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Abstract 

 

The morphology of the western Alps has been strongly influenced by Quaternary glaciations. 

On the basis of observations of glacial morphology in the Belledonne, Grandes-Rousses, 

Taillefer and Pelvoux-Ecrins Massifs (south-eastern France), we reconstitute the glacial 

trimline and equilibrium line altitude (ELA) during the most extensive glaciation (MEG). Our 

best estimate of the MEG ELA is 1800±100 m. Using digital elevation models, we compare 

our glacial reconstruction with the relief structure of 9 major catchments draining the massifs. 

Modal elevations of the largest catchments occur at 2000-2500 m and coincide with minima 

in plots of mean slope angles as a function of elevation. Modal elevations and slope minima 

occur between the modern and MEG ELA’s, confirming a strong glacial imprint on relief. In 

order to quantify glacial valley carving in the massifs, we isolated high-elevation, low-relief 

surfaces that form rock shoulders adjacent to the glacial valleys from a Digital Elevation 

Model and constructed an interpolated surface passing through these. Subtracting the present-

day topography from this surface allows us to quantify the maximum glacial-valley depths. 

Maximum valley depths determined in this manner are typically >1000 m, with spatial 

maxima occurring around the location of the MEG ELA in most valleys. These numbers do 

not take into account glacial valley widening local glacial overdeepenings but also neglect 

potential pre-glacial fluvial valley incision, which could account for 20-50% of the measured 

valley depths. The inferred valley depths are, however, reasonably well correlated with the 

mean reconstructed ice thickness, and constitute about half of the sub-ridgeline relief of the 

studied catchments. These results lead us to propose a significant Quaternary increase in the 

relief of the French western Alps, controlled by climate and associated with the initiation of 

alpine glaciations. For reasonable values of the effective elastic thickness of the lithosphere, 

the isostatic response to glacial valley carving reaches values of ~300 m across the massifs. 

This number is insufficient to substantially offset topographic lowering due to regional 

denudation, and we conclude that the isostatic response to glacial valley carving has not 

increased peak elevations significantly. 

 

 

Keywords: Alps, glacial erosion, relief development, isostatic rebound, hypsometry, slope 

distribution 
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1. Introduction 

 

The interaction between tectonics, climate and the topography of mountain belts has been a 

key issue in geodynamics over the last 15 years, since Molnar and England (1990) suggested 

that late-Cenozoic climatic forcing, in particular the rapid succession of glacial and 

interglacial conditions, has led to increased erosion of mountain belts and consequent isostatic 

uplift of their peaks. A late Cenozoic increase in sedimentation rates has been documented in 

sedimentary basins occurring in widely varying tectonic settings around the world, suggesting 

that the associated increase in erosional flux is climatically controlled (Kuhlemann et al., 

2002; Métivier et al., 1999; Molnar, 2004; Zhang et al., 2001). A contrasting view has, 

however, been expressed by Raymo and Ruddiman (1992), who suggested that, rather than 

resulting from it, increased uplift and erosion rates control late-Cenozoic climate change 

through increased atmospheric CO2 drawdown by weathering reactions. 

 

Many of the world’s mountain belts have been extensively glaciated during Quaternary times, 

and glacial conditions have prevailed in them for most of the time since the onset of major 

glaciations. Thus, glacial erosion has been the predominant erosional mechanism affecting 

these mountain belts over the last few million years. Recent studies on long-term exhumation 

rates in Alaska and British Columbia (Shuster et al., 2005; Spotila et al., 2004) suggest a 

strong coupling between glaciation and denudation. Thus, late Cenozoic glaciations and the 

associated expansion of glacial cover could have strongly influenced the morphology of 

mountain belts. Resolving the controversy regarding the feedback between late Cenozoic 

climate change and tectonics therefore requires quantitative data on the relative efficiencies of 

glacial versus fluvial erosion in a wide range of geomorphic settings (e.g., Brocklehurst and 

Whipple, 2002; Montgomery, 2002; Whipple et al., 1999), as well as on the impact of 

glaciation on relief development in mountain belts (e.g., Brozovic et al., 1997; Stern et al., 

2005; Tomkin and Braun, 2002).  

 

A rapid and powerful way to quantitatively assess morphology is through hypsometric 

analyses of topography using Digitial Elevation Models (DEM’s). A glacial imprint on relief 

manifests itself through the development of more concave valley long profiles by cirque-

headwall retreat, and the widening of valleys into characteristic U-shaped troughs (Anderson 

et al., 2006; Kirkbride and Matthews, 1997). Both these effects tend to increase the relative 

frequency of elevations where glacial erosion is efficient (Brocklehurst and Whipple, 2003). 
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Brozovic et al. (1997), for instance, showed that the mean elevation as well as 50% of the 

total area of several massifs in the NW Himalaya, characterised by widely varying uplift and 

exhumation rates, lie between the present-day and Last Glacial Maximum (LGM) Equilibrium 

Line Altitudes (ELA). They also showed that this elevation range coincides with a distinct 

minimum in mean slope values and concluded that (1) the morphology of these massifs is 

controlled primarily by the position of the mean ELA through time, and (2) glacial erosion 

rates at these altitudes could counteract even the highest tectonic uplift rates. This result is 

consistent with the theoretical expectation that the erosive capacity of glaciers increases with 

their basal sliding velocity (Andrews, 1972; Hallet, 1979; 1996; Humphrey and Raymond, 

1994), which reaches maximum values at the ELA (e.g., Anderson et al., 2006 and references 

therein). Glacial erosion should thus be particularly efficient within the range of elevations 

comprising the ELA through time (Anderson et al., 2006; Meigs and Sauber, 2000). 

 

Another issue involves the isostatic response to glacial erosion. Several authors have argued 

that major valley incision may lead to uplift of mountain peaks, as the isostatic response to 

erosion takes places on spatial scales of 10’s to 100’s of km, depending on the flexural 

rigidity of the lithosphere (Molnar and England, 1990; Montgomery, 1994; Small and 

Anderson, 1995; 1998; Stern et al., 2005). The efficiency of this mechanism depends on the 

spatial distribution of erosion, as the regional isostatic response to valley carving should 

outstrip erosion on the peaks in order to produce local surface uplift (Montgomery, 1994; 

Small and Anderson, 1998). Whether this is the case, particularly in response to the glaciation 

of mountain ranges, is unclear at present. 

 

Many of the studies aimed at quantifying the link between glaciation, denudation, and relief 

development have focused on either very rapidly uplifting and eroding mountain belts such as 

southern Alaska, the northwest Himalaya or the southern Alps of New Zealand (e.g., Brook et 

al., 2006; Brozovic et al., 1997; Kirkbride and Matthews, 1997; Meigs and Sauber, 2000), or 

on slowly eroding post-orogenic topography such as in the Sierra Nevada (California) or 

Sangre de Cristo (Colorado) ranges (Brocklehurst and Whipple, 2002; 2003). Here, we set out 

to quantify these relationships in the western European Alps, which have constituted a 

classical example for the glacial influence on relief development for over a century (e.g., de 

Martonne, 1910-1911; Penck and Brückner, 1901-1909; Tricart and Cailleux, 1962) and are 

characterised by limited tectonic activity but a strong glacial influence during Quaternary 

times. Continuous GPS measurements show that present-day convergence rates in the western 
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and central Alps are close to zero (Calais et al., 2002), in stark contrast to geodetically 

determined rock uplift rates, which locally reach values > 1 mm/y (Jouanne et al., 1995; 

Kahle et al., 1997). Not more than 1/3 to 1/2 of present-day rock uplift rates can be attributed 

to post-glacial rebound (Gudmundsson, 1994; Stocchi et al., 2005); the question to what 

extent isostatic response to glacial erosion of the belt contributes to present-day rock uplift is 

thus clearly posed. 

 

In this paper, we first aim to reconstruct the maximum glacial cover during Quaternary times 

and to quantify the glacial imprint on the morphology of part of the French western Alps, 

using DEM analyses as our principal tool. We then estimate the amount of glacial relief 

production through valley carving. Finally, we assess whether the isostatic response to this 

differential erosion may have significantly affected peak uplift. We focus on the Pelvoux-

Ecrins, Grandes Rousses and Belledonne massifs of south-eastern France (Figure 1), where 

abundant geomorphic markers such as cirques, valley steps and hanging valleys clearly 

indicate the major imprint of glacial erosion on the present-day morphology (e.g., 

Montjuvent, 1974; 1978). 

 

 

2. Geological and Geomorphic Setting 

 

The “external crystalline massifs” of the western and central Alps consist of blocks of 

European crystalline basement that were exhumed along crustal-scale thrusts since Oligocene 

– Early Miocene times (Leloup et al., 2005; Schmid and Kissling, 2000). These massifs are 

characterised by some of the highest topography and relief of the Alpine orogen and 

concentrate most of it’s >4000 m high peaks. Low-temperature thermochronology data 

indicate that the external crystalline massifs have undergone km-scale denudation since Late 

Pliocene times (3-5 Ma; e.g., Bigot-Cormier et al., 2000; Leloup et al., 2005; Michalski and 

Soom, 1990) and they are also the site of rapid present-day rock uplift (up to 1 mm/y; Jouanne 

et al., 1995; Kahle et al., 1997). 

 

Here we focus on the westernmost external crystalline massifs, comprising the Belledonne, 

Taillefer, Grandes Rousses and Pelvoux-Ecrins massifs (Figure 1). These are made up of 

several basement blocks with intervening remnants of inverted Jurassic extensional basins. 
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Basement blocks have been thrust up along steeply dipping faults with variable strikes, which 

result from a complex polyphase history during both Early Jurassic rifting and Tertiary Alpine 

convergence phases that affected the region (Dumont et al., in press; Ford, 1996). The 

relatively complex drainage pattern within the massifs is partly controlled by this structural 

grain. The massifs are bordered to the north and west by the “subalpine” Chartreuse and 

Vercors massifs, built up of Mesozoic calcareous sedimentary sequences. The limit between 

the basement and subalpine massifs in the western Alps is generally marked by major valleys 

that are known as the “subalpine trough” (sillon subalpin) to French geologists. In the study 

area, the northern limit between the Belledonne and Chartreuse massifs is formed by the Isère 

(or Grésivaudan) valley, whereas to the west the limit between the Taillefer/Pelvoux-Ecrins 

and Vercors massifs is formed by the Drac valley. The Grésivaudan valley was occupied by a 

major alpine glacier (the Isère glacier) during glacial times, which has overdeepened the 

valley down to several 100 m below sea-level (Gidon, 1992; Montjuvent and Winistorfer, 

1980). The Drac valley, in contrast, was only occupied by a through-going glacier during the 

most extensive glaciations, but was more generally dammed by the Isère and Romanche 

glaciers, leading to large-scale fluvial aggradation during glacial times (Brocard et al., 2003; 

Montjuvent, 1978). To the northeast and southeast, the Pelvoux-Ecrins massif is bordered by 

the Maurienne and Durance valleys, respectively, which overlie the tectonic contact between 

external and internal Alps (the Penninic thrust) and also hosted major alpine glaciers during 

glacial times. 

 

The wide valleys surrounding the western alpine massifs contrast strongly with the deep and 

narrow valleys that occur within the massifs (Figures 1 and 2). Valley long profiles within the 

massifs present a succession of valley steps and flats, characteristic of glacially perturbed 

fluvial profiles. Both hanging valleys (at the confluences of small tributary valleys with a 

main throughgoing valley) and overdeepened troughs, downstream of the confluences of 

equally sized streams, are numerous; their occurrence is consistent with a glacial erosion 

model that links confluence steps and valley overdeepenings to the relative erosive power of 

the joining glaciers (Anderson et al., 2006; MacGregor et al., 2000). The most spectacular 

example of such a glacial overdeepening is the Bourg d’Oisans trough just downstream of the 

confluence of the Vénéon and Romanche valleys (Figure 2a), which has been filled by post-

glacial lake sediments (Bailly-Maître et al., 1997). In contrast to the strong glacial influence 

on long profile forms, the planform drainage pattern of the massifs is demonstrably pre-
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glacial, as indicated by the provenance of Miocene fluvial deposits in the subalpine chains and 

the foreland (Montjuvent, 1978). 

 

A slope map of the study area (Figure 3) shows that valley bottoms are characterised by very 

low slopes and are bordered by steep and abrupt sidewalls. Lithology affects the slope 

distributions (Figure 4): modal slope values are generally steeper in basement rocks than in 

the sedimentary cover and the steepest gorge sidewalls occur in basement rocks. This is 

especially clear for granites, amphibolites and meta-conglomerates, which make up most of 

the Pelvoux-Ecrins, eastern Belledonne, and Taillefer massifs, respectively. Chloritic schists 

that characterise the western Belledonne Massif have intermediate slope values that are 

comparable to some of the sedimentary cover units. Irrespective of lithology, however, 

widespread low-relief plateau areas are encountered at elevations above ~2000 m, (Figures 2 

and 3); these are developed both on Mesozoic sediments and on basement rocks. Many of 

these plateau areas show widespread evidence for glacial erosion and have developed close to 

the basement-cover interface (e.g., Battiau-Queney, 1997). 

 

For our morphological analysis, we have divided the study area into its major drainage basins 

(cf. Figure 1). We consider six large catchments (Upper Romanche, Vénéon, Eau d’Olle, 

Bonne, Séveraisse, Upper Drac) draining the Pelvoux-Ecrins, Grandes Rousses and 

Belledonne massifs, as well as three smaller catchments in the Grandes Rousses (Sarenne), 

Taillefer (Lignarre) and western Pelvoux (Séveraissette) massifs. Table 1 lists the catchment 

areas and hypsometries for these drainage basins. The upper Romanche, Vénéon, Sarenne, 

Lignarre and Eau d’Olle rivers all drain into the Bourg d’Oisans plain, the outlet of which is 

formed by the lower Romanche River. After traversing a deep and narrow gorge between the 

Belledonne and Taillefer massifs, the latter joins the Drac River just south of Grenoble. The 

Bonne, Séveraisse and Séveraisette rivers drain the western part of the Pelvoux-Ecrins and 

Taillefer massifs and drain into the Drac River. We have excluded the eastern part of the 

Pelvoux-Ecrins massif, which is drained by tributaries of the Durance River, from our 

analysis because we are not able to reconstruct the glacial trimline with sufficient detail in this 

area (cf. next section). 
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3. Reconstructing ice cover 

 

Present-day perennial ice cover in the area is limited to a total area of ~25 km2 around the 

highest peaks of the Pelvoux-Ecrins massif. We have reconstructed the glacial cover during 

peak glacial times using a database of glacially eroded landforms and glacial deposits. In 

particular, we use a detailed database collected by Beaudevin (2000) and augmented by our 

personal observations. 

 

Several morphological features can be used to estimate the maximum elevation reached by 

glaciers. A glacial trimline is locally visible along the mountain flanks, separating lower 

slopes with clear glacial erosion features (roches moutonnées; striated or polished surfaces) 

from much more rugged upper slopes that show evidence for freeze-thaw rather than glacial 

erosion. Lateral moraines are locally present on rock shoulders at elevations below 2500 m. 

On low-slope areas such as rock shoulders or glacially-breached divides, characteristic glacial 

grooves or troughs are widespread (Beaudevin, 2000). These may be either purely erosional 

features, or be associated with drumlin-like elongated hills composed of glacial deposits. The 

maximum elevation of these morphologic features (except for the moraines) at any location 

indicates the limit of sufficient ice cover to produce them, rather than the maximum ice 

surface itself. Each feature is characterised by a threshold ice thickness required to produce it, 

which is generally not well known. By comparing the elevations of lateral moraines and 

nearby glacial erosion features, Beaudevin (2000) has estimated these ice thicknesses and 

established some rules of thumb for reconstructing the ice surface elevation, which we follow 

here: (1) the ice surface follows the summits of lateral moraines; (2) it passes 100 m above the 

highest glacial erosion grooves on rock shoulders; (3) it passes 50 m above glacial grooves 

associated with drumlin-like features and (4) several tens of m above the summit of roches 

moutonnées. 

 

A major problem in reconstructing the glacial cover is the age of the glacial features. 

Relatively detailed correlations and chronologies have been established for the frontal 

moraine systems of the major valley glaciers that extended into the Alpine foreland (e.g., 

Rhone glacier: de Beaulieu and Reille, 1984; Isère glacier: Gidon, 1992; Durance glacier: 

Jorda et al., 2000), but none of the glacial erosion features within the western alpine ECM 
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have been dated. A widespread supposition is that most of these features date from the LGM, 

i.e. 20-25 ka BP in the Alps (Schlüchter, 1988), as they would have been erased by successive 

glaciations. However, it is clear from the frontal moraine record that more extensive 

glaciations than the LGM took place during Oxygen Isotope Stages 6 – 8, i.e. between 145 

and 230 ka BP (Schlüchter, 1986). These are known as the Most Extensive Glaciation (MEG). 

Finally, there is controversy about the relative extent of glaciation during Oxygen Isotope 

Stage 4 (~60 ka BP) with respect to the LGM (Brocard, 2002; Guiter et al., 2005; Schoeneich, 

1998). Beaudevin (2000) used a theoretical model (e.g., Lliboutry, 1964) to extrapolate 

glacier elevations from the dated terminal moraines and to discriminate LGM from MEG 

glacial features. However, since this model is not well adapted to narrow valley glaciers, the 

results of this exercise are inconclusive. Here, we will use the highest glacial features 

encountered at any location to reconstruct a maximum glacial extent within the study area, 

which we associate to the MEG.  

 

Figure 5 shows the distribution and elevation of geomorphic features used to reconstruct the 

maximum glacial cover of the study area. The geomorphic markers are concentrated in the 

areas of basement rock outcrop, as these lithologies are more difficult to erode and preserve 

glacial features better than the Mesozoic calcareous sediments. For this reason, there is a 

relative paucity of glacial trimline markers in the subalpine massifs. The easily erodible 

lithologies (mainly calc-schists) of the internal alpine zones east of the Durance Valley lack 

clear trimline markers for the same reason. Nevertheless, the elevation pattern of the trimline 

markers is consistent and indicates a dome-like shape for the ice cover, centred on the highest 

peaks of the Pelvoux-Ecrins Massif that are still glaciated at present. 

 

Studies on the LGM ice cover in the Swiss Alps have long described the glacial 

paleogeography as a network of independent valley glacier (e.g., Haeberli and Penz, 1985). 

More recent studies, however, have shown that the glacial cover was more like an ice cap or 

dome permitting glacial flow that was relatively independent of the pre-existing fluvial 

valleys (Florineth and Schlüchter, 1998; Kelly et al., 2004). We suggest a similar glacial 

paleogeography for the western Alpine massifs studied here as field evidence for breached 

divides is common within the area (Beaudevin, 2000; Montjuvent, 1974), with only the 

highest peaks surmounting the ice surface as nunataks. 
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We have thus interpolated the data in Figure 5 using a continuous curvature spline algorithm 

with a tension factor of 0.25 (Smith and Wessel, 1990) in order to obtain a smooth surface, 

which represents the active ice-surface of the main valley glaciers; smaller cirque glaciers are 

not systematically taken into account by this analysis. Comparing this surface with the 

present-day topography (50-m resolution DEM) allows visualising the inferred extent of 

active ice cover and ice thickness during the MEG (Figure 6). Note that the ice thickness 

reconstructed in this manner is necessarily a model approximation, since it uses the present-

day topography as a reference instead of the (unknown) topography present during the MEG.  

 

The elevation contours of the reconstructed ice surface (Figure 6a) can be used as first-order 

indicators of glacial flow, which would be directed orthogonally to them along the surface 

gradient. Elevation contours of the ice surface are generally perpendicular to the valley axes 

within the studied massifs, suggesting glacier flow parallel to these valleys as expected. This 

correlation breaks down, however, within the large glacial valleys surrounding the massifs 

(Drac, Grésivaudan, Maurienne, Durance), suggesting that the reconstructed ice-surface 

contains artefacts in these areas, because of the lack of trimline indicators outside of the 

basement massifs. We will, therefore, concentrate on the glacial imprint on the morphology in 

the interior of the massifs. 

 

4. Estimating the minimum ELA  

 

From the reconstructed ice cover, we can attempt to estimate the position of the Equilibrium 

Line Altitude (ELA) associated with the MEG. The present-day ELA of glaciers within these 

massifs is well constrained at ~2900 m above sea level; several glaciers having been 

monitored over the last decades (Rabatel et al., 2005; Vincent, 2002). In order to estimate the 

MEG ELA, we will use the classical Toe to Headwall Altitude Ratio (THAR) and 

Accumulation Area Ratio (AAR) methods (e.g., Porter, 2000 and references therein). The 

THAR method uses the maximum and minimum elevations reached by the glaciers, as 

indicated by the highest glacial cirques and the frontal moraines, respectively, and estimates 

the ELA by comparison to modern glaciers. Most authors suggest THAR values of around 0.5 

for large valley glaciers, i.e., the ELA is approximately at mid-elevation between the glacier 

summit and its front. The AAR method is based on the relative size of the accumulation area 
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of the glaciers with respect to their total area. Typical AAR values for modern glaciers are of 

the order of 0.65 (Porter, 2000), i.e., ~2/3 of the glacier area is above the ELA. The AAR 

method is generally considered more reliable because it takes into account the hypsometry of 

the glaciers; it requires, however, a more detailed knowledge of the glacial paleogeography. 

Note that, since the ELA is affected by microclimate and local topography, most mountain 

belts show regional gradients in ELA. However, since we are focussing on a relatively small 

area, in which there are no indications for significant variations in present-day ELA, we will 

ignore possible ELA gradients here. 

 

Using the THAR method, we infer a MEG ELA at 1750 ± 100 m for the area (weighted mean 

and standard deviation of the values inferred for the individual drainage basins, cf. Table 1). 

As the glaciers filling these valleys were all interconnected during the MEG and joined the 

Isère glacier at Grenoble, we have taken a common minimum altitude of 200 m (the elevation 

of the MEG terminal moraines in the Isère valley) to calculate the ELA. We have combined 

this with the maximum elevation of the ice surface within each drainage basin and a THAR 

value of 0.5 to obtain this estimate.  

 

Using the AAR method, we can only estimate an ELA for the entire area as all the glaciers are 

interconnected and the accumulation and ablation areas are thus not independent. The ELA 

estimated in this way is conspicuously low (~1400 m), implying ELA lowering that much 

exceeds commonly accepted values of about 1000 m during glacial times (e.g., Coutterand 

and Nicoud, 2005; Ivy-Ochs et al., 2004). This discrepancy may result from both model 

artefacts and an overestimation of the AAR value used. As explained above, the 

reconstruction of the glacial surface is not satisfactory in the major valleys surrounding the 

studied massifs; these valleys constitute an important part of the glacial surface taken into 

account for the ELA estimation and ice surface elevations may be underestimated there. Also, 

some of the high-elevation cirque glaciers have not been taken into account in the 

reconstruction, and the limits of glacial drainage basins taken into account in this estimate are 

relatively arbitrary. For instance, we have cut off the Isère glacier because we have not 

reconstructed its very large glacial catchment that extends to the northeast of our study area. 

Finally, the AAR value may be overestimated because of the influence of possible debris 

cover, which may strongly reduce ablation rates if it is sufficiently thick (Benn and 

Lehmkuhl, 2000). In the presence of significant debris cover, the THAR may reach values of 

0.6 - 0.8, while the AAR would be reduced to values 0.1 - 0.4 (Clark et al., 1994).  
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A straightforward but labour-intensive method of estimating the minimum ELA attained 

during glaciations is to map out the minimum elevations of glacial cirques, under the 

hypothesis that glaciers do not have sufficient erosive power to carve out such features below 

the ELA. Within the studied massifs, cirques are encountered at elevations above 1900 m 

(Montjuvent, 1974; 1978). This method is rather coarse and tends to overestimate the ELA 

values for valley glaciers (Porter, 2000; Ramage et al., 2005), thus providing a maximum 

elevation for the MEG ELA. Taking all of the above considerations in mind, we estimate the 

MEG ELA as being situated at 1800 ± 100 m. The position of this inferred ELA is indicated 

in Figure 6b. A comparison with the model ice thickness, obtained by subtracting the present-

day topography from the interpolated MEG ice surface, shows that the inferred ELA occurs 

just downstream of the largest ice thicknesses in the valleys occurring within the massif, 

lending support to our estimate. 

 

 

5. Present-day relief and relation with former ice cover 

 

In order to document the glacial imprint on the topography, we quantify the relief structure of 

the different drainage basins studied. Figure 7 shows the hypsometries (i.e. the frequency 

distribution of altitudes) of these catchments, as well as the altitudinal dependence of slopes 

(i.e., the mean slope values for each 100-m elevation interval in each drainage basin). The 

analysis shows that a large proportion of the catchment areas (61 % on average, with values 

ranging between 42 % (Lignarre) and 78 % (Upper Drac) for individual catchments), lies 

between the reconstructed MEG ELA at 1800±100 m and the present-day ELA at 2900 m 

above sea level, whereas this elevation range represents on average only 41% of the total 

elevation range of the catchments. Modal elevations for all large catchments, except the 

Bonne, also lie within the elevation range 1900-2900 m, in general (except for the Vénéon 

catchment) toward the lower end of this interval. Moreover, mean slope values show a local 

minimum within the same elevation range (Figure 7). This is particularly clear for the largest 

catchments (i.e. Séveraisse, Upper Drac, Upper Romanche, Vénéon). The large Bonne 

catchment is a particular case, because it includes most of the Matheysine plateau, a very low-

gradient glacial valley at ~1000 m elevation carved by a southward flowing divergent branch 

of the Romanche glacier (cf. Figures 1 and 3). This plateau shows up as a peak around 1000 

m in the Bonne hypsometry, associated with very low slope values. 
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The relief structure and slope distributions of these Alpine catchments is thus very similar to 

that described by Brozovic et al. (1997) for a number of NW Himalayan massifs, even though 

their study pertained to a much larger spatial scale, and we interpret the results in the same 

way. Although there is a lithological control on  the slope distributions in these massifs 

(Figure 4), there is no consistent altitudinal distribution of lithology so that we can rule out 

lithological variation as the main origin of the altitudinal variation in mean slope values. 

Instead, the apparent relationship between modal elevations, slope minima and the range of 

ELA through time, suggest a strong glacial imprint on the topography. In particular, effective 

glacial erosion at these elevations will lead to rapid headward erosion and cirque retreat, 

leaving a large proportion of the surface area at an elevation range close to the ELA 

(Brocklehurst and Whipple, 2003; Oskin and Burbank, 2005). Note that the elevations of the 

present-day (interglacial) and MEG ELA’s can be interpreted as the upper and lower limits 

for the ELA throughout Quaternary times and the mean Quaternary ELA will be located 

within the interval defined by these elevations (e.g., Porter, 1989). Finally, it is important to 

note that, although the high-elevation, low-relief surfaces discussed in section 2 (cf. Figures 2 

and 3) contribute to the hypsometric peaks and slope minima observed in Figure 7, their aerial 

extents are rather small. The glacial imprint on topography, although most clearly developed 

on these landscape elements, affects a much larger part of the topography. 

 

6. Assessing glacial erosion and rebound 

 

The relatively low-relief elevation range discussed above is deeply incised by major valleys 

(Figures 1-3) whose steep sidewalls show up as local maxima in the slope-elevation curves 

just below the minimum ELA (Figure 7). These valleys have thus been carved within the low-

relief surface around the ELA, to a large extent by valley glaciers. Here we attempt to 

estimate the amount of erosion that can be attributed to glacial valley carving, as well as the 

isostatic response to the associated crustal unloading. In order to do this, we will use a very 

simple approach, which is a variant of that initially proposed by Small and Anderson (1998; 

Figures 8, 9). Given the observation that the glacial valleys are generally bordered by high-

elevation, low-relief rock shoulders, we attempt to extract these landscape elements from the 

DEM and interpolate the “missing area” between them in order to obtain a continuous surface 

that excludes the glacial valleys. Subtracting the present-day topography from this surface 

should give us an estimate of the glacial valley depths (Figure 8). This will provide an 
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estimate of glacial relief production. Note that valley widening associated with the 

development of the high-elevation, low-relief surfaces (cf. previous section) is not taken into 

account with this method, as the low-relief surfaces are used as a reference to quantify glacial 

valley deepening. 

 

Figure 9a shows the distribution of extracted high-elevation, low-relief surfaces. In order to 

exclude low-relief valley bottoms, we first applied a spatially variable minimum-elevation 

threshold to the DEM, varying linearly between 800 m at the edge of the study area and 2600 

m at the location of the highest peaks of the Ecrins massif. We then applied a maximum-slope 

threshold of 0.3 (~17°). Elevation and slope thresholds were varied by trial-and-error until a 

satisfactory extraction of surfaces was obtained. Inspection of Figure 9a shows that we 

capture the rock-shoulders occurring adjacent to glacial valleys well with this technique, 

while excluding all valley bottoms. Higher-elevation low-relief areas, that do not have a direct 

geomorphic significance, are also extracted with this technique, but do not influence our 

resulting estimate of valley depths. We construct a surface passing through these points using 

a continuous curvature spline algorithm with a tension factor of 0.5. The resulting interpolated 

surface is confounded with the topography at high elevations but detaches itself from it across 

the major valleys (Figures 9c, d), such that the difference between this surface and the 

present-day topography provides an estimate of glacial valley depths.  

 

The resulting glacial valley depths are generally >1000 m, reaching a maximum value of 1545 

m occurring within the Bourg d’Oisans trough at the confluence of the Vénéon and Upper 

Romanche rivers. Note that the inferred valley depths provide a measure of total valley 

incision below the rock shoulders; since our analysis is purely geometrical we are not able to 

distinguish glacial valley carving from (pre-, sub- or post-glacial) fluvial incision. 

 

There are several sources of potential error associated with this approach. First, the method 

does not account for glacial overdeepenings, which have been filled by lake sediments during 

Holocene times. Such overdeepenings may reach 200-300 m in the Bourg d’Oisans basin 

within the centre of the study area, whereas they reach up to 500-600 m in the Grésivaudan 

valley to the west. On the other hand, however, the interpolated surface minimises the depth 

of the pre-glacial valleys (cf. Figures 8, 9c, d), whereas valley incision will be at least partly 

of pre-glacial fluvial origin. A potential method to estimate the importance of pre-glacial 

fluvial incision is to model river profiles based on stream-power models (Brocklehurst and 
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Whipple, 2006). Brocard and van der Beek (2006) showed that rivers in non-glaciated 

catchments of the western Alps are well-described by a simple stream-power equation, such 

that river slope S is a power-law function of contributing drainage area A: 

S = ks A-θ     (1) 

Brocard and van der Beek (2006) derived concavities θ of 0.36 ± 0.09 for these rivers, with 

steepness indices ks between 10 and 40. Moreover, for catchment areas larger than ~35 km2, 

rivers were shown to be transport-limited, such that their profiles are insensititive to bedrock 

lithology. We can thus estimate, to a first order, what the pre-glacial river profiles may have 

looked like. Figure 10 shows such a reconstruction for the Romanche River. It is based on 

equation (1), with k = 20 m0.72 and θ = 0.36. These values are chosen to be consistent with 

those inferred for non-glaciated catchments, while producing a profile that passes through 

both the confluence of the Isère and the Rhone Rivers downstream and the source of the 

Romanche River upstream. An independent constraint on the maximum slope and elevation of 

the downstream reach of the Isère River is given by the surface of the Chambaran Plateau, to 

the north of the study area, which has been constructed during Mio-Pliocene times by fluvial 

deposits of the Isère and Rhone Rivers (Chiron and Kerrien, 1979; Clauzon, 1990). As the 

Isère River flowed over this surface before its abandonment at ~2 Ma, it provides a maximum 

elevation for the river at this time. The reconstructed river profile stays well below this 

surface (Figure 10). A comparison between the reconstructed river profile and the 

reconstructed surface used for assessing glacial incision shows that the reconstructed pre-

glacial profile lies below this surface and indicates that part of the incision attributed to glacial 

valley carving may in fact be of pre-glacial fluvial origin. The estimated contribution of 

fluvial incision ranges between ~20% in the upstream reaches of the Romanche river to as 

much as 50% downstream of the Bourg d’Oisans plain. Note, however, that our approach 

predicts minimum elevations for the pre-glacial profile (and thus maximum pre-glacial valley 

incision) as it excludes potential cirque lowering upstream and Quaternary fluvial incision 

downstream.   

 

Finally, we stress that the interpolated surface does not constitute a paleosurface (or relict 

landscape) such that it could be used as an absolute marker of erosion, for two reasons. 

Firstly, we do not have chronological constraints on the formation of the low-relief rock 

shoulders so the reconstructed surface may well be diachronous. Secondly, whereas this 

method predicts no erosion of the highest parts of the topography, an apatite fission-track age-
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elevation profile at La Meije peak in the northern Pelvoux massif (location in Figure 1) 

provides evidence for regional denudation rates of ~550±50 m/My affecting these high 

elevations (van der Beek et al., manuscript in preparation). Thus, several tens to hundreds of 

meters of erosion have affected the region since the MEG; glacial valley carving has been 

superimposed on this regional denudation. The amount of erosion plotted in Figure 9b should 

therefore not be considered an absolute amount, but the amount attributable to valley carving 

during glacial times, to which should be added the regional denudation.  

 

Taking the above caveats into account, the inferred spatial pattern of valley depths gives us 

some confidence that we are capturing a glacial valley carving signal with this relatively 

simple method. Firstly, maximum valley depths within the studied massifs occur around the 

reconstructed position of the minimum ELA, as expected if valley carving is glacial in origin; 

this is particularly clear in the Bourg d’Oisans area (Romanche valley; Figure 9b). Secondly, 

we can test whether there is a relationship between the mean amount of glacial erosion in a 

catchment (quantified here as the sum of the valley depths at all points in a catchment divided 

by catchment area) and the maximum extent of glacial cover or ice thickness in that 

catchment (Table 1). Figure 11 shows that, while there is no clear correlation between the 

mean valley depths and the reconstructed relative ice cover, there is some correlation between 

valley carving and the reconstructed mean ice thickness (Pearson correlation coefficient r2 = 

0.33), which is clearest for the largest catchments (r2 = 0.39 when excluding the 3 smallest 

catchments). Note that the spatial patterns of ice thickness and valley depths look rather 

similar because both are calculated using the present-day topography as a reference. However, 

the two reconstructions are independent (based on trimline observations for the thickness and 

on DEM extraction of low-relief surfaces for the valley depths), as also indicated by the 

relatively weak correlation between them. 

 

We have also verified whether there is a relationship between inferred valley carving and 

present-day relief. In order to quantify the geophysical relief (or “missing volume” beneath 

ridgelines and peaks) for each drainage basin, we calculated the sub-ridgeline relief as defined 

by Brocklehurst and Whipple (2002; cf. Table 1). In their method, an enveloping surface is 

constructed for each drainage basin by interpolating between the elevations of the catchment 

boundaries and present-day topography is subtracted from this surface to obtain the sub-

ridgeline relief. The mean sub-ridgeline relief is significantly larger than the mean valley 

depth (typically about twice as large), as expected, except for the three small catchments, 
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where it is smaller. The reason for this discrepancy is that there are very few high-elevation, 

low-relief surfaces in these small catchments, which have been incised over nearly their total 

area. The amount of valley carving is reasonably well correlated with geophysical relief (r2 = 

0.53). When excluding the three smallest catchments, this correlation becomes very good (r2 = 

0.96), indicating that half of the sub-ridgeline relief in the studied area can be attributed to 

glacial valley carving. 

 

Finally, we can estimate the amount of crustal unloading and isostatic response using the 

spatial variation of valley depths. Again, we stress that the rebound calculated here will be 

only that due to valley carving and will not be the total isostatic response to erosion during 

Quaternary times. The isostatic response to erosional unloading is given by the flexure 

equation (e.g., Watts, 2001): 
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where x and y are the horizontal spatial coordinates, w is the isostatic deflection, E is the 

amount of eroded material, ρc (2800 kg m-3) and ρm (3300 kg m-3) are the crustal and mantle 

densities, respectively, and g (9.8 m s-2) is the acceleration of gravity (values in parentheses 

are those used here). D is the flexural rigidity of the lithosphere, defined as: 
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in which Y is Young’s modulus (1011 N m-2), Te is the equivalent elastic thickness of the 

lithosphere, and ν is Poisson’s ratio (0.25). For two-dimensional flexure of an elastic plate 

with constant elastic thickness, equation (2) can be solved in the frequency domain (Nunn and 

Aires, 1988; Watts, 2001): 
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where k is the wavenumber, C = D k4 / ρm, and other notations are as in Equation (2). Thus, 

the isostatic response can be calculating by solving (4) after Fourier transforming the spatial 

load distribution (E(x,y)→ E(k)), followed by inverse Fourier transforming the deflection (w(k) 

→ w(x,y)). 

 

The principal unknown in estimating the amount of isostatic rebound is the value of the 

flexural rigidity (or equivalent elastic thickness) of the lithosphere. Flexural models for the 

 17



Molasse foreland basin in Switzerland (e.g., Burkhard and Sommaruga, 1998; Pfiffner et al., 

2002) have come up with widely varying equivalent elastic thicknesses between 10 and 35 

km. Moreover, these values may be strongly reduced within the core of the orogen, due to 

both crustal thickening and large bending stresses (Burov and Diament, 1995; Lyon-Caen and 

Molnar, 1989). In Figure 12, we show calculated spatial distributions of isostatic rebound 

across the massifs for equivalent elastic thicknesses of 3, 10, and 30 km. For an extremely low 

value of flexural rigidity (Te = 3 km), the isostatic response to erosion is nearly local, leading 

to strong rebound of the large incised valleys surrounding the massifs, with maximum values 

of ~700 m in the west of the study area. For more realistic values of flexural rigidy, isostatic 

rebound varies more smoothly across the massifs, reaching maximum values of ~400 m for 

our preferred Te value of 10 km. Only for large (and probably overestimated) values of the 

flexural rigidity (Te ≥ 30 km) does isostatic rebound become negligeable (< 150 m throughout 

the massifs). It thus appears that the isostatic response to glacial erosion is significant in these 

massifs, and may account for ~10% of the peak elevations. It is difficult, however, to compare 

this amount to present-day rock uplift rates as measured by geodetic methods, or even to 

assess whether isostatic rebound would have led to the uplift of mountain peaks in this area 

(cf. discussion section below). 

 

 

7. Discussion and conclusions 

 

We have shown that the relief structure of the western Alpine massifs studied here, expressed 

as the altitudinal dependence of surface area and slopes, shows a strong glacial imprint. 

Modal elevations lie consistently within the elevation range limited by the present-day ELA 

and the reconstructed MEG ELA, and coincide with minima in plots of mean slope as a 

function of elevation (Figure 7). This observation is consistent with the hypothesis that glacial 

erosion has flattened and enlarged the areas occurring around the ELA, which has varied 

through Quaternary times between the two limits defined above. Deeply incised valleys of 

clearly glacial origin occur within the area. We have made a first-order estimate of the amount 

of material removed from these glacial troughs and the consequent relief production and 

isostatic response. The amount of valley carving estimated in this way is a maximum value, as 

it supposes no pre-glacial incision of the valleys. It is, however, reasonably well correlated to 

the reconstructed maximum glacier thickness of the different drainage basins studied and may 

be responsible for half of their geophysical relief (Figure 11). Although our inferences thus 
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appear internally consistent, we do note that (1) our reconstructed maximum ice surface and 

glacial trimline excludes some of the high-elevation cirques and is not well-constrained 

around the edges of the massifs studied, leading to difficulties in estimating minimum ELA 

values; (2) our method of estimating “glacial” erosion is rather coarse. In fact, we estimate the 

total amount of valley incision below conspicuous rock shoulders; we are not able to 

discriminate between the processes (i.e. glacial, fluvial or hillslope erosion) that carved these 

valleys. Glacial erosion can be argued to dominate this number, however, since glacial 

conditions temporally dominated the Quaternary period in the alpine massifs. 

 

Our study predicts that the isostatic response to glacial valley carving in the study area may 

contribute to ~10% of the total elevation of the studied massifs. Since our method maximises 

the amount of valley carving attributed to glaciers, this estimate can be regarded as a 

maximum value. On the other hand, we do not take local glacial overdeepenings that are 

known to exist into account in our estimate of glacial valley depths and associated isostatic 

rebound. Although the overdeepenings have been filled with lake deposits, the difference in 

density between these Recent unconsolidated sediments (≤ 2000 kg m-3) and typical upper 

crustal rocks (2600-2800 kg m-3) will contribute to the isostatic response. Moreover, the total 

isostatic response to glacial erosion will be larger than the numbers presented here, because 

the response to valley widening around the mean Quaternary ELA should be added to it. 

 

Given the above result, two questions may be posed: firstly, can we expect local surface uplift 

to have occurred on mountain peaks as a result of glacial relief increase? Secondly, does the 

isostatic response to valley incision contribute to measured present-day rock uplift rates in the 

western Alps, which are difficult to explain tectonically, even when taking postglacial 

rebound into account? These two questions are difficult to answer because they both require 

knowledge of rates of isostatic rebound, which will be controlled to a first order by the rate of 

glacial erosion and relief production.  

 

If we assume that we have isolated the total glacial valley incision affecting the study area, 

erosion and rebound rates can be estimated if we can identify the onset of glaciation in the 

western Alps. The onset of widespread Northern-Hemisphere glaciations has been dated at 

~2.4 Ma (e.g., Maslin et al., 1998; Raymo, 1994) but there are indications that the Alps may 

only have become totally glaciated for the first time at around 0.9 Ma (Muttoni et al., 2003 

and references therein). 
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In order for isostatic rebound to lead to peak uplift, it should outstrip local surface lowering 

by erosion. We can make an estimate of surface lowering rates by supposing that regional 

denudation is constant across the massifs and laterally widespread, so that we can use a 2D 

analytical solution to equation (2) for a uniform load (e.g., Turcotte and Schubert, 1982) to 

estimate the isostatic response: 
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where w(0) is the maximum rebound, L the half-width of the load, α the flexural parameter (α 

= [4D / ρc g]¼) and other notations are as in (2). Assuming a regional denudation rate of 550 

m My-1, as inferred from low-temperature thermochronology data (van der Beek et al., 

manuscript in preparation) and a 70-km width of the eroded massifs, maximum isostatic 

rebound as a response to regional denudation will be 375 m My-1 in the centre of the massifs. 

Minimum surface lowering of mountain peaks since the onset of glaciation will thus amount 

to ~160 m if this onset took place at 900 ka, or ~420 m if glaciations have affected the Alps 

since 2.4 Ma. Thus, for reasonable equivalent elastic thickness values of the lithosphere, the 

isostatic response to valley carving is of the same order as peak surface lowering. It is 

therefore unlikely that isostatic rebound would have led to a significant (i.e., more than a few 

tens of m) increase in peak elevations in the western Alps.   

 

The question of whether present-day rock uplift rates can be partly explained by the isostatic 

response to erosion is even more difficult to answer because present-day isostatic uplift, if 

existent, would by nature be a delayed response to glacial valley carving. At 103 – 104 y 

timescales, isostatic rebound rates are controlled by the viscosity of the asthenosphere. 

Therefore, a better temporal resolution of the valley carving, as well as a quantification of 

post-glacial valley incision rates by fluvial processes are required to answer this question. A 

study of the spatial and temporal variation of erosion rates within the massifs, using 

cosmogenic isotope data, would allow obtaining such rates. 

 

Finally, an interesting question arises concerning the pre-glacial topography and the timing of 

major valley incision. If we accept that the pre-glacial landscape did not contain the deep 

glacially carved valleys that dominate the modern-day landscape, it would be characterised by 
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significantly higher mean elevation and lower relief than the present-day topography. A more 

quantitative perception of what the pre-glacial valleys looked like may be gained applying the 

river-profile modelling approach shown in Figure 10 to all the main valleys in the study area. 

As the efficiency of glacial expansion is promoted by higher mean elevations and lower relief, 

we may expect that the earliest glaciations had a much wider expanse than the later ones, and 

may even have constituted ice caps that covered the entire topography. Since the highest 

peaks do not currently show signs of glacial erosion (this is the criterion on which we 

reconstructed the maximum glacial surface), these must have been eroded away since. Given 

the regional erosion rates of several 100 m/My, we may indeed expect the traces of the 

earliest glaciations to have been removed. However, the early glaciations may have been 

particularly efficient in carving out the major glacial valleys and may thus have produced a 

topography that resembles the present-day early on in the glacial history of the massifs, with 

subsequent glacial expansions only modifying the relief in detail. Such a scenario has been 

proposed for the Coast Mountains of British Columbia on the basis of high-resolution 

thermochronology data (Shuster et al., 2005). Again, cosmogenic isotope data could be used 

to date the surface exposure of landscape elements such as the high-elevation low-relief 

surfaces and to assess whether these have been strongly modified during the LGM of whether, 

in contrast, they have survived more than one glacial cycle (e.g., Li et al., 2005). 
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FIGURE CAPTIONS 

 
Fig. 1. Digital Elevation Model of the study area based on Institut Géographique National 

50-m resolution digital topography data, with boundaries of different catchments 

studied (Li: Lignarre; Sa: Sarenne; Se: Severaisette; BO: Bourg d’Oisans valley; Ch: 

Chartreuse Massif; V: Vercors Massif). Eastings and northings are according to the 

IGN Lambert-III grid, in kilometres. Inset shows location within France. 

Fig. 2. Field photos showing high-elevation, low relief surfaces deeply incised by glacially 

scoured valleys. (a) Aerial view of the Bourg d’Oisans valley and surrounding areas, 

looking toward SE. (b) View toward ENE from the Taillefer lakes across the Bourg 

d’Oisans valley to the Grandes Rousses Massif. Incised valley in background is 

Sarenne. For location of landscape elements shown in these photos, see Figures 1 

and 3. 

Fig. 3. Slope map of the central part of the study area. Eastings and northings as in Figure 1. 

Cross patterns indicates extent of basement outcrop. Low-gradient areas are either 

glacially scoured (and lake-filled) valley bottoms (BO: Bourg d’Oisans plain; G: 

Grésivaudan; MA: Matheysine plateau) or high-elevation plateaux (AH: Alpe 

d’Huez, 2000 m. elev.; CC: Croix de Chamrousse, 1500-2300 m elev.; E: Emparis 

plateau, ~2500 m elev.; ML: Mont de Lans plateau, 3100-3500 m elev.; T: Taillefer 

lakes plateau, 2050-2300 m elev.).  

Fig. 4. Slope distributions for several characteristic lithologies of the study area (in black: 

basement rocks; in grey: sedimentary cover rocks). Modal slope values are generally 

higher in basement rocks than in sedimentary cover, particularly within the granites, 

amphibolites and meta-conglomerates that characterise the Pelvoux-Ecrins and 

Grandes Rousses, eastern Belledonne, and Taillefer massifs, respectively. Modified 

from Peysson (2000). 

Fig. 5. Distribution and elevation of geomorphic features used to reconstruct the maximum 

glacial extent in the study area. Box outlines the area for which we show the 

reconstructed glacial surface in Figure 6. Only the highest-elevation features at any 

locality are used and the glacial surface is supposed to pass through the summits of 

moraines, 50 m above glacial grooves associated with drumlin-like features and 
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roches moutonnées, and 100 m above glacial erosion grooves in rock shoulders. See 

text for discussion.  

Fig. 6.  (a) Reconstructed ice surface with elevation contours; peaks exceeding the trimline 

(nunataks) are shown with the elevation scale as in Figure 1. (b) Reconstructed ice 

thickness and inferred position of MEG ELA (thick black line, see text for 

discussion). Eastings and northings as in Figure 1. 

Fig. 7. Hypsometry and altitudinal dependence of slopes for the different drainage basins 

studied. Elevation frequency data (grey lines) have been binned in 100-m intervals; 

for each interval, the mean slope angle (black lines; calculated as the scalar value of 

the first derivative of elevation) is plotted. Thick black line on right of each graph is 

present-day ELA (2900 m), shaded bar on left is inferred position of MEG ELA 

(1700-1900 m). See text for discussion. 

Fig. 8. Conceptual sketch of our approach to estimate glacial valley depths and the potential 

errors involved in the approach. We extract high-elevation, low-relief (HE-LR) 

surfaces from the DEM and interpolate between these. Extracting the present-day 

topography from the interpolated surface leads to an estimate of glacial valley 

carving. The method does not take into account glacial valley widening (which has 

led to the HE-LR surfaces), pre-glacial valley incision or local glacial 

overdeepening (not shown). 

Fig. 9. Estimate of glacial valley carving: (a) Extracted high-elevation, low-relief (HE-LR) 

surfaces – these were isolated from the DEM by applying a spatially varying 

minimum elevation threshold as well as a maximum slope threshold. Lines ABC 

and DE correspond to the two topographic profiles shown in (c) and (d), 

respectively; (b) Inferred glacial valley depths, obtained by subtracting present-day 

topography from an interpolated surface passing through the data in (a). Thick black 

line is inferred position of minimum ELA at ~1800 m elevation; (c) and (d) 

elevation profiles across the Lower and Upper Romanche River, respectively, 

showing relationships between present-day topography, interpolated surface and 

extracted HE-LR surfaces, as well as estimated amount of valley incision. Extracted 

HE-LR surfaces have been projected onto the profile from a 1-km wide swath 
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centred on it. Abbreviations: CC: Croix de Chamrousse plateau; BO: Bourg 

d’Oisans. 

Fig. 10. Present-day and reconstructed pre-glacial long profiles of the Romanche River and 

its downstream continuation in the Drac and Isère rivers. The present-day profile is 

extracted from the digital elevation model; the pre-glacial profile is modelled 

assuming that it can be described by a stream power law S = ks A-θ, with ks = 20 and 

θ = 0.36. The pre-glacial profile is fixed at the downstream confluence of the Isère 

and the Rhone rivers; it is compared to the elevation of the high-elevation low-relief 

(HE-LR) surfaces, as well as to the surface of the fluvial deposits of the Chambaran 

plateau. Inset shows slope-area plots for the present-day Romanche River as well as 

for the non-glacial equilibrium Buëch and Drôme rivers to the SW of the study area. 

Continuous line represents the model stream-power law used to construct the pre-

glacial profile. See text for discussion. 

Fig. 11. Reconstructed mean glacial erosion (defined as the sum of glacial valley depths at 

each pixel in a catchment, divided by catchment area) for the 9 studied catchments 

as a function of maximum ice cover, maximum ice thickness, and geophysical (sub-

ridgeline) relief, respectively (data in Table 1). Size of the circles is proportional to 

(logarithm of) catchment area. Pearson correlation coefficients r2 are given in each 

plot for all the data, and excluding the three smalles catchments (Sarenne, Lignarre, 

Séveraissette) in parentheses. 

Fig. 12. Estimated flexural isostatic rebound in response to the amount and distribution of 

glacial valley carving shown in Figure 8b, and for equivalent elastic thicknesses of 

the lithosphere of 3 km (left), 10 km (centre), and 30 km (right). Grid of erosion 

values was reinterpolated on a 500-m resolution grid (144 × 192 nodes), which was 

centred upon a 512 × 512 node grid, with erosion values tapered to the edges, before 

performing a fast Fourier transform and calculating the isostatic response function. 
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Table 1. Characteristics, reconstructed ice cover, inferred glacial erosion and geophysical relief for 

the studied catchments. 

Min Mean Max Drainage 
basin 

Area 
(km2) Elevation 

(m) 

Ice 
cover 
(%) 

Mean ice 
thickness 

(m) 

ELA 
(THAR=0.5) 

(m) 

Mean 
erosion 

(m) 

Mean 
Geophys. 
Relief (m) 

 

Upper 
Romanche 

362 717 2225 3874 60 432 1850 283 576 

Vénéon 319 715 2357 4004 46 472 1875 398 716 

Eau d’Olle 169 717 1940 3433 61 440 1750 239 450 

Sarenne 36 719 2043 3304 61 287 1700 166 127 

Lignarre 57 712 1592 2829 64 533 1425 515 456 

Bonne 431 521 1620 3473 57 394 1700 485 833 

Séveraisse 221 776 1949 3652 54 443 1700 470 737 

Séveraissette 64 932 1844 3160 30 171 1650 435 299 

Upper Drac 201 1164 2129 3419 36 291 1700 227 532 
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