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ABSTRACT
In this paper, we introduce a bottom-up approach to dis-
cover clusters of outliers in any m-dimensional subspace from
an n-dimensional space. First, we propose a method to com-
pute the outlier score for all points in each dimension. We
show that if a point is an outlier in a subspace, the score
must be high for that point in each dimension of the sub-
space. We then aggregate the scores to compute the final
outlier score for the points in the dataset. We introduce a fil-
ter threshold to eliminate the high dimensional noise during
the aggregation. The concept of outlier is extended to allow
the discovery of clusters of outliers. An oscore(C/S) func-
tion is introduced to rank the clusters accordingly. In addi-
tion, the outliers can be easily visualized in our approach.

1. INTRODUCTION
Outlier detection is an interesting problem in data mining
since outliers can be used to discover anomalous activities.
Historically, the problem of outlier detection or anomaly de-
tection has been studied extensively in statistics by com-
paring the probability of data points against the underlying
distribution of the data set. The data points with low prob-
ability are outliers. However, this approach requires a prior
underlying distribution of the dataset to compute the outlier
scores, which is usually unknown. In order to overcome the
limitations of the statistical-based approaches, the distance-
based [7] and density-based [3] approaches were introduced
to detect outliers , which use k-nearest neighbors (KNN)
to compute the similarity between data points. The points
that are most dissimilar from the others are considered to
be the outliers [7, 3]. The main advantage of this approach
over the statistical-based ones is that no prior knowledge of
the model nor the distribution of data set is required in or-
der to compute the outliers. In this paper, we will discuss
the situations when outliers can not be detected by using
these traditional outlier detection methods. From those ob-
servations, we introduce an outlier score function based on
Chebyshev (L∞ norm) distance in order to properly rank

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.5  0  0.5  1  1.5  2  2.5  3

y

x

p

(a) 2D.

-0.5 0 0.5 1 1.5 2 2.5 3

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 0
 2
 4
 6
 8

 10

z

p

x
y

z

(b) 3D.

Figure 1: The 2D outlier is suppressed in 3D space.

the outliers. The method can be used to discover and rank
clusters of outliers. In addition, it also allows us to visualize
the outliers to support the study of the outliers.

2. PROBLEMS
The purpose of outlier detection is to discover anomalous
activities among the set of normal activities. Each activ-
ity consists of a set of features representing the information
about the activity. We are interested in the unsupervised
learning problem where we do not know which features will
be useful in determining the anomalous activities. By dis-
missing any feature, we may not be able to discover the
anomalous activities [3]. Unfortunately, the problem of fea-
ture selection, i.e. finding the appropriate sets of features
for computation, is NP-hard. Thus, it is essential to run
the algorithm on the entire feature space to detect outliers.
However, this approach may affect the quality of outlier de-
tection because of the problems which we call a mixture of
variances and accumulated subdimensional variations.

2.1 Mixture of Variances in Multiple Features
We use a dataset with seven data points to illustrate the first
problem of using k-nearest neighbors (L2) to detect outliers.
The data has three features x, y and z in which the domain
of x and y is the interval [0, 2] and that of z is the interval
[0, 8].

Figure 1a shows a 2D plot for the data points for features x
and y. According to the figure, the nearest neighbor distance
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of any points excluding p is less than 0.64. The nearest
neighbor distance of p is 1.39. From those two values, we
see that p has an unusually high nearest neighbor distance
compared with the other points. Point p is an outlier in
this figure. Figure 1b shows the complete plot for the data
points for all of three features x, y and z. The range of z is
four times that of x and y, which makes the difference in the
distance between p and the other points in features x and
y insignificant compared with that in feature z. As we can
see, the nearest neighbor distance of p is very similar to or
less than the average nearest neighbor distance of six other
points in the data. According to this figure, p is a normal
point.

Those two figures illustrate the problem of using pairwise
distance to detect outliers. One may ask if we can nor-
malize the dataset to solve the problem. However, if those
points are taken from a larger dataset and they are nearest
neighbors of each other, the problem still remains. We can
generalize the problem into any arbitrary number of features
as follows. Let say {σi} the variances of the features in a
subspace that point q is an outlier. If there is a feature j
with the variance of σj , where σj = ki×σi and ki is large, q
becomes normal in the new subspace that contains feature
j. The variances can be computed from the local area of
point q or from the entire dataset, which corresponds to the
problem of local outlier and global outlier detection respec-
tively.

An approach to solve the problem is to compute the outlier
score for the data points for all possible combinations of
features separately. If a point is an outlier in a subspace
of the entire feature space, the outlier score of the point is
high. However, the problem of feature selection is NP-hard.

2.2 Accumulated subdimensional variations
Let consider three points p, q and r in an n-dimensional
space. In this example, p and q are normal points; whereas
r is an outlier in an m-dimensional subspace. We denote the
ith feature of a point by subscript i. We assume that the
difference between pi and qi is δn for all i ∈ [1, n]. Thus, we
have

d(p, q) =

v

u

u
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i
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n = δn

√
n (1)

We further assume that |pi − ri| = δm for i ∈ [1, m] and
|pi − ri| = 0 for i ∈ [m + 1, n]. We have
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If d(p, r) = d(p, q), we have
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m
, where δm, δn 6= 0 (3)

Let define r = δm

δn
. We obtain the following expression:

r =

r

n

m
(4)

Expression 4 implies that the ratio of the nearest neighbor
distance between an outlier and normal points can be as

Table 1: Notations and Basic Definitions

KNN(p) {qj |qj ≡ jthnn(p)}
pi feature ith of a given point p

di(p, q) |pi − qi|
Li(p) ordered set of point q ∈ KNN(p)

ordered by di(p, q)

ξj
i

d
j+1

i
(p,qj+1)−d

j
i
(p,qj)

d
j

i
(p,qj)

large as
p

n
m

so that the outlier in an m-dimensional space
will look normal in n-dimensional space. With n = 100

and m = 4, we will have r =
q

100
4

=
√

25 = 5. Hence,

outliers which have a ratio of 5 : 1 or less of the distance of
their nearest normal group of points to the density of the
group may not be detected. The number of 5d-subspaces is
approximately 4×106. We call the problem that we can not
distinguish if an outlier is a true outlier or a normal point in
this example is the problem of accumulated subdimensional
variations.

3. OUR APPROACH
3.1 Outlier criteria in high dimensions
In this section, we will provide concrete intuitive criteria for
what it means to be an outlier in high dimensions. The
next sections will give precise definitions of our outlier score
function based on those criteria. In previous works, the
distance between a point and its neighbors is used to de-
fine the degree of being an outlier for a point. The results
are based on the Euclidean distance. This approach is self-
explanatory and intuitive in low dimensions. However, it is
a problem in high dimensions as shown in section 2.2. Thus,
we choose the Chebyshev distance to measure the distance
in our method because the variances are not cumulative in
high dimensions in L∞ (by definition, the Chebyshev dis-
tance between any two points p and q is the maximum of
|pi − qi|,∀i = 1 . . . n). Let say we have a sample S such
that each feature of the points in S follows the distribution
N(µi, σ),∀i = 1 . . . n. With the L2 norm, the distance be-
tween two points can vary from 0 to σ

√
2n. However, the

range of difference will be limited to the interval [0, 2σ] in
L∞.

We use an axis-parallel hyper squared rectangle R (or hy-
percube) to represent the local region of a point p where p
is its center in Chebyshev space. The rectangle defines the
bounds on how much a point can deviate from the center
on the axes such that it is still considered a near neighbor
of p. A point q is an outlier with respect to p in region R
with length 2d (the distance between any two parallel sides)
if its distance to R is significantly larger than the bounds,
denoted by ||p−R|| >> d. To be more precise, we have the
following postulate:

Postulate 1. Given a boundary hyper squared rectangle

R with length 2d of a point p, A point q is an outlier with

respect to point p if distance(p,R) > κd for some large κ.

Theorem 1. A point q is an outlier with respect to p in

region R with length 2d in n-dimensional space iff q is an

outlier w.r.t p in at least one dimension i, where i ∈ [1, n].



Proof. The projected rectangle into a dimension i is a
line segment Di where p is its center. Since the length of the
rectangle is 2d, the length of the line segment is 2d. Since
q is an outlier w.r.t. p, we have distance(p,R) > κd. As
defined, the distance from a point to a rectangle is the maxi-
mum distance from the point to the surfaces of the rectangle
in the Chebyshev space. Since the surfaces are orthogonal
or parallel to the line segment, ∃i: distance(pi, Di) > κd.
Thus, p is an outlier in at least one dimension i. Conversely,
if q is an outlier w.r.t p in at least one dimension i, we
have distance(p,R) > κd by the Chebyshev distance defini-
tion. Therefore, q is the outlier w.r.t p in the n-dimensional
space.

The discussion above gives us a basis to talk about the out-
lier relative to a point. We can extend the concept to a set
of points S.

Postulate 2. Given a set of points S, if a point q is an

outlier with respect to all points p in S for some rectangle R

of p, then q is an outlier in S.

It is straightforward to see that if p is an outlier to all points,
then p is an outlier of S. However, if p is outlier only to a
few points in S, p is not an outlier. The criteria is self-
explanatory which allows us to capture the concept of an
outlier in high dimensions. The next section will provide
the intuition on how the subspace outliers can be detected
according to this criteria.

3.2 Intuition
In figure 1a, if we project point p into any dimension x or
y, the outlier information about point p will be lost, which
means that we could not discover it as an outlier. In [3],
Breung et al proposes the use of KNN to detect outlier p in
such cases. However, KNN performs poorly in high dimen-
sional data. One of the reasons is that the Euclidean dis-
tance accumulates all the variances in each dimension into
the entire space (section 2.2). From theorem 1 in section 3.1,
we observe that we can compute the outlier score in each di-
mension instead of computing the outlier in all dimensions
so that the dimensions where the points do not show up as
outliers are not included in the outlier score. Then, we can
aggregate all the scores into a final score. This approach can
prevent noise from being accumulated. In order to compute
the outlier score in each dimension without the loss of in-
formation, we compute the deviation of the points in each
dimension with respect to its neighbors in the entire space,
which corresponds to the boundary rectangle of the points.

From the problem of mixtures of variances in figure 1b, we
observe that the differences in the variances suppress the
subspace outliers. The dimension with high variance will
dominate those with low variance. Since the outlier detec-
tion is unsupervised learning, we treat all dimensions equal.
In other words, the rate of deviation is more important than
the module of variances. This suggests that we compute
the dissimilarity of the points with respect to the average
variance of the points in each dimension in the local region
where the points belong. Thus, the hyper squared rectangle

in section 3.1 given above can be generalized to hyper rect-
angle and the outlier criteria can be expressed in terms of
the ratios of the distances.

3.3 Definitions
We use kthnn(p) to denote the kth nearest neighbor of p
in L∞ and kdist(p) (k-distance) is the distance from p to
its k-nearest neighbor. The k-distance defines the relative
density of the points in a dataset. Next, we want to com-
pute the projected density of a point p into each dimension
which we call dimensional density. The densities form the
boundary hyperrectangle for the point. A simple approach
to compute the dimensional densities is to average the local
distances from a point p to its neighbors for the dimension
under consideration. However, the result depends on pa-
rameter k. The key question is how many neighbors should
we consider in computing the dimensional densities. With
small k, the dimensional density is less biased but the vari-
ance is high. In contrast, the dimensional density will be
more biased with large k. In [13], the authors introduce a
definition of adaptive nearest neighbors which allows us to
determine the natural dimensional density in terms of the
level of granularity at each point. According to Nguyen et al
[13], if a point is in a uniformly distributed region, k should
be small since the distance between the point and its few
nearest neighbor is approximately the local density of the
point. Otherwise, the decision boundary [13] and the level
of granularity are used to select k. We adapt these concepts
to define local dimensional density.

We create an ordered list Li of the nearest neighbors of p
ordered by di for each dimension. All q ∈ KNN(p), where
KNN is the list of nearest neighbors, whose di(p, q) = 0
should be eliminated from the list. To simplify the prob-
lem, we assume that there is no q such that di(p, q) = 0.
Let say we have Li ≡ {q1, . . . , qk} where qj ∈ KNN(p).
For each j ∈ [2, . . . , k], we compute the ratio ξj

i which is
d

j
i
(p,qj)−d

j
i
(p,qj−1)

d
j

i
(p,qj−1)

. If p is in a uniformly distributed region,

ξj
i will uniformly increase with j in such cases we can use

di(p, q1) to represent the local dimensional density of p in
dimension i regardless of the level of granularity. A point
where there is a sharp increase in ξj

i is called the decision
boundary of the local distance of point p. We can measure
the sharpness by a parameter λ, i.e. ξj

i ≥ λ. The decision
boundaries are used to adjust the level of granularity.

We use a parameter z to determine the level of granularity in
detecting the outliers. We then define the local dimensional
density of a point p with a granularity of level z as follows:

Definition 1. Given qjz is the zth decision boundary

point of a point p, the local dimensional density of p with

the granularity level z in dimension i is

γi(p) =

(

di(p, q1) , ξj
i < λ ∨ z = 1, ∀j ∈ [1, . . . , k]

di(p, qjz ) , otherwise
(5)

Next, we compute the average local distance in each dimen-
sion for a local region S. Region S is a set of points in a
local region of the dataset. With |S| large enough, formula
6 is the estimate of the expected mean of local dimensional



densities of the points in the region. In the formula, the
local distances whose value is zero are removed from the
computation.

Definition 2. Dimensional average local distance

δ̄i =

P

γi(q)

m
, m = |{γi(q)/q ∈ S ∧ γi(q) 6= 0}| (6)

Definition 3. Dimensional variance ratio

ri(p, q) =
|pi − qi|

δ̄i

(7)

Formula 7 measures the deviation of point p from point q
with respect to the average variance of the points in the
ith-dimension. It follows the outlier criteria where {2̄δi} is
the length of the rectangle of q. On the average, the ratio
is close to 1 if p is within the proximity of q. In contrast,
those with ri >> 1 imply that they deviate greatly from
the normal local distance in terms of dimension i. They are
outliers with respect to q in dimension i. Since it has been
proven in theorem 1 that an outlier in an m-dimensional
space will be an outlier in at least one dimension. Formula
7 is sufficient to detect outliers w.r.t. q in any subspace
which can be shown in the following theorem.

Theorem 2. Let denote τ (p, q) = max{ri(p, q)}, ∀i. If

τ (p, q) > κ, for some large κ, then p is an outlier to q.

Proof. We can consider that {δ̄i} as the normalizing
constants for all points in region S. Since S is small, we can
approximately consider that the points within a rectangle R
with unit length of 2 where q is its center are normal neigh-
bors of q. Then, τ (p, q) is the distance from p to rectangle
R. Since τ (p, q) > κ, for some large κ, then p is an outlier
to q according to postulate 1.

Theorem 3. Given a set S, a point q is an outlier in S

if τ (p, q) > κ, ∀p ∈ S.

Proof. The result follows directly from postulate 2 and
theorem 2.

Since a point can be an outlier in some subspaces, it is nat-
ural to aggregate the dimensional variance ratios into one
unified metric to represent the total deviation of point p.
However, a naive aggregation of the ratios in all dimensions
can lead to the problem of overlooking the outliers as dis-
cussed in subsection 2.2. If the dimensional variance ratios
in the sample follow the distribution N(1, ε), the total ratio
can be as large as (1 + ε)

√
n for normal points according to

formula 8, which is quite significant when n is large. The
ratio is large not because the point deviates from others but
because the small dimensional variations are accumulated
during the aggregation, which makes the total ratio large.
Therefore, we introduce a cutoff threshold ρ0. Only ratios
that are greater than ρ0 are aggregated in order to compute
the total value.

Definition 4. Aggregated variance ratio

r(p, q) =

s

X

i

r2
i (p, q) ,∀ri(p, q) > ρ0 (8)

Property 1. If p is an outlier with respect to q, r(p, q) >
ρ0.

Proof. If p is an outlier with respect to q, there is at
least one dimension i such that ri(p, q) > κ. If we set ρ0 = κ,
ri(p, q) > ρ0. Thus, r(p, q) > ri(p, q). Since ri(p, q) > ρ0,
we have r(p, q) > ρ0.

Property 2. If p is not an outlier with respect to q,

r(p, q) = 0.

Proof. If p is not an outlier with respect to q, then
ri(p, q) ≤ κ, ∀i. If we set ρ0 = κ, ri(p, q) ≤ ρ0, ∀i. Thus,
from definition 8, we have r(p, q) = 0.

According to property 1, if a point is an outlier in some
subspace, its aggregated ratio should be greater than ρ0 with
respect to all points within its proximity. Therefore, we can
define a score function to measure the outlierness of point p
as follows:

Definition 5. Outlier score

oscore(p/S) = min
q∈S

r(p, q) (9)

Formula 9 aggregates the outlier information for a point from
all dimensions. Since the dimensions where p is not an out-
lier are excluded, we can guarantee that p is an outlier in
S if its oscore is high. In addition, if p is an outlier in any
subspace, the value of oscore for p must be high (theorem
3). Thus, oscore is sufficient to measure the outlierness of a
point in any subspace.

Formula 9 defines the local degree to which a single point in
the data set is considered an outlier. However, it is possible
for points to appear as a group of outliers. In such cases,
the value of oscore will be zero. We observe that a point
in a small group C of outliers should have a large value for
oscore large if we compute the value of oscore for that point
without considering the points in its cluster. This fact must
be true for all points in that cluster. If there exists a point
q in the cluster whose oscore value with respect to S − C
is zero, the group is actually a set of normal points. The
reason is that q is normal and all points that are close to
q in terms of the aggregated variance ratio are also normal.
Therefore, we can define a cluster of outliers as follows:

Definition 6. Outlier cluster in a set S is a set of points

C such that oscore(p/S − C) > ρ0, ∀p ∈ C and r(p, q) =
0, ∀p, q ∈ C.

When the pairwise deviation between the outliers is small
with respect to the average local distance in all dimensions,



the outliers naturally appear as a cluster. This fact is cap-
tured by the second condition in the formula. The ”outlier-
ness” of an outlier cluster is defined in the following defini-
tion.

Definition 7. Outlier cluster score

oscore(C/S) = min
p∈C

oscore(p/S − C) (10)

Thus far, we have introduced the definitions to detect out-
liers which conform to the intuitive outlier criteria in section
3.1. The rectangles for points in a sample are bounded by
{δ̄i}. Definition 3 defines the ratio of deviation between any
two points with respect to the average local variance in a
dimension. We can interpret this as a similarity function
between two points relative to the average variance in one
dimension. As given in section 3.1. If a point is dissimi-
lar to all points in at least one dimension, it is an outlier.
Definitions 6 and 7 extend the concept of outlier to an out-
lier cluster, which provides complete information about the
clusters of outliers in a data set. With definition 6, we can
discover the clusters of outliers where their ”outlierness” can
be computed by oscore(C/S). A nice feature of this ap-
proach is that we can identify which dimensions that a point
is an outlier by using the dimensional ratio. This can then
be used to visualize the outliers.

3.4 Clustering
As discussed above, the clusters of outliers can be detected
by using the outlier score function. We can use an edge to
represent the link between two points. If the aggregated
variance ratio between two points is zero, there will be an
edge connecting two points. A cluster is a set of connected
points. When the size of a cluster grows large, we are certain
that the points in the cluster are normal since a point can
always find at least one point close to it in the graph. How-
ever, if the points are outliers, there will be no edge that
connects the outliers with other points. Thus, the cluster
will be small. We apply the clustering algorithm in [13] to

Algorithm 1 Clustering Pseudocode

1: procedure Cluster(HashSet D)
2: Stack S
3: V ector clsSet
4: HashSet C
5: while D 6= ∅ do

6: p← remove D
7: push p→ S
8: C ← new HashSet
9: add C → clsSet

10: while S 6= ∅ do

11: q ← pop S
12: add q → C
13: for r ∈ neighbors(q) ∧ r(q, r) ≡ 0 do

14: push r → S
15: remove r from D
16: end for

17: end while

18: end while

19: end procedure

cluster the dataset by using the computed aggregated vari-
ance ratio values in linear time. First, we put a point p into
a stack S and create a new cluster C. Then, we take point
p and put it in C. In addition, all of its neighbors which are
connected to p are put into S. For each q in S, we expand
C by removing q from S and adding q to C. The neighbors
of q which are connected to q are then put into S. These
steps are repeated until no point can be added to C. We
then create a new cluster C’. These steps are repeated until
S is empty. The pseudocode of the algorithm is shown in
algorithm 1.

Theorem 4. Let say {Ci} is the set of clusters produced

by the algorithm, Ci contains no outlier with respect to Ci,

∀i.

Proof. Assuming that a point r ∈ Ci is an outlier in Ci

, we have r(q, r) > ρ0, ∀q ∈ Ci (property 1 and postulate
2). According to clustering algorithm 1 from lines 10 to 17,
a neighbor r of a point q is put into Ci iff r(q, r) = 0, which
contradicts the condition above. Therefore, Ci contains no
outlier with respect to Ci.

Theorem 4 shows that the clusters produced by algorithm
1 do not contain outliers. If a cluster C is large enough, we
consider it as the set of normal points. Otherwise, we will
compute the outlier cluster score for C. If the score is large,
C is a cluster of outliers. Therefore, it is guaranteed that
algorithm 1 returns the set of outlier clusters.

4. EXPERIMENTS
4.1 Synthetic Dataset
We create a small synthetic data set D to illustrate our out-
lier score function. We use a two dimensional data set so
that we can validate the result of our algorithm by showing
that the outliers and groups of outliers can be detected. The
data consists of 3000 data points following a normal distri-
bution N(0, 1). Three individual outliers {p1, p2, p3} and a
group C1 of 10 outliers {q1, . . . , q10} are generated for the
data set. The data set is illustrated in figure 2. First, we
compute the oscore for all the points in D with ρ = 2 and
α = 0.4. The algorithm detected 5 outliers. Our manu-
ally generated outliers appear in the top three outliers. The
next two outliers are generated from the distribution. How-
ever, their score is low, which is approximately half of the
scores of the manually generated outliers as shown in table
2. Next, we run the clustering algorithm based on the com-
puted oscore as described in the clustering section. The al-
gorithm detected 9 clusters. Among them, two clusters have
the score of zero. Thus, seven outlier clusters are detected.
Table 3 shows the score of the outliers. As we can see, ten
points in the manually generated cluster are detected and
correctly grouped into a cluster. In addition, it appears to
be the highest ranked outliers. A micro cluster C2 of five
outliers is also detected. Its low score is due to the fact that
it is randomly generated from a normal distribution. In this
example, we have shown that our algorithm can discover mi-
cro clusters. However, it should be noted our algorithm can
detect clusters of any size, which makes it also suitable to
detect outlier clusters for any application for which the size
of the outlier clusters is large but still small relative to the
size of the entire dataset.



Figure 2: Points p1, p2, p3 and cluster C1 are generated
outliers.

Table 2: Seven outliers are detected.

Point Score
p1 7.24
p2 6.68
p3 5.98
r1 2.97
r2 2.92

others 0

Table 3: Nine outlier clusters are detected in 2D dataset.

Cluster Size Score Items
1 10 7.7 q1, q2,q3,q4,q5,q6,

q7,q8,q9,q10 (C1)
2 1 7.24 p1

3 1 6.68 p2

4 1 5.98 p3

5 1 2.98 r1

6 1 2.92 r2

7 5 2.43 r3, r4, r5,r6,r7 (C2)
8 2 0.0 r8, r10

9 1 0.0 r11
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Table 4: Detected Attack Connections in KDD Cup Dataset.

Rank Size Score Rank Size Score

7th 1 152.6 72nd 1 15.7

30th 1 38.7 79th 6 14.8

32nd 1 34.4 80th 1 14.7

36th 1 32.5 111st 1 11.9

37th 1 32.2 113rd 1 11.5

38th 9 32.1 158th 1 8.5

54th 1 22.3 159th 9 8.5

62th 1 19.4 163th 1 8.3

4.2 KDD Cup ’99 Dataset
In this experiment, we use the KDD CUP 99 Network Con-
nections Data Set from the UCI repository [14] to test the
ability of outlier detection in detecting the attack connec-
tions without any prior knowledge about the properties of
the network intrusion attacks. The detection will be simply
based on the hypothesis that the attack connections may
behave differently from the normal network activities which
makes them outliers. The KDD CUP 99 data was compiled
from a wide variety of intrusions simulated in a military net-
work environment prepared by MIT Lincoln Labs. We cre-
ate a test dataset from the KDD original dataset with 97,476
connections. Each record has 34 continuous attributes rep-
resenting the statistics of a connection and its associated
connection type, i.e. normal, buffer overflow attack. A very
small number of attack connections are randomly selected.
There are 22 types of attacks with the size varying from 2 to
16. Totally, there are 198 attack connections which account
for only 0.2% of the dataset.

In this experiment, we run the LOF algorithm as a baseline
to test our approach since it is the well-known outlier detec-
tion method that can detect density based outliers. First,
we run LOF on the dataset with different values of min pts
from 10 to 30. The experiment with min pts = 20 has the
best result. In this test, no attack is detected in the top
200 outliers. In the next set of outliers, 20 attacks are de-
tected. The ranking of those attacks are distributed from
200 to 1000. In the top 2000 outliers, only 41 attacks are
detected. We then ran our algorithm on the dataset with
the same value of ρ0 and α. Since the data set for KDD
is larger than the synthetic dataset, the sample size is 100.
The algorithm returns the list of outlier clusters ordered by
score. The size of those clusters are small and most of them
are single outlier clusters. According to the results, one at-
tack is found in the top 10 outlier clusters and 16 attacks
are found in the top 50 outlier clusters. Among them, 9
attacks are grouped into one cluster and its ranking is 38th.
We found that all outliers in this group are warezmaster

attacks. Since there are only 12 warezmaster connections
in the dataset, the clustering achieves high accuracy for this
tiny cluster. In addition, 42 attacks are found in the top 200

outliers and 94 attacks are detected in top 1000. Comparing

with the results from LOF where no outliers are detected in

top 200 outliers and only 20 outliers are detected in the top

1000 outliers, our algorithm yields a higher order of magni-

tude for accuracy. Figure 3 shows the detection curve with
respected to the number of the outliers. In this curve, we
show the detection rate for LOF with min pts = 20 and
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Figure 4: Detection Rate for the algorithm with and without
using the filter.

min pts = 30. In addition, we show the curves for our algo-
rithms with the ranking in terms of individual outliers and
in terms of outlier clusters where the individual outlier is
cluster whose size is 1. As we can see, the recall rate of
our algorithm is consistently higher than that of the LOF.
The recall rate of our algorithm is 60% when the size of out-
liers is 0.02% of the dataset, whereas that of LOF is 21%.
Given the context that outlier detection approach in general

has very high false alarm rate, our method can detect a very

small number of attack connections in a large dataset.

Table 4 shows the ranking and the cluster size for the top
200 outlier clusters. According to the table, three clusters
of attacks are found. The first cluster whose ranking is 38th

contains nine warezmaster attacks (recall rate = 75%). The
next cluster contains six satan attacks (recall rate = 75%).
The last cluster in the table contains 9 neptune attacks (re-
call rate = 100%). The misclassification rate for those clus-
ters is zero. The recall rate for those attacks is very high
given that each of them accounts for less than 1.2× 10−4%
of the dataset.

4.3 The Effect of the Filter Parameter
The experiment above shows the result of the algorithm
when the filter is applied with ρ0 = 2.2. In this experi-
ment, we want to study the effectiveness of the filter pa-
rameter on the quality of the detection rate of our method.
Therefore, we ran the algorithm without the filter by set-
ting ρ0 = 1, which means the ratios in all dimensions are
aggregated. Figure 4 shows the detection rate for our algo-
rithm when ρ0 = 2.2, ρ0 = 1 and the detection rate for LOF
with min pts = 20. According to the figure, our algorithm
without using the filter parameter still consistently performs
better than the LOF algorithm. The graph also shows that
the algorithm can discover 27 attacks in the top 200 outliers.
The better performance can be explained by the fact that
the variances for all dimensions are normalized by using the
dimensional ratios. However, the algorithm with the filter
parameter outperforms the algorithm without the filter. In
the top 200 outliers, the detection rate for the filter approach
is double that of the test without the filter. The experiment
shows that the filter has the effect of eliminating the noise
attributes in computing outlier scores. Thus, the quality of
detecting true outlier is significantly improved.

Table 5: Subspace outliers.

Point Rank Total score ri ri

p7 7 152.6 r2 = 152.57 r29 = 2.3
p36 36 32.5 r1 = 32.4 r26 = 2.3

4.4 Visualization
Theorem 3 shows that if a point is an outlier in an n-
dimensional space, it must be an outlier in at least one
dimension. This result implies that we can use lower di-
mensional spaces, i.e. 2D and 3D to visualize the outliers
in order to study the significance of the outliers. We take
the results of the KDD experiments to study the outliers.
In addition to the ranking of the outliers, our algorithm also
returns the dimensions in which a point p becomes an outlier
by checking for dimensions i in which ri(p) > ρ0. Table 5
shows the dimensional score for two points p7 and p36 which
are multihop and back attacks respectively. In the table, p7 is
an outlier in the 2nd and 29th dimensions which correspond
to the attribute dist bytes and dst host srv diff host rate,
whereas p36 is the outlier in the 1st (src bytes) and 26nd

(dst host same srv rate) dimensions. Figures 5, 6 and 7
show the 2D-subspace for point p36 and its nearest neighbors
(Chebyshev space). Figure 5 shows two dimensions in which
p36 is not an outlier. As we can see, we can not recognize
p36 from its neighbors. However, p36 appears as an outlier
in the 1st (src bytes) and 26nd (dst host same srv rate) di-
mensions as shown in figure 6. Point p36 is clearly distinct
from its surrounding points. Figure 7 shows the distribution
of p36’s neighbors in this 2D-space without point p36. Fig-
ures 5, 6 allow us to explain why p36 is not an outlier when
computed by LOF. According to LOF, its score is 2.1 and it
ranks 6793th in the list of outliers. The score implies that its
kdist (Euclidean space) is only twice the average of k− dist
of its neighbors. In Chebyshev space, k − dist(p36/k = 30)
is 0.066 and the average k − dist(qi/k = 30) is 0.04 for {qi}
are the 4-nearest neighbors of p. The k−dist of p38 approx-
imates that of its surrounding neighbors in both Euclidean
and Chebyshev space. As a result, p36 can not be detected
in the traditional approach. Whereas in our sub dimensional
score aggregation approach, p36 is a strong outlier in the 1st

dimension. Thus, p36 can be detected.
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Figure 5: Point p36 is not an outlier in this 2d-subspace.
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Figure 6: Point p36 is an outlier in this 2d-subspace.
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Figure 7: Point p36 is excluded in figure 6.

5. RELATED WORKS
Distance-based [7] and density-based [3] approaches are in-
troduced to detect outliers in datasets. In these approaches,
if the distances between a point and all its other points
(distance-based) or its neighbors (density-based) are large,
the point is considered an outlier. Since all dimensions are
considered, the outliers in subspaces can not be detected.
Recently, Papadimitriou et al [17] have introduced the use
of local correlation integral to detect outliers. The advantage
of the local correlation integral approach is that it can com-
pute outliers very fast. However, similar to the approaches
mentioned above, this method does not focus on subspace
outlier detection.

The problem of feature selection and dimensionality reduc-
tion, e.g. PCA, have been studied extensively in classifica-
tion and clustering in order to select a subset of features
of which the loss function for losing some features is mini-
mized. This approach is inappropriate for outlier detection
since the outliers are rare relative to the size of dataset. The
set of features that minimize the loss function may not be
the features for which the points become outliers. Thus, we
may not be able to detect those outliers. Another approach
is to randomly select a set of features to detect the outliers
[11]. Since the number of possible subspaces is large, the
points may not be the outliers in the chosen subspaces and
there is no guarantee that the points appearing to be outliers
in the remaining subspaces can be detected.

Another work similar to the problem of subspace outlier de-
tection is the problem of subspace clustering [15] [1] [4] which
focuses on detecting clusters in the subspaces by detecting
the dimensions that a set of points are dense. However, they
do not show the dimensions for which a point deviates from
others. In addition, their primary focus is to cluster the
dataset rather than detect outliers. Therefore, they are not
optimized for outlier detection.

6. CONCLUSION
In this paper, we have shown that the Chebyshev metric is
superior to the Euclidean metric in detecting outliers in high
dimensional data since it can overcome the curse of dimen-
sionality by introducing the filtering threshold to remove
noise during the outlier score computation. According to

the experiment, the introduction of the filter on the random

deviation of a point to its neighbor has significantly boosted

the performance of outlier detection. It is also the main con-

tribution of our paper. The property of our score function
allows us to compute the outlier score in each dimension
and then aggregate them to a final score. The dimensions
in which a point is not an outlier is excluded from the final
outlier score. Only dimensions in which p is a strong out-
lier are considered. Thus, noise is not detected as outliers
in the dataset. In addition, this property of an outlier in
Chebyshev space also allows us to visualize the outliers by
drawing the graphs in the dimensions that the points devi-
ate from others. By studying the graphs, we can eliminate
the dimensions in which the outliers are not interesting to us
and we can explain why the outliers are important. In this
paper, we also apply the clustering technique from [13] to
cluster the outliers. Two points whose oscore with respect
to those points is zero are considered close and will be in the
same cluster. Thus, our algorithm can also produce clusters
of outliers.
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