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A kinetic scheme for pressurised flows in non uniform

closed water pipes

C. Bourdarias1∗, M. Ersoy1†and S. Gerbi1‡

1 Université de Savoie,Laboratoire de Mathématiques,73376 Le Bourget-du-Lac, France.

1st December 2008

Abstract

The aim of this paper is to present a kinetic numerical scheme for the computa-
tions of transient pressurised flows in closed water pipe with non uniform sections.
Firstly, we detail the derivation of the mathematical model in curvilinear coordi-
nates and we performe a formal asymptotic analysis. The obtained system is written
as a conservative hyperbolic partial differential system of equations. We obtain a
kinetic interpretation of this system and we build the corresponding kinetic scheme
based on an upwinding of the source terms written as the gradient of a “pseudo
altitude”. The validation is lastly performed in the case of a water hammer in an
uniform pipe: we compare the numerical results provided by an industrial code
used at EDF-CIH (France), which solves the Allievi equations (the commonly used
equation for pressurised flows in pipe) by the method of characteristics, with those
of the kinetic scheme. To validate the contracting or expanding cases, we compare
the presented technique to the equivalent pipe method in the case of an immediate
flow shut down in a quasi-frictionless cone-shaped pipe.
Key words: Curvilinear transformation, asymptotic analysis, pressurised flows, ki-
netic scheme

1 Introduction

The presented work takes place in a more general project: the modelization of un-
steady mixed flows in any kind of closed domain taking into account the cavitation
problem and air entrapment. We are interested in flows occuring in closed pipe of
non uniform sections, where some parts of the flow can be free surface (it means
that only a part of the pipe is filled) and other parts are pressurised (it means that
the pipe is full-filled). The transition phenomenon, between the two types of flows,
occurs in many situation such as storm sewers, waste or supply pipes in hydroelec-
tric installation. It can be induced by sudden change in the boundary conditions
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as failure pumping. During this process, the pressure can reach severe values and
cause damages.

The classical Shallow Water equations are commonly used to describe free sur-
face flows in open channel. They are also used in the study of mixed flows using
the Preissman slot artefact (see for example [7, 11]). However, this technic does not
take into account depressurisation phenomenon which occurs during a water ham-
mer. We can also cite the Allievi equations which are commonly used to describe
pressurised flows. Nonetheless, the non conservative form is not well adapted to a
natural coupling with the Shallow Water equations (contrary to the one presented
in [4]).

The model for the unsteady mixed water flows in closed water pipes and a finite
volume discretization has been previously studied by two of the authors [5] and a
kinetic formulation has been proposed in [6]. This paper tends to extend naturally
the work in [6] in the case of closed pipes with non uniform sections.

We establish, in Section 2, the model for pressurised flows in curvilinear coor-
dinates and recall some classical properties of this model. Rewritting the source
terms due to both topography and geometry into a single one that we called pseudo-
altitude term, we get a model close to the presented one by the authors in [9]. In
Section 3, we present the kinetic formulation of this model that will be useful to
show the main properties of the numerical scheme. The last part is devoted to
the construction of the kinetic scheme: the upwinding of the source term due to
the pseudo topography is performed in a close manner described by Perthame et
al. [9] using an energetic balance at microscopic level. We have used the general-
ized characteristics method to extend the works in [6] to the kinetic scheme with
pseudo-reflections.

Finally, we present in Section 5 a numerical validation of this study in the
uniform case by the comparison between the resolution of this model and the reso-
lution of the Allievi equation solved by the industrial code belier used at Center
in Hydraulics Engineering of Electricité De France (EDF) [12] for the case of crit-
ical water hammer tests. The validation in non uniform pipes is performed in the
case of an immediate flow shut down in a quasi-frictionless cone-shaped pipe. The
results are compared to the equivalent pipe method [1].

2 Formal Derivation of the model

The presented model is derived from the 3D compressible Euler system written in
curvilinear coordinates, then integrated over sections orthogonal to the main flow
axis (see below). We neglect the second and third equation of the conservation of
the momentum and we get an unidirectionnal model. Then, an asymptotic analysis
is performed to get a model close to the Shallow Water model (to a future coupling
for the study of unsteady mixed flows [4]).

2.1 The Euler system in curvilinear coordinates

The 3D Euler system in the cartesian coordinates is written as follows

∂tρ + div(ρ
−→
U ) = 0, (1)

∂t(ρ
−→
U ) + div(ρ

−→
U ⊗−→

U ) + ∇p = F, (2)
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where
−→
U (t, x, y, z) and ρ(t, x, y, z)) denotes the velocity with components (u, v,w)

and the density respectively. p(t, x, y, z) is the scalar pressure and F the exterior
strenght of gravity.
We define the domain ΩF of the flow as the union of sections Ω(x) (assumed to be
simply connected compact sets) orthogonal to some plane curve with parametriza-

tion (x, 0, b(x)) in a convenient cartesian reference frame (O,
−→
i ,

−→
j ,

−→
k ) where

−→
k

follows the vertical direction; b(x) is then the elevation of the point ω(x, 0, b(x))

over the plane (O,
−→
i ,

−→
j ) (see Fig. 1). The curve may be, for instance, the axis

spanned by the center of mass of each orthogonal section Ω(x) to the main mean
flow axis, especially in the case of a piecewise cone-shaped pipe. Notice that we
consider only the case of rigid pipe: the sections are only x-dependent.
To see the local effect induced by the geometry due to the change of sections and/or
slope, we write the 3D compressible Euler system in the curvilinear coordinates.
To this end, let us introduce the curvilinear variable defined by

X =

∫ x

x0

√
1 + (b′(ξ))2dξ where x0 is an arbitrary abscissa. We set y = Y and

we denote by Z the altitude of any fluid particle M in the Serret-Frenet basis

(
−→
T ,

−→
N,

−→
B ) at point ω(x, 0, b(x)):

−→
T is the tangent vector,

−→
N the normal vector and−→

B the binormal vector (see Fig. 1). Then we perform the following transformation
T : (x, y, z) → (X,Y,Z) and we use the following lemma (whose proof can be found
in [3]):

Lemma 2.1 Let (x, y, z) 7→ T (x, y, z) be a transformation and A−1 = D(x,y,z)T
the jacobian matrix of the transformation with determinant J .

Then, for any vector field Φ one has,

JD(X,Y,Z)Φ = D(x,y,z)(JAΦ)

In particular, for any scalar function f , one has

D(X,Y,Z)f = AtD(x,y,z)f
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Figure 1: Geometric characteristics of the pipe

Let (U, V,W )t be the components of the velocity vector in the (X,Y,Z) coordinates
in such a way that the flow is orthogonal to the sections Ω(x). Let R be the matrix

defined by R =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 then:




U
V
W


 = R




u
v
w


 .

Applying Lemma 2.1 to the mass conservation equation, we get

J(∂tρ + div(ρ
−→
U )) = 0

⇐⇒

∂t(Jρ) + ∂X(ρU) + ∂Y (ρJV ) + ∂Z(ρJW ) = 0 (3)

where

J = det




(
1 − Z

d

dX
θ

)
cos θ 0 sin θ

0 1 0(
1 − Z

d

dX
θ

)
sin θ 0 cos θ




. (4)

To get the unidirectionnal Shallow Water-like equations, we suppose that the mean
flow follows the X-axis. Hence, we neglect the second and third equation for the
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conservation of the momentum. Therefore, we only perform the curvilinear trans-
formation for the first conservation equation. To this end, multiplying the conser-

vation of the momentum equation of System (2) by J




cos θ
0

sin θ


 and using Lemma

2.1 yields:

J




cos θ
0

sin θ




(
∂t(ρ

−→
U ) + div(ρ

−→
U ⊗−→

U ) + ∇p = −ρ∇(−→g .
−−→
OM)

)
.

It may be rewritten as:

∂t(JρU) + ∂X(ρU2) + ∂Y (ρJUV 2) + ∂Z(ρJUW ) + ∂Xp

= −ρJg sin θ + ρUW
d

dX
(cos θ)

(5)

where
−−→
OM denotes the position of any particule M in the local basis

(
−→
T ,

−→
N,

−→
B ) at point ω(x, 0, b(x)).

Finally, in the (X,Y,Z) coordinates the system reads:





∂t(Jρ) + ∂X(ρU) + ∂Y (ρJV ) + ∂Z(ρJW ) = 0

∂t(JρU) + ∂X(ρU2) + ∂Y (ρJUV 2) + ∂Z(ρJUW ) + ∂Xp

= −ρJg sin θ + ρUW
d

dX
(cos θ)

(6)

Remark 2.1 Notice that κ(X) =
d

dX
θ is the algebric curvature of the axis at

ω(x) and the function J(X,Y,Z) = 1 − Zκ(X) only depends on variables X,Z.
Morever, we assume J > 0 in ΩF which corresponds to a reasonnable geometric
hypothesis. Consequently, J defines a diffeomorphism and thus the performed
transformation is admissible.

We recall that the main objective is to obtain a formulation close to the Shallow
Water equation in order to couple the two models in a natural way (in a close
manner described in [5]). The direct integration of Equations (6) over Ω(x) gives
a model which is not useful, due to the term J , to perform a natural coupling
with the Shallow Water model [4] for non uniform pipes. Setting ǫ = H/L a small

parameter (where H and L are two characteristics dimensions along
−→
k and

−→
i

axis respectively), we get J = 1 + O(ǫ). We also assume that the characteristic

dimension along the
−→
j axis is the same as

−→
k . We introduce the others character-

istics dimensions T, P,U, V ,W for time, pressure and velocity repectively and the
dimensionless quantities as follows:

Ũ = U/U, Ṽ = ǫV/U, W̃ = ǫW/U,

X̃ = X/L, Ỹ = Y/H, Z̃ = Z/H, p̃ = p/P, θ̃ = θ, ρ̃ = ρ.

In the sequel, we set P = U
2

and L = TU (i.e. we consider only laminar flow).
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Under these hypothesis J(X,Y,Z) = J̃(X̃, Ỹ , Z̃) = 1 − ǫZ̃
d

dX̃
θ. So, the rescaled

system (6) reads:





∂t̃(J̃ ρ̃) + ∂
X̃

(ρ̃Ũ) + ∂
Ỹ

(J̃ ρ̃Ṽ ) + ∂
Z̃
(J̃ ρ̃W̃ ) = 0

∂t̃(J̃ Ũ ρ̃) + ∂
X̃

(ρ̃Ũ
2
) + ∂

Ỹ
(J̃ ρ̃Ũ Ṽ ) + ∂

Z̃
(J̃ ρ̃ŨW̃ ) + ∂

X̃
p̃

= ǫρ̃ŨW̃ ρ̃(X̃) − ρ̃
sin θ̃

Fr,L
2 −

Z̃∂X̃(cos θ)

Fr,H
2

(7)

with Fr,M =
U√
gM

the Froude number along the
−→
i axis and the

−→
k or

−→
j axis

where M is any generic variable.
Formally, when ǫ vanishes the system reduces to:





∂t̃(ρ̃) + ∂
X̃

(ρ̃Ũ) + ∂
Ỹ

(ρ̃Ṽ ) + ∂
Z̃
(ρ̃W̃ ) = 0

∂t̃(Uρ̃) + ∂
X̃

(ρ̃Ũ2) + ∂
Ỹ

(ρ̃Ũ Ṽ ) + ∂
Z̃
(ρ̃ŨW̃ ) + ∂

X̃
p̃ = −ρ̃

sin θ̃

Fr,L
2

−
Z̃∂X̃(cos θ̃)

Fr,H
2

(8)

Finally, the system in variables (X,Y,Z) that describes the slope variation and the
section variation in a closed pipe reads:





∂t(ρ) + ∂X(ρU) + ∂Y (ρV ) + ∂Z(ρW ) = 0

∂t(Uρ) + ∂X(ρU 2) + ∂Y (ρUV ) + ∂Z(ρUW ) + ∂Xp = −ρg sin θ

−Z
d

dX
(g cos θ)

(9)

Remark 2.2 To take into account the friction, we add the source term −ρgSf
−→
T

(described above) in the momentum equation.

2.2 Shallow Water-like equations in closed pipe

In the following, we use the linearized pressure law p = pa+
ρ − ρ0

βρ0
(see e.g. [11, 13])

in which ρ0 represents the density of the fluid at atmospheric pressure pa and β the
water compressibility coefficient equal to 5.0 10−10 m2.N−1 in practice. The sonic
speed is then given by c = 1/

√
βρ0 and thus c ≈ 1400m.s−1. The friction term is

given by the Manning-Strickler law (see [11]),

Sf = K(S)U |U | with K(S) =
1

K2
s Rh(S)4/3

where S = S(X) is the surface area of the section Ω(X) normal to the main pipe axis
(see Fig. 1 for the notations). Ks is the coefficient of roughness and Rh(S) = S/Pm

is the hydraulic radius where Pm is the perimeter of Ω.
System (9) is integrated over the cross-section Ω. In the following, overlined letters

represents the averaged quantities over Ω. For m ∈ ∂Ω, −→n =
−→m
|−→m| is the outward

6



unit vector at the point m in the Ω-plane and −→m stands for the vector −→ωm (as
displayed on Fig. 1).

Following the work in [5], using the approximations ρU ≈ ρU, ρU2 ≈ ρU
2

and
Lebesgue integral formulas, the mass conservation equations becomes:

∂t(ρS) + ∂X(ρq) =

∫

∂Ω
ρ

(
U∂X

−→m −−→
V

)
.−→n ds, (10)

where q = SU is the discharge of the flow and the velocity
−→
V = (V,W )t in the

(
−→
N,

−→
B )-plane.

The equation of the conservation of the momentum becomes

∂t(ρq) + ∂X(
ρq2

S
+ c2ρS) = −gρS sin θ + c2ρ

dS

dX

− ρSZ
d

dX
(g cos θ)

+

∫

∂Ω
ρU

(
U∂X

−→m −−→
V

)
.−→n ds

(11)

The integral terms appearing in (10) and (11) vanish, as the pipe is infinitely rigid,
i.e. Ω = Ω(X) (see [5] for the dilatable case). It follows the non-penetration
condition: 


U
V
W


 .

−→
N = 0.

Finally, omitting the overlined letters except Z, we obtain the equations for pres-
surised flows under the form





∂t(ρS) + ∂X(ρq) = 0

∂t(ρq) + ∂X(
ρq2

S
+ c2ρS) = −ρSg sin θ − ρSZ

d

dX
(g cos θ) + c2ρ

dS

dX

(12)

where the quantity Z is the Z coordinate of the center of mass.

Remark 2.3 In the case of a circular section pipe, we choose the plane curve
(x, 0, b(x)) as the mean axis and we get obviously Z = 0.

Now, following [5], let us introduce the conservative variables A =
ρS

ρ0
the equivalent

wet area and the equivalent discharge Q = AU . Then dividing System (12) by ρ0

we get:





∂t(A) + ∂X(Q) = 0

∂t(Q) + ∂X(
Q2

A
+ c2A) = −gA sin θ − AZ

d

dX
(g cos θ)+

c2A
d

dX
ln(S)

(13)

Remark 2.4 This choice of variables is motivated by the fact that this system is
formally closed to the Shallow Water equations with topography source term in
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non uniform pipe. Indeed, the Shallow water equations for non uniform pipe reads
[4]:





∂tA + ∂XQ = 0

∂tQ + ∂X

(
Q2

A
+ g cos θI1

)
= −gA sin θ − A(h − I1(A)/A)

d

dX
(g cos θ)

+g cos θI2

where the terms gI1 cos θ, I2 cos θ, (h − I1(A)/A) are respectively the equivalent

terms to c2A, c2A
d

dX
ln(S), Z in System (13). The quantities I1, I2, (h− I1(A)/A)

denotes respectively the classical term of hydrostatic pressure, the pressure source
term induced by the change of geometry and the Z coordinate of the center of
mass. Finally, the choice of these unknowns leads to a natural coupling between
the pressurised and free surface model (called PFS-model presented by the authors
in [4]).

To close this section, let us give the classical properties of System (13):

Theorem 2.1 (frictionless case)

1. The system (13) is stricly hyperbolic for A(t,X) > 0.

2. For smooth solutions, the mean velocity U = Q/A satisfies

∂tU + ∂X

(
U2

2
+ c2 ln(A/S) + gΦθ + gZ

)
= 0 (14)

where Φθ(X) =

∫ X

X0

Z(ξ)
d

dX
cos θ(ξ) dξ for any arbitrary x0 and Z the altitude

term defined by ∂XZ = sinθ. The quantity
U2

2
+ c2 ln(A/S) + gΦθ + gZ is

also called the total head.

3. The still water steady states for U = 0 is given by

c2 ln(A/S) + gΦθ + gZ = 0. (15)

4. It admits a mathematical entropy

E(A,Q) =
Q2

2A
+ c2A ln(A/S) + gAΦθ + gAZ

which satisfies the entropy inequality

∂tE + ∂X

(
(E + c2A)U

)
6 0

Remark 2.5

• If we consider the friction term, we have for smooth solutions:

∂tU + ∂X

(
U2

2
+ c2 ln(A/S) + gΦθ + gZ

)
= −gK(S)U |U |

and the previous entropy equality reads

∂tE + ∂X

(
(E + c2A)U

)
= −gAK(S)U2|U | 6 0
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• If we introduce Z̃ the so-called pseudo altitude source term given by

Z̃ = Z + Φθ −
c2

g
ln(S)

(where Φθ is defined in Theorem 2.1), we can rewrite System (13) in the
simpler form, close to the classical Shallow Water formulation:





∂t(A) + ∂X(Q) = 0

∂t(Q) + ∂X

(
Q2

A
+ p(X,A)

)
+ g∂X Z̃ = 0

(16)

where p(X,A) = c2A.
This reformulation allows us to perform an analysis close to the presented one by
the autors in [9] in order to write the kinetic formulation.

3 The kinetic model

We present in this section the kinetic formulation (see e.g. [8]) for pressurised flows
in water pipes modelized by System (16). To this end, we introduce a smooth real
function χ such that

χ(w) = χ(−w) ≥ 0,

∫

R

χ(w) dw = 1,

∫

R

w2χ(w) dw = 1

and defines the Gibbs equilibrium as follows

M(t, x, ξ) =
A

c
χ

(
ξ − U

c

)

which represents the density of particles at time t, position x and the kinetic speed
ξ. Then we get the following kinetic formulation:

Theorem 3.1 The couple of functions (A,Q) is a strong solution of the Shallow
Water-like system (16) if and only if M satisfies the kinetic transport equation

∂tM + ξ∂XM− g∂X Z̃∂ξM = K(t, x, ξ) (17)

for some collision kernel K(t, x, ξ) which admits vanishing moments up to order 1
for a.e (t,x).

Proof of Theorem 3.1. We get easily the above result since the following
macro-microscopic relations holds

A =

∫

R

M(ξ) dξ (18)

Q =

∫

R

ξM(ξ) dξ (19)

Q2

A
+ c2A =

∫

R

ξ2M(ξ) dξ (20)

�
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The reformulation of System (13) and the above theorem has the advantage to give
only one linear transport equation for M which can be easily discretised (see for
instance [9, 10]). Morever, the following results hold:

Theorem 3.2 Let us consider the minimization problem min E(f) under the con-
straints

f > 0,

∫

R

f(ξ) dξ = A,

∫

R

ξf(ξ) dξ = Q

where the kinetic functional energy is defined by

E(f) =

∫

R

ξ2

2
f(ξ) + c2f(ξ)log(f(ξ)) + c2f(ξ)log(c

√
2π) + gZ̃f(ξ) dξ.

Then the minimum is attained by the function M(t, x, ξ) =
A

c
χ

(
ξ − U

c

)
where

χ(w) =
1√
2π

exp

(−w2

2

)
a.e.

Morever, the minimal energy is

E(M) = E(A,Q) =
Q2

2A
+ c2A ln A + gAZ̃

and M satisfies the still water steady state equation for U = 0, that is,

ξ∂XM− g∂X Z̃∂ξM = 0.

Proof of Theorem 3.2 One may easily verify that f = M is a solution
of the minimization problem. Under the hypothesis f > 0 the functionnal E(f) is
strictly convex which ensures the unicity of the minimum. Furthermore, by a direct
computation, one has E(M) = E.

The minimum M of the functionnal E(f) satisfies the still water steady state
for U = 0,

ξ∂XM− g∂X Z̃∂ξM = 0.

Since ∂XM =
∂XA

c
χ

(
ξ

c

)
, ∂ξM =

A

c2
χ′

(
ξ

c

)
, denoting w = ξ/c, we get

w∂XAχ(w) − g∂X Z̃
A

c
χ′(w) = 0.

On the other hand, the still water steady state at macroscopic level is given by

c2 ln(A) + gZ̃ = cst,

and so one has g∂X Z̃ = −c2∂X(ln A). Finally, we get the following ordinary differ-
ential equation

wχ(w) + χ′(w) = 0.

which gives the result.

�
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4 The kinetic scheme with pseudo-reflections

This section is devoted to the construction of the numerical kinetic scheme and its
properties. The numerical scheme is obtained by using a flux splitting method on
the previous kinetic formulation (17). The source term due to the pseudo topogra-
phy ∂X Z̃ is upwinded in a close manner described by Perthame et al. [9] using an
energetic balance at the microscopic level. In the sequel, for the sake of simplicity,
we consider the space domain infinite.
Let us consider the discretization (mi)i∈Z of the spatial domain with

mi = (Xi−1/2,Xi+1/2), hi = Xi+1/2 − Xi−1/2

which are respectively the cell and mesh size for i ∈ Z. Let ∆tn = tn+1 − tn, n ∈ N

be the timestep.

Let Un
i = (An

i , Qn
i ), Un

i =
Qn

i

An
i

be respectively the approximation of the mean value

of (A,Q) and the velocity U on mi at time tn.

Let Mn
i (ξ) =

An
i

c
χ

(
ξ − Un

i

c

)
be the approximation of the microscopic quantities

and Z̃i1mi(X) be the piecewise constant representation of the pseudo-altitude Z̃.
Then, integrating System (16) over mi × [tn, tn+1], we get:

Un+1
i = Un

i − ∆tn

hi

(
F−

i+1/2 − F+
i−1/2

)
(21)

where

F±
i+1/2 =

1

∆tn

∫ tn+1

tn

F
(
U(t,X±

i+1/2) dt
)

(22)

are the interface fluxes with F (A,Q) = (Q,Q2/A + c2A)t.
Now, it remains to define an approximation F±

i±1/2 of the flux at the points Xi±1/2.

To this end, we use the kinetic formulation (17).
Assume that the discrete macroscopic vector state Un

i is known at time tn. We
consider the following problem

{
∂tf + ξ∂Xf − g∂X (Z̃) ∂ξf = 0 (t,X, ξ) ∈ [tn, tn+1] × mi × R

f(tn,X, ξ) = M(tn,X, ξ) (X, ξ) ∈ mi × R
(23)

where M(tn,X, ξ) = Mn
i (ξ) in the cell mi. It is discretized as follows (since it is a

linear transport equation)

∀i ∈ Z, ∀n ∈ N, fn+1
i (ξ) = Mn

i (ξ) − ξ
∆tn

hi

{
M−

i+1/2(ξ) −M+
i−1/2(ξ)

}
(24)

where M±
i±1/2 denotes the interface density equilibrium (computed in section 4.1).

Finally, we set

Un+1
i =

∫

R

(
1
ξ

)
fn+1

i (ξ) dξ (25)

and

Mn+1
i =

Mn+1
i

c
χ

(
ξ − Un+1

i

c

)
.
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Remark 4.1 We can understand Equation (23) as follows: let us consider the
following problem,

{
∂tf + ξ∂XM− g∂X (Z̃) ∂ξM = 0 (t,X, ξ) ∈ [tn, tn+1] × mi × R

f(tn,X, ξ) = M(tn,X, ξ) (X, ξ) ∈ mi × R.
(26)

Assuming that M(t,X, ξ) is known on [tn, tn+1]×mi×R leads to the same discretiza-
tion (24) of Equation (23). Hence the numerical scheme (24) avoids to compute
explicitely the collision kernel K at the microscopic level. Indeed, substracting
Equation (17) to Equation (26), we get:

∂t(M− f)(ξ) = K(t, x, ξ).

Then, integrating the previous identity in time t and ξ yields to:

∫

R

(
1
ξ

)
f(ξ) dξ = U .

In other words, using the numerical scheme (24) and the macroscopic-microscopic
relation (25) is a manner to perform all collisions at once and to recover exactly
the macroscopic unknows (A,Q).

Now to complete the numerical kinetic scheme, it remains to define the microscopic
fluxes M±

i±1/2 appearing in equation (24) introduced by the choice of the constant

piecewise representation of the pseudo-altitude term Z̃.

4.1 Interface equilibrium densities

To compute the interface equilibrium densities, we use the generalized characteris-
tics method. Let s ∈ (tn, tn+1) be a time variable and f the solution of the kinetic
equation (23). Let i ∈ Z, t ∈ (tn, tn+1) and ξl, ξr be respectively the kinetic speed
of a particle at time t on each side of the interface Xi+1/2. The characteristic
curves Ξ(s) and X(s) of the kinetic transport equation (23) satisfies the following
equations: 




dΞ

ds
= −g∂xZ̃(X(s))

dX

ds
= Ξ(s)

(27)

where the final conditions are defined by

{
Ξ(t) = ξ
X(t) = Xi+1/2

(28)

for some constant ξ defined later. By a straightforward computation, we get the
following mechanical conservation law:

d

ds

(
Ξ(s)2

2
+ gZ̃(s)

)
= 0. (29)

Since Z̃ is a piecewise constant function, the solution Ξ of the ordinary differential
equation (27) is a piecewise constant solution. So, we need to define an admissible

12



jump condition to get only physical solutions of the problem (27). Thanks to the
relation (29), we get the jump condition:

[
Ξ2

]
=

[
2gZ̃

]

that is also:
ξ2
l

2
− ξ2

r

2
= g∆Z̃i+1/2 (30)

where ∆Z̃i+1/2 is such that

Z̃i+1 − Z̃i = ∆Z̃i+1/2δXi+1/2

with δa is the Dirac mass at point a. The quantity ∆Z̃i+1/2 is the potential bareer.
Next, solving System (27) on mi × (tn, tn+1) with the final conditions :

{
Ξ(t) = ξl

X(t) = Xi+1/2
, (31)

we get
Ξ(s) = ξl and X(s) = ξl(s − tn+1) + Xi+1/2. (32)

Figure 2: The potential bareer: transmission and reflection of particle
Top: the physical configuration

Middle: the characteristic solution in (X,Ξ)-plane
Bottom: the characteristic solution in (X, t)-plane
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Due to the jump condition (30) and the sign of the kinetic speed, we distinguish
three admissible cases as displayed on Fig. 2.

- The case ξl > 0 corresponds to the positive transmission (this means that the
particle comes from the left) and we deduce from Equalities (32) that the left
microscopic flux M−

i+1/2(ξ) is equal to Mn
i (ξ).

- The case ξl < 0 and ξ2
l − 2g∆Z̃i+1/2 < 0 is the so-called reflection case. The

condition ξ2
l − 2g∆Z̃i+1/2 < 0 says simply that the slope ξl of the X solution

(32) cannot exceed
√

2g∆Z̃i+1/2 (as displayed on Fig. 2 (bottom)) and so

the flux M−
i+1/2(ξ) is given by Mn

i (−ξ). Physically, since the particle with the
kinetic speed ξl, under the previous kinetic condition, has not enough energy
to overpass the bareer, it is reflected with the kinetic speed −ξl.

- The last case is when ξl < 0 and ξ2
l − 2g∆Z̃i+1/2 > 0. This case corresponds

to the negative transmission: this means we take into account the particles
coming from the right side with negative kinetic speed. Contrary to the re-

flection case, the constraint on the X slope is limited by ξl > −
√

2g∆Z̃i+1/2

and we get as solution Mn
i+1

(
−

√
ξ2 − 2g∆Z̃i+1/2

)
. From a physical point

of view, the observed particle at the left of the interface comes from the right

side with a kinetic speed ξr < 0 where ξr = −
√

ξ2
l − 2g∆Z̃i+1/2, taking into

account the gain or loss of potential energy through the bareer (as displayed
on Fig. 2 (bottom)).

Finally, adding the previous results we obtain:

M−
i+1/2(ξ) =

positive transmission︷ ︸︸ ︷1ξ>0Mn
i (ξ) +

reflection︷ ︸︸ ︷1ξ<0,ξ2−2g∆Z̃i+1/2<0M
n
i (−ξ)

+ 1
ξ<0,ξ2−2g∆Z̃i+1/2>0

Mn
i+1

(
−

√
ξ2 − 2g∆Z̃i+1/2

)

︸ ︷︷ ︸
negative transmission

M+
i+1/2(ξ) =

negative transmission︷ ︸︸ ︷1ξ<0Mn
i+1(ξ) +

reflection︷ ︸︸ ︷1
ξ>0,ξ2+2g∆Z̃i+1/2<0

Mn
i+1(−ξ)

+ 1
ξ>0,ξ2+2g∆Z̃i+1/2>0

Mn
i

(√
ξ2 + 2g∆Z̃i+1/2

)

︸ ︷︷ ︸
positive transmission

(33)

The microscopic flux at the right of the interface is obtained following a same
approach.

4.2 Numerical properties

We present some numerical properties of the macroscopic scheme (21)-(22), namely
the stability and the preservation of the still water steady state. The stability of
the kinetic scheme depends on a kinetic CFL condition

∆tn

maxi hi
ξ < 1, ∀ξ

14



and so, on the support of the maxwellian function (e.g. we see that from the
microscopic fluxes in Subsection 4.1). The support of the maxwellian function
computed in Theorem 3.2 is not compact, then the stability condition cannot be
satisfied. Therefore, in the sequel, we will consider the particular Gibbs equilibrium

χ(w) =
1

2
√

3
1[−

√
3,
√

3](w) introduced by the authors in [2] and used in [6] in the

case of pressurised flows in uniform closed pipe.
Let us present the numerical properties of the scheme (23)-(33),

Theorem 4.1

1. Assuming the CFL condition

∆tn

maxi∈Z hi
max
i∈Z

(
|Un

i | +
√

3c
)

< 1,

the numerical scheme (23)-(33) keeps the wet equivalent area A positive.

2. The still water steady state is preserved:

Un
i = 0,

c2

g
ln(ρn

i ) + Z̃i = cst

Proof of Theorem 4.1. (It is similar to the one obtained in [9]) Let us suppose
An

i > 0 for all i ∈ Z and n ∈ N. Let ξ± = max(0,±ξ) be the positive or negative

part of any real and σ =
∆tn

maxi hi
, Equation (23) reads:

fn+1
i (ξ) > (1 − σ|ξ|)Mn

i (ξ)

+σξ+

(1
ξ2+2g∆Z̃i+1/2<0

Mn
i (−ξ)

+1ξ2+2g∆Z̃i−1/2>0Mn
i−1

(√
ξ2 + 2g∆Z̃i+1/2

))

+σξ−
(1

ξ2−2g∆Z̃i+1/2<0
Mn

i (−ξ)

+1ξ2−2g∆Z̃i−1/2>0Mn
i+1

(
−

√
ξ2 − 2g∆Z̃i+1/2

))

Since the support of the χ function is compact, we get

fn+1
i (ξ) > 0 if |ξ − un

j | <
√

3c, ∀j ∈ Z

which implies |ξ| < |un
j |+

√
3c. Using the CFL condition σ|ξ| ≤ 1, we get the result.

Morever, since fn+1
i is a sum of positive term, we obtain fn+1

i > 0, hence the wet
equivalent area at time tn+1 is positive, i.e.

An+1
i =

∫

R

fn+1
i (ξ) dξ > 0.

To prove the second point, we distinguish cases ξ > 0 and ξ < 0 to show the equality
Mi+1/2 = Mi−1/2. Using the jump condition (30), we easily obtain fn+1

i = Mn
i

which gives the result.

�
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Now let us also remark that the kinetic scheme (24)-(33) is wet equivalent area
conservative . Indeed, let us denote the first component of the discrete fluxes
(FA)±i+1/2:

(FA)±i+1/2 :=

∫

R

ξM±
i+1/2

(ξ) dξ

An easy computation, using the change of variables w2 = ξ2 − 2g∆Z̃i+1/2 in the

interface densities formulas defining the kinetic fluxes M±
i+1/2, allows us to show

that:
(FA)+

i+ 1

2

= (FA)−
i+ 1

2

5 Numerical Validation

The validation is performed in the case of a soft and sharp water hammer in an
uniform pipe. Then we compare the results to the ones provided by an industrial
code used at EDF-CIH (France) (see [12]), which solves the Allievi equation by the
method of characteristics. The validation in non uniform pipes is performed in the
case of an immediate flow shut down in a quasi-frictionless cone-shaped pipe. The
results are then compared to the equivalent pipe method [1].

5.1 The uniform case

We present now numerical results of a water hammer test. The pipe of circular
cross-section of 2 m2 and thickness 20 cm is 2000 m long. The altitude of the
upstream end of the pipe is 250 m and the slope is 5◦. The Young modulus is
23 109 Pa since the pipe is supposed to be built in concrete. The total upstream
head is 300 m. The initial downstream discharge is 10 m3/s and we cut the flow in
10 seconds for the first test case and in 5 seconds for the other.
We present a validation of the proposed scheme by comparing numerical results of
the proposed model solved by the kinetic scheme with the ones obtained by solving
Allievi equations by the method of characteristics with the so-called belier code:
an industrial code used by the engineers of the Center in Hydraulics Engineering
of Electricité De France (EDF) [12].
A simulation of the water hammer test was done for a CFL coefficient equal to 0.8
and a spatial discretisation of 1000 mesh points. In the figures Fig. 3 and Fig.
4, we present a comparison between the results obtained by our kinetic scheme
and the ones obtained by the “belier” code: the behaviour of the discharge at the
middle of the pipe. One can observe that the results for the proposed model are
in very good agreement with the solution of Allievi equations. A little smoothing
effect and absorption may be probably due to the first order discretisation type.
A second order scheme may be implemented naturally and will produce a better
approximation.
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Figure 3: Comparison between the kinetic scheme and the industrial code belier
First case: discharge at the middle of the pipe
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Figure 4: Comparison between the kinetic scheme and the industrial code belier
Second case: discharge at the middle of the pipe

17



5.2 The case of non uniform circular pipe

We present a test of the proposed kinetic scheme in the case of a contracting
or expanding circular pipes of length L = 1000m. The downstream radius is
kept constant, equal to R2 = 1m and the upstream radius varies from R1 = 1m
to 4m by steps of 0.25m. The others paramaters are N = 300 mesh points,
KS = 9000 (this means that the wall of the pipe is very smooth), CFL= 0.8. The
upstream discharge before the shut-down (1.5 seconds) is fixed to 10m3.s−1 while
the upstream condition is a constant total head. We assume also that the pipe is
rigid. Then for each value of the radius R1, we compute the water hammer pressure
rise at the position x = 96m of the pipe and we compare it to the one obtained
by the equivalent pipe method (see [1]). The results are presented in Fig. 5 and
show a very good agreement.
We point out that the behaviour of the solutions corresponding to the equivalent
pipe method and our method are different: this is due to the dynamic treatment

of the term c2 d ln S

dX
related to the variable section which is not present in the

equivalent pipe method: see Fig. 6, Fig. 7, Fig. 8 :
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Figure 5: Comparison in the prediction of pressure rises in cone-shaped pipes between
the present method and the equivalent pipe method
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Figure 6: Discharge (left) and piezometric line (right) for R1 = 1.25 m
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Figure 7: Discharge (left) and piezometric line (right) for R1 = 1.5 m
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