m2
i = degQ′ and Γ ·KQ +

∑

mi = degKQ′ .

In our case, these become
∑

m2
i = 2d2 − 2 and

∑

mi = 4d− 4.
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Next we see how the transformations τabcdef and σabcdef change the degree of a
linear system Γ.

Example 13 (Cremona transformation on a quadric). For the τabcdef series, pick
4 distinct points p1, . . . , p4 ∈ Q such that no two are on a line in Q, not all 4 on a
conic and assume that s := m1 + · · ·+m4 > 2d. Blow up the 4 points and contract
the 4 conics that pass through any 3 of them. The pi are replaced by 4 base points
of multiplicities 2d−s+mi. Their sum is 8d−4s+s = 8d−3s. Thus 4d−4 =

∑

mi

is replaced by
∑

mi − s+ (8d− s), hence d becomes d− (s− 2d) < d.
For σabcdef , pick 2 distinct points p1, p2 ∈ Q and 2 infinitely near points p3 → p1

and p4 → p2 such that no two are on a line in Q, not all 4 on a conic and assume
that s := m1 + · · ·+m4 > 2d. Blow up the points p1, p2 and then the points p3, p4.
After this, we can contract the two conics that pass through p1 + p2 + p3 (resp.
p1 + p2 + p4) and we can also contract the birational transforms of the exceptional
curves over p1 and p2. The rest of the computation is the same. The pi are replaced
by 4 base points of multiplicities 2d−s+mi. Their sum is 8d−4s+s = 8d−3s. Thus
4d−4 =

∑

mi is replaced by
∑

mi− s+(8d− s) hence d becomes d− (s−2d) < d.

Thus, as long as we can find p1, . . . , p4 ∈ Q (or infinitely near) such that m1 +
· · ·+m4 > 2d, we can lower deg Φ by a suitable degree 3 Cremona transformation.

In order to find such pi, assume first to the contrary that mi ≤ d/2 for every i.
Then

2d2 − 2 =
∑

m2
i ≤

d
2

∑

mi = d
2
(4d− 4) = 2d2 − 2d.

This is a contradiction, unless d = 1 and Φ is a linear isomorphism.
If we work over R and we assume that there are no real base points, then we

have at least one complex conjugate pair of base points with multiplicity mi > d/2.
We are done if we have found 2 such pairs.

In any case, up to renumbering the points, we have m1 = m2 = d
2

+ a for some

d/2 ≥ a > 0. Assume next that all the other mj ≤
d
2
− a. Then

2d2 − 2 =
∑

m2
i ≤ 2

(

d
2
− a

)2
+

(

d
2
− a

)(
∑

mi − d+ 2a
)

= 2
(

d
2
− a

)2
+

(

d
2
− a

)(

4d− 4− d+ 2a
)

.

By expanding, this becomes

(a+ 2)(d− 4) ≤ −6.

Thus d ∈ {1, 2, 3}. If d = 3 then a+ 2 ≥ 6 so d/2 ≥ a ≥ 4 gives a contradiction. If
d = 2 then we get a = 1. Thus Γ consists of quadric sections with singular points
at p1, p2. These are necessarily reducible (they have pa = 1 with 2 singular points),
again impossible.

We also need to show that no two of the points lie on a line and not all 4 are on
a conic. For any line L ⊂ Q(C), (L · Γ) = d gives that

∑

i:pi∈L

mi ≤ d.

In particular, mi ≤ d for every i and if pi, pj are on a line then mi +mj ≤ d. Thus
out of p1, . . . , p4 only p3, p4 could be on a line. But p3, p4 are conjugates, thus they
would be on a real line. There is, however, no real line on S2.

Similarly, for any conic C ⊂ Q(C), (C · Γ) = 2d gives that
∑

i:pi∈C mi ≤ 2d.
Thus not all 4 points are on a conic.
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Remark 14. Note that we started the proof over an arbitrary field, but at the
end we had to assume that that we worked over R. For a quadric surface Q with
Picard number one, the above method should give generators for the group Bir∗(Q)
of those birational self-maps that are regular along Q(k). However, for other fields
k, other generators also appear if there are more than 2 conjugate base points.

2. The identity component

The purpose of this section is to prove (4) for the identity components. For
the sphere and the torus these were done by Lukackĭı. Next we prove (4) for the
identity components in the case R is the non-orientable surface Rg.

15 (The results of Lukackĭı). The paper [Lukackīı77, Thm. 2] proves that SO(n+
1, 1) is a maximal closed subgroup of Diff0(S

n). In particular, O(n + 1, 1) and
anything else generate a dense subgroup of Diff(Sn).

Since this result seems not to have been well known, let us give a quick review
of the steps of the proof.

We start with the Lie algebra of polynomial vector fields H0(Sn, TSn). Its struc-
ture as an so(n + 1) representation was described by [Kirillov57], including the
highest weight vectors.

As we go from so(n + 1) to so(n + 1, 1), we get extra unipotent elements and
their action on the highest weight vectors can be computed explicitly. One obtains
that so(n + 1, 1) is a maximal Lie subalgebra of H0(Sn, TSn). This implies that
SO(n + 1, 1) is a maximal connected closed subgroup of Diff0(S

n). It is easy to
check that SO(n + 1, 1) is its own normalizer, which rules out all disconnected
subgroups as well.

The paper [Lukackīı79] gives generators of the Lie algebra H0(T n, TT n) where
T n denotes the n-dimensional torus

T n :=
(

x2
1 + y2

1 − 1 = · · · = x2
n + y2

n − 1 = 0
)

⊂ R
2n.

This is again through explicit Lie theory. Up to coordinate changes by GL(n,Z),
the generators are the shears

g(x1, . . . , xn−1) ·
( ∂

∂xn

−
∂

∂yn

)

and yn ·
( ∂

∂xn

−
∂

∂yn

)

.

(Using polar angles φi, the latter is the vector field sinφn ·
(

∂/∂φn

)

.) Up to a factor
of 2, this is exactly the tangent vector field corresponding to the unipotent group

( 1 t
0 1

)

⊂ PGL(2,R) ∼= O(2, 1) acting on S1.

Definition 16. Let X and Y be real algebraic manifolds and let I be any subset
of X . A map f from I into Y is algebraic if there is a Zariski open subset U of X
containing I such that f is the restriction of an algebraic map from U into Y .

Consider the standard sphere S2 ⊂ R3 and let L be a line through the origin.
Choose coordinates such that L is the x-axis and S2 := (x2 + y2 + z2 = 1) ⊂ R3.
Let M : [−1, 1]→ O(2) be a real algebraic map. Then

ΦM : S2 → S2 given by (x, y, z) 7→
(

x, (y, z) ·M(x)
)

is an automorphism of S2, called the twisting map with axis L and associated to
M . A conjugate of a twisting map by an element of O(3, 1) is also called a twisting
map.
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The following results are proved in [Huisman-Mangolte08a].

Theorem 17. Notation as above.

(1) Any C∞ map M0 : [−1, 1] → O(2) can be approximated by real algebraic
maps Ms : [−1, 1] → O(2). Moreover, given finitely many points ti ∈
[−1, 1], we can choose the Ms such that Ms(ti) = M0(ti) for every i.

(2) Given distinct points p1, . . . , pm and q1, . . . , qm there are two twisting maps
(with different axes) Φ1 and Φ2 such that Φ1 ◦ Φ2(qi) = pi for every i.
Moreover,
(a) if pj = qj for some values of j then we can assume that Φ1(qj) =

Φ2(qj) = qj for these values of j, and
(b) if pi is near qi for every i then we can assume that the Φ1,Φ2 are near

the identity.
(3) Let R be any real algebraic surface that is obtained from S2 by repeatedly

blowing up m real (possibly infinitely near) points and let r1, . . . , rn be points
in R. Then there are (nonunique) distinct points p1, . . . , pm and q1, . . . , qn
and an isomorphism φ : R→ Bp1,...,pm

S2 such that φ(ri) = qi.

By adding more points in (17.3) and compactness, we obtain the following
stronger version:

Corollary 18. Let R be any real algebraic surface that is obtained from S2 by
repeatedly blowing up m real (possibly infinitely near) points and let r1, . . . , rn be
points in R. There is a finite open cover R = ∪jWj such that for every j there
are distinct points p1j , . . . , pmj, q1j , . . . , qnj ∈ S2 and an isomorphism φj : R →
Bp1j ,...,pmj

S2 such that φj(ri) = qij and φj(Wj) ⊂ S
2 \ {p1j, . . . , pmj}. �

19 (Proof of (2)). Let p1, . . . , pn, q ∈ S
2 be any finite set of distinct points, and let

φ ∈ Diff(S2, p1, . . . , pn). By (15) there are automorphisms ψs ∈ Aut(S2) such that
ψs converges to φ.

For any s and i, set qs
i := ψs(pi). As ψs converges to φ, the qs

i converge to pi

for every i. By (17.2.b) there are automorphisms Φs such that Φs(q
s
i ) = pi and Φs

converges to the identity. Thus the composites Φs ◦ ψs are in Aut(S2, p1, . . . , pn)
and they converge to φ.

Proposition 20. Let R be any real algebraic surface that is obtained from S2

by repeatedly blowing up g real (possibly infinitely near) points and let r1, . . . , rn
be points in R. Then the group Aut0(R, r1, . . . , rn) of algebraic automorphisms
homotopic to identity is dense in Diff0(R, r1, . . . , rn).

Proof. Let φ : R → R be a diffeomorphism fixing r1, . . . , rn, and homotopic to the
identity. Choose R = ∪jWj as in (18). By a partition of unity argument, φ can be
written as the composite of diffeomorphisms φℓ : R→ R fixing r1, . . . , rn such that
each φℓ is the identity outside some Wj ⊂ R.

In particular, each φℓ descends to a diffeomorphism φ′ℓ of S2 which fixes the
points p1j , . . . , pgj and q1j , . . . , qnj . By (2), we can approximate φ′ℓ by algebraic
automorphisms Φ′

ℓ,s fixing all the points p1j , . . . , pgj and q1j , . . . , qnj . Since the

Φ′

ℓ,s fix p1j , . . . , pgj , they lift to algebraic automorphisms Φℓ,s of R ∼= Bp1j ,...,pgj
S2

fixing the points r1, . . . , rn. The composite of the Φℓ,s then converges to φ. �
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3. Generators of the mapping class group

Definition 21. Let R be a compact, closed surface and p1, . . . , pn distinct points
on R. The mapping class group is the group of connected components of those
diffeomorphisms φ : R→ R such that φ(pi) = pi for i = 1, . . . , n.

M(R, p1, . . . , pn) := π0

(

Diff(R, p1, . . . , pn)
)

.

Up to isomorphism, this group depends only on the orientability and the genus of
R. The orientable case has been intensely studied. Recent important results about
the non-orientable case are in [Korkmaz02, Wahl08].

(In the literature, Mg,n is used to denote both the mapping class group of an
orientable genus g (hence with Euler characteristic 2− 2g) surface with n marked
points and the mapping class group of a non-orientable genus g (hence with Euler
characteristic 2− g) surface with n marked points.)

In preparation for the next section, we establish a somewhat new explicit set of
generators in the non-orientable case.

Write R as Bp1,...,pg
S2, the blow up of S2 at g points. We start by describ-

ing some elements of the mapping class group. For more details see [Lickorish65,
Chillingworth69, Korkmaz02].

Definition 22 (Dehn twist). Let R be any surface and C ⊂ R a simple closed
smooth curve such that R is orientable along C. Cut R along C, rotate one side
around once completely and glue the pieces back together. This defines a diffeo-
morphism tC of R, see Figure 2.

Ct

C

Figure 2. The effect of the Dehn twist around C on a curve.

The inverse t−1
C corresponds to rotating one side the other way. Up to isotopy,

the pair {tC , t
−1
C } does not depend on the choice of C or the rotation. Either of tC

and t−1
C is called a Dehn twist using C. On an oriented surface, with C oriented,

one can make a sensible distinction between tC and t−1
C . This is less useful in the

non-orientable case.

Definition 23 (Crosscap slide). Let D be a closed disc and p, q ∈ D two points.
Take a simple closed curve C in D passing through p, q and let C′ denote the
corresponding curve in BqD. Let Mp be a small disc around p. Let {φt : t ∈ [0, 1]}
be a continuous family of diffeomorphisms of BqD such that φ0 is the identity, each
φt is the identity near the boundary and as t increases, the φt slide Mp once around
C. At t = 1, Mp returns to itself with its orientation reversed, as in Figure 3. In



CREMONA TRANSFORMATIONS AND DIFFEOMORPHISMS OF SURFACES 11

p

φ1

−→

p

Figure 3. Cross-cap slide.

particular, φ1(p) = p. Thus φ1 can be lifted to a diffeomorphism of Bp,qD which is
not isotopic to the identity but is the identity near the boundary.

Let R be any surface, U ⊂ R a closed subset with C∞ boundary and τ : U →
Bp,qD a diffeomorphism. Then τ−1φ1τ : U → U is the identity near the boundary
of U , hence it can be extended by the identity on R \ U to a diffeomorphism of
R. Up to isotopy, this diffeomorphism does not depend on the choice of C, φt and
τ . It is called a cross-cap slide or a Y -homeomorphism using U . Note that for a
cross-cap slide to exist, R must be non-orientable and of genus at least 2.

24 (Generators of the mapping class group). Let Rg be a non-orientable surface of
genus g ≥ 1. We write Rg := Bp1,...,pg

S2 with exceptional curves Ei ⊂ Rg and let

π : Rg → S2 be the blow down map.
The map π gives a one-to-one correspondence between

• simple closed smooth curves CR ⊂ Rg whose intersection with any excep-
tional curve Ei is transversal, and
• immersed curves C = π(CR) ⊂ S2 whose only self-intersections are at the
pi and no two branches are tangent.

Generators of the mapping class group were first established by [Lickorish65]
and simplified by [Chillingworth69]. The case with marked points was settled by
[Korkmaz02].

The generators are the following

(1) Dehn twists along CR for certain smooth curves C ⊂ S2 that pass through
an even number of the p1, . . . , pg. (No self-intersections at the pi.)

(2) Cross-cap slides using a discD ⊂ S2 that contains exactly 2 of the p1, . . . , pg.

The results of [Chillingworth69] and of [Korkmaz02] are more precise in that only
very few of these generators are used. In the unmarked case, the above formulation
is established in the course of the proof and stated on [Chillingworth69, p.427].

We will need somewhat different generators. We thank M. Korkmaz for answer-
ing many questions and especially for pointing out that one should use the lantern
relation (26) to establish the following.

Proposition 25. The following elements generate the mapping class group of the
marked surface

(

Bp1,...,pg
S2, q1, . . . , qn).

(1) Dehn twists along CR for certain smooth curves C ⊂ S2 that pass through
0, 2 or 4 of the points p1, . . . , pg. (No self-intersections at the pi.)

(2) Cross-cap slides using a disc D ⊂ S2 that contains exactly 2 of the points
p1, . . . , pg.
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Proof. We have included all the cross-cap slides from (24). Thus we need to deal
with Dehn twists along CR where C ⊂ S2 is a simple closed curve passing through
m of the points p1, . . . , pg with m > 4.

Using induction, it is enough to show that the Dehn twist along CR can be
written as the product of Dehn twists along curves C′

R where each C′ ⊂ S2 is a
simple closed curve passing through fewer than m of the points p1, . . . , pg.

Assume for simplicity that C passes through p1, . . . , pm with m > 4 (and even).
For I ⊂ {1, . . . ,m} let tI be a Dehn twist using a simple closed curve CI passing
through the {pi : i ∈ I} but none of the others. The precise choice of the curve will
be made later. We show that, with a suitable choice of the curves, t12345...m is a
product of the Dehn twists t125...m, t345...m, t1234, t5...m, t12, t34.

This is best shown by a picture for m = 8. In Figure 4, t12345678 is a product of
the Dehn twists t125678, t345678, t1234, t5678, t12, t34. The shaded region is a sphere
with four holes, and corresponds to a neighborhood of the lift to R8 of C12345678.
On each side of the picture are drawn the curves corresponding to the Dehn twists
of the same side in (26.1):

a) C12, C34, C5678, C12345678, b) C1234, C125678, C345678. �

Figure 4. Lantern relation for m = 8.

26 (Lantern relation of Dehn). [Dehn38, Johnson79] Fix 4 points q0, . . . , q3 ∈ S
2.

Let ti be the Dehn twist using a small circle around qi and for i, j ∈ {1, 2, 3}, let tij
be the Dehn twist using a simple closed curve that separates qi, qj from the other
2 points. Then, with suitable orientations,

t0t1t2t3 = t12t13t23 , (26.1)

where the equality is understood to hold inM(S2, q0, . . . , q3).

4. Automorphisms and the mapping class group

The main result of this section is the following.

Theorem 27. Let R be a real algebraic surface that is obtained from S2 by blowing
up points and p1, . . . , pn ∈ R distinct marked points. Then the natural map

Aut(R, p1, . . . , pn) ։M(R, p1, . . . , pn) is surjective.

Proof. We prove that all the generators of the mapping class group listed in (25)
can be realized algebraically. There are 4 cases to consider:
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(1) Dehn twists along CR ⊂ R for smooth curves C ⊂ S2 that pass through
either
(a) none of the points pi,
(b) exactly 2 of the points pi, or
(c) exactly 4 of the points pi.

(2) Cross-cap slides using a disc D ⊂ S2 that contains exactly 2 of the points
pi.

We start with the easiest case (27.1.a).

28 (Algebraic realization of Dehn twists). Let C ⊂ S2 be a smooth curve passing
through none of the points pi. After applying a suitable automorphism of S2, we
may assume that C is the big circle (x = 0).

Consider the map g : [−1, 1] → O(2) where g(t) = 1 for t ∈ [−1,−ǫ] ∪ [ǫ, 1] and
g(t) is the rotation by angle π(1 + t/ǫ) for t ∈ [−ǫ, ǫ]. Let M : [−1, 1]→ O(2) be an
algebraic approximation of g such that the corresponding twisting (16) ΦM is the
identity at the points pi. Then ΦM is an algebraic realization of the Dehn twist
around C.

On the torus, the same argument works for either of the S1-factors. Up to
isotopy and the natural GL(2,Z)-action, this takes care of all simple closed curves.

Next we deal with the hardest case (27.1.c).

29 (4 pt case). After applying a suitable automorphism of S2, we may assume that
C is close to a circle in S2 but the 4 points do not lie on a circle.

Let us take an annular neighborhood of C and blow up the 4 points p1, . . . , p4.
The resulting open surface is denoted by W ⊂ Bp1,...,p4

S2. It contains the curve
CR and the 4 exceptional curves E1, . . . , E4.

If we cut the blown-up annulus W along the 5 curves A1, . . . , A4, D as indicated
of the left hand side of Figure 5, we get the contractible surface U indicated on
the right hand side of Figure 5. The left and right hand sides of U are identified
to form a cylinder, giving a neighborhood of the curve CR ⊂ Bp1,...,p4

S2. The big
rectangle with lighter shading in U on the right corresponds to the lighter shaded
are in W on the left. The 4 top and 4 bottom line segments of U are identified to
form 4 Möbius bands.

Figure 5. Two models of the annulus blown up in 4 points.

Next, in Figure 6 we show the 4 exceptional curves.
Figure 7 shows the images of the curves Ei after the Dehn twist around CR.
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Figure 6. The 4 exceptional curves.

Figure 7. Effect of the Dehn twist around CR.

These images can be deformed to obtain a configuration as in Figure 8. Note
that now Ei intersects E′

j iff i 6= j.

Figure 8. Deformation of Figure 7.

Next we convert this back to the annulus model W on the left hand side of
Figure 5.

We obtain Figure 9.
The images of the exceptional curves E1, . . . , E4 under the standard Cremona

transformation with base points p1, . . . , p4 are shown in Figure 1.
We see by direct inspection that the two quartets of curves in Figures 1 and 9

are isotopic. Thus, if we first apply the Dehn twist and then the (inverse) Cremona
transformation and a suitable isotopy, we get a diffeomorphism φ : Rn → Rn such
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Figure 9. Images of the four exceptional curves.

that φ(Ei) = Ei. That is, φ is lifted from a diffeomorphism of the g-pointed
sphere (S2, p1, . . . , pn). By (2), any such diffeomorphism is isotopic to an algebraic
automorphism. Hence the Dehn twist along CR is also algebraic.

30 (2 pt case). The proof is the same as in the 4 point case but the description is
easier.

A neighborhood of C gives an annulus with 2 blown-up points. After the Dehn
twist we get two curves E′

1, E
′

2 as in Figure 10.

Figure 10. Cremona transformation with 2 real base points.

We can assume that the two curves E′

1, E
′

2 are close to being circles, that is,
close to the intersections S2 ∩ Hi for some planes for i = 1, 2. Let q, q̄ be the
2 (complex conjugate) points where these 2 planes Hi intersect the complexified
sphere Q. Then the Cremona transformation with base points p1, p2, q, q̄ is the
inverse of the Dehn twist, again up to a diffeomorphism of S2.

31 (Crosscap slides). Here the topological picture is given by Figure 11. Note that
E1 is mapped to itself and E2 is mapped to the (almost) circle E′

2. Up to isotopy,
we can replace E1 with a small circle E′

1 passing through p1.
As in (30), we obtain q, q̄ such that the Cremona transformation with base points

p1, p2, q, q̄ is the inverse of the Dehn twist, up to a diffeomorphism of S2.
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Figure 11. Cross-cap slides.

32 (Proof of (4)). Let φ : (R, q1, . . . , qn)→ (R, q1, . . . , qn) be any diffeomorphism.
By (20), there is an automorphism Φ1 ∈ Aut(R, q1, . . . , qn) such that Φ−1

1 ◦ φ is
homotopic to the identity.

By (27), we can approximate Φ−1
1 ◦ φ by a sequence of automorphisms Ψs ∈

Aut(R, q1, . . . , qn). Thus Φ1 ◦Ψs ∈ Aut(R, q1, . . . , qn) converges to φ. �
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