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SUMMARY 

Multiple I tests can be used for multiple compari-

sons in analysis of variance and for multiple significance 

tests of a set of intercorrelations. In both types of 

analysis, if a nominal Type I error rate is applied to 

each single test (e.g., .05), then the probability of 

observing one or more Type I errors in the set of signif-

icance tests increases a great deal above .05. In mul-

tiple comparisons in analysis of variance, diverse mul-

tiple-test procedures have been recommended to correct 

for this. However, in multiple significance tests of 

intercorrelations, the same rationale for more stringent 

Type I error rates remains largely ignored. In this 

study a computer simulation was used to determine the effect 

of using the ordinary single-test procedure on Type I error 

rates in multiple significance tests of intercorrelations. 

Population correlation matrices were specified, and random 

samples were drawn from those populations. The results 

indicated that when a nominal value of ol= .05 is applied 

to each single significance test, the familywise Type I 

error rate increases rapidly to undesirable levels as the 

number of variables increases. Two alternative procedures 

were also investigated, a Bonferroni procedure and an 

assumed-independent-tests procedure. Both were successful 
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in keeping the familywise Type I error rate at the nominal 

value of c(= .05 or below. Both over-controlled for 

Type I errors when at least a small proportion of the null 

hypotheses of interest were false. It was also found that 

the mutual dependence of the component significance tests 

results in high conditional Type I error rates if some 

correlations between the variables of interest are moder-

ate or large in magnitude. Generally, this increases the 

probability of a relatively large number of Type I errors 

occurring simultaneously. A multistage Bonferroni I 

procedure is outlined and recommended. 



CHAPTER I 

INTRODUCTION 

The purpose of this study is to examine the ef-

fects of different procedures for controlling Type I 

error rates in multiple significance tests of intercor-

relations. When only one correlation coefficient is in-

volved, the I statistic is an appropriate statistical 

test for a hypothesis of the form 

t /9 = 0 H
0  

H1 : I 	0 	. 

But when the I statistic is used with an unadjusted alpha 

level (i.e., a critical value appropriate for testing a 

single correlation coefficient at a given alpha level) to 

test each of the k (k-1)  intercorrelations in a correlation 2 

matrix of k variables, the expected number of Type I errors 

increases rapidly as k increases. Hays (1973, p. 712) 

states that 

The resulting significance levels are largely 
meaningless, for reasons much like those making 

tests for all differences among a set of means 
a dubious procedure. In the first place, even 
for independent tests of significance, when so 
many tests are carried out the probability that 
some Type I errors are being made may be very 
high. Even worse, the tests for correlations 
are quite redundant and are not statistically in- 

1 
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dependent when carried out on a table of inter-
correlations. Consequently, the set of results 
can be grossly misleading. 

If such significance tests are used, he adds, the experi-

menter should interpret the significance levels with con-

siderable latitude. 

As the above quote from Hays indicates, the problem 

of controlling Type I error in multiple tests of inter-

correlations is similar to the problem of controlling Type 

I error in multiple comparisons in analysis of variance. 

Multiple-test procedures are fairly widely used in psycho-

logical research for multiple comparisons in analysis of 

variance. Although the rationale is very similar for the 

use of multiple-test procedures in multiple tests of inter-

correlations, ordinary, single-test procedures continue 

to be widely (if not universally) used with multiple tests 

of correlations. This contradictory state of affairs prob-

ably has resulted from the historical fact that the major 

multiple-test procedures were first published in text- 

book form in Analysis of Variance (Scheffe, 1959), and from 

the mathematical fact that multiple tests of intercorre-

lations do not generally meet the assumptions of the better-

known multiple-test procedures. As early as 1959 Ryan 

specifically mentioned multiple tests of intercorrelat ions 

as one case where multiple-test procedures should be ap-

plied. However, following historical precedent, the bulk 

of his article was about multiple comparisons in analysis 
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of variance. Later he presented a general multiple-test 

method for statistical analyses other than comparisons 

among means. His method can be applied to any set of two-

sample significance tests with hypotheses of the form 

HO : P1 = P2 	 (2 ) 

H1 t P1 	P2 

th where P. represents a population parameter for the . popu-

lation (Ryan, 1960). This is only a short step away from a 

general method which can be applied to hypotheses of the form 

H1 	P1 7(  a 

H0 	P1 = a 
	

(3) 

where a is the hypothesized parameter value. However, 

there have apparently been few further developments in the 

application of multiple-test procedures to intercorre-

lations in a correlation matrix since Ryan's (1959, 1960) 

papers, at least not in sources used much by psychological 

researchers. 

Marascuilo (1966) did consider multiple-test pro-

cedures for hypotheses of the form 

HO 3  P12 = 64 = /56 = "" = /2(n-1)n 
(4 ) 

H1 	ni -1)i 7(  /2(j-1)j ; for some i, j • 



14,  

His method assumes mutually independent tests and has un-

known adequacy for small samples. Harris (1967) investi-

gated the effects of the non-independence of significance 

tests of correlations in correlation matrices. He concluded 

that the Type I error rate was greatly distorted by non-

independence and that there may be no feasible correction 

for such distortion. He did not consider any multiple- 

test procedures to correct this distortion. Currently, 

psychological researchers continue to ignore questions 

about the distortion of Type I error rates in ordinary 

single-test procedures for multiple significance tests of 

intercorrelations. 

This thesis examines the problem of controlling Type 

I error rate in multiple tests of intercorrelations by 

first reviewing the literature on multiple-test techniques 

and then reviewing those mathematical characteristics of 

correlation matrices which must be taken into account in 

applying multiple-test procedures to them. Thirdly, an 

empirical investigation of Type I and Type II errors under 

several procedures when the population correlation matrix 

is known is reported. Finally, the implications of the re-

sults of the literature review and the empirical findings 

are discussed. 

Multilzle-Test  Procedures  

Widely Divergent Opinions and Procedures  

Several authors (Carmer & Swanson, 1973; Dunnett, 
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1970; O'Neill & Wetherill, 1971; Waller & Duncan, 1969) 

have commented recently on the controversy among statis-

ticians about multiple-test procedures and their disagree-

ment concerning the basic principles involved. Contro-

versy seems to exist concerning the nature of the basic 

problems, relevant criteria for multiple-test procedures, 

and properties of currently proposed procedures. Such dis-

agreement was illustrated in a meeting of the Royal Sta-

tistical Society on this very topic. Following O'Neill and 

Wetherill's (1971) paper, the first discussant mentioned 

that it was good to have a meeting on these issues since 

the problems their paper discussed still existed after 30 

years and some 200 odd papers on the topic (Plaskett, 1971). 

The next discussant stated that "multiple comparison 

methods have no place at all in the interpretation of data 

(Nelder, 1971, p. 244)", adding that their principle pur-

pose was to lend an air of respectability to otherwise un-

interesting data. 

Disagreements among statisticians are also evident 

in their recommendations for multiple-test procedures. 

Currently available techniques for multiple comparisons 

lead to very different results in many cases. For example, 

the error rate per experiment varied from essentially zero 

for Scheffe's procedure to over 1.00 for Duncan's Mulitple 

Range Test in one case simulated in Petrinovich and Har-

dyck's (1969) study. Yet both procedures have their pro- 



ponents among applied statisticians. For example, Pet-

rinovich & Hardyck (1969) recommended Scheffe's or Tu-

key's procedures as vastly superior to Duncan's method, 

whereas Carmer & Swanson (1973) concluded that Scheffe's 

& Tukey's procedures were both clearly inferior to Dun-

can's procedure. 

Aside from such major issues, opinions differ 

greatly on other matters, such as the importance of dis-

tinguishing between a priori  and a posteriori  tests and 

of distinguishing between the cases of independent tests 

and non-independent tests. 

Greater CompZexkties Than Single-Test Procedures 

Probably a primary factor behind such widely di-

vergent opinions is the greater complexity involved in 

multiple tests as compared with a single significance 

test. At the single-test level, confidence limits also 

indicate the result of a significance test; this is not 

always true with multiple tests. Distinctions can be made 

between different kinds of Type I error rates for mul-

tiple tests; all these are the same at the single-test 

level. At the single-test level, a decision is made be-

tween the null hypothesis and an alternative hypothesis; 

with multiple-test situations there are more distinct 

decisions possible, involving various combinations of de-

cisions on the component significance tests. This also 

6 
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complicates the relationship between Type I error rate 

and power. 

Probably the central issue of multiple-test pro-

cedures is the appropriateness of various generalizations 

from a single-test procedure to a multiple-test procedure. 

For example, what kind of Type I error rate is an appro-

priate multiple-test-procedure generalization from the 

usual single-test Type I error rate? Does it indicate 

the same dependability of results as a reported Type I 

error rate for a single test? This issue is considered in 

more detail in the next section. 

Type I Error Rates  

As already indicated, expressing Type I error rates 

for multiple tests in a way that is directly analogous 

to single tests is not a simple problem. Waller and Dun-

can (1969) call this issue a major source of disparities 

in multiple-test procedures. 

Three Type I error rates have been distinguished 

for multiple tests, error rate per individual test ( o( T ), 

error rate per family ( cK pF ), and error rate familywise 

( FW ). The simplest multiple-test situation will be 

used to illustrate the differences among these Type I 

error rates. This multiple-test situation involves a set 

of two statistically independent significance tests. 

In any multiple-test procedure, the set of individual 

significance tests (in this case 2) is called a family 
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(This concept of a family is considered in more detail 

later in this chapter). The individual significance 

tests are called component tests. 

Table 1 gives the probabilities of observing zero, 

Table 1. Probability of a Given Number of Type I 
Errors in a Family of Two Independent Testsa 

a c:7N-
T 
= .05 

one, or two Type I errors in this particular family of 

tests, given T = .05 when the null hypothesis is true 

for both tests (i.e., two true component null hypotheses). 

The Type I error rate per test ( c--) T) is simply the pro-

bability of a Type I error on a single statistical test, 

in this example, .05. The Type I error rate per family 

is the expected number of Type I errors in the entire 

family of tests, i.e., 

cxPF = E(total Type I errors) • 
	

(5) 

Note that cxPF is actually not a probability but an ex-

pectation. In the example in Table 1, the error rate per 
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family is 

PF = 0 (.9025) + 1 (.095) + 2 (.0025) 
	

(6) 
.010 

The familywise Type I error rate is the probability of 

observing one or more Type I errors in a family of tests, 

(D(Fw  = 1 - Pr(zero total Type I errors) 	(7) 

In Table 1, the familywise error rate is 

FW = 1 - .9025 	
(8) 

. .0975 

Both the error rate per test and the familywise 

error rate are used in current psychological literature. 

The overall E test in analysis of variance is an example 

of the use of familywise error rate, whereas tests of inter-

correlations in a correlation matrix (e.g., Kolb, 1973; 

Paige, 1973) or between predictor and criterion vari- 

ables (e.g., Brooks, 1973; Jessor & Jessor, 1974; Peder-

sen, 1973a, 1973b; Siess, 1973) are examples of the use 

of error rate per test. 

When a statistic exceeds the critical values as 
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determined by all three error rates, the null hypothesis 

is clearly rejected. When it is smaller than the cri- 

tical values for all three error rates, the null hypothesis 

is always accepted. When only one significance test is 

6 
4, 
O 
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statistical values would fall in the shaded region of 

Figure 1. A central issue in multiple-test procedures 

is what conclusion to make when the statistical value 

falls in this borderline region. This issue is equivalent 

to the issue of which kind of Type I error rate to con-

trol for. If `KT is controlled at .05, then the border-

line region is included in the rejection region. If(,--XpF 

 is controlled at .05, then the borderline region is in-

cluded in the acceptance region. Notice that the border-

line region gets larger as the number of component tests 

increases. 

What Type I error rate should be controlled for? 

The literature on multiple-test procedures and current 

practices in statistical analysis of psychological research 

suggests that no general clear-cut answer can be given. 

Two major issues, however, should be kept in mind to an-

swer this for a particular situation. Ryan (1959) has 

pinpointed perhaps the most important issues Which Type I 

error rate is the best representation of our results? 

Most psychological researchers associate a strong degree 

of dependability with experimental "facts" at the .05 

level, and a greater degree of dependability with "facts" 

accepted at the .01 level. When .05 is the reported sig-

nificance level associated with "facts" presented in a 

multiple-test situation, it should represent the same de-

gree of dependability as a .05 significance level in a 



12 

single-test situation. 

Some statisticians view this issue as an attempt 

to formalize into a Neyman-Pearson statistical model some-

thing which should be much more flexible (e.g., O'Neill 

& Wetherill, 1971). Such a statement is not without merit, 

but the fact of the matter is that psychologists are much 

more familiar with Neyman-Pearson statistical concepts 

than with Bayesian concepts. A Neyman-Pearson model is 

useful for reporting the dependability of experimental 

results, which psychologists use, in turn, to distinguish 

between findings that must be integrated into their 

theories and findings that may be ignored until their re-

plicability can be demonstrated. If findings were re-

ported in terms of Bayesian concepts, most psychologists 

would have difficulty in interpreting the dependability 

of the reported findings. So the issue of a known degree 

of protection for a family of tests against Type I errors 

seems to be most crucial, at least for current psycholo-

gical research. 

A second issue is the consistency of treatment of 

research results regardless of the type of analysis. 

Currently, a familywise Type I error rate is commonly 

used in analysis of variance (e.g., an overall F test), 

while a Type I error rate per individual test is commonly 

used in statistical tests of a set of intercorrelations. 

This inconsistency is unreasonable. One researcher should 
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not be penalized simply because an analysis of variance 

is applicable to his research while another researcher 

can use tests with more power simply because he has cor-

relational data. 

The advantages and disadvantages of the three 

Type I error rates are considered next. The Type I error 

rate per test ( d` T ) is the easiest to use and results 

in more powerful tests than the other two more conservative 

alternatives. Although generally favoring (-2(Fw , Miller 

(1966) indicates that T can be appropriate if the con-

sulting statistician and the researcher are both aware of 

the implications of using (---x T  in a multiple-test situation. 

However, the logical extension of this is that the aver-

age reader should be aware of these implications if oe T  

is used in publishable research. And one implication is 

that the probability of observing at least one Type I 

error in a family of tests increases rapidly as the number 

of component tests increases. For example, in a family of 

five independent component tests with <T = .05, there 

would be at least one Type I error over 22% of the time; in 

a family of 10 tests, over 40% of the time; and in a family 

of 20 tests, over 64% of the time. Ryan (1959) has pointed 

out that if 
2T 

is used, then the more variations of ex- 

perimental conditions a researcher investigates, the 

better the chance of finding some apparently significant 
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results. This leads to a greater reward for working harder 

on irrelevant variables. 

Most of the literature on multiple-test procedures 

favors a more conservative Type I error rate (e.g., Miller, 

1966; Ryan, 1959; Scheffe, 1959). The Type I error rate 

familywise ( c>( FW ) and the Type I error rate per family 

( (<PF)  are usually almost equivalent, particularly when 

the desired alpha level is small and when VFW can be 

calculated accurately. Of these two, c'‹Fw  is generally 

preferred. The most common use of c'e w  is the overall f 

test in analysis of variance. The Type I error rate family-

wise is a probability whereas (=-2(pF  is an expectation and 

not a probability. The Type I error rate familywise gives 

a known probability of protection to the family of tests 

against any Type I error. These may be the main reasons 

for the preference for c?(Fw • Ryan (1959), however, con-

cluded that VFW and (=-*PF simply represent different view-

points. If one Type I error is viewed as nearly as costly 

as several Type I errors, then (=.' 'Fw  is to be controlled. 

If two errors in one family of tests is considered as bad 

as one error in each of two families, then PF is to be 

controlled. But in general the literature favors VFW 

over the other two Type I error rates, although VFW  is 

usually practically equivalent to°< pF . 

If we decide to controlo 	then most statis- 

tical values in the borderline region (Figure 1) result 
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in acceptance of the null hypothesis, since cx'Fw  is usually 

nearly equivalent to PF . But at the single-test level, 

this borderline region becomes the single critical value 

itself. So, analogously, it should be remembered that 

the borderline region represents statistical values on the 

fence between the acceptance and rejection regions. As 

such they would represent more dependable results than sin-

gle test results reported as "tending toward significance". 

The implication of this is that results in the borderline 

region might be especially worthy of follow-up studies. 

So, as recommended elsewhere (Miller, 1966; Petrinovich 

& Hardyck, 1969), cA/T  is useful for exploratory research, 

whereas definitive, publishable research should use c Fw . 

The distinction here is similar to the distinction 

made by Fisher (1935) between results which can suffice 

in themselves to establish the point at issue and results 

which are of less value except insofar as they confirm 

or are confirmed by other experiments of like nature. Sta-

tistical effects which are large enough to reject the null 

hypothesis even with OcFw  = .05 can be considered to stand 

alone in establishing the point at issue, whereas other 

statistical effects which fall in the borderline region 

need to be confirmed by other research. 

One necessary consequence of a more stringent Type 

I error rate, such as W'  is the accompanying loss in 

power. Ryan (1962) points out that this decrease in power 
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will result in Type II errors only for small, and there-

fore, generally less important, effects (empirical demon-

stration of this: Carmer & Swanson, 1973). It is diffi-

cult to evaluate this because the knowledge of power func-

tions for multiple test statistics is very limited ex-

cept for the F and I statistics (Miller, l966: O'Neill & 

Wetherill, 1971). However, as the number of tests per 

family increases, the power decreases rapidly. Multi-

stage procedures have been proposed to lessen the loss of 

power. 

As the name suggests, multistage procedures involve 

several stages in the analysis. In the first stage the 

critical value for the component tests is determined so 

that VFW is controlled at the desired level. If no com-

ponent null hypothesis is rejected at this stage, the pro-

cedure terminates. However, if at least one component null 

hypothesis is rejected, less stringent critical values are 

used in the following stages to test the component null 

hypotheses which were not rejected in the first stage. 

The rationale for this is that the multistage pro-

cedure increases power without increasing the familywise 

Type I error rate for the complete null hypothesis (i.e., 

the overall hypothesis that all the component null hypo-

theses are true). Consider once again the example of a 

family of two statistically independent component tests. 

Let cK FW = .05. Then. C‹ T = .0253. In a non-multistage 
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procedure, the smaller of the two sample statistical values 

must still exceed the critical value based on 	= .0253 

even if the larger sample statistic results in the rejection 

of its component null hypothesis. So, in effect, a non-

multistage multiple-test procedure is unfair to the smaller 

statistical value. A multiple-test procedure gives a more 

stringent critical value to allow for the possibility 

that all the component null hypotheses may be true, but even 

if some of those component null hypotheses are rejected, 

a non-multistage procedure retains the same stringent cri-

tical value. So a component significance test is penalized 

just because it happens to be grouped with m-1 other com-

ponent tests, even if those other component tests involve 

strongly significant effects. A multistage procedure, on 

the other hand, relaxes the critical values after at least 

one component null hypothesis has been rejected. Since 

for the complete null hypothesis, the rejection of any 

component null hypothesis is a Type I error, the probability 

of having zero Type I errors is the same as for a non-

multistage procedure (since the procedure terminates if 

all component null hypotheses are accepted at the first 

stage). Therefore, the familywise Type I error rate is 

unchanged also (see equation (7)). 

The fact that 
VFW

is affected only by the first 

stage permits a great diversity in multistage procedures 

after their first stage. Consequently, there exists a 
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large variety of multistage procedures for multiple com-

parisons in analysis of variance. 

Two criteria have been proposed for evaluating 

multistage procedures. One is Duncan's (1955) concept 

of a p-mean significance level. This is designed to repre-

sent the Type I error rate at various stages of a multi-

stage procedure in analysis of variance. Miller (1966) 

provides a good explanation of the details of,g-mean sig-

nificance levels. 

A second criterion for multistage tests is the maxi-

mum c< Fw , maximized over all possible combinations of true 

component null hypotheses (Tukey, 1953, cited by Ryan, 

1959). Most multistage procedures control c< F94  only for 

the complete null hypothesis. For many multistage pro-

cedures, c< Fw  can be much larger for other possible com-

binations of true component null hypotheses. For multiple 

comparisons in analysis of variance, keeping the maximum 

c›(FW at .05 is generally more conservative than keeping 

all p-mean significance levels at .05. 

Families  

The question of what constitutes a family of tests 

is an obviously important issue concerning multiple test 

procedures. Yet there are no set rules for what constitutes 

a family (Aitkin, 1971; Miller, 1966). It is on this issue 

that statisticians must leave mathematics and be guided 

by subjective judgment (Miller, 1966). 
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Ryan (1959) and Miller (1966) consider the experi-

ment as the normal choice for a family of tests. Ryan 

adds that there should be strong specified reasons for any 

exceptions to this. Miller sees large experiments as an 

exception since if it were considered to be one family of 

tests there would be an unjustifiable loss in power. Others 

(Kirk, 1968; Wilson, 1962) favor the hypothesis as the unit 

for a family of tests. Researchers who ignore multiple 

test methods in their analyses are actually regarding 

each single test as the family. Miller (1966) points out 

that some justification can be given to this last position 

from a Bayesian viewpoint if the total loss for a se-

quence is the sum of the component losses. Different 

loss structures would yield different results. However, 

he does not consider any Bayesian approach a practical 

solution since it is almost impossible to specify A priori  

probabilities of Type I and Type II errors. Also the 

decision loss functions become quite unrealistic for 

practical applications such as data analysis (Plackett, 

1971). 

It is the opinion of this author that a useful 

distinction could be made between an alpha family and an 

analysis family. An alpha family is the set of tests 

which is being protected from one or more Type I errors 

at the reported alpha level. An analysis family is the 

set of tests which is being analyzed as a group. This is 
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what is called a family in the multiple-test literature. 

In many multiple-test procedures the alpha family and the 

analysis family are equivalent. The procedures in which 

they are different (e.g., Duncan's multiple range test) 

have been the source of additional confusion in this area. 

In multistage procedures, the alpha family may 

change from stage to stage while the analysis family is 

the first stage's alpha family. In a non-multistage pro-

cedure, the alpha family and the analysis family are the 

same. The purpose of the concept of an alpha family is to 

clarify what is being protected from the occurrence of a 

Type I error at the reported alpha level. 

The purpose of a research study affects what set 

of tests should be considered as an alpha family. For ex-

ploratory research it would be good to consider each in-

dividual test as an alpha family for discovering leads 

for future research (Miller, 1966; Petrinovich & Hardyck, 

1969). Note that this is equivalent to the previous 

recommendation of using c< T for exploratory research. 

When the results are to be used to support a particular 

theoretical position or are to be proclaimed to the sci-

entific community as experimental "facts", then a larger 

alpha family should be used (Miller, 1966, Ryan, 1959). 

This is also where the issue of a priori  vs. a posteriori  

analysis fits in. As Ryan (1959) points out, the central 

issue is the number of tests in the alpha family. However, 
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a Priori  analyses can be made more powerful by selecting 

to analyze only some of the possible tests. In A Posteriori 

analyses, the alpha family must include all conceivable 

tests, not just those that look interesting as a result 

of the data (Williams, 1973). 

Specific Multiple Test Procedures 

Most multiple-test procedures have been proposed 

for multiple comparisons in analysis of variance. Some 

of them are useful for calculating confidence intervals 

but are considered to be unnecessarily conservative for 

significance tests (Miller, 1966). These include Tukey's 

Honestly Significant Difference procedure, Scheffe's S 

method, and a non-multistage Bonferroni I method. Multi-

stage procedures give better power for significance tests, 

but are not considered applicable to confidence intervals. 

Although many of them increase c< Fw  beyond the specified 

level for some possible combinations of true component 

null hypotheses, this need not be the case. Such procedures 

include Ryan's (1960) Method of Adjusted Significance 

Levels, the Newman-Keuls procedure, Duncan's (1955) New 

Multiple Range Test, and Fisher's Least Significant Dif-

ference procedure, in decreasing order of conservativeness. 

Dunnett proposed a procedure for the special case in which 

one group is a control and other groups are to be com- 

pared with it but not with each other (Miller, 1966). 

Other approaches to the problem have included Bayesian 
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methods (Waller & Duncan, 1969), Simultaneous Test Pro-

cedures, which are closely related to Tukey's and Scheff4's 

methods (Gabriel, 1969), and subset selection procedures 

(Gupta & Panchapakesan, 1972). 

Duncan's New Multiple Range Test and the Bonferroni 

I method will be discussed further because Duncan's ration-

ale is unique and because the Bonferroni I is applicable to 

the case of tests of intercorrelations. Duncan's ana-

lysis family is different than his alpha family. He ad-

vocates increasing the familywise Type I error rate above 

the reported alpha level. He protects each possible 

statistically independent test at a .05 level (for example) 

and computes his overall protection level as 1-(1-.05) n , 

where n is the possible number of statistically independent 

comparisons. In a comparison among four means there are 

three statistically independent comparisons possible, 

so Duncan's c>< Fw  would be 

1 - (1 -.05) 3 	.14 	 (9) 

although his reported a would be .05. As n increases, C<FW 
continues to increase rapidly. In general, Duncan's New 

Multiple Range Test is less conservative than the New-

man-Keuls procedure and more conservative than the Least 

Significant Difference procedure. However, at the first 

stage of the multistage procedure (which is equivalent to 
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'==.A Fw  under the complete null hypothesis), Duncan's pro- 

cedure is the least conservative of the three by far. 

His rationale for allowing c<FW to increase seems to be 

(1) this gives increased power, while affording greater 

protection than that provided by non-multiple-test pro-

cedures, (2) this gives alpha levels consistent with a 

series of the possible independent tests among the means, 

and (3) this resembles a Bayesian solution with an addi-

tive loss function. 

The Bonferroni t method is apparently an old but 

little-used statistical tool. The first statistical user 

of the method is unknown (Miller, 1966). Fisher (1935) 

recommended its use for g posteriork  I-tests. The name 

Bonferroni is connected with the probability inequality 

on which it is based, 

1 - c'(FW =' 1 - m 
	

(10) 

where m is the number of tests in the family of tests. 

This reduces to 

c.)‹ 
FW  < or  

m 	T 

and 

FW 	m rT 
	 (12) 
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If we want to keep 6114  at .05 or less, we can give <-- Fw 

 a nominal value of .05, calculate `AT  according to the 

equality in equation (11), and we get the desired upper 

bound of .05 on 0Cpw  regardless of the dependence of the 

component tests. Actually this sets c7(pF  at .05. Since 

L. pF 	for a given AT  (Ryan, 1960), the actual 

GA FW is no more than .05. For example, for a family of 

four component significance tests, which need not be 

mutually independent, we can set VFW nominally at .05. 

The T that we would use for each component test would 

be o`ri, = .05/4 = .0125. By the Bonferroni inequality 

(10), the true 'FW  is less than or equal to 4 x .0125 

. .05. Therefore, we can be certain that the true ()(Fw 

 is not greater than .05 by using^T = .0125. The Bon-

ferroni inequality could be applied in the same way to 

many other statistics, but it is usually applied to the 

I-statistic for paired comparisons in analysis of variance, 

hence the name Bonferroni I method. For most purposes 

it has been found to approximate the nominal '-j'KFw  very 

well (Dunn & Massey, 1965). 

In order to compare multiple-test procedures, it 

is necessary to distinguish between the complete null 

hypothesis and other combinations of true component null 

hypotheses (Ryan, 1959). The complete null hypothesis 

occurs when all component null hypotheses are true. 

Under the complete null hypothesis for pairwise 
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comparisons in analysis of variance, the multiple test pro-

cedures can be listed in the following order of decreasing 

conservativeness; Scheff‘'s S method, the Bonferroni I 

method, Tukey's HSD procedure, Fisher's protected Least 

Significant Difference method, the Newman-Keuls procedure, 

Waller-Duncan Bayesian procedure, Duncan's New Multiple 

Range Test, and the use of multiple .1 tests with unad-

justed CAT values (Boardman & Moffitt, 1971; Carmer & 

Swanson, 1973; Petrinovich & Hardyck, 1969). Tukey's, 

Fisher's, and the Newman-Keuls procedures have identical 

c->(Fili 's under the complete null hypothesis and could be 

interchanged in this list. Under other combinations 

of true component null hypotheses, Fisher's LSD and the 

Bayesian method may approximate the Type I error rate of 

multiple I-tests with unadjusted (--2(T values (Carmer & 

Swanson, 1973), and the Newman-Keuls procedure may approach 

Duncan's Type I error rate (Petrinovich & Hardyck, 1969). 

Only Scheffe's S Method, Tukey's HSD procedure, and the 

Bonferroni .1 method keep FW at about the nominal alpha 

level (usually .05) or below for all possible null hypo-

thesis combinations. Miller (1966) calls these methods 

unnecessarily conservative for significance testing, but 

this can be corrected by a multistage modification such 

as suggested by Tukey (1953, cited by Ryan, 1959). 

Ryan's (1960) method of adjusted significance levels is 

actually a multistage version of the Bonferroni t method. 
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Either of these multistage modifications increases the 

power over its non-multistage analog, but keeps the actual 

FW at .05 or below for any null hypothesis combinations. 

When methods are determinable for controlling , 6104, 

exactly, such methods are generally superior to the Bon-

ferroni I method. However, the Bonferroni I may compete 

with Tukey's HSD procedure (Aitkin, 1971), at least when 

robustness is a critical issue (Miller, 1966; O'Neill & 

Wetherill, 1971). Whenever no exact methods are applic-

able, the Bonferroni I is definitely a method to consider, 

and it is usually more powerful than alternative methods 

(F. B. Alt, personal communication, 1974; Christensen, 

1973; Keselman, 1974). It is based on minimal assumptions 

and consequently can be applied to almost any situation 

(Miller, 1966). For example, it gives a conservative 

approximation to c-11-„, when the component significance 

tests are not independent. This approximation is not too 

crude if m is not too large and if T is small (Miller, 
1966). The only complication is the need for critical 

values of the I statistic at oddball values of T . Miller 

describes three methods for interpolation from ordinary 

I tables. Dunn & Massey (1965) have fairly adequate tables 

for the necessary critical values. Perlmutter & Myers 

(1973) state that the equation 
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± 	Z + 	 
x Fho 

was c< 

i 	
//,the degrees of (13) 

freedom 
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can be used to calculate the necessary critical value 

for the I statistic from ordinary unit normal distribution 

(Z) tables. 

Applications for Multiple Test Procedures  

As previously noted, multiple-test procedures have 

been applied mostly to analysis of variance. Most of the 

same procedures are apparently applicable to comparisons 

between regression coefficients in linear multiple regres-

sion as long as the regressors are mutually independent 

(Dunnett, 1970; Williams, 1972). When the regressors are 

not independent, Scheffe's S method and the Bonferroni I 

method can be applied (Christensen, 1973). Multiple- 

test procedures have also been applied to other linear 

regression problems, including choosing among the possible 

regression functions (Spjjetvol, 1972), setting confidence 

intervals for points predicted by the regression equation, 

and setting confidence intervals for the regressor value 

which would be associated with a known criterion variable 

(Miller, 1966; O'Neill & Wetherill, 1971). Multiple- 

test procedures have also been proposed for certain non-

parametric and multivariate analysis problems (Miller, 

1966). Ryan (1960) presented multiple-test procedures for 

comparisons among medians, variances, or proportions and 



28 

a general method for comparisons among any statistics 

(the previously mentioned Method of Adjusted Significance 

Levels). Marascuilo (1966) presented large sample mul-

tiple-test procedures for comparisons among independent 

bivariate correlations, among parameters of independent 

binomial populations, among interaction measures in contin-

gency tables, and among parameters of normal populations with 

unequal variances. Ryan (1959) also suggested that mul-

tiple-test procedures should be applied to multiple tests 

of intercorrelations, multiple variables in analysis of 

variance, replicated tests of a single hypothesis, and 

overlapping measures relating to a single hypothesis. 

§sasaglaissiAgmegis91Intercorgelations  

There are two major situations in which psychological 

researchers are concerned with a set of tests regarding 

Pearson product-moment correlation coefficients. The first 

situation involves testing individual hypotheses about each 

of the intercorrelations in the correlation matrix R of 
kv,  

k variables. The complete null hypothesis is 

H, 	R = I 
fro 	

RP (14) 

The second situation is represented by testing all the cor-

relations between k-1 predictor variables and one cri-

terion variable. In this second case all the correlations 



29 

in a (k-1) x 1 correlation vectorr are tested, which is 

equivalent to testing only the correlations in the first 

column of the matrix R in the first situation. The 

complete null hypothesis in this case is 

H 	r = 0 0 	0. p 
(15)  

Testing the correlations in equation (14) is equi-

valent to testing whether the covariances are zero. So 

equation (14) is equivalent to testing the null hypothesis 

that the covariance matrix is a diagonal matrix, i.e., 

HO  C = D v 	ht. (16)  

Testing a single correlation 71 1  in equation (15) is 

equivalent to testing the null hypothesis that the slope 

coefficient / ii  is zero in an analysis in bivariate linear 

regression, i.e., 

H0  : 	= 0 	 (17) 

- where 4-1 	is the slope coefficient for predicting the 

th first variable from the . variable. 
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As for tests of a single correlation coefficient, the 

I statistic for testing the hypothesis 

H0 	= 0 

H 
	

5d 1 

(18)  

is a uniformly most powerful test among unbiased tests 

(UMPUI Kendall & Stuart, 1967). Similarly, for testing 

Ho ' 

H1 ' 

(19)  

Fisher's r to Z transformation provides a simply calcu-

lated statistic which is a good approximation of the normal 

distribution even for fairly small samples (Cole, 1969). 

Table 2. Type I Error Rates for 
Various Correlation Matrices 

error rate number of variables 
2 3 4 5 6 	7 	8 	9 10 

FW 	.05 .14 .26 .4o .54 .66 .76 .84 .90 

("_"( 	.05 .15 .30 .50 .75 1.05 1.4o 1.8o 2.25 
PZ  

Note. - Independent tests assumed, c'f l, = .05. 

However, when either or both of these statistics 

are used to test all the correlations in either a corre-

lation matrix or a correlation vector, the probability of 
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observing at least one Type I error usually increases above 

the specified alpha level in a manner similar to multiple 

I tests with unadjusted 0( T values in multiple comparisons 

in analysis of variance. Even if the tests were mutu-

ally independent, the probability of observing at least 

one Type I error ( FW ) would increase rapidly for an 

increasing number of tests. Letting m represent the number 

of tests of correlation coefficients in either a matrix or 

a vector, X Fw  would exceed .50 for m = 14. Table 2 

illustrates, for example, how 	and (XFF  increase with 

increasingly larger correlation matrices. 

The true 4.:AFw  error rate is further complicated by 

the fact that the significance tests are not independent 

in general. For correlation matrices this is evident from 

the joint probability density function of the sample rij 's 

when the population correlation matrix R = I. This joint 
wp " 

probability density function implies a zero probability 

for all sample R's which are not positive definite (i.e., 

Gramian) (Cram‘r, 1946). The average of all intercor- 

relations among k variables cannot be less than — 1— k-1 

(Hays, 1973). Therefore, the sample r ij 's are not inde-

pendent even when the variables themselves are independent. 

The dependencies among the tests of the r ij 's 

become more severe when R / I, which is precisely the 

case for which multiple-test procedures are most needed. 

This can be illustrated by the extreme case where R 
p 
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consists of intercorrelations within and between two sets 

of variables, each set of which is perfectly correlated (+1) 

within itself, but the two sets are actually independent 

of each other. 	That is, 

   

R = (20) 

   

   

The observations on any one variable can be represented 

as a vector and the sample correlation between two vari-

ables as the cosine of the angle between those vectors 

(Fasher,1962).UP=1,therl arlYsample-=1 ij 	 ri d 

as can be seen easily, for example, from the confidence 

interval tables in Guenther (1965). So all the vectors 

representing variables in one set will fall on the same 

line, differing only by a scalar (since the cosine of the 

angle between them is one). Therefore, we are only 

concerned with the angle between two vectors, the sample 

vector for any variable in the first set and the sample 

vector for any variable in the second set. The cosine of 

this angle will simultaneously be the sample correlation 

corresponding to all //lii = 0 in R. So the sample cor- 

relationsr i  . j  between the two sets will all be identical 
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for any given sample. The direct implication of this is 

that either a Type I error will be made for each (q i  = 

0 (5% of the time, for (.<,1  = .05) or no Type I error will 

occur for any
ij

. 

While this exact case would not apply to any re-

search, it is typical for a psychologist investigating the 

relationship between two concepts to use several highly 

correlated operational measures for each concept and to 

investigate the correlations between these two sets of 

variables. If the two concepts are statistically indepen-

dent (assuming normality), the probability of simultane-

ously making Type I errors on most or all of the inter-

correlations of interest would approach one in twenty 

(.05) for the typical. If it does happen to be that 

one occurrence in twenty, the researcher will be impressed 

by all the significant between-set correlations and will 

likely conclude that he has conclusively demonstrated a 

relationship between the two concepts. Later a journal 

editor will probably agree, and some psychological re- 

search will be wasted following up the erroneous conclusions. 

Actually, for this particular case a multivariate procedure 

such as canonical correlation (Mulaik, 1972) may be more 

appropriate. However, the main purpose of this example 

is to highlight some problems in significance tests of 

intercorrelations which apply also to more general cases 

for which multivariate procedures may not meet the re- 
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searcher's needs. 

Ryan (1959) suggested that non-independence was 

not a critical factor in analysis of variance multiple 

comparisons, but added that such a conclusion would not 

necessarily apply to other applications of multiple-

test procedures. It seems likely that non-independence 

may be a very critical factor in tests of intercorrela-

tions and that more stringent Type I error rate controls, 

such as multiple-test procedures, may be necessary to take 

this into account. 

The effect of non- independence seems to be critical 

also for correlation vectors. There are no restrictions 

on the sample correlations due to positive-definite-matrix 

restraints, but all the other sources of dependence pre-

viously discussed affect correlation vectors as well. In 

particular, if the correlation vector under consideration 

were the first column of the matrix in equation (20), 

there would be either no Type I errors or all possible 

Type I errors on any given sample. In realistic cases, 

with high positive correlations rather than correlations 

of +1 as in equation (20), this case is closely analogous 

to the case of multiple tests of slope coefficients in 

multiple linear regression among highly correlated re-

gressors (Christensen, 1973). 

Exact methods for controlling ° (Fw  are not gener-

ally determinable for either the correlation matrix or 
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the correlation vector case. Such methods require know-

ledge of the joint probabilities of Type I error, which 

are generally mathematically unobtainable in such statis-

tical problems (Dunn & Massey, 1965; Miller, 1966). 

However, some multiple-test procedures can be direct-

ly applied to tests of intercorrelations. The rationale 

for Fisher's Least Significant Difference (LSD) proce-

dure can be applied to a correlation matrix, since over-

all tests are known for the hypothesis 

HO  $ Rp = I 
	

( 21) 
H1 Rp I 

(e.g., Anderson, 1958). Just as the LSD procedure uses 

a preliminary overall F test, and when that is signifi- 

cant, proceeds to test all comparisons, a researcher could 

use a test of equation (21) followed by the usual I-tests 

when the overall null hypothesis is rejected. However, 

such a procedure would reduce Type I error rates very 

little when there existed a few large effects. For 

example, in the hypothetical example of equation (20), this 

procedure would not reduce the Type I error rate at all. 

Other multiple test procedures which are appli-

cable to tests of intercorrelations are the Bonferroni I 

method and apparently Scheff‘'s S method (Christensen, 

1973; Miller, 1966). Both are approximate methods, general- 



Acceptance region 
for Bonferroni 
only. 

	Acceptance region 
for Scheffe only. 

Acceptance region 
for both methods. 

36 

ly providing conservative estimates of (A, 41 . Scheffe's 

method is conservative because it controls 1-VFW  for the 

complete set of linear combinations of the component 

tests, while only a few of these are of interest. The 

Bonferroni method is conservative because it controls 

for CPF  which is always a conservative estimate of (---XFw . 

Since both methods overcontrol forFW'  the preferred 

method would be the more powerful one. Christensen 

(1973) compared the power of the two methods for the 

closely related problem of hypothesis tests of the slope 

coefficients in multiple linear regression when the re-

gressors are correlated. He concluded that the Bonfer-

roni method always resulted in more powerful individual 

Figure 2. Null Hypothesis Acceptance Regions for the 
Bonferroni and Scheff‘ Methods (after Miller, 1966) 
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tests (i.e., less stringent (.- T 's) with (-A Fw  = .05. Al-

though he showed that the power of the joint hypothesis 

favored Scheffe's method in most cases, he only considered 

the case of two regressors. Figure 2 illustrates the 

null hypothesis acceptance region when Scheffe's method is 

more powerful for the joint hypothesis (which is some-

times true) and the Bonferroni method is more powerful 

for individual null hypotheses (which is always true with 

FW = .05). All statistical values which would result 

in acceptance of the alternative hypothesis by Scheffe's 

method but not by the Borsferroni method fall in the re- 

gions marked For such statistical values, the re- 

searchers would reject H o  c 	= f?-'2  = 0, but would ac- 

cept Ho  s /Wi  = 0 and Ho  c /? 2  = 0. So even when power 

could be gained by Scheffe's method for the joint hypo-

thesis, the power gained is only an advantage for results 

not interpretable in terms of the individual tests. So 

Scheffeit's method is probably not a competitor with the 

Bonferroni method for multiple tests of intercorrelations 

of the kind considered in this thesis (i.e., tests of 

equation (1)). 

The Bonferroni I test can also be modified into a 

multistage procedure to increase power still further. 

Ryan (1960) describes such a method for analysis of vari-

ance. For testing intercorrelations, the alpha family 

could be reduced to the number of non-rejected component 
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null hypotheses after the first stage. In the second 

stage, a new (-, )<T could be calculated by using this new 

number for m in equation (11). If any more component 

null hypotheses were rejected, a new value of m would 

be used in a similar way for a third stage. This would 

continue until a stage is reached with no new rejections 

of component null hypotheses, whereupon the procedure 

terminates. Such a procedure would increase power but 

keep c---XpF  at .05 (and therefore C2KFw 	for any combin- 

ation of true component null hypotheses (see AppendixA ). 

Hypotheses and Objectives of Study 

The literature review covered so far has emphasized 

previous studies closely related to the problem of con-

trolling Type I error adequately in multiple significance 

tests of intercorrelations. It is apparent that few in-

vestigations have been done on multiple tests of intercor-

relations themselves (Harris, 1967). The present study in-

vestigated multiple tests of intercorrelations by means of 

an empirical study of Type I error rates in such multiple 

tests for which the population correlation matrices were 

known. 

Three methods were used for controlling Type I 

error. Method I was the customary procedure of setting 

.05 for all the tests. Method II calculated T(I) = 

a more conservative (:.X T(II)  such that c)(FW  would be .05 

if all the individual significance tests were mutually in- 
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dependent, which they are not. Method III was the Bon-

ferroni I test with(24T(III)  calculated so that (A Fw 

 Dunn & Massey (1965) suggested Methods II and III as 

approximate methods for controlling familywise Type I 

error rates for multiple-1 tests. 

In the empirical investigation, these three methods 

were examined for various cases of the number of vari-

ables (k), sample size (N), and population correlation 

parameters (R ). 
041D 

The major dependent variables in the study were 

familywise Type I error rate and conditional Type I 

error rate. For familywise Type I error rate, the family 

of tests was the set of all m tests in the correlation 

matrix, i.e., 

m  k (k -  
2 (22) 

or the set of all m tests in the first column, i.e., 

m = k 	1 	 (23) 

Conditional Type I error rate here means the Type I 

error rate of one component test given that a Type I 

error has occurred on one other component test in the same 

family of tests. For example, in the hypothetical example 
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of equation (20), the conditional Type i error rate would 

be 1.0 (i.e., 100%). That is, whenever a Type I error 

occurs on any one individual significance test, Type I 

errors will always occur on any other test for which 

is actually zero. The empirical study investigated con-

ditional Type I error rate under more realistic conditions. 

The effect of Methods I, II, and III on statistical 

power was also investigated, but it was expected that this 

would merely reflect the differences in familywise Type I 

error rate. As Games (1971) has pointed out, when the 

same statistic is used for different procedures which vary 

only the critical value, any "reduction in risk of Type I 

error is paid for by an increase in the risk of Type II 

error (p. 101)." 

The major hypotheses were as follows: 

(1) For Method  I 4:::"(  W  is significantly larger 

than the nominal value of .05 for k z 3.  Table 2 showed 

that the value of FW increases above .05 for k 3 under 

the assumption that the component significance tests are 

mutually independent. Although this assumption does not 

actually apply to multiple tests of intercorrelations, it 

can be shown mathematically that this hypothesis holds for 

the general case. In a sense, this hypothesis is trivial, 

but its implications have not had any effect on procedures 

for statistical analyses of intercorrelations. So the 

primary purpose of this hypothesis is to highlight the 

effect of Method I on CXFw. 
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Si nificantl reater than the nomi al v lu 

 

" 

 

Methods II and III. As discussed previously, the Bon-

ferroni I always provides a conservative estimate of the 

nominal alpha level. Dunn & Massey (1965) conjectured that 

Method II was also conservative for most families of sig-

nificance tests. 

(3) As the number of variables gatalargar,54w 

 for Method III 	 si^nifican ^y less t an the  

value of .05. Miller (1966) reported that the Bonferroni 

I procedure provides an adequate approximation of the nom-

inal (2‹ 	for small FW  and a small number of component FW  

tests. As the number of variables increases the number of 

component tests increases and Method III may not provide 

such a good approximation. 

(4) The conditional T 	I error rate 

than pe,r • That is, when a Type I error occurs on one cor-

relation test, then the Type I error rate is increased 

for other component tests in that family. If the component 

tests were mutually independent, the conditional Type I 

error rate would equal OA T . However, the component tests 

in this case are not mutually independent and this is ex-

pected to result in higher conditional Type I error rates. 

(5) The effect hypothesized in hypothesis (4) 

is especially strong when some of the variables of interest 

are highly correlated. In the discussion of the hypothe- 
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tical population correlation matrix equation (20), it was 

noted that the conditional Type I error rate would be l.00„ 

while °(
T 
would be .05. A similar phenomenon (although 

less striking) is expected for more realistic correlation 

matrices with some reasonably high correlations. 

(6) In general, the Type II error rates reflect 

the differences in G T . When the critical value is set 

to allow more Type I errors, then the Type II error rate 

decreases. Whatever is gained in Type I error rate is 

gained at the expense of Type II error rate. 



CHAPTER II 

METHOD 

Monte Carlo Mettlod 

A Monte Carlo method generally involves a computer 

simulation in which samples are randomly drawn from a 

hypothetical population to evaluate a particular method 

of statistical analysis (Halton, 1970). Such a method is 

especially appropriate when it can aid the researcher in 

selecting appropriate statistical procedures where the 

necessary theoretical information is incomplete (Cole, 

1969). The theoretical information for multiple tests 

of intercorrelations is incomplete because the deter-

mination of exact critical values for multivariate t dis-

tributions depends on many nuisance parameters which are 

generally not known beforehand by the researcher (Dunn & 

Massey, 1965). Therefore, an empirical Monte Carlo in-

vestigation of multiple tests of intercorrelations was 

considered appropriate. Such Monte Carlo investigations 

have been made for other questions concerning multiple 

test procedures (Boardman & Moffitt, 1971; Carmer & Swan-

son, 1973; Keselman, 1974; Keselman & Toothaker, 1973; 

Petrinovich & Hardyck, 1969; Smith, 1971). In this pre-

sent study sample correlation matrices were computed from 

samples of scores randomly drawn from multivariate normal 

43 



populations with specified population correlation matrices. 

Generation of Zndepenclant Random Normal Deviates 

Generation  of Uniformly Distributed Random Numbers  

Review of  the Literature.  The foundation of the 

Monte Carlo method is the pseudorandom number generator. 

The term "pseudorandom" indicates that the numbers gener-

ated are not actually random. A pseudorandom number gener-

ator gives the same sequence of numbers every time un- 

less one of the starting values is changed. However, 

such generators have been preferred over random number 

generators which are not deterministic (such as a set 

of dice), because the latter generators are nonrepeatable, 

slower, often unstable, and need to be tested frequently 

for randomness. Some of these disadvantages may be re-

moved by recently developed non-deterministic generators 

(e.g., Cohn, 1971; Maddocks, Matthews, Walker, & Vincent, 

1972; Murry, 1970), but such methods have not been widely 

proven and necessitate equipment which is often unavail-

able. 

Many pseudorandom number generators have the ad-

vantages of rapid number generation, small computer stor-

age requirements, and repeatable sequences. If the method 

and the starting values are carefully selected, a pseudo-

random number generator can provide an adequate simulation 

of random numbers for most applications. Halton (1970) 

states that true randomness cannot be evaluated, anyway. 
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If a sequence behaves randomly with respect to any num-

ber of tests of randomness, it is generally impossible 

to be sure that it would not miserably fail another 

test of randomness (Knuth, 1969). This would be quite 

limiting for any random number generator, except that only 

a few properties of randomness are usually required. 

Pseudorandom number generators can be designed so that the 

generated number sequence will pass most ordinary tests 

of randomness. 

The multiplicative pseudorandom number generator, 

originally due to Lehmer (1949, cited by Dieter, 1971), 

computes pseudorandom numbers x 1 , x 2 ,... xi , 	 suc- 

cessively by the equation 

x14. 1 =ax.(mod m) 
	

(24) 

where a is a multiplier and mod m denotes modular arith-

metic. Modular arithmetic involves first performing the 

arithmetic normally (e.g., a x i ) and then subtracting the 

largest possible integer multiple of m. For example, 

in modular arithmetic 

4(mod 3) = 1, 

8(mod 3) = 2 

and 



46 

2 x 5(mod 4) = 2 

The multiplicative congruential pseudorandom number 

generator (equation (24)) is considered by many to be 

the most successful pseudorandom number generator (e.g., 

Coveyou & MacPherson, 1967; Knuth, 1969). It is supported 

by the literature on number theory (Keuhl, 1969), it passes 

most tests of statistical performance (Dieter, 1971; 

Jansson, 1966), and it is fast and easy to program (Dieter, 

1971). However, there are some sequences of p numbers 

(p > 1) which can never be sampled in a pseudorandom 

number sequence for a given multiplicative generator 

(Coveyou & MacPherson, 1967; Marsaglia, 1968, 1970). 

Marsaglia's alternative, the combined congruential method, 

has not proven any better in some direct comparisons 

(Brown & Rowland, 1970; Seawright, Larkin, & Locks, 1966) 

and takes about twice as much computer time. As Knuth 

(1969) has illustrated, merely designing a more complex 

pseudorandom number algorithm apart from theoretical con-

siderations often results in a poorer simulation of ran-

dom numbers. So a multiplicative congruential pseudo-

random number generator was chosen for this study. The 

combined congruential generator may prove to be superior 

in the future after knowledge about proper selection of 

parameters becomes more complete. But currently more is 

known about selection of parameters and advantages of the 



multiplicative congruential generator as well as more about 

its disadvantages. 

A good multiplicative generator must have pro-

perly chosen parameters (Coveyou & MacPherson, 19671 

Jameson, 1966). The multiplier 

a 	(13- 1) 	 (25) 

recommended by Ahrens, Dieter, & Grube (1970; also Dieter 

& Ahrens, 1971) is reported to result in a sequence of 

numbers best approximating independent numbers. In order 

to provide the longest possible period of the pseudorandom 

number sequence before it repeats itself, a must be either 

	

a = 3 (mod 8) 	 (26) 

or 

a = 5 (mod 8) 	 (27) 

and the starting number xo  must be odd (Dieter & Ahrens, 

1971). 

Generator Used.  In the present study, a multi-

plicative pseudorandom number generator 

xiti  = 5308871541 x i  (mod 235 ) 	 (28) 
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was used. The modulus 2 35  is the word size on the UNIVAC 

1108 computer. The multiplier is the one recommended by 

Ahrens et al (1970), calculated by equations (25) and (27). 

A machine-language subroutine written for the UNIVAC 1108 

(Math-Pack, 1970) was used to generate the numbers accord-

ing to equation (28) for this study. This subroutine 

generated pseudorandom numbers uniformly distributed on 

the interval (0, 2 35 ). This was transformed to a uniform 

distribution on (0,1) in subroutine NORGEN (on file in 

the School of Psychology). 

X 4 

U • - 
235 

(29) 

Transformation to Normally Distributed Random Numbers  

Review of thq_Literature.  Box and Muller (1958; 

Muller, 1959) developed a method of transforming uniform 

random numbers to random normal deviates which has an 

accuracy limited only by the accuracy of a few available 

computer library programs. Letting U i  and Ui+1  be two 

independent random variables from a uniform distribtuion 

on (0,1), they showed that 

	

X. = f- 2 In U1  cos 2 IT U2 	 (30 ) 

and 

	

Xi+1  = sr- 2 In U1  sin 2 trrU2 	 (31) 



and 

f- 2 In (V .2i  + 41.1 ) 

Z. = V 2 	2 V. + V j+1 

(32 ) 
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are independent random deviates. Muller (1959) demonstrated 

that this method gave better accuracy and comparable speed 

with respect to other such methods of normal deviate 

transformations which were known at that time. Later 

Marsaglia and Bray (1964) improved the Box-Muller method 

with the equations 

 

- 2 In (V2 + V2  
j+1  

2 + 2 /j 	Vj4.1  

 

Z 1+1 = V j+1 (33) 

   

where "V. and V j+1 are uniform on (-1, 1), conditioned by 
2 	2 Vj  + V j4. 3. 4  1. This method is faster on a computer than 

equations (30) and (31) and just as accurate. 

Marsaglia and his associates have also designed 

methods for the transformation to the normal distribution 

which are much faster and just as accurate, although 

they take more computer space and are more difficult to 

program (Marsaglia & Bray, 19641 Marsaglia, MacLaren, & 

Bray, 1964). 

Neave (1973) reported an unsatisfactory attempt to 
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use the Box-Muller transformation together with a multi-

plicative pseudorandom number generator. He reported 

several local maxima and tails truncated at -3.36rand 

+3.6 CT in the generated distribution. Although his 

problem was caused partly by setting the multiplier too 

small in his pseudorandom number generator, he pointed 

out that equations (32) and (33) would also correct the 

problem. 

Normal Distribution Transformation Used.  This 

study used equations (32) and (33), Marsaglia and Bray's 

(1964) form of the Box-Muller (1958) transformation. The 

interval of the uniform distribution was first changed 

to (-1, 1) from the (0, 1) interval obtained in equation 

(29) as follows, 

Vi  = 2 (Ui  - i) 	 (34) 

Then equations (32) and (33) were applied to successive 

pairsofV.Vilatmetthecondition. VI
2  + Vi +1 1  until 

a k x N matrix Z of N observations on k independent vari-

ables was complete. 

Statistical Tests of Pseudorandom Normal Numbers  

The computer generation of normally distributed 

random numbers was tested in three ways. Two of these 

tests were statistical tests of the independent pseudo-

random normal numbers (Z.1 ) and are discussed in this 



51 

section. The first test was the Pearson 	test of fit 

to an 8-variate mutually independent normal distribution. 

For this test each marginal univariate normal distribution 

was divided into three intervals of equal theoretical 

probability. This resulted in 38  = 6561 cells in the 

8-variate joint probability distribution. The expected 

frequency for any of these cells in a given computer 

run was 

1000 N f 	. 	- exp(1) 	6561 (35) 

where N is the sample size for that run. Pearson's 

chi-square statistic 

661 (f 	. - f 	. ) 2 

x. 2 	-1,E 	exp(1) 	obs(1)  i=1 	f 	. exp(1) 
(36) 

was computed. Since the degrees of freedom were so large 

(6560), a direct reference to a computer library sub-

routine or to a X 2 table was impossible. Therefore, a 

normal approximation to the ✓ 2  distribution, 

Z = J 2 L  - ‘,121( - 1 
	

(37) 

was used, where 7j  is the degrees of freedom. This normal 

approximation is considered adequate withz/>100 (Hays, 

1973). 
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The second test was a test-of-fit to a bivariate 

normal distribution of two independent variables. This 

was similar to the previous test except that the random 

deviates for only two variables were considered, those 

corresponding to the first variable and one other speci-

fied variable. For this test, each marginal univariate 

normal distribution was divided into 50 intervals of 

equal probability. This resulted in 502  = 2500 cells in 

the bivariate normal joint probability distribution, 

each with an expected frequency of 

1000 N f 	. - exp(1) 	2500 (38) 

The normal approximation to the chi-square distribution 

was used as in the first test, except with a summation 

limit of 2500 in equation (36) and 2499 degrees of freedom 

in equation (37). 

For both of these statistical tests, the probabil- 

2 ity of obtaining a 	greater than the one observed was 

reported. For different runs of the computer program 

these reported probabilities should vary somewhat over 

the range (0, 1). If all the/
■ 

2 values are small this 

could indicate that the pseudorandom normal numbers are 

not random enough. A large proportion of large X 2  values 

would indicate nonnormality or non-independence. If the 

/A 2 values are neither too large nor too small the pro- 
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. bability of obtaining a A greater than that observed 

should be less than .05 about once in twenty computer 

runs. If such small probabilities occurred significantly 

(p 4.05) more often according to a two-tailed binomial 

test, then it would have been considered that the normal 

numbers deviated significantly from a distribution of 

independent normal numbers. This two-tailed binomial test 

was based on a binomial distribution with R = .05 and n 

equal to the number of tests of fit of each type (bivariate 

or 8-variate). 

Generation of Sample Correlation Matr . ces  

The multiplicative pseudorandom number generator 

and the normal distribution transformation were used to 

produce a k x N matrix Z of N independent observations 

on k independent (uncorrelated) normal variables. For 

certain cases in this study, Z was transformed to a 

k x N matrix Y of N independent observations on k multi-

variate normal variables with specified population cor-

relations. 

Review of the Literature  

Recently, Barr and Slezak (1972) and Oplinger (1971) 

both evaluated methods of transforming a matrix Z of 

uncorrelated multivariate normal scores to a matrix Y of 

multivariate normal scores with a desired population co-

variance matrix C p  • Both studies investigated the same 
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three methods, the conditional density function approach, 

the similarity transformation technique (also called the 

rotation method), and the general recursive method (also 

called the triangular factorization method). Both con-

cluded that the general recursive method was the preferred 

method. Barr and Slezak demonstrated that it was faster 

and took less computer space than the other methods. 

The general recursive method transforms the matrix 

Z to correlated data Y by 

	

Y = A Z 
	

(39) 

where A is a lower triangular matrix such that 

	

A A T  = R 
	

(40) 

The matrix A is calculated by recursive equations which 

turn out to be identical to the equations for the square 

root method of linear algebra (Capra & Elster, 1971; 

Oplinger, 1971; Scheuer & Stoller, 1962) and for the Cholesky 

method of factor analysis (Harman, 1960, 38-41; Mulaik, 

1972, 108-109). Wold (1948) was apparently the first 

to recognize such an application of this system of equa-

tions. Scheuer & Stoller have presented a fairly general 

discussion of it. 

A fourth method, not considered by Barr and Slezak 
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(1972) or Oplinger (1971) has been proposed by Odell and 

Feiveson (1966a, 1966b). Rather than calculate Y at all, 

their method used generated independent 2 observations as 

well as independent unit normal observations to generate 

a sample covariance matrix directly by a Crout factorization 

method. 

Procedure Uged  

In this study all sample correlation matrices were 

derived from a multivariate normal population such that 

and 

0 

. 

(41) 

21 

Cv• = (4 2) 

k1 
 
k k-1 1 

Since the variance of each variable was 1, the population 

covariance matrix was identical to the population cor-

relation matrix, 

R = C ,p 	y ( 4 3 ) 



56 

Therefore, the recursive equations, which are stated gener-

ally in terms of the elements of 44.cy for the general case 
could be restated in terms of Rp  for this particular case. 

The resulting equations for the elements of the k x k 

matrix A (in equation (40)) were 
w. 

all - /11 = 1 
	

( 4 4 ) 

= a. 	= 	 i = 2, 3,..., k 11 	a11 	' (45 ) 

    

a.. = 
JJ JJ 

j-1 2  

.47-":7-1 	aji ; j  = 2, 
	k 	(46) 

and 

a . . = lj 

j - 1 
/2. 

.31 
	a 	a 

= 1 	j 2  

	

3, 	k 

	

j = 2 , 	i-1 . (47)  

 

a j  

These equations were used in subroutine ACOMP (on file 

in the School of Psychology) to calculate A from the speci-

fied R for each computer run. Then for each of the 1000 
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sample correlation matrices in a computer run, a matrix Z was 

generated which was then transformed to a matrix Y of cor- 

related observations by equation (39)• This matrix Y 

rented N subjects' scores on k variables with the intercor-

relations specified in Rp  . The sample correlation ma- 

trix R was computed from Y in the usual way, 

-IT -I R = D 2 YY D 2  (48) 

where DYE is a diagonal matrix consisting of elements d.. 11 

such that 

d. = 
S ii 
	 (49) 

wheresi  . is the sample estimate of the standard deviation 

of the ith  variable. 

Additional Statistical Testy of Pseudorandom Numbers  

Shreider (1966) has stated that "the quality of 

pseudorandom numbers may also be investigated by means of 

a model problem for which the exact solution is known 

(p. 334)." This seemed to be appropriate in this study 

since, as previously discussed, no sequence of numbers 

can definitely be considered random in every sense. Also 

Coveyou 2,rid MacPherson (1967) and Marsaglia (1968, 1970) 

have shown that the pseudorandom number sequence of the 

type used in this study is never random in at least one 
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particular sense. However, Halton (1970) pointed out that 

only a few properties of randomness are of interest for 

any particular application. Shreider's suggestion seemed 

to be the best way to investigate those properties of random-

ness (some of which are unknown) which are of interest 

for this application. 

Consequently, a method was used to test the pseudo-

random number generator by means of a model problem. The 

model problem was a significance test of one correlation 

coefficient between two uncorrelated variables. This 

problem was simulated by specifying two independent vari-

ables (i.e., k = 2 and R = I) for this test run of the pp 

computer program. The program then generated 1000 sample 

2 x 2 correlation matrices, which only had one unique inter-

correlation coefficient in it, r 12 . Since the,-test is 

an exact test of this null hypothesis and no multiple 

test considerations are involved, it is known that Type I 

errors should occur on about 50 out of 1000 independent 

trials when (1--xT = .05. The observed number of Type I 

errors was compared against this expected number using a 

two-tailed Poisson test ( .?\ = 50). The observed number of 

test runs with number of Type I errors significantly dif-

ferent than 50 	.05) was compared with the binomial 

distribution with p = .05 and n equal to the total num-

ber of test runs. This evaluated whether the number of 

test runs with a significantly different number of Type I 
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errors could be reasonably explained by random variation 

alone. 

Tests of Hypotheses of This Study  

Populations Studied 

All populations in this study from which samples 

were drawn were multivariate normal populations with mean 

vector gy and covariance matrix 0Cv  (identical toRp ) as 4. 

specified in equations (41) and (42). Nine cases were 

sampled in which the complete null hypothesis was true, 

R = I p (50) 

For three cases each, the number of variables (k) was 

3, 4, or 8. For each k, sample size (N.) was 15, 40, or 

100 for one case each. 

Other cases were selected mostly to provide realis-

tic analogues of equation (20). The following population 

correlation matrices were used: 

R 

R 

= 

= 

r l 
0 

1 
1 0 
0 

.3 

1 
.6 

1 
1 (51)  

(52)  



R 
P5 P 

1 
0 
o -.6 1 

1 
.6 
0 
0 

R = 

1 
. 6 
0 0 
0 0 .6 
0 0 0 
0 0 0 

R
p 
 = 

1 
.6 
.6 .6 

0 0 0 
0 0 0 
0 0 0 

R = 

60 

(53)  

(54)  

(55)  

(56)  

0 
0 0 
0 0 
.6 0 0 
.6 0 0 

R = 
,.P 

(58) 

For each 3-variable R p , sample correlation matrices were 

generated using a sample size of 15, 40, or 100 respective-

ly for each of three cases. For larger k, sample sizes 

(57) 
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of 40 and 100 were investigated for each R . "p 

Flow of the Computer Program 

The population correlation matrix and the sample 

size were specified for each run of the computer program. 

A series of tests of hypotheses of the form 

H0 	i . = 0  

H 1 	ij  / 0 
(59)  

were performed on all the sample correlations in 1000 

sample correlation matrices. 

Three methods were used to calculate the critical 

value for the hypothesis tests. Method I was the customary 

procedure of setting T(I) ' . 05 for all the tests. 

Method II calculated . -7E'T(II) aaccording to the 

equation 

. 	Or). 	.05 T(II) = 1  
(60)  

where m is the number of significance tests in the matrix 

or vector. This equation sets the (--/T (II) rate correctly 

for r'h = . 05 under the assumption that all significance 

tests in the family are mutually independent. It is 

realized that this assumption is not tenable in the inter-

correlation case, but it provides an easily calculated 

T(II) which seems to control (--'<FIN more appropriately 
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than Method I. 

Method III was the Bonferroni I method discussed 

previously. For this method 

225 
( 	

m 	• 	 (61) 

This always yields a conservative estimate of 	Dunn 

and Massey (1965) have previously investigated Methods II 

and III and found them to be adequate for most cases of 

equicorrelated multiple I tests. 

The single-test alpha levels, /T(1), ,i)2(II)' and 

'T(III) were calculated once considering the entire 

correlation matrix as the family of tests, with 

k (k-1)  m - 	2 ( 62) 

and once regarding the first column as the family of tests, 

with 

m = k-1 	 (63) 

This resulted in six distinct single-test alpha levels, 

which were designated 71 	 T(III)M' 

T(I)V' 	Ir(II)V 1  and,=/'T(III)V to distinguish between 

a matrix family of intercorrelation tests and a vector 
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(first column) family of intercorrelation tests (Note 

thatcl' 	= T(I)V' but the other single-test alpha T(I)M  
levels are generally numerically different). Correspond-

ing to the six single-test alpha levels were six distinct 

critical values for r.. . rid  

One thousand sample correlation matrices were gener-

ated. For each matrix, Type I and Type II errors were 

counted according to all six critical values for the first 

column and according to the three applicable critical 

values for the rest of the matrix. After all matrices 

were generated and analyzed, tables were printed summar-

izing the frequency of Type I and Type II errors. An 

example of these tables is printed in Appendix B. 

Options were available in the program to test the 

pseudorandom normal independent numbers by means of a 

Pearson --7 2  test-of-fit to a multivariate normal distri-

bution. 

Methods of Analysis of Matrices of Correlations  

Type I Error Rates Complete Null Hypothesis.  For 

each computer run with its particular case of a given 

sample size N, a given number of variables k, and R = I, 

empirical size was evaluated in several ways. For Hypotheses 

1, 2, and 3, the familywise empirical size was evaluated 

for Methods I, II, and III with the family of tests in-

cluding a component test for each intercorrelation in the 

matrix. Familywise empirical size is the proportion of 



the 1000 sample correlation matrices in which one or more 

Type I errors occur. 

Hypothesis 1, that the familywise Type I error rate 

is larger than .05 for Method I with k -I 3, was evaluated 

by testing the statistical hypothesis 

	

Ho a (-2( FW(I)M = .05 
	

(64) 
H1 1  ' 7'FW(I)M 

where 'FW(I)M is the familywise Type I error rate for the 

entire matrix according to Method I. The binomial dis-

tribution was used for this test since the 1000 trials 

were considered to be 1000 independent replications of the 

experiment. In such a case the binomial distribution 

assigns probabilities with each possible number of ob-

served trials having one or more Type I errors, with 

p = .05. Because of the large number of trials (1000), a 

Poisson approximation to the binomial distribution 

A • 
1 - P (x; 	= 1 
	e  

0 	1 ° 

	

100 0 x .05 = 50 
	 (65) 

x = 1000 x familywise empirical size 

was used to determine the probability of obtaining a larger 

familywise empirical size than that observed, given an 

actual VFW of .05. If the familywise empirical size 



65 

was significantly (p_ 	.05) more than an ,2(Fw  of .05, 

the null hypothesis of equation (64) would have been re-

jected, and it would have been concluded that '2CFW(I)M 

is actually greater than .05. 

The second hypothesis was that G-=S FW(II) and 

-7CFW(III) are not greater than the nominal ,--AFw  of .05. 

This was evaluated by testing the statistical hypotheses 

and 

H0 2FW(II)M =05 

H1 	' A FW(II)M 

Ho = FW(III)M = .05 

FW(III)M 	.05 	
• 

(66)  

(67)  

The Poisson approximation to the binomial distribution 

(equation (65)) was also used for these statistical analy-

ses as above. A two-tailed alternative hypothesis was 

used in equation (67) because one tail is of interest 

for the second hypothesis and the other tail for the third 

hypothesis, that as the number of variables gets larger, 

.7(
FW 

for Method III becomes significantly less than .05. 

The fourth hypothesis was that the conditional Type 

I error rate is greater than /\ T . Two analyses were 
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performed concerning this hypothesis. The first analysis 

was a test of fit to a binomial distribution of the fre-

quencies of each possible number of Type I errors for the 

1000 sample correlation matrices. The family of component 

tests on the m intercorrelations in one sample correlation 

matrix may result in 0, 1, 2, 3,..., or m Type I errors. 

If the component tests are mutually independent, a binomial 

distribution with n = m and p = .05 should describe the pro-

babilities of each possible number of Type I errors. From 

this, the expected frequencies of each possible number of 

Type I errors can be calculated for a total frequency of 

1000 sample correlation matrices. If the observed fre-

quencies of each possible number of Type I errors for the 

1000 sample correlations differ significantly (ID_ 4.05) 

from the expected frequencies, then the conclusion would have 

been made that the component tests could not be considered 

mutually independent. If the component tests are not 

mutually independent, then the conditional Type I error 

rate differs from the unconditional Type I error rate 

(((< T ). 2  <T ). A Pearson X statistic was used for the test of 

fit. The cells for the larger numbers of Type I errors 

were lumped together so that each cell had an expected 

frequency of five or more for the test of fit. 

The second analysis of conditional Type I error rate 

was conditional empirical size. For this analysis, a 

component test such as 
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Ho  I /1 2  = 0 
(68) 

H1 /12 71  0  

was selected for the conditional empirical size to be 

conditional on. The conditional empirical size for any 

other component test was the proportion among the sampling 

replications with Type I errors on component test (68) 

which also had Type I errors on the other component test. 

For example, if 50 of the 1000 sampling replications had 

a Type I error on component test (68) and there was also 

a Type I error on the component test of A .3  on 15 of those 

50 replications, then the conditional empirical size for 

P13  would be 15  = .30. The conditional empirical size was 50 

calculated for all component tests (except component test 

(68)) in this way. A one-tailed Poisson test was used to 

evaluate whether each conditional empirical size was sig-

nificantly more than .05. In the above example the expected 

number of Type I errors on /413  (among the 50 replications) 

would be 2.5. Therefore, the observed number of replications 

with Type I erros on /913  (in this case, 15) would be 

statistically evaluated against a Poisson distribution with 

= 2.5. 

These two analyses of conditional Type I error rate 

were done only for Method I. Methods II and III resulted 

in too few cells for the test of fit and in too few Type 

I errors for conditional empirical size. 
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Type  I Error  HatQs Other Null Hypotheses.  The analy-

ses mentioned thus far have been only those in which the 

complete null hypothesis is true (i.e., R = I). Other 
11. 

population correlation matrices were also examined in this 

study. In general, the same analyses were used with res-

pect to Hypotheses 1, 2, 3, 4, and 5 as were used for samples 

from populations of independent variables. Of course, 

Type I errors are possible only for true component null 

jypotheses. If a component null hypothesis is actually 

false (i.e., (2ii  / 0) then no Type I errors are possible 

on that component test. The critical value for the three 

Methods were the same as in the previous cases, computed with 

4>e 
T(I) = .05 and by equations (60) and (61). For the analy- 

sis, however, of conditional empirical size, the binomial dis- 

tribution of number of Type I error was based on the number 

of true component null hypotheses. The only other change 

from the previous analyses was that a two-tailed alter-

native hypothesis was used in equation (66) for the analysis 

of the familywise Type I error rate by Method II. 

type II Error Rate.  The cases of population corre- 

lation matrices R 2'  I also provided opportunities to evalu-v-p 	4-- 

ate Type II error rates (Hypothesis 6). There were no 

statistical analyses of Type II error rates. Instead, 

the empirical power per component test was calculated. 

This is the proportion of times that a false component 

null hypothesis was correctly rejected in the 1000 trials. 
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For some population matrices, there was more than one false 

component null hypothesis. In these cases, the familywise 

empirical power was calculated, i.e., the proportion of 

times that all false component null hypotheses in the family 

of tests were correctly rejected. The empirical power 

per test and, when applicable, familywise empirical power 

were compared for the three methods of determining O T . 

Analyses of Vectors of Correlations  

These analyses were based on the data from the 

first column of each correlation matrix, using the same 

data generated for the analyses of matrix intercorrelations. 

Familywise empirical size, conditional empirical size, 

and empirical power were analyzed similarly to the matrix 

cases discussed previously. The main difference was that 

the family of tests included only those in the first col-

umn of the matrix rather than those in the entire matrix. 

Therefore, the value of m used for calculating T 
accord-

ing to the three methods was calculated by equation (63) 

rather than equation (62) which applied in the matrix cases. 

Summary of Analyses  

Table 3 presents an overview of the analyses of the 

Monte Carlo empirical data. One thousand sample correlation 

matrices were generated for each indicated combination of 

sample size, number of variables, and population correlation 

matrix. The indicated analyses were performed on those 1000 
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Table 3. Summary of Analyses of this Study 

... R 1) k N 

Familywise 
Type I 

Error Rate 

Conditional 
Type I 

Error Rate 
Type II 

Error Rate 
Matrix Vector Matrix Vector Matrix Vector 

I-I  i 

, 

15 S S B B 
3 4o s S B B 

100 S S B B 
15 S S B B 

4 4o s s B B 
100 S S BC BC 
15 S S B B 

8 4o s s B B 
100 S S B B 
15 S S B B F 

(51) a  3 4o s s B B F 
100 S S B B F 
15 S S B B F 

(52) a  3 40 S S B B F 
100 S S B B F 
15 S S B B F 

(53) a  3 4o S S B B F 
100 S S B B F 

(54) a 4  40 
100 

S 
S 

S 
S 

BC 
BC 

BC 
BC 

F P 
F P 

(55) a 4  40 
100 

S 
S 

S 
S 

BC 
BC 

BC 
BC 

F P 
F P 

F 
F 

(56) a 6  40 
100 

S 
S 

S 
S 

BC 
BC 

BC 
BC 

F P 
F P 

F 
F 

(57) a 6  40 
100 

S 
S 

S 
S 

BC 
BC 

BC 
BC 

FP 
FP 

FP 
FP 

(58) a 4 

6 

40 
100 

S 
S 

S 
S 

BC 
BC 

BC 
BC 

FP 
FP 

FP 
FP 

Note. - Key: S, familywise empirical size; B, test-of-
fit to binomial distribution; C, conditional empirical size; 
P, empirical power per test; F, familywise empirical power. 
The left column indicates the population correlation ma-
trices and sample sizes investigated. 

aRefers to the correlation matrix designated by this 
equation number in the text. 
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sample correlation matrices for each of the three methods 

of determing T and the corresponding critical values for 

r... 13 



CHAPTER III 

RESULTS 

Statistical Vests of Pseudorandom Number Generator 

o 	 V 

The unit normal pseudorandom number generator was 

used to generate scores for as many as eight variables 

at a time. To test the hypothesis that these scores 

are jointly distributed as an 8-variate normal distri- 

bution with mean vector p = 0 and covariance matrix /0.  

= I 8 , a A2 goodness-of-fit test was performed as des- 

cribed in Chapter 	The results are shown in Table 4. 

Table 4. Summary of Tests of Goodness of Fit to 
An 8-Variate Normal Distribution 

k N 	Total 	)( 2 Valueb Probability of 
8-Tuplesa 	 Larger )( 2  

8 	40 	40,000 	6743.06 	.056 

	

8 100 100,000 	6578.08 	.44 

Note. - There were 6561 frequency cells with 
equal expected frequencies for each cell. 

aAn 8-Tuple is one set of observations on 
the § variables. 

°Degrees of freedom = 6560 

The tests of goodness of fit indicate that the generated 

numbers adequately fit the desired 8-variate normal dis-

tribution (p .05). So the null hypothesis was accepted 

72 
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that the pseudorandom normal numbers did fit an indepen-

dent 8-variate normal distribution. Additional tests 

would have been preferable, but limitations of computer 

time prevented this. 

Tggtof Eit to 4varilte Normal Distribution 

The test of goodness of fit to an 8-variate normal 

distribution was limited both by computer time and by 

having each variable divided into only three equally 

probable intervals. Tests of goodness of fit to bi-

variate normal distributions were used because they 

diminished these limiting factors. Such tests used less 

computer time and permitted more intervals on each vari-

able. To test the hypothesis that observations on two 

variables were jointly distributed as a bivariate normal 

distribution with mean vector Al = 0 and covariance matrix 
" 	 Ng 

C = I, a X2 goodness-of-fit test was performed as des- 
C.• 

cribed in Chapter II. The results (Table 5) indicate that 

the generated pseudorandom numbers adequately fit the de-

sired bivariate normal distribution. The probabilities of 

observing a X 2  value larger than the one actually ob-

served range from .14 to .83 for the different tests. So 

the null hypothesis was accepted that the pseudorandom nor-

mal numbers did fit an independent bivariate normal dis-

tribution. 

Statistical Test of Type I Error Ratg for a Sinejp nnr-

relation Coefficient  
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As discussed in Chapter II, the expected propor-

tion of Type I errors is known when only one significance 

test of one correlation coefficient is of interest. This 

case was simulated six times in this study by specifying 

k = 2 and R = I for six runs of the computer program of 

1000 trials each. The results of these computer runs are 

presented in Table 6. It can be seen that for two of the 

six runs, the number of observed Type I errors was sig-

nificantly (p 	.05) different than 50 (the expected num- 

ber). The probability of observing two or more signi-

ficant results at the .05 level of significnace in a 

family of six independent tests of fit is .033 according 

to the binomial distribution. So this test indicated that 

the method of generating simulated sample correlation 

coefficients resulted in a different rate of Type I errors 

than truly random numbers would produce. 

The implications of the results of these tests will 

be discussed further since they suggest that some of the 

main results of this study must be somewhat qualified. 

From Table 6 there seems to be a tendency toward fewer 

Type I errors than should be expected. This will be called 

the "undergeneration of Type I errors". Note that the 

observed number of Type I errors is less than expected on 

each of the six computer runs. It will be shown in the 

next chapter that there seemed to be a tendency toward 

undergeneration of Type I errors in the computer runs of 



Observed 
Type I 

Errorsa 

N Computer 
Run 

1 

2 

3 

4 

5 

6 

	

15 	49 

	

15 	34* 

	

40 	49 

	

4o 	36* 

	

loo 	43 

	

100 	45 

75 

Table 5. Summary of Tests of Goodness of Fit to 
a Bivariate Normal Distribution 

k N Two 	a  
Variables 

Total 
2-Tuples 

x2 Valuec  Probability , 
of Larger x.4  

3 4o 1,3 40,00o 2503.75 .47 

3 40 1,2 40,000 2447.00 .77 

4 15 1,4 15,000 2505.32 .46 

4 4o 1,3 40,000 2576.25 .14 

8 15 1,8 15,000 2431.32 .83 

Note. - There were 2500 frequency cells with equal 
expected frequencies for each cell. 

a0f the k variables, these were selected for the 
goodpess of fit test. 

A 2-Tuple is one set of observations on the 2 
variables. 

cDegrees of freedom = 2499 

Table 6. Summary of Statistical 
Tests of Type I Error Rate of a 
Single Correlation Coefficient 

The expected number of Type 
1 errors was 50 for each case. 

*2 < .05; two-tailed Poisson 
probability. 
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primary interest in this study. Out of 28 such computer 

runs, only seven had more total Type I errors than the 

expected number. The undergeneration of Type I errors 

seemed to be more pronounced for cases with small sample 

size than for cases with large sample size. A detailed 

summary of the observed total Type I errors for each com-

puter run is presented in Table C.1 in Appendix C. 

Results of Tests of Hypotheses of This Study 

The major hypotheses of this study involve the Type 

I error rates, the conditional Type I error rates, and 

the Type II error rates of a family of significance tests 

of intercorrelations using the three different methods of 

finding c)4  for each significance test. These hypotheses 

are listed at the end of Chapter I. In this section, 

the results of the tests of hypotheses about Type I error 

rates are discussed first, followed by the results con-

cerning Type II error rates. 

Type I Error Rates 

The results of the tests of hypotheses about Type 

I error rates are considered in two groups here. The 

first group consists of the results concerning family-

wise Type I error rates. The second group consists of 

the results concerning conditional Type I error rates. 

Fawilywiu Typo ; Error Mates.  Three hypotheses 

concerned familywise Type I error rates. The major kind 

of data relevant to these hypotheses was familywise 
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empirical size, which was the proportion of familywise 

Type I errors that occurred on a given computer run. 

Table D.1 in Appendix D reports the familywise empirical 

size, the population correlation matrix and the sample 

size for each computer run. 

The first major hypothesis was that the familywise 

Type I error rate () would be significantly larger 

than .05 when Method I was used with c)(T  = .05. Table 

D.1 indicates that this hypothesis was strongly supported. 

Furthermore, the familywise empirical size became larger 

as the number of true component null hypotheses increased. 

The number of true component null hypotheses is the number 

of hypothesis tests in the family of tests (tests of all 

intercorrelations in either the matrix or the first col-

umn) for which 	= 0. Table 7 summarizes the family- 

wise empirical sizes according to the number of true com-

ponent null hypotheses. Note that as the number of true 

component null hypotheses increases, the familywise empiri-

cal sizes increase. 

The second major hypothesis was that c7(FW  would not 

be significantly larger than .05 for Methods II and III. 

This was supported by the data. Using Methods II and III, 

the familywise empirical size was never larger than .05 

except for a few cases that could easily be attributed 

to chance (see Table D.1). However, these results must 

be qualified somewhat because the undergeneration of Type 



Table 7. Familywise Empirical Sizes by Number 
of True Component Null Hypotheses in a 

Family (Method I) 

True 
Component 

Null 
Hypothesesa  

Familywise Empirical Size b  

Mean Range 

2 .087 .062 - 	.119 

3 .125 .094 - 	.164 

4 .162 .139 - 	.181 

6 .239 .209 - 	.262 

7 .276 .224 - 	.305 

9 .244 .239 - 	.248 

12 .396 .393 - 	.398 

13 .454 .452 - 	.456 

21 .725 .669 - 	.755 

aThe number of significance tests in the 
family of tests (matrix or vector) for which 
the pull hypothesis was true. pull 

 of test samples containing at 
least one Type I error. 

I errors is a confounding factor. This qualification 

does not seem too serious, though, since the familywise 

empirical sizes supported the hypothesis even for sample 

sizes of 100, for which there was no apparent under-

generation of Type I errors. 

The third major hypothesis was that the family-

wise Type I error rate for Method III would be less than 

.05 for a larger number of variables. This was not sup- 

78 
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ported by the data. The familywise empirical size was 

significantly less than .05 for many computer runs (p 

.05), but this did not seem to be related to the number 

of variables. The cases for which H= I are considered wp 

first. In these cases familywise empirical size was 

significantly less than .05 for three out of 18 cases. 

Two of these three deviant cases occurred with eight 

variables. Furthermore, these three deviant cases could 

be attributed to the undergeneration of Type I errors. 

There were more cases with R p  / I in which the ov.  

familywise empirical sizes for Method III were signifi-

cantly less than .05. However, these were not related 

to the number of variables in any apparent way. For the 

oases in which the entire matrix of intercorrelations 

provided the data for the family of significance tests, 

the only familywise empirical sizes not significantly less 

than .05 were for cases with the largest number of vari-

ables. 

The familywise empirical sizes for Method III 

seem to be explained best by considering the proportion 

of true component null hypotheses. The proportion of tTue 

component null hypotheses is the ratio of the number of 

true component null hypotheses in the family of tests to 

the total number of component null hypotheses in the family 

of tests. For example, when R = I, all component null 

hypotheses are true, so this proportion is 100%. Table 8 



Table 8. Range of Familywise Empirical 
Size by Proportion of True Component 
Null Hypotheses in a Family (Method III) 

80 

Proportion 
of 

True Component a 
 Null Hypotheses 

Familywise Empirical Size b  

Mean Range 

.042 

.039 

.039 

.027 

.025 

.022 

100% 

87% 

80/a 

67% 

60% 

50% 

.026 - .057 

.035 - .042 

.034 - .042 

.018 - .033 

.019 - .034 

.016 - .023 

aThe proportion of component significance 
tests (matrix or vector) for which the null hy- 
pothesis is true. 

°Proportion of test samples containing at 
least one Type I error. 

summarizes the trend in familywise empirical size ac-

cording to the proportion of true component null hypo-

theses in a family. It can be seen that as the proportion 

of true component null hypotheses decreases, the family-

wise empirical sizes decrease also. 

It is interesting that Methods II and III led to 

making decisions that differed very little from each 

other in this study. In 25 of the 56 comparisons, the 

familywise empirical size was identical for the two 

methods. In another 24 comparisons, they differed by only 

.001. 
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Conditional Type I Error Rates.  Two major hy-

potheses concerned conditional Type I error rates. The 

first hypothesis was that the conditional Type I error 

rate is greater than G4T • The second hypothesis was that 

this effect is particularly strong when some of the vari-

ables in the sample are highly correlated. Since these 

hypotheses are similar they are considered here together. 

The data indicated that the conditional Type I error rate 

increases above 	"I' when R p 	 p vs. / I but not when R = I. 

Two types of analysis of conditional Type I error rates 

were used. The first was a test of fit of the frequencies 

of each number of Type I errors for the 1000 sampling 

replications to a binomial distribution, as explained 

in Chapter II. The results of these tests of fit are 

reported in Table D.2 in Appendix D. The second type 

of analysis was conditional empirical size, the observed 

proportion of Type I errors on one component test, given 

that a Type I error occurred on the same sampling repli-

cation on another previously specified component test 

in the same family of tests. This is also explained 

in more detail in Chapter II. 

The cases for which R = I are considered first. 

From Table D.2 it can be seen that in five of the 18 tests 

of fit, the observed frequencies of number of Type I 

errors deviated from the expected binomial distribution 

more than could be accounted for by chance (p 4 .05 for 
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each test of fit). Taken together, this indicates a sig-

nificant deviation from the expected binomial distri-

bution (p -‹.05). However, four of the five significant 

tests of fit could easily be explained by the undergener-

ation of Type I errors for small sample sizes. In each 

of these cases, there were a larger-than-expected fre-

quency of zero Type I errors and smaller-than-expected 

frequencies in most of the other cells. This implies 

that the deviations from the expected binomial distri-

bution could be attributed to p not being c)(T  rather than 

the component tests not being mutually independent. 

The second type of analysis, conditional empiri-

cal size, was performed for only one case (k = 4; N = 

100). It can be seen from Table D.3 in Appendix D that 

the conditional empirical sizes are close to 	= .05. 

Now the cases for which R / I are considered. 
WID 

Conditional Type I error rates were often greater than 

T for many of these cases. This was evident from 

the results of many of the tests of fit reported in Table 

D.2 in Appendix D. For each Pearson X 2  test of fit the 

expected frequency of each number of Type I errors was 

calculated according to a binomial distribution, as ex-

plained in Chapter II. The tail of the distribution was 

combined so that each cell would have an expected frequency 

of at least five. Thus, for example, with c'(  = .05, 

1000 sampling replications, and three component null hy- 
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potheses, the expected frequencies would be 857.4 repli-

cations with zero Type I errors, 135.4 replications with 

one Type I error and 7.2 replications with two or more 

Type I errors. 

Of the 20 cases in which Rp  / I and there were )4.  

more than two cells for the test of fit, 19 cases had 

observed frequencies of number of Type I errors which 

deviated from the expected binomial distribution (p.4% 

.051 see Table D.2). Most of these Pearson X 2  values 

are very large. 

Most of the cases with R p  I and two cells for the 

test of fit are reported as adequate fits to the binomial 

distribution in Table D.2. However, this is because all 

replications with any Type I errors were counted in the 

same cell for the test of fit. Table 9 gives a detailed 

report of these cases. It can be seen that there were 

consistently more cases with two Type I errors than would 

be expected if the component tests were mutually inde-

pendent. However, because the expected frequency of two 

Type I errors was only 2.5, the cell for one Type I error 

was combined with the cell for two Type I errors for the 

,/2 Pearson /\ test of fit. Thus the fact that Type I errors 

tended to occur together was obscured by the requirements 

for the Pearson .7c2  test of fit. If none of the three 

cells had been combined for the tests of fit, 8 of the 10 

cases in Table 9 would have been considered significant 
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Table 9. Distribution of Number of Type I Errors 
for Cases with Two Component Null Hypotheses 

in the Family of Tests (Method I) 

R 4.,..p k N 
Matrix 

or 
Vector 

Observed 
Frequencies of 

Number of 
Type I Errorsa 

Conditional 
Empirical 
Sizeb Number 

0 	1 	2 

15 Both 921 	76 	3 .073 

(51) c  3 40 Both 910 	84 	6 .125 

100 Both 909 	84 	7 .143 

40 Both 923 	69 	8 .188 
(52) c  3 

100 Both 908 	80 12 .231 

15 Both 938 	55 	7 .203 

(53) c  3 40 Both 908 	79 13 .248 

100 Both 914 	79 	7 .151 

40 Vector 918 	78 	4 .093 
(55) c  4  

100 Vector 903 	82 15 .268 

Note. - Expected frequencies of number of Type I 
errors: 0 errors, 902.5; 1 error, 95; 2 errors, 215. 

aBy Method 
bThe observed proportion of Type I errors on one 

component test, given that a Type I error occurred on 
the other component test. These values in this column 
were calculated by assuming that the frequencies of one 
Type I error was divided evenly among the two component 
tests. 

cRefers to the population correlation matrix desig-
nated by this equation number in Chapter II. 

deviations from the expected binomial distribution (However, 

this would necessitate an expected frequency of 2.5, 

which is smaller than is generally acceptable for Pearson 

2  tests of fit). 
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In conclusion, in the cases considered in this 

study for which R X I, the observed frequencies of number 
43 	m  

of Type I errors deviated significantly from the binomial 

distribution expected if the tests had been mutually 

independent. The deviation generally followed a simi-

lar pattern, with higher-than-expected frequencies of 

zero Type I errors, higher-than-expected frequencies of 

a large number of Type I errors, and lower-than-expected 

frequencies of intermediate numbers of Type I errors. 

In Table 9, for example, the observed frequencies of zero 

and two Type I errors are consistently higher than ex-

pected, whereas the observed frequencies of one Type I 

error are consistently lower than expected. 

The second type of analysis, conditional empiri-

cal size, also showed the effect of the dependence of the 

significance tests. The conditional empirical size for 

certain component tests given that a Type I error occurred 

on a specified test is reported in Tables D.4 through 

D.13 in Appendix D. These tables report the observed 

numbers of Type I errors on a test of r id  given that 

Type I error has occurred also on another specified 

test (on r21 , r31 , or r41 ). Most of the significant 

results reported in Tables D.4 through D.13 involve what 

will be called here "strongly-linked" component tests. 

Such "strongly-linked"component tests are two component 

tests 
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H0  s 
	= 0 

(69)  
H
1  i 
	 o 

and 

HO 1  /9kj = ° 

H1 3 Pk  j ` 0 
(70)  

in which the null hypothesis is true for both of them 

and pki 	.6. In other words, "strongly-linked" com- 

ponent tests involve a pair of correlations with one 

variable in common (represented by j) and the other vari-

ables correlated .6 with each other (represented by k and 

i). On any "strongly-linked" component test the condi-

tional empirical size (conditional on a Type I error 

occurring on its "strongly - linked" partner) was more than 

.05 (the unconditional Type I error rate, cK T ). Table 

10 reports the data on conditional empirical size for 

"strongly-linked" component tests. It can be seen that 

the number of conditional Type I errors are generally 

significantly larger (2Fw < .01) than would be expected 

if the two component tests were independent. The mean 

conditional empirical size for these "strongly-linked" 

component tests is .242. Conditional empirical sizes are 

also reported in Table 9. Most of these also involve 

"strongly-linked" component tests (All except those using 
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Table 10. Conditional Empirical Sizes of 
"Strongly-Linked"a Component Tests 

From 
R 	Table 
P 	No. 

Con- 	"Strongl 
ditional 	Linked" 
on Type Ir.  
Error ont 	

j 

Conditional 
Type I Errors 

,Actual  
pectedu 

Con- 
ditional 

Empirical 
Sizec 

D.4 
(54) d 

D.5 

r 

r21 	
r31  
r41  

r21 

	

r 1  

	

2.2 	8** 

	

2.2 	12** 

	

2.15 	12** 

	

2.15 	10** 

.182 

.273 

.279 

.233 

D.6 

(55)
d 

D.7 

r r31  
r41
32 

r31 	
r32  
r41  

	

2.3 	8** 

	

2.3 	4 

	

2.7 	16** 

	

2.7 	15** 

.174 

.087 

.296 

.278 

D.8 
(56) d  

D.9 

r31 	
r32 
r41 

r31 	
r32 
r41 

	

3.4 	15** 

	

3.4 	16** 

	

2.45 	7f 

	

2.45 	14** 

.221 
, 	.235 

.143 

.286 

D.10 

(57)
d 

D.11 

r _ 
 

r21 	52 
'62 

r r21 	_52 
'62 

	

2.9 	11** 

	

2.9 	15** 

	

2.4 	9**e  

	

2.4 	14** 

.190 

.259 

.188 

.292 

D.12 

(58) d 

D.13 

r42 
r41 	'43 r ,5 

 '61 

r42 r43 r41 	r _51 
'61 

	

2.7 	14** 

	

2.7 	14** 

	

2.7 	13** 

	

2.7 	15** 

	

2.05 	9** 

	

2.05 	13** 

	

2.05 	14** 

	

2.05 	11** 

.259 

.259 

.241 

.278 

.220 

.317 

.341 

.268 

Note.- These data are based on Method I. with 	c... 
= .05. ,, 

"'Strongly-linked" component test: involve a p-tir of 
correlations with one variable in common and the other 
variablEs correlated .6 with each other. 

Expectation based on assumption of independence of 
the secRnd test from the first. 

'The observed proportion of Type-I errors on one 
component test (on r ; .in 4th column) among the sampling 
replications with Tyti I errors on the "strongly-linked" 
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Table 10 Cont'd 

partner (on r ; . in 3rd column). 
dRefers tlethe population correlation matrix desig-

nated by this equation number in Chapter II. 
emultistage procedure 

T 4 X
05 

* 2Fw < .01, Bonferroni Poisson one-tailed test, 
with the tests for one table (e.g. Table D.4) regarded 
as a family of tests. 

-p equation (51)). For most of these cases, however, v 

the exact number of Type I errors on each component test 

is unknown. Therefore, the values for conditional em-

pirical size were calculated by assuming that the Type 

I errors on sampling replications with one Type I error 

were divided evenly among the two component tests. For 

the five cases which were not analyzed directly in Table 

10 (the cases using Rp  equation (55) were analyzed both 

ways), the mean conditional empirical size was .202. 

The other significant results and some borderline 

results in Tables D.4 through D.13 involve what will be 

called here "moderately-linked" component tests. Such "mod-

erately-linked" component tests are two significance tests 

and 

H0 	= 0 
0 fij 

H1  rij  / 0 ( 71 ) 

H 0  s /9  = 0 
0 	kk 

H1 1 7k 
(72) 
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in which the null hypothesis is true for both of them and 

pik  = .6 and 	= .6. In other words, "moderately- 

linked" component tests involve a pair of correlations 

Table 11. Conditional Empirical Size of 
"Moderately-Linked"a Component Tests 

R
P  

From 
Table 
No. 

Con- 
ditional 
on Type I 
Error on: 

"Moder- 
ately- 

Linked" 

rij.. 

Conditional 
Type I Errors 

Actual Ex- 
pected 

Con-
ditional 
Empirical 

Sizeb 

(551 c 
' 

p.6 
D.7 

r31 r31 
r42 
r42 

2.3 
2.7 5 

.130 

.093 

( 5 60c 
' 

D.8 
D9 -.' r

rli 

31 
r42 
r42 

3.4 
2.45 

7d 
6d 

.103 

.122 

(58)c 

D.12 

D.13 

r41 

r41 

r c2  
r5 3  ,53 
'62 r63 

r52 r53 

r62 r63  

2.7 
2.7 
2.7 
2.7 

2.05 
2.05 
2.05 
2.05 

7* 
14** 
8* 
5 

5 
2 
6d 
5 

.130 

.259 

.148 

. 093 

.122 

.049 

.146 

.122 

Note. - These data are based on Method I, with T = .05. 
a"Moderately-linked" component tests involve a pair 

of correlations for which the two variables of one cor-
relation are each correlated .6 with one of the vari- 
able of its partner correlation. 

°The observed proportion of Type I errors on one 
component test (on ri• in 4th column) among the sampling 
replications with Typ8 I errors on the moderately-linked 
partner (on rii in 3rd column). 

cRefers to u the population correlation matrix desig- 
nate4 by this equation number in Chapter II. 

uPT .4: .05 
*PFw-e, .05, Multistage Bonferroni one-tailed test, 

with the tests for one table (e.g., Table D.4) regarded as 
a family of tests. 

**PFW < .01, Multistage Bonferroni as above. 
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for which the two variables (i,j) of one correlation are 

each correlated .6 with one of the variables of its part-

ner (i with k and j with 2,)• Table 11 reports the con-

ditional empirical size for such cases. It can be seen 

that no definite conclusions can be made based on this 

data alone, but it is suggestive that conditional Type 

I error rates do increase above .05 for "moderately-

linked" component tests. The mean conditional empirical 

size for the cases in Table 11 is .126. 

There were no other clear effects present in the 

data on conditional empirical size, although Tables D.9 

and D.11 include a total of three other instances of re-

sults of borderline significance. 

Type II Error Rates  

Power.  The power of the different methods of deter-

mining c,< I, was investigated in terms of the empirical 

power of component tests and, in some cases, in terms of 

familywise empirical power. The data concerning empirical 

power of component tests is summarized in Table 12. When 

the population correlation coefficient was equal to 	.6 

and the sample size was 100, the empirical power was 1.00 

in all cases for all methods. When the population corre-

lation coefficient was equal to ±.6 and the sample size 

was 40, the empirical power was about .99 for Method I, 

which set cK T equal to .05. For Methods II and III, 

the empirical power varied also with the number of tests 

in the family of tests (Methods II and III were nearly 
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Table 12. Empirical Power on individual Component 
Tests 

P. 	N ij 
/9. 

Number of 
Empirical 

Power 
Estimates 

Empirical Powera  

Method I Method III 
Mean Range Mean Range 

100 3,4,6 18 1.00 1.00 1.00 1.00 
4o 3 2 .991 .988-.993 .971 .966-.975 

±.6 	4o 4 5 .991 .988-.994 .951 .943-.956 
4o 6 11 .991 .985-.994 .909 .896-.927 
15 3 2 .757 .705-.809 .587 .517-.656 

loo 3 1 .863 .863 .741 .74 1 
.3 	4o 3 1 .472 .472 .301 .301 

15 3 1 .200 .200 .094 .094 

Note. - This table includes empirical power based on 
analyses of correlation matrices only. 

aThe proportion of sampling replications of a compo-
nent test without a Type II error occurring. 

identical in empirical power). For /3ii  = ±.6 and N = 40, 

the power for these methods decreased from about .97 for 

k = 3 to about .91 for k = 6. So the difference between 

Method I and Method III (or II) in terms of power becomes 

greater as the number of component tests in a family of 

tests increases. 

Only two estimates were made of power given / ii  = ±.6 

and a sample size of 15. These estimates were both for 

cases of k = 3 and they varied a good deal from each other. 

However, empirical power by Method III (about .59) was 

further below empirical power by Method I (about .76) than 

for any other cases where /7. . = ±.6. ij 
Empirical power by Method III was also about .10 to 

.17 less than empirical power by Method I when 	• 3. 
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The results of the analysis of power was very simi-

lar for correlation vectors. Power for component tests 

by Method I is exactly the same for correlation vectors 

as for correlation matrices. Empirical power for com-

ponent tests by Method III was higher for correlation 

vectors of k variables than for correlation matrices of k 

variables, but this was only a result of the different 

number of tests in their respective families of tests 

(see equations (62) and (63)). 

The analysis of familywise empirical power added 

nothing to the analysis of empirical power per component 

test. In all computer runs with N = 100 for which family-

wise empirical power was applicable, the empirical power 

was 1.00 regardless of method of determining c) ,< T . In the 

other applicable computer runs, with N = 40, familywise 

empirical power for correlation matrices varied from .952 

to .984 for Method I, and from .637 to .900 for Method III. 

For both methods, familywise empirical power was related 

to the number of false component null hypotheses in the 

family of tests. The lowest values of familywise empirical 

power occurred when there were the most non-zero population 

correlation coefficients. 
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CHAPTER IV 

DISCUSSION 

This chapter first discusses the results of the em-

pirical study and then relates the findings to some ex-

amples of statistical analyses of intercorrelations from 

recent journal articles. The discussion of the empirical 

study begins with a consideration of the adequacy of the 

pseudorandom number generator which was used in this study. 

There is some indication that the pseudorandom numbers did 

not demonstrate some important properties of randomness. 

The implication of this for the main results of this study 

are considered. 

Secondly, the primary results of this study are dis-

cussed. The control of Type I error rate is considered 

first, followed by a discussion of the control of Type II 

error rate. 

Then the major conclusions from this study are sum-

marized. Following the summary, a multistage Bonferroni 

procedure is recommended for controlling Type I error rate 

in multiple significance tests of intercorrelations. 

Finally, the major findings of this study are re-

lated to two recent journal articles. This final section 

includes an illustration of the use of a multistage Bon- 
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ferroni procedure applied to one of the sets of data. 

ndom N mb 

The results of two of the statistical tests of the 

pseudorandom number generator used in this study indicate 

an adequate fit to the bivariate normal distribution and 

to an 8-variate normal distribution. However, the other 

test indicates that the computer simulation is biased 

toward producing fewer total Type I errors than expected. 

If the generated independent normal numbers were truly 

random and if the transformations were applied correctly 

in the computer program, no such bias would exist. 

There was also some tendency toward an undergener-

ation of the total number of Type I errors in the computer 

runs of primary interest in this study. No exact infer-

ential statistical analysis seemed applicable to this data 

as a whole, so descriptive statistics are emphasized in 

this presentation rather than inferential statistics. 

The observed number of total Type I errors for each 

computer run is presented in Table C.1. These are com-

pared with the expected number of total Type I errors, 

which is actually the error rate per family ( 01( 1:7 ) mul-

tiplied by the number of sampling replications (1000). 

As Miller (1966) and Ryan (1959) have noted, a( pF  is not 

affected by the dependence of component tests in a family 

of tests. The expected number of Type I errors on one com- 
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ponent test in 1000 sampling replications is 

E (total Type I errors on one component test) 

= 1000 (--2cT . 	
(73) 

If Rp  = Ik , then the expected number of Type I errors on 

the k ( 2
k-1)  component tests in this family of tests in 1000 

sampling replications is 

k((k-1)  
2 	Ei(total Type I errors on one component test)] 

k (k-1)  = 	2 	(1000 c>4T ) 	 (74) 

= 1000 G'<pF  • 

Since no assumption of independence is necessary for this 

conclusion, equation (74) holds regardless of any depen-

dence among the component tests. 

Although the expected number of total Type I errors 

is known, the variance of the total Type I errors is un-

known and therefore, exact statistical inference is im-

possible. The binomial distribution and its normal approxi-

mation would be appropriate if the component tests were 

mutually independent. Technically the component tests of 

interest are never mutually independent, but the results of 

this study indicate that if 4 = I,  the component tests do 

not deviate significantly from mutual independence. If it 
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is assumed that a mutual independence assumption is justi-

fied, then a normal approximation to a binomial distribu-

tion can be used to make inferences about the possible un-

dergeneration of Type I errors. Admittedly, this proce-

dure is not entirely justified, but it provides some infor-

mation needed for evaluating the main results of this study. 

Table 13. Total Number of Type I Errors 
on Each Computer Run (h = I only) 

k N Total Type I Errors 

Expected Observed 

15 150 147 
3 40 150 132 

100 150 168 

15 300 237*** 
4 40 300 284 

100 300 297 

15 1400 1109*** 
8 40 1400 1327* 

100 1400 1411 

Total 5550 5112*** 

Note. - The observed total Tyne i 
errors may be slightly underestimated due 
to incomplete data. The statistical 
analyses are based on two-tailed normal 
approximations to binomial distributions 

N - 1000 m X .05; 0—  = 4Npq = 

	

0 m X .0 	). 
*pip-C.05 
**4

121 	.001 

Table 13 reports the total Type I errors for cases 

for which ARp  = The total of the total numbers of Type 

I errors is significantly less than expected (Z = -6.03; 



97 

pc.: .001). Three of the eight computer runs produced sig-

nificantly less total Type I errors than expected (p‘e.: 

.05). 

There are four possible explanations for the under-

generation of the total number of Type I errors. First, 

it could have been a case of a large random deviation 

from the expected value that does occur a small percent-

age of the time. Second, it could have been due to some 

misapplication of the appropriate transformations from 

independent normal numbers to correlated normal numbers. 

Third, it could have resulted from inaccuracies in count-

ing Type I errors, such as would result from an erroneous 

critical value. Fourth, it could have been a result of 

some non-random properties of the pseudorandom number gen-

erator. 

The first explanation seems unlikely since the two 

tests which resulted in a conclusion that the Type I error 

rate was undergenerated were carried out on entirely sepa-

rate data. 

The second explanation appears unlikely because the 

computer simulation did not undergenerate the Type I error 

rate for large sample sizes, but only for smaller sample 

sizes (see Table 14). Of the computer runs with N = 100, 

5 of 11 had more total Type I errors than expected. The 

range of observed total Type I errors deviated equally in 

either direction from the expected value. So no undergen- 
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Table 14. Summary of Total Number of 
Type I Errors by Sample Size 

N 
Number of 	-" 
Computer 

Runs 

Runs with Total 
Type I Errors 

Greater Than Expected 
Number 

Rangea 

100 11 i 	 5 88%-112% 
40  11 2 8596-105% 
15 6 0 69%-98% 

Total 	28 7 	 69%-112% 

eration of Type I errors was evident for cases with N = 100. 

However, with N = 15, all computer runs had fewer total 

Type I errors than expected. Furthermore, the range of ob-

served total Type I errors deviated further from the ex-

pected value than for any other sample size. The computer 

runs with N in 40 were intermediate between these extreme 

sample size cases. The transformation that the computer 

program used to transform a matrix of independent normal 

pseudorandom deviates to correlated normal deviates and then 

to a sample correlation matrix were also checked by a 

hand calculator and found to be accurate. 

The third explanation also appears unlikely since 

no inaccuracies were found in a careful check of the com-

puter program's count of Type I errors. Using the case of 

two independent variables (11_p  = I n ), 500 sample correla- os 
tion matrices were generated and printed. The computer 

program's count of the number of Type I errors was exactly 

aRange of the observed numbers of total Type I errors 
expressed as a percentage of the expected number. 



99 

what it should have been. 

The most plausible explanation seems to be that the 

fault lies with the pseudorandom number generator. Previously, 

multiplicative congruential generators have been found 

sometimes to produce systematic biases when certain trans-

formations involving combinations of pseudorandom numbers 

have been used (e.g., Marsaglia, 1968; Neave, 1973). 

Apparently something on the same order occurred with the 

transformations of this study. Two explanations of this 

bias seem possible. The first one is that large sequences 

of these particular pseudorandom numbers may have better 

statistical properties than short sequences. Jansson 

(1966) has made a distinction between global randomness 

and local randomness. Local randomness deals with the sta-

tistical properties of relatively small samples whereas 

global randomness is concerned with asymptotic statistical 

properties of randomness. The particular pseudorandom 

number generator used in this empirical study was recom-

mended on the basis of a crucial asymptotic statistical 

property of the generated number sequence, the serial 

correlations of the longest possible sequence of numbers 

(Ahrens, Dieter, & Grube, 1970). It may be that the gener-

ator used in this study has adequate global randomness for 

this type of application but not adequate local randomness 

for small sample sizes. Table 15 shows that there does 

seem to be an increasing undergeneration of total Type I 
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Table 15. '3ummary of Total Numbers of Type I Errors 
by Number of Normal Numbers Generated in a 

Run of the Computer Program 

Number of Unit 
Normal Numbers 

in Runa 
Computer 

Runs 

Runs with 
More Type I 
Errors Than 
Expected 

Rangeb 

320-1,600 
240-300 
120-160 
45-60 

C
O

  
(N
-
 C

O
 L

iTh
  

3 
3 
1 
0 

8870-1080 
93%-112% 
79%-105% 
69%-112% 

aIn thousands 
bRange of the observed numbers of total Type I errors 

expressed as a percentage of the expected number. 

errors as the total number of normal pseudorandom numbers 

generated increases. 

The second possible explanation for the bias is 

that the starting number for each run of the computer pro-

gram was less than 2 27 . This meant that the starting 

number was limited to lie of the overall possible inter- 

val (0, 2 35 ). Perhaps this caused a systematic under-

generation of Type I error rate in the first group of sam-

ple correlation matrices generated, but that this bias was 

negligible for runs of the computer program which required 

larger sequences of normal pseudorandom numbers. 

In any case the undergeneration of total Type I 

error rate somewhat qualifies the results in the main part 

of this study. How serious is this undergeneration of 

total Type I errors? The 95% confidence interval for °(,,, 

based on all six computer runs in Table 6 is (.0376, 
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.0478). The 95% confidence interval from the grand total 

in Table 13 is (.0449, .0473). This would indicate that 

the simulated T for the computer program was about 

.o46 rather than .050. The simulated CP( T  would appar-

ently be lower for small sample sizes (Table 14) and for 

small sequences of generated normal deviates (Table 15). 

For larger sample sizes and/or large sequences of gen-

erated normal deviates, the simulated c 	probably ap- 

proximated .050 very well. So the undergeneration of 

total Type I errors somewhat qualifies the results of 

this study, particularly those results based on small 

sample sizes or small sequences of generated normal de-

viates. 

For future research there are several methods for 

pseudorandom number generation which may improve on the 

method here. Knuth (1969) recommends using a congru-

ential pseudorandom number generator with a modulus of 

235  *1 rather than 2 35  (for a computer with a word size 

of 	This This makes the sight hand digits of the pseudo- 

random numbers on the interval (0, 2 35 ) more random than 

using a modulus of 235 . 

The generator used in this study could perhaps be 

improved by allowing X 0  to vary over the entire range 

(0 1 2 35 ). 

Future research might benefit from using one of 
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MacLaren & Marsaglia's (1965) two alternative methods 

for pseudorandom number generation, a combined congru-

ential method and a method using a table of uniform ran-

dom umbers. They claim that such alternative methods 

produce pseudorandom numbers with better statistically 

random performance (Marsaglia 1968, 1970). Their me-

thods certainly have the potential of achieving this, 

although as noted previously, direct comparisons have not 

shown them to be superior to the multiplicative congru-

ential method used here. 

Control of TyDe I Error Rate 

This section considers the main results of this 

study, i.e., those related to the major hypotheses. 

First the results concerning familywise Type I error 

rate are considered, then the results concerning con-

ditional Type I error rate. 

Familywise Type I Error Rate . 

Method I.  Method I for controlling Type I error 

rates and setting the corresponding critical values was the 

customary procedure of setting e:71̀T  = .05 for each indivi-

dual significance test of a hypothesis 

H 	= 0 H0 	ij 
H 	. 	0 1 	ij 

(75) 
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Using Method I, the familywise Type I error rate increases 

rapidly as the number of true component null hypotheses 

increases. The present empirical study showed this 

as summarized in Table ? in Chapter III. In this 

study whenever there was more than one true component null 

hypothesis, the familywise Type I error rate was almost 

always significantly (p 4.01) greater than .05. In three 

cases with 21 true component null hypotheses each, family-

wise empirical size (which is an empirical estimate of 

familywise Type I error rate) ranged from .669 to .755. So 

if the intercorrelations among eight variables are being 

analyzed and if the complete null hypothesis is true 

(Rp  = `I), then at least one Type I error occurs in the 
vti  

analysis about to of the time. Psychologists do not 

often analyze eight completely ,  unrelated variables. How-

ever, it is not uncommon in the literature to analyze a 

much larger number of intercorrelations which could easily 

include 21 true component null hypotheses. How many 

true component null hypotheses actually exist would be un-

known to the experimenter. The important point is that the 

familywise Type I error rate increases above .05 (given 

T = .05) if there are even two true component null hy-

potheses. If more component null hypotheses are true, 

then the familywise Type I error rate reaches proportions 

at least as high as .75. In all cases, however, the only 

reported Type I error rate is usually .05, the Type I 
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error rate per component test. 

Using Method I to control Type I error rates is 

very similar to using I-statistics for all pairwise com-

parisons in analysis of variance with T .05 for each 

I - test. Because of similar results in familywise Type 

I error rates, various methods for multiple compairsons 

in ANOVA have been proposed to control 'c Fw more stri- 

gently. The rationale in favor of these more conservative 

procedures in analysis of variance should also be applied 

against Method I in statistical analyses of intercor-

relations. The fact that multiple-test procedures are 

widely used in analysis of variance but used hardly at 

all in analyses of intercorrelations indicates that the 

rationale for simultaneous procedures has been applied 

inconsistently to analysis of variance and correlational 

analysis. 

Methods II 4nd III. Methods II and III were con-

servative alternatives to Method I for controlling the 

Type I error rate. Method II set cx-T such that c'c.  FW 

would equal .05 if all the component significance tests 

were mutually independent. Method III used the Bonfer-

roni inequality to set 64T  such that (D< 1  would be less 

than or equal to .05 regardless of any dependencies among 

the component significance tests. The results of this em-

pirical study indicate that in practice these two methods 



105 

give almost identical conclusions. In the cases examined 

in this study Methods II and III led to different conclu-

sions for only about one out of 1000 significance tests. 

If Methods II and III were calculated using a larger 

FW and if the number of significance tests in the family 

of tests were large then the two methods would differ 

more in their results. However, if the experimenter 

wants to control VFWat  the .05 level, it apparently 

makes little practical difference whether Method II or 

III is used. 

The alternate methods (Methods II and III) resulted 

in familywise empirical sizes which generally were near the 

desired .05 level when the complete null hypothesis was 

true (R = I). The familywise empirical sizes for Method III 

were significantly different (p 4.05) from .05 for 3 out 

of 18 cases (9 correlation-matrix cases, 9 correlation-

vector cases) for which Rp  = I. While this is a higher  

proportion than we would usually expect, it is not sig-

nificantly higher (p 4:_.06, binomial distribution prob-

ability of 3 or more successes of 18 observations with p 

= .05). Furthermore, the deviant familywise empirical sizes 

occurred when shorter sequences of pseudorandom numbers 

were used, suggesting that this may be due to the under-

generation of Type I errors rather than due to the Bon-

ferroni method itself. 

In cases for which the complete null hypothesis is 
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not true (i.e.,osp 71  I), Methods II and III are consis- 

tently over-conservative in controlling for Type I errors. 

In 28 out of the 38 cases with R._p 	I, familywise empirical  oft 

size was significantly (p 4.05) less than .05. The less 

the number of true component null hypotheses proportion-

ately, the more the Bonferroni method tended to be over-

conservative. Table 8 shows that the lower the propor-

tion of true component null hypotheses among the null 

hypotheses to test, the less the mean familywise empiri-

cal size. These findings support Miller's (1966) obser-

vation that the Bonferroni I test is unnecessarily con-

servative unless a multistage procedure is used. Later, 

a multistage Bonferroni method will be discussed, which 

would correct for over-conservativeness. 

Note here also that the Bonferroni I method was 

also over-conservative for the family of significance 

tests 

Ho = /11 = 0 i = 2, 3,... •  k 	(76) 

when all pia  = 0, but some 1  0 (i.e., the family of 

tests involve intercorrelation between k-1 predictor vari-

ables and one criterion variable, with some predictors cor-

related with each other). This was the situation for the 

population correlation matrices described in equations (51) 

H1 '(i1 70 
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through (54). For 5 of the 11 cases using the first col-

umn of these matrices, the familywise empirical size was 

significantly less (2 z=.05) than the nominal c%' (FW of .05. 

So we must conclude that FW is actually less than .05 

for such a family of tests. (A word of caution, however, 

this finding may again be a result of the undergeneration 

of total Type I errors for smaller sequences of pseudo-

random numbers. The 11 cases included 7 cases based on 

relatively smaller sequences of pseudorandom numbers 

(160,000 or less)). 

Conditional Type I Error Rate  

This section focuses on the effects on conditional 

Type I error rate of using Method I to control for Type I 

error. Conditional Type I error rate is the Type I 

error rate on one component test given that a Type I error 

occurs on another component test. Methods II and III are 

not considered in this section. Similar effects would 

occur with Methods II and III, but the effects are coun-

teracted somewhat by controlling ')</Fw  at a given level 

rather than controlling only 	T  as Method I does. Not 

enough Type I errors occurred in this study with Methods II 

and III to make a meaningful analysis of conditional Type 

I error rate for those methods possible. 

Using Method I, the conditional Type I error rate 

was greater than the unconditional Type I error rate (":=-X T ) 

of .05 for tests of 
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and 

H0 	, 	
. = 0 

H1 	. 	0 1  

(77)  

H0' 	= 0 0 	ik 

H 	 / 0 1 	ik 
(78)  

when the actual population correlation matrix among the 

three variables was 

j 
	

k 

(7 9 ) 

  

This represents the case in which the first of three 

variables is actually uncorrelated with the second and 

third variables, while the second and third variables are 

correlated +.6. The conditional Type I error rate may 

be the Type I error rate in testing equation (78) con-

ditional on a Type I error in testing equation (77) or 

vice versa (the choice between these two is arbitrary). 

The configuration of equation (79) may be the entire inter-

correlation matrix of interest or may be embedded in a 
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larger intercorrelation matrix. In any case the condi-

tional Type I error rate deviates greatly from the uncon-

ditional Type I error rate for such cases of "strongly-

linked" component tests. Table 10 summarized all the cases 

in which this configuration (equation (77)) was embedded 

in a larger correlation matrix. Almost all of these had 

significantly larger numbers of conditional Type I errors 

than expected. As noted previously, the mean conditional 

empirical size was .242. This indicates that in such a 

configuration as equation (77), if a Type I error occurs 

on a test of /2ij'  then the probability of a Type I error 

on a test of pik  increases to about .242, i.e., to about 

* of the time. This means that the probability of Type I 

errors occurring simultaneously on both tests for the same 

sample is much higher than would be expected if the tests 

were independent. Both Type I errors would occur simul-

taneously about 1.21% of the time, rather than .25% of 

the time, which would be the case if the component tests 

were independent (given c7(1, = .05). 

Equations (52) and (53) were two 3 x 3 correlation 

matrices that fit the configuration of equation (79). The 

number of times that two Type I errors occurred on the same 

sample is reported in Tab,le 9. The five computer runs in-

volving these matrices had a mean percentage of trials with 

two Type I errors of .94%. Similarly, the estimated mean 

conditional empirical size was also a little lower than 

would be expected from the above findings, about .202. 
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Three of these five computer runs had smaller sequences of 

pseudorandom numbers, so this difference may have been par-

tially due to undergeneration of total Type I errors. Harris 

(1967) ad six computer runs using the population corre-

lation matrices of equations (52) and (53) with 'T = .05 

and sample sizes of 25, 100, and 200. The mean estimated 

conditional empirical size from his data is .238. 

Combining Harris' (1967) results with this study's 

results, the conditional Type I error rate is about .24 

( iC2(  T  = .05) for the second significance test given a 
configuration such as equation (79) and a Type I error 

on the first significance test. This will obviously change 

when the value of (iic.  (the nonzero correlation coeffi-

cient in equation (79)) is different. If the absolute 

value of f lc  is greater than .6 the conditional Type I 

error rate will be greater; if faik  is less than .6, the 

conditional Type I error rate will be smaller. The only 

empirical estimate of such a change from this study is 

based on the three computer runs using equation (51). 

With Pk = .3, the mean percentage of two simultaneous 

Type I errors was .533% and the mean estimated conditional 

empirical size was .114. While this is based on a very few 

cases, it suggests that even such small values of ;`"3k 

increase conditional Type I error rate to more than twice 

the stated 0(T. These empirical estimates along with 

estimates from Harris' (1967) data give the results 
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Table 16. Estimated Mean Conditional 
Empirical Size for Various jk 

   

   

 

Pk 

Estimated Mean 
Conditional 

Empirical Size 

 

.0 

.2 

t.6 
*•9 

.05 

.05 

.11 

.15 

.24 

.52 

   

Note. - Pik is the nonzero correlation 
coefficient in A 3 x 3 matrix such as equa-
tion (79). These estimated mean conditional 
empirical sizes are based on data from this 
study and from Harris (1967). 

summarized in Table 16. While some of these estimates of 

conditional Type I error rates are based on limited in-

formation, it gives some idea of the effect of the mag-

nitude of 10Jk  on conditional Type I error rates in testing 

such hypotheses as equations (77) and (78). 

Note that these considerations of conditional em-

pirical Type I error rate are applicable not only when an 

intercorrelation matrix is of interest, but also when a 

correlation vector is of interest. A correlation vector 

is of interest, for example, whenever a researcher is inter-

ested in the correlations between two or more predictor 

variables and one or more criterion variables. In such 

studies there is often no information given concerning 

correlations between predictor variables or correlations 
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between criterion variables, both of which could corres-

pond to Pik  in equation (79). So it is generally difficult 

to estimate the probability of observing a group of Type I 

errors in a given sample, since the relevant r jk  is not re-

ported. But the problem of conditional Type I error is 

just as relevant in such cases. 

The findings of the present study suggest that condi-

tional Type I error rates may be affected forother pairs of 

correlation coefficient tests, too. For example, Table 11 

summarized the conditional empirical size results for "mod-

erately-linked" intercorrelations. Two correlations r ij  and 

rki, would be "moderately-linked" if they involve four dis-

tinct variables (e.g., i, j, k, and L) with each variable 

(e.g., i) in the first correlation of interest correlated 

.6 with one variable (e.g., k) in the second correlation of 

interest. While only a few of the results in Table 11 were 

significantly different (2 Fw 4c.05) from the unconditional 

Type I error rate, the mean conditional empirical size for 

these cases was .126. This suggests that conditional Type I 

error rates may be affected by "moderately-linked" inter-

correlations, although not conclusively so from this data 

alone. Harris (1967) also has data that fits this defini-

tion of "moderately-linked" intercorrelations. His data 

yields an estimated mean conditional empirical size of .270. 

Such a high value appears somewhat dubious since it is not 

logical for the conditional Type I error rate for "moder-

ately-linked" intercorrelations to be higher than 
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Method III 
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Table 17. Frequencies of Various Numbers 
of Type I Errors in Certain 

Intercorrelation Samplesa 

alntercorrelation samples in two computer runs with 

.6 
.6 

R- 	0 0 0 
0 0 0 . 
o 0 0 .6 .6  

one with N = 40, and one with N = 100. 
bExpected frequencies for 2000 replications of 9 in-

dependent significance tests according to the binomial dis-
tribution. 

that for "strongly-linked" intercorrelations and since it 

deviates so much from the results of the present study. 

However, the possibility remains that conditional Type I 

error rates for "moderately-linked" intercorrelations may 
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be much higher than the estimate from this present data. 

In actual intercorrelation matrices 4 x 4 and larger, 

there could be complex relationshipof "strongly-linked" 

and "moderately-linked" intercorrelations and other de-

pendent interrelationships. One such example would be the 

population correlation matrix of equation (58). Table 17 

gives the frequencies of various numbers of Type I errors 

for the two computer runs using this population corre-

lation matrix. It can be seen that there was an unex-

pectedly large frequency of three or more Type I errors 

occurring simultaneously on a sample intercorrelation 

matrix. This is the result of a two-fold problems 1) 

the non-multiple-test procedure of setting' T = .05 

ensures a high probability of at least one Type I error, 

and 2) the moderately high non-zero population correlation 

coefficients result in high conditional Type I error rates. 

Consequently, there were three or more Type I errors (out 

of nine possible) on 3.85% of the sample correlation ma-

trices despite a reported alpha ( 4=.7. ) of .05. 

This result illustrates a need for a method of con-

trolling Type I error that takes conditional Type I error 

rates into account. It can be seen from the right-hand 

columns of Table 17 how Method III, the Bonferroni I 

method, would control Type I error rates in this parti-

cular example. The effect of the dependence of the com-

ponent tests causes this also to deviate sharply from the 

expected frequencies of number of Type I errors. However, 
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by keeping the probability of the first Type I error be-

low .05, Method III improves greatly over Method I in 

controlling against multiple Type I errors. 

Control of Type II Error Rate  

The sample sizes, number of variables, and popu-

lation correlation matrices for this study were chosen with 

effects on Type I error rates primarily in mind. This 

study does not provide an adequate analysis of the relative 

power of Methods I, II, and III. It is clear that Methods 

II and III are nearly identical in power for the kinds of 

intercorrelation matrices examined here. Also it is clear 

then that whatever is gained in controlling Type I error 

rate is gained at the expense of Type II error rate. This 

is to be expected since the three methods differ only in 

setting the critical value for the rejection of a component 

null hypothesis. 

Although Method I fares poorly in controlling Type 

error rates, it is the best of the three methods for con-

trolling Type II error rates. This supports Miller's (1966) 

contention that some justification can be given to Method I 

if the total loss for a sequence of hypothesis tests is the 

sum of the component losses and a Bayesian approach is take 

taken. So the possibility remains that a Bayesian approach 

would yield a better solution. However, Miller (1966) 

thinks otherwise, and the major Bayesian multiple-test pro-

cedure to date (Waller & Duncan, 1969) resembles Fisher's 



116 

protected Least Significant Difference method, a pro-

cedure which loses all conservativeness once any signi-

ficant effect is found. 

Conclusions  

The major conclusions will be reviewed at this point: 

Method I, the customarily used procedure of setting 0(1, 

= .05, results in a large familywise error rate. This 

familywise Type I error rate increases quickly to unde-

sirable levels as the number of variables increases 

(and thus the number of true component null hypotheses 

increases). Method II, which is based on a false assump-

tion of independent significance tests, and Method III, 

the Bonferroni I procedure, successfully keep the family-

wise Type I error rate at .05 or below. However, both of 

these methods over-control for Type I error when even a 

small proportion of the component null hypotheses in a 

family of tests are false. The mutual dependence of the 

component significance tests in an intercorrelation ma-

trix or an intercorrelation vector is an important factor 

if any correlation between any variables involved is moder-

ate or large in magnitude. This dependence may dramatically 

increase conditional Type I error rates over uncondition- 

al Type I error rate levels. 

Recommended Procedure for Controlling 

Type I Error Bats 
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Taking these major results into account, this writer 

recommends a multistage modification of Method III, the 

Bonferroni I method. Method III is chosen over Method I 

because of its superiority in keeping the familywise Type 

I error rates at .05 or below. As noted previously, this 

becomes even more crucial when the mutual dependence of 

the component significance tests is an important factor. 

The multistage modification is recommended to counter the 

major drawback of Method III, which is its over-con-

servativeness under certain conditions. This multistage 

modification will be described in detail in the next section. 

Method II is nearly identical to Method III for all 

practical purposes. These two methods result in different 

acceptance versus rejection decisions only about .1% 

of the time. Furthermore, Method II is slightly more 

powerful and has been shown to control (-Ire  to .05 or 

less for all 3 x 3 matrices and for all matrices without 

negative population correlation coefficients (Dunn & 

Massey, 1965). However, Method III is recommended over 

Method II because it is more widely known (e.g., in mul-

tiple comparisons in analysis of variance), it gives a 

conservative estimate of (7- Fw  regardless of the dependence 

of the significance tests, and it is easier to use. 

Finally, a word about borderline results is here 

given. A borderline result is one that would result in 

a rejected null hypothesis by Method I but that results in 
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an accepted null hypothesis by the multistage modification 

of Method III. As illustrated in Figure 1, such a border-

line result is analogous to a result in a single signi-

ficance test that falls exactly at the critical point. 

As such, borderline results should not be lumped together 

with "non-significant" results but should be placed in a 

category between "non-significant" results and conclu-

sively "significant" results. Borderline results should 

be considered as conclusive evidence only when considered 

together with similar (or more conclusive) results from 

other samples. 

Applications .42 Extant_Data 

In this section the findings of this study will be 

related to two examples of correlational analysis taken from 

Brooks (1973) and Jessor & Jessor (1974). An example will 

be given of how to use a Bonferroni multistage procedure, 

using the Jessor & Jessor (1974) data. 

Jessor & Jessor's (1974) article dealt with the re- 

lationships between maternal ideology and adolescent pro-

blem behavior. Table 18, which is reproduced from Jessor 

and Jessor, summarizes their analysis. Note that the 

reported intercorrelations are between five predictor 

variables (maternal ideology and home climate) and three 

criterion variables (adolescent problem behavior) for two 

separate samples (males and females). For each sample, 

the 15 reported correlations are part of the 28 possible 



-.32 

.25 -.465 

119 

Table 18. Product-Moment Correlations 
between Maternal Socialization Measures and 

Junior and Senior High School Student 
Behavior and Attitudes 	 

Maternal socialization 
measure 

Problem 
index 

Females 

behavior 

Males 

Student measure° 
Total negative 

functions 
Females 	Males 

Total positive 
functions 

Females 	Males 

Ideology 
Mother's traditional 

beliefs - .29** - 34*** .35*•* .03 -.13 -.23** 
Mother's religiosity ..3*** - 20* .23** .08 - IS -.16 
Mother's attitude toward 

deviance .42**** --.13  .33*** .05 -- .23** - .22** 
Home climate 

Mother's controls and 
regulations .22**- --- 	30*•* 29*** 18* -.11 -.17 

Mother's affectionate 
interaction .28**• - 05 12 .21** .22* •  -.03 

Note. - Reprinted from Jessor & Jessor (1974, p. 251). 
NJ, p ,.due. Are hJscfl on 1 ,5. iallcd fest, 

• 1 he n fur len,les range- from 's to 91 for the 1.111ferent measures, for males, the n ranges rem 79 to 93 . 

• p • 	III 

" p ' of 
••• p - 01 

"•• p < MI 

Table 19. Hypothetical Population 
Correlation Matrix for Maternal Ideology and Control 

and Adolescent Problem Behavior 

Total Positive 
Functions 

Total Negative 
Functions 

Problem Behavior 
Index 

Traditional 

Religiosity 

Attitude Toward 
Deviance 

Controls 

Affection 

0 

0 

0 

0 

0 

0 	\ 

0.505 	\\ 

0 .505 .505 

0 	.30 	.30 

0 	.01 	.01 

.30 

.01 .175 1 

0 

o 

0 

0 

0 

Note. - The non-zero correlations are based on 
estimates primarily from Jessor and Jessor (1974). 
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intercorrelations among the eight variables. 

Now suppose that all the population correlations of 

interest were actually zero. Then the population corre-

lation matrix might look something like Table 19. If 

this were the actual population correlation matrix, what 

would be the probability of observing as many significant 

results (which in such a case would be Type I errors) 

as Jessor & Jessor (1974) did? To answer this question 

partially, a computer simulation was performed using the 

same program as the main part of this present study, 

but with the population correlation matrix of Table 19, 

Table 20. Frequencies of Number of Type I 
Errors in Computer Simulation of Samples from 

the Rp  in Table 19 

Number of 
Type I Errors 
in a Sampling 
Replication 

Frequencies 
Given Number 

of Type I 

of 

Errors 
Expected' Observed 

0 263 206 

1 329 343 

2 211 267 

3 116 129 

4 38 43 

5 32 10 

6 or more 11 2 

Note. - Total sampling replications = 
1000; c'( a, = .10. 

aAss1ming mutually independent component 
tests 
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with N = 85, and with 	= .10. The sample size chosen 

was the average of the sample sizes reported in Table 18 

and the alpha level of .10 was the one used by Jessor & 

Jessor (1974) to determine a "significant" result. Table 

20 summarizes the results of this computer simulation. 

Note that there was at least one Type I error on almost 

three-fourths (73.7%) of the sampling replications. 

Furthermore, there were five or more Type I errors (out 

of fifteen possible) on 4.3% of the sampling replications. 

By comparison, Jessor & Jessor (1974) reported 7 corre-

lations significantly different from zero in their male 

sample and 11 in their female sample. If all the rela-

tionships of interest are actually zero (i.e., Table 19 

represents the actual relationships), there is less than 

a .5% chance of obtaining 7 significant results (as in 

their male sample) and a negligible chance of obtaining 

11 significant results (as in their female sample). So 

there is no reasonable basis for suggesting that Jessor 

& Jessor's (1974) results are entirely Type I error 

artifacts. However, this example is useful to show how 

this type of analysis compares with others in controlling 

Type I errors. 

This type of analysis is compared first with an 

analysis involving only one significance test of a cor-

relation coefficient. Such a single-test analysis would 

result in a Type I error about 10% of the time (given 

= .101 iq j  = 0). As noted previously, the Type I error 
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rate in a multiple-test situation (such as Jessor & Jes-

sor's) differs from a single-test situation because 

1) multiple tests greatly increase the likelihood of the 

occurrence of a Type I error even if the tests are mutu-

ally independent and 2) the interdependence of the com-

ponent tests affects the Type I error rate in generally 

unknown ways. The right-hand column of Table 20 gives the 

expected frequencies (out of 1000 sampling replications) 

of various numbers of Type I errors if the component tests 

were mutually independent. Note that if the independence 

assumption were justified, there would still be a .055 

probability of observing 4 or more Type I errors out of 

15 possible Type I errors. But the independence assump-

tion is not justified, since the observed frequencies in 

Table 20 do not adequately approximate the expected fre-

quencies (xf 5)  = 101.97, 2 4.001). From the observed 
frequencies, there is approximately a .043 probability of 

observing five or more Type I errors. 

Now compare this with a single-test analysis. If 

the correlation of interest were zero in a single-test 

analysis, a Type I error would be obtained 10% of the time 

(given 	= .10). However, if the 15 correlations of 

interest to Jessor & Jessor (1974) were all zero, four or 

more Type I errors would be obtained about 8.1% of the time 

(given T = .10). Furthermore, most of the time (about 

65.5%) one to three Type I errors would be obtained out 
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of the 15 possible, whereas there would be no Type I 

errors 90% of the time in a single-test analysis. The 

high probability of at least one Type I error in a mul-

tiple-test situation and the substantial probability of 

several simultaneous Type I errors are not obvious from 

the nominal probability level of .10. 

Thus far Jessor & Jessor's (1974) analysis (a 

Method I analysis) has been compared only with a single-

test analysis. At this point Method III, the Bonferroni 

I method, is applied to the Jessor & Jessor data. Be-

cause of the over-conservativeness of this method, a 

multistage modification is applied. At the first stage of 

the multistage procedure, Method III is applied in the 

usual way. However, if any component null hypotheses 

are rejected at the first stage, a second stage is then 

performed with new critical values based on the number of 

remaining non-rejected component null hypotheses. By 

this method, the familywise Type I error rate remains at 

or below the nominal probability level (e.g., .10) for 

any possible set of true component null hypotheses with-

out being unnecessarily conservative. The significance 

tests of fifteen correlations of interest on one sample 

(male or female) is considered a family of tests. The 

alpha level per test at the first stage of the analysis 

is calculated by the equality of equation (11), 
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= 	= 412  = . 0061  
T 	m 	15 	3 (80) 

Since two-tailed significance tests are appropriate in 

this analysis, c"(1, is divided by two, 

 

(81) 2 

While the two critical values of the distribution cannot 

be obtained from readily available tables, they can be ap-

proximated by equation (13): 

3 
1,/2 	0{2/2 
4(7/- 2) IGX/12, 	'm  c-X/2  

= *2.71 ± 19011; 2.71  

= * 2.78 

(82) 

Next the formula 

rtx,r/2 = 

   

(83)  

   

N- 2 + t2  

  

can be used to obtain a critical value of the sample cor-

relation coefficient. In this case, 

r, /0 - 	
.2.78 	.292 	(84) 

-"T'' 	V 85 - 2 + (2.78)1 
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Consider the data for the male sample first. Two 

of the fifteen component tests result in rejection of the 

component null hypothesis in the first stage of the analysis. 

They correspond to the two sample correlations which are 

larger than .292 in absolute value. If no component null 

hypothesis were rejected at this first stage, the analysis 

for the male sample would be terminated. However, since 

two component null hypotheses are rejected at the first 

stage, the procedure continues on to the second stage. 

The analysis at the second stage is done just like 

the analysis at the first stage except that 47)(1, is com-

puted with a value of 13 for m in equation (80). Thir-

teen is the remaining number of non-rejected component 

null hypotheses. The computations of equations (80) through 

(84) are repeated again using this new value for m. This 

results in —TT - .00385, t c  /2 7)  = ±2.74, and rc.:::‹/2 = 
T T' ' 

1.288. None of the sample correlations corresponding to 

the 13 previously non-rejected component null hypotheses are 

larger than the new critical value in absolute magnitude. 

Since no further component null hypotheses were rejected, 

the multistage procedure is terminated at this point. 

The conclusion of this analysis is that two of the fifteen 

sample correlations are considered significantly different 

from zero at the 	= .10 level. FW 

The first stage of the multistage Bonferroni pro-

cedure for the female sample is identical to the first 

stage for the male sample. Equation (84) gives the cri- 
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tical value of r cx  /2  = *.292. Using this critical value, 
T' 

our component null hypotheses are rejected for the female 

sample. Therefore, the multistage procedure proceeds to 

the second stage, which uses m = 11 in recalculating 

equations (80) through (84). Two of the sample corre-

lations (.29 and -.29) are larger than the new critical 

value (±.281) in absolute value. Therefore, a third 

stage is performed which in turn results in the null 

hypothesis being rejected for the sample correlation of -.28. 

Table 21. Summary of a Multistage Bonferroni 
Analysis Applied to Jessor & Jessor's (1974) Female Sample a  

Stage m cx/ 
I r 

c'K T/2  

Continue 
Multistage 
Procedure? 2 

H
 	

( \  I 	
Ce"  \
 4

- 

15 .00333 ±.292 yes 

11 .00455 ±.281 yes 

9 .00556 *.274 yes 

8 .00625 +.270 no 

a c< FW = .10 

Since an additional null hypothesis was rejected at the 

third stage, a fourth stage is performed, with m = 8. At 

this stage no additional null hypotheses are rejected, so 

the procedure is terminated. If another null hypothesis 

would have been rejected at the fourth stage, a fifth 

stage would have been performed. This would continue un-

til a stage is reached in which no additional null hypo- 
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theses are rejected. A summary of the four stages of the 

multistage Bonferroni procedure is presented in Table 21. 

6even of the sample correlations are considered to be sig-

nificantly different from zero at the c)<Fw  = .10 level. 

The first stage of the multistage Bonferroni pro-

cedure is identical to the usual Bonferroni procedure, 

which has been called Method III in this study. The above 

examples illustrate how the multistage modification in-

creases power over its non-multistage alternative. The 

multistage procedure for the female sample terminated 

with a final critical value of +.270 instead of a criti-

cal value of +.292, which a non-multistage Bonferroni 

analysis would give. The multistage procedure increases 

power without increasing the familywise Type I error 

rate above the nominal level (.10 in this case), as shown 

in Appendix A. 

Table 22 gives the results of the multistage Bon-

ferroni procedure for the female sample as they would be 

presented in a publication. A couple of features of this 

table facilitate comparisons with the more common corre-

lational analysis procedure (Method I). First, in the 

footnote section of the table, the equivalent Type I 

error rates per test are given for each familywise Type I 

error rate. This information tells the reader, for ex-

ample, that a significant result with 2Fw  4 .10 in this 

analysis is equivalent to a significant result with 
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Table 22. Product-Moment Correlations Between 
Maternal Socialization Measures and Junior and Senior 

High School Student Behavior and Attitude 
(Females; Multistage Bonferroni Analysis) 

Student Measure 

Maternal Socialization 	Problem Total Total 
Measure 	 Behavior Negative Positive 

--------thLigxEunalign§—E3anQtjang__ 
Ideology 

Mother's Traditional 
Beliefs 	 -.29* 

Mother's Religiosity 	-.32** 

.35** 
b .23 

-.23b  

-.16 

Mother's Attitude 
Toward Deviance 	-.42**** .33** -.22b  

Home Climate 

Mother's Controls b and Regulations 	-.22 .29* -.17 

Mother's Affectionate 
Interaction 	-.28* .12 -.03 

Note.- Two-tailed multistage Bonferroni procedure. 
2Fw is based on familywise Type I error rate; RT  is based 
on Type I error rate per test. 

The n was assumed to be 85 for this analysis. 
bBorderline significance; D T  .4=.05 
*RFw < .10; pT  < .0125 
**12Fw  < .05; pir  <- • 0045 
***REIN < .01; kr <-.00036 
****pFW ‹...001; D T  <.00004 

RT <:.0125 in the common correlational analysis procedure 

(Method I). Secondly, results for which the null hy-

pothesis would be rejected according to the usual non-

multiple-test procedure are considered in Table 22 as 

borderline results. These results would fall in the bor-

derline region of Figure 1. They do not provide strong 

enough evidence by themselves to conclusively reject the 



Table 23. Correlations between Childhood Ratings 
of "Satisfactions in Artistic Pursuits" and 

Adult .g Sort Items (Males). 

Adult 0-Sort Items 

Satisfactions 

8-11 

N 	35 

in Artistic 

Age in Years 

11 	14 

N 	35 

Pursuits 

14-18 

N=-34 

1. 	Is 	critical, skeptical. .33* .21 .27 

27. Shows condescending behavior to others. .32 *  .18 .30* 
17. Behaves in sympathetic, considerate manner. -.30* -.25 -.22 
43. Is facially, gesturally expressive. .30 *  .23 .29 *  
33. Is calm, relaxed in manner. -.29* -.29 *  -.17 

94. Expresses hostile feelings directly. .29* .13 .12 
29. Is turned to for advice. -.28* -.24 -.17 

#66. Enjoys esthetic impressions, esthetically reactive. .21 .45** *  .64 ***  
100. Does not vary roles; relates to everyone in 

same way. -.27 -.40* *  -.12 
13. Is thin-skinned ;  vulnerable to slight. .23 .31* .11 
24. Prides self on being objective, rational. -.11 -.31* -.11 

50. Is unpredictable, changeable in behavior, attitude. .21 .30 *  .24 
# 	3. Has a wide range of interests. .17 .28* .36 **  
47. Tends to feel guilty. -.23 -.12 -.35" 

#63. Judges self, others in conventional terms. .09 --.19 -.32* 
18. Initiates humor. .12 .15 .30 *  
84. Is cheerful. .08 .13 .30* 
15. The light touch as compared to the heavy touch. .05 .11 .29 *  
41. Is moralistic. -.04 --.27 -.29 *  

Note. - Reprinted from Brooks (1973, p. 116). 
*Si g nificant at .10 level. 

"Significant at .05 level. 
***Significant at .01 level. 

■=ltems °Iv ,  significantly correlated for females. 

Table 24. Correlations between Childhood Ratings 
of "Satisfactions in Artistic Pursuits" and 

Adult .Q Sort Items (Females) 
Satisfactions in Artistic 

Age in Years 

11-14 

Pursuits 

8-11 14-18 

Adult 0 - Sort Items N -- 38 N-= 38 N= 37 

- ---- ------ -- 

51. Genuinely values intellectual, co9hitive matters. .44*** .51s+ii .46*** 

8. Appears to have a high degree of intellectual 

capacity. .40" .39" .38 **  

54. Emphasizes being with others; gregarious. -.40* *  -.45' -.37" 

# 	3. Has a wide range of interests. .39* *  .47*** .46 *" 

59. Is concerned with own body and adequacy of 

functioning. -.35" --.19 -.24 

93. Behaves in a feminine style and manner. -.35 * * -.25 -.18 

#66. Enjoys esthetic impressions; is esthetically 

reactive. .33" .20 .32 *  

90. Is concerned with philosophical problems. .33" .42 * ** .35 **  

39. Thinks and associates to ideas in unusual ways. .32 **  .41 ** .33 *  

11. Is protective of those close to him. -.30 *  -.10 -.06 

5. Behaves in a giving way towards others. -.29 *  -.12 -.03 

69. Is bothered by demand. .29 *  .15 .05 

22. Feels a lack of personal meaning in life. .28* .25 .01 

#63. Judges self and others in conventional terms. -.21 -.39" -.25 

60. Has insight into own motives. .12 .32" .29 *  

16. Is introspective. .25 .31 * .26 

7. Favors conservative values in a variety of areas. -.18 -.30* -.20 

57. Is an interesting, arresting person. .08 .29 *  .30 *  

Note. - Reprinted from Brooks (1973, p. 117). 
*Significant at .10 level. 

** Significant at .05 level. 

***Significant at .01 level. 

#Items also significantly correlated for males. 

129 
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null hypothesis. However, when considered together with 

similar results from different samples they might con-

stitute just as conclusive evidence. But they are not 

conclusive from this one investigation alone. 

With the commonly-used procedure for correlational 

analysis, it is possible to obtain a large number of "sig-

nificant" results which actually could be due to chance 

alone, simply by examining a large enough number of vari-

ables. For example, Brooks (1973) reported the data in 

Tables 23 and 24. This data is taken from the Berkeley 

Guidance Study. The correlations are between measures of 

adult functioning at age 30 and satisfactions in artistic 

pursuits at each of the three adolescent age periods. 

Tables 23 and 24 only include the adult functioning vari-

ables which showed at least one significant correlation 

with an artistic interest variable. Actually, 100 adult 

functioning variables were used in the investigation. 

Consequently, for each sample (males or females) there were 

300 sample correlations of interest (100 adult functioning 

variables X3 artistic interest variables). Since an 

alpha level of .10 was used for each component significance 

test, the expected number of Type I errors would be 30. For 

each sample Brooks (1973) found 24 "significant" results for 

the male sample and 33 for the female sample. This by it-

self suggests that almost all the "significant" results are 

actually Type I errors. However, this conclusion is obscured 
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by leaving out all variables which did not correlate with 

artistic interest at any age, by the apparent consistencies 

across ages and by the fact that three variables correl-

ated significantly with artistic interests for both the male 

and the female samples. The apparent consistencies across 

ages is especially noticeable for the female sample. 

Six variables correlated significantly with artistic 

interest at all three age levels and three others correl-

ated significantly at two age levels. This is probably 

an artifact, due to conditional Type I error rate. Brooks 

(1973) reports that the average intercorrelation of the 

ratings of female artistic interests for the three age 

periods was .76. So for any one unrelated variable, the 

population correlation matrix might be 

unrelated 
variable 

1st age 
R = 
-p 2nd age 

3rd age 

(85) 

This closely resembles some of the population correlation 

matrices that have been used in this present study (e.g., 

equation (54)), except that the nonzero correlations are 

even higher. Therefore, the effect of the dependence of 

the component significance tests on conditional Type I 

error rates would be even more pronounced than in the ex- 
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amples used in this present study. This means that if 

a Type I error did occur on one significance test of one 

intercorrelation in Table 24, a Type I error would be 

much more likely to occur on another component test that 

involves the same adult functioning variable. This could 

very easily account for the apparent consistencies across 

adolescent age levels. 

As for the fact that three adult functioning 

variables related "significantly" to artistic interest 

variables for both males and females, this could also 

have easily occurred by chance. Since 19% of the variables 

were related to artistic interest for males and 18% for 

females, 3.42% would be expected to overlap by chance 

(.19 X .18 = .0342). 

If a multistage Bonferroni procedure were used on 

Brook's (1973) data with 	= .10, only one result for FW 
either sample would be significant, the .64 correlation 

between adult functioning variable 66 and artistic interest 

in males at 14-18 years (see Table 23). Again, the other 

correlations which were deemed significant by Brooks' 

(1973) analysis could be classified as borderline results. 

These two examples from the literature illustrate 

the main conclusions of this study. First, as the number 

of component significance tests increase, the probability 

of observing one or more Type I errors increases rapidly 

regardless of any dependence of the component tests. 
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Secondly, the dependence among significance tests of inter-

correlation further complicates the Type I error rates. 

Generally, the dependence increases the probability of a 

relatively large proportion of Type I errors occurring 

simultaneously. Thirdly, the high conditional Type I 

error rates that can occur with certain intercorrelation 

patterns can lead to some apparent regularity in results 

which would otherwise be discarded as probable Type I 

error. 

Multiple-test procedures have been widely recom-

mended for multiple comparisons in analysis of variance 

for similar reasons. Some multiple-test procedure seems 

to be the best kind of solution for the problems in the 

currently-used procedure for intercorrelational analysis 

(Method I). A multistage Bonferroni procedure has been 

outlined and recommended. 
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APPENDIX A 

PROOF ABOUT THE TYPE I ERROR CONTROL OF 

THE MULTISTAGE BONFERRONI PROCEDURE 

Let there be M component significance tests in a 

family of tests of intercorrelations. Assume each com-

ponent significance test is of the form 

H0  $ fi j  = 0 

H1  s pii  = 0 . 
(A.1) 

Assume further that there are n true component null hy-

potheses (n 	M). Specify some nominal value of c><FW(N) 

(e.g., .05) to be used in the calculation of or l, by equation 

(80). We want to show that the actual familywise Type I 

error rate ( (7:‹FW(A)) does not exceed the nominal family-

wise Type I error rate ( c)<FW(N) for any value of n, 

0 <n :5: M. 

For the purposes of this proof, let the multistage 

procedure be restricted by the requirement that only one 

component null hypothesis may be rejected at any one stage 

(this would be impractical for using a multistage pro-

cedure, but the final results would be no different from 

the results if this restriction were omitted). Further-

more, let mi  be the number of previously non-rejected com- 
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ponent null hypotheses at the beginning of the i th  stage. 

Thenm.=Matthefirststage,m.=M-1 at the second 

stage, and mi  = M-i+l at the i th  stage in general (as-

suming the i th  stage is reached before the termination of 

the procedure). 

First it will be shown that only the first M-n+l 

stages need to be considered, since the remaining stages 

cannot affect the familywise Type I error rate. For if 

the (M-n+2) th stage is reached, then the number of compo-

nent null hypotheses which have been rejected is 

M - m(m_n+2 ) = N 	EN' -(M-n+2) 	1] 

	

= N - (n - 2 + 1) 
	

(A. 2) 

= M - n + 1 

However, there are only M-n component null hypotheses 

which can be correctly rejected, so M-n+l rejected com-

ponent null hypotheses must include at least one Type I 

error. Since a Type I error must have occurred if the pro-

cedure reaches the (M-n+2) th stage, at no stage following 

the (M-n+1) th stage can the first Type I error in the 

procedure be made. And the first Type I error is the 

critical one since familywise Type I error is the proba-

bility of the occurrence of one or more Type I errors. 

So only the first M-n+1 stages need to be considered. 

For a Type I error to occur in the first M-n+1 
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stages, a sample statistical value corresponding to one of 

the n true component null hypotheses must exceed the 

critical value at the (M-n+1)
th stage. For if a Type I 

error occurs in the first M-n stages (i.e., the sample 

statistical value corresponding to a true component null 

hypothesis exceeds the critical value for one of the first 

M-n stages), the corresponding sample statistical value 

will also exceed the critical value at the (m_n+i)th  

stage, since each successive stage gives a less stringent 

critical value. By the multistage Bonferroni procedure 

the critical value for each component test at the (M-n+1 ) th 

stage is based on 

VFW  
T 	m(M-n+1) 

 

 

L7C FW(N ) (A.3)  

 

M-(M-n+l) + 1 
c..7c 

FW(N)  
n 

But by the Bonferroni inequality, the probability of a 

sample statistical value corresponding to one of the n 

true null hypotheses being greater than the critical value 

for the component test ( cC  Fw(A) ) is 

c7e 
n  (DC = n 	_FW ( N) 

FW(A) 	T 
(A.4)  

FW(A) 	FW(N) 
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So, by the multistage Bonferroni procedure, the actual 

familywise Type I error rate does not exceed the nominal 

familywise Type I error rate regardless of how many of the 

component null hypotheses are actually true. 



APPENDIX B 

SAMPLE COMPUTER PROGRAM OUTPUT 

This appendix presents a sample of the output 

of the computer program used in this study* 
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DATA FLR toN 1-1MPIRIC L Trivp-,TIJATIoN Jc- 	cISAPICANCE TEST : ,, WCE -JuP 7 St 

RL),--', FRI-  E. 1-. -ZEtEF 

OF !--.SYCriOLOC_,Y 

S EOP GIA T E Cri 

E ■IPIRICAL SIZE ANL) EMPIRIC ;.  

No, OF VArdABLES = 4  

SAMPLE SIZE 7  40 

FAm/LYwIST. ALPHA = .05 

NJo. OF TRIALS 7. 1000 

POPJLATIOJ COVARIAJCE 'ATRTX: 

1 	1.0000 
2 	.6000 

.0000 

.0000 

2 

1,17;;OJ 
.000Q 
,0000 

1.0 0 00 
.6000 

4 

I.0000 



ENIPIR1CAL SIZE FOR IAMPLE C(7)LATTON 	1 141f:TS: 

*********************************************************************** 
* MLTHOO * 	1 	 4 	TI 	* 	ITT 	* 
* * * * * * * * * * 4 * * * * * * * * * * * * * * * * * * 
* ALPHA(T) * 	.050 09 	t 	.0tw-, 1 	* 	.00P31 	* 
* * * * * *** * * * * * * * *** * * * * * * * *** * * * * 

	

* ;CTUAL * 	EXP. + 1LPOL * 	E- XP, * ACTUAL * 	Fxp. * 
*********************************************************************** 
* * 	* 	* 	* 	* 	.. 	* 
* 0* 	6'61 * 	8]ri * 	975 * 	9' f> * 	97r, * 	967 
* FREQ. OF 	* 	* 	* 	* 	* 	* 	t 
* 1* 	103 * 	171 * 	2. 3  * 	34 * 	23 * 	33 * 
*TYPE I ERRORS * 	* 	* 	 * 	* 	* 
* 2* 	3 	* 	14 * 	8 * 	3 * 	? 4 	0 * 
* 4* 	* 	* 	* 	* 	4 	* 
* * * * * * * * * * * * *** * * * * * * * *** * * * * * * * *** * * * * 
* FAAIWJWISE 	* 	139 * 	185 * 	,5 * 	34 * 	-..)9 * 	33 
*TYPE 1 ERRORS * 	* 	* 	* 	* 	* 	* 
*********************************************************************** 

TEST OF FIT TO BINOMIAL DISTRI9UTION (FIR vET110r2 ,  I) 

P'ZARSON CHI-SQUARE( 2) .-: 	4b,72015 	P < .00noo 



EitiPI -RIC:AL SIZ 	Fort St\WLL :^r) t^ ;t: j_ ,'oTUIS 14 FT.—c,r 711_ 1 iN 

********************************.*.**.**********t***.**********4******* 
* ii-._T!IDD * 	 1 	 1 	 TT 	4 	I7T 	* 
* * * * * * r * * r * * * * * r * * * * * * * . * * * * * 
* ALP-iA(f)  
* * * x. * *4* * * * * t * * *** t 4 * * * * 4 **t * * * 
* * L,:lj r\L 4 	; -.:YP* * ACTL * 	:- XD. * ACTU ,‘L * 	rYo. * 
**********************0 1 ****k******************************* 
* * 	4 	* 	* 	* 	* 	* 
* 	 ( * 	i1 j 	* 	'ii-  3 	* 	(475 	t 	c.,, 	* 	97 ,- 	i 	967 	* 

* FRL-A. uF 	* 	 ♦ 	 * 	 r 	 4 	 * 	 * 

* 1 4 	73 	* 	Y') 	4 	:,!) 	* 	14 	* 	2c 	* 	:A 3 	* 
4,7.1.:: 1 ERRORS 	* 	 . 	 a 	 k 	 4 	 t 	 * 

* i 4 	'i 	4 	 * 	:,./ 	-.g 	0 	* 	n 	* 	0 	* 
* 4-* 	 * 	 1 	* 	 *  
* * * * * 4 * * * * * * */* * t * * * * * * 4, * * * * * * * * kici,  * * * * 

* L- A1IL10,1 1SE 	* 	82 	* 	Q7 	
*_ 

	

;?) 	'" 	34 	* 	•5,-- 	t 	33 	* 
*TYP.:. I ERKUPS 	* 	 4 	.. 	* 	* 	* 	* 
************ * *** **** ** * * *1 ******V* * ** * *** **k *** * ***** * * * * * * * ****** * * * * 

IL 	2 

TEST 3F FIT T3 E.IHUAAL OISTRITJTID%) (FO 	'ETH)fl I) 

	

PEARSON CHI—SQUAR E ( 1) 
	

2.73031 	< .09146 



CoNDOIONAL 	 SIZ'L 	ALTPAnr) I ('lfr.?Tx) 

*************************4 *** , 
* * 	I&L ( `,2-;) <:, 	* 

* AC1UAL t * E-VD. 
************************%****4- 
* * 	* 	* 

* Lib 	.ri )4 	* * kH0(3P1) 
* * 	*  

* 0 	* 	2. 	4. * RHO(3 , 2) 
* * 	* 	* 

* 4 	* 	(:..; * RAJ(4t1) 
* 4 	* 	* 
* R!i0(4 , 2) * 	b 	* 	2. -. 	* 
* * 	*  
*********************t****+,** 



EPIRICAL PW1ER FW4 	TE!-J c, ("ITrX) 

*****************+*T4********Rt*****t***!<*************************** 
* IL TdOD 4 	 = 	 + 	 . I 	* 	T '  T 	* 
4 	 41, 4 	************ 4 ********** 
* . : !.-; u Q 1 * 	. , tc-,1 	* 	.01R -t 	* ALPi ,A(f) * 
* *4 ***i**** * ****** 4 **** 4 * * * * * 
* * , 1(0): P . k)(I,J)17-.0 *0(kA: Ril -MT,J) 72 n *°( 0 ): R -4 2 ( 7 ,J ) = 3  * 
* * * * * 4 * * * 4  * * *** * * X * * * K 4 '4,  * ic * * * # -4,  ki* * * * 4 
* *VALL)':*AC:LPTEICT 7-3 4 ACC'/TFFJ 7- 7T DT* 7 JF 7 TED* 
******************************************************************** 
* * 	4 	 * 	 * 	* 	 lc  
* RHj(L: 4 1)* 	FO * 	111 	4 	99) 	* 	4r, 	* 	W-,14, 	* 	47 * 	 * 4.  
* * 	* 	F 	* 	4 	* 	

953 
* 

* RHO(4 , 3)* 	et, * 	12 	t 	9 -i3 	* 	5r) 	* 	'4-4 	* 	57 	* 	94:! 	* 
* * 	* 	K 	* 	 A 	* 	4 	4 
*-*****************t******4*****************4,4************************** 



rk/p1RICAL POWC.R FC)R 	 0: TR5T (OL :W1) 

****************************4**************4 , 41,***********ki**4t44*** 

* * * * * * * * * * * * * * 	* * * * * 4 * 4 * * * * * * 
* 
* 

ALPHA(T) * 	.05,r0 
* 	* 	* 	* 	:, 	 * 	. 	* 	* 

t 

* 	. 	* 
..,1)9r-; 	* 
* 	* 	* 	. 	* 	. 	* 	* 	* 

.elp,g,- 
* 	* 	* 	* 	* 	* * 

* *-1()): ')1c;(1,,,1):: , ) *1(6) : n' 1 )( T t ,-1):zn 	* , i(0): R,In( T rJ)=',) * 
* * * * * * 	* 	* * 	* 	' 	* *4-* 	* 	* 	,‘ + 	* 	4 * * lc* 	# 	k 	* 	* 	* 	* * 	*4* 	4 	* 	* * 
* *VALL*_*ACCEP1r)hkEJFCTE'.*ACCEPT r !: , * ? vJOTThrACCF_PTErl4P'7JFCTED* 
*************************1********************************************* 
* * 	* 	 i 	* 	ie 	 * 	 ♦ 	 * 

* RHJ(L ► 1)* 	,t, * 	10 	* 	990 	* 	?r4 	r 971 	* 	2 2 	* 	971 	* 
* * 	* 	 * 	 k 	 * 	 4 	* 
*************************4*************4,44**4k************************* 



EMPIRICAL POWER FAYILY1IS:: ( mApux) 

*************************4* #.* * ** ** ** * ** 
* r.ji-i0J * 	T 	* 	II * ITI * 
* f * * 4. * 9 4,  * * * 
* No. OF OPE II ERkoRS * 	* 	* 
***************************** * ****** * ** * **k 
* * * * * 
* 0 * 07y * 912 k ye() 	4  
* * * 4-  
* 1 *- 2r * '-)4 * ':)'' 	* 
* * t * 4 
* 2 * 1 * 4 * 4 	* 
* S. 4 * * 
*****************************4************* 



EMPIRI C AL POWER F A NILY 4 I S L (FI:, ST COI LPN) 

*************************44**********4 **** 

	

METHO * I * 	1I * I T I * 

	

* * * * 	* * * * 
* NO. OF TYPE II EP 1 ORS 
*****************************************" 

0 * 9 9 0 * 9 7 1 * 971 	* 

1 * 10 * z9 * 79 * 

** * ********** ** * **** * ** * *** * *** 0* **** ** **** 



EMPIRICAL ACCURACY (TOTAL- OF TYPE I 'ND TYP:7 T1 r_RcIRS)(‘ITQT ,() 

*************************1* *  
* METHOD * I * Ii * Ili 
* * * * * * * * * * 4 
* ERRORS * 	* 	* 	* 
*************************** 
* * * * 4  
* U * 643 * 878 * 17u * 
* * * * * 
* I * 123 * 115 * 11? 

. 
* 

* * * * * 
* 2 * 27 * c .1 * 1' 

* * * * * 
* 3 * 7 * 1 * 1 * 
* * * * K 

* 4 * 0 * 0 * 0 * 
* * * * * 
* 5 * 0 * 0 * 0 
* * * * * 
* 6 * 0 * 0 * ii * 
* * * * * 
**************************** 



EMPIRICAL ACCURACY (FINST Cot_UmN) 

**************************** 
* METHOD * I * II * IIi * 
* 	* * * * ft 4 * * v< 

* 	* 	* * ERRORS * 
**************************** 
* * * 
* 0 * 909 : 947 947 
* * * * * 
* 1 * 86 * 52 * 5 e_ 
* * * 4 * 
* 2 * 5 * 1 * _L * 
* * * * 
* 3 * 0 * 0 * u 4 
* * * * 4 
**************************** 



APPENDIX C 

TABLE CONCERNING PSEUDORANDOM NUMBER GENERATOR 

Table C•16 Total Number of Type I Errors 

k N 
Total 

Normal Total Type I Errors 
Numbers 

Generated Expected Actual 

15 45,000 150 147a  

Crl
 15 45,000 100 82 

15 45,000 200'  177 

15 45,000 100 69 

40 120,000 150 132a  

e
l 40 120,000 100 96 

40 120,000 100 85 

40 120,000 100 105d  

3 100 300,000 150 168ad  

3 100 300,000 100 98 

3 100 300,000 100 104d  

3 100 300,000 100 93 

4 15 60,000 300 237a  

-I- 	
-1- 	

-1-  I 

40 160,000 300 284a  

40 160,000 150 133 

40 160,000 200 176 

149 
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Table C.1 - Continued 

k N 
Total 

Normal 
Numbers 

Generated 

Total Type I Errors 

Expected T  Actual 

4 100 400,000 300 297ac  

4 100 400,000 150 148 

4 100 400,000 200 217d  

6 40 240,000 600 585 

6 40 240,000 65o 654d  

6 4o 240,000 45o 436 

6 100 600,000 600 637d  

6 100 600,000 65o 645 

6 loo 600,000 45o 394 

8 15 120,000 1,400 1,109a  

8 40 320,000 1,400 1,327a  

8 	100 1,600,000 1,400 1,411ad  

;This number may be sliEhtly underestimated. 
c=ie = .10 for this computer run c .T This number could possibly have exceeded the 

expected value. 
dThis actual value was larger than the expected 

value. 
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APPENDIX D 

TABLES CONCERNING TYPE I ERROR RATES 

Table D.1. Familywise Empirical Size 

Rp  .. kNma 

Matrix Vector 

l Method 
I 

Method 
II 

Method 
III + a m 

Method 
I 

Method 
II 

Method 
III 

15 3 .144** .047 .046 2 .093** .049 .048 

3 4o 3 .122** .036 .036# 2 .090** .049 .049 

100 3 .162** .044 .044 2 .119** .047 .046 

15 6 .269** .044 .042 3 .116** .044 .041 

; 4 4o 6 .246** .052 .048 3 .126** .040 .040 

loo 6 .262** .058 .057 3 .137** .040 .040 

15 21 .669** .027 .026## 7 .224** .034 .034# 

8 40 21 .752** .044 .043 7 .300** .046 .045 

100 21 .755** .050 .048 7 .305** .051 .050 

15 2 .079** .0240 .023## 2 .079** •033# •033# 

(51) b  3 40 2 .090** .028## .027# 2 .o9o** .048 .048 

100 2 .091** •034# .033# 2 .091** .049 .048 

15c 2 .150e**.046c## .044`4# 2 .150'** .079## .0781W 

(52) b  3 40 2 .077** .023##  .0220 2 .077** .028## .028## 

100 2 .092** .033# .032##  2 .092** .048 .048 

15 2 .062* .018## .018## 2 .062* .028## .028## 

(53) b  3 40 2 .092** .030## .030## 2 .092** .046 .045 

100 2 .086** .028## .027## 2 .086** .048 .047 
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Table D.1 - Continued 

Rp  v•s k 

Matrix Vector 

/ ma  
Method 

I 
Method 

II 
Method 
III 

cd 
-  E

  
, 

Method 
I 

Method 
II 

Method 
III 

40 3 .110** .028## .028## 3 .110** .042 .041 
(54) b  4 

100 3 .134** .o16## .016## 3 .118** .Q34# .Q33# 

1., 4o 4 .139** .025## .025## 2 .082** .025## .025## 
(55) 4 

100 4 .160** .032## .031## 2 .097** .032## .032## 

40 12 .393** .042 .042 4 .167** .035# .034# 
(56) b  6 

100 12 .398** .039 .037 4 .181** .043 .042 

40 13 .452** .042 .042 3 .164** .0280 .028## 
(57) b  6 

100 13 .456** .037 •035# 3 .134** .035# .034# 

40 9 .248** .019## .019## 3 .097** .022## .022## 
(58) b  6 

100 9 .239** .024## .024## 3 .094** .022## .022## 

Note. - Familywise empirical size is the proportion of 
replications out of 1000 sample replications in which there 
occurred one or more Type I errors in the family of tests. 
The family of tests includes either the tests of intercorre- 
lations in the entire matrix or the tests of intercorrelations 
in the first column (vector) only. Method I set cle = .05: 
Method II was the assumed-independent-tests correction; Method 
III was the Bonferroni I. 

aNumber of true component null hypotheses. bRefers to the population correlation matrix designated 
by this equation number in Chapter 

co(Fw = .10 for this computer run 
*p 	one-tailed test 
vwp c .01; one-tailed test 
#p --..c .05; two-tailed test 

<:.01: two-tailed test 
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Table D.2. Summary of Tests of Fit of Frequencies 
of Number of Type I Errors to a Binomial Distribution 

.,. R1) k N 

Matrix Vector 
pla  df's 1( 2  Value ma df's 	X2  Value 

15 3 2 2.73 2 1 .23 

3 4o 3 2 5.58 2 1 .64 

100 3 2 3.80 2 1 5.25* 

15 6 2 16.o5** 3 2 6.44* 

1 4 40 6 2 2.91 3 2 2.31 
M 

100 6 2 .06 3 2 .86 

15 21 5 72.60** 7 2 28.86** 

8 40 21 5 7.00 7 2 .47 

100 21 5 3.48 7 2 .75 

15 2 1 3.89* 2 1 3.89* 

(51) b  3 4o 2 1 .64 2 1 .64 

100 2 1 .48 2 1 .48 

15 2 2e 48.93** 2 2C 48.93**  

(52) b  3 4o 2 1 4.78* 2 1 4.78* 

100 2 1 .34 2 1 .34 

15 2 1 14.32** 2 1 14.32** 

(53) b  3 40 2 1 .34 2 1 .34 

100 2 1 1.50 2 1 1.50 

(54) b 4 
4o 3 2 34.83** 3 2 34.83** 

100 3 2 63.10** 3 2 63.10** 

(55)
b 

4 
40 4 2 46.72** 2 1 2.73 

100 4 2 75.25** 2 1 .003 
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Table D.2 - Continued 

Rp  ,... k 
Matrix Vector 

P ma df's X 	Value Ma  df's 	3C-N-Taliue-  

(56) b  6 40 12 3 57.82** 4 2 40.91** 

100 12 3 107.11** 4 2 45.78** 

(57) b 6  40 13 3 22.90** 3 2 4.14 

100 13 3 23.51** 3 2 6.17*' 

(58)
b 6 40 9 3 249.89** 3 2 123.50** 

100 9 3 174.39** 3 2 53.01** 

Note. - The characteristics of each case investigated 
are reported in the left-hand columns. For each particular 
case the observed frequencies for each number of Type I 
errors were compared to frequencies expected by the binomi-
al distribution under the assumption that the component 
significance tests are mutually independent. The expected 
binomial distribution had p = .05 and n = e. The statis-
tic for the test of fit was a Pearson X'. The upper tail 
of the distribution was lumped together so that the expected 
frequency (out of 1000 sample replications) was at least 
five. 

aThe number of true component null hypotheses in a 

fami'
y of tests 
DRefers to the population correlation matrix designated 

by this equation number in Chapter 
ce = .10 for this computer run 

*p .< .05 
*-4Fp de— • 01 



59 

5 

2 

6 

1 

/1 

P31 

P32 

tqa 
/42 

/6143 

.068 

.085 

.034 

.102 

.017 

59.0 

2.9 

2.9 

2.9 

2.9 

2.9 

Type I Errors 
Observed 

Conditional 
Empirical 

Size Expected 

Table D.3. Conditional Empirical Size for Method I a  

aRr, = 1, k = 4, N = 100 
bnnditional empirical size is 

of sample replications with a Type 
component test of /04 . among those 
cations with a Type tJerror on 4,7 121 

the proportion 
I error on the 
sample repli- 

. 
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Conditional 
Empirical 
Sizeb Expected 

Type I Errors 
Observed 

44.0 

2.2 

2.2 

.182 

.273 

44 

8** 

12** 

156 

Table D.4. Conditional Empirical Size for Method I a  

R) 	.6 = 	 , N = 40 01 	0 
0 .6.6 1 

bConditional empirical size is 
of sample replications with a Type 
component test of 4 4  among those 
cations with a Type Verror on .00  /21 **per ** 	4 .01; T 4..005 

Note. - The two tests of this table are con- 
sidered a family of tests. A one-tailed Bonferroni 
Poisson test was used. 

a 

0 

the proportion 
I error on the 
sample repli- 



Conditional 
Empirical 
Size Expected 

Type I Errors 
Observed 

43.0 

2.1 

2.1 

61 
61 
61 

.279 

.233 

Table D.S. Conditional Empirical Size for Method I a  

Note. - The two tests of this table are con- 
sidered as a family of tests. A one-tailed Bonfer- 
roni Poisson test was used. 

a 

N la 100 

bConditional empirical size is the proportion 
of sample replications with a Type I error on the 
component test of/9i . among those sample repli- 
cations with a Type ± 3error on .42  21 .  **p 

FW 	.01; PT 	.005 
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1 

s) 	0 • 
0 .6 .6 1 



Conditional 
Empirical 

Size Expected 

Type I Errors 

Observed 

61 
62 
Pl  

46 

8** 

4 

6c  

46.0 

2.3 

2.3 

2.3 

.174 

.087 

.130 

Table D.6. Conditional Empirical Size for Method Ia  

Note. - The three tests in this table are con-
sidered as a family of tests. A one-tailed Bonfer- 
roni Poisson test was used. 

a 

, N = 40 

bConditional empirical size is the proportion 
of sample replications with a Type I error on the 
component test of /%; . among those sample repli-
cations with a Type ±error on ion . 

cP <=7 .05 
** _ Fw 	• W -, 01. ET 	. 0033 
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0 0 .6 lj 

R = 0 0 



61 

r41 

P42 

Table D.7. Conditional Empirical Size for Method I a  

159 

Type I Errors 
- Observed 

Conditional 
Empirical 
Size Expected 

54. 0 

2.7 

2.7 

2.7 

54 

1 6** 

15** 

5 

.296 

.278 

.093 

Note. - The three tests on this table are considered 
a family of tests. A one-tailed Bonferroni Poisson test 
was used. 

a 

R r-p 

bCond 
of sample 
component 
tions wit 

**p 
—FW 

N = 100 

itional empirical size is 
replications with a Type 
test of f?; .;  among those 

h a Type I error on /6511. 
.01; 21-. .0033 

the proportion 
I error on the 
sample replica- 



Table D.8. Conditional Empirical Size for Method I a  

Type I Errors Conditional 
Empirical 

Size Expected Observed 

68.0 68 

3.4 15** .221 

3.4 16** .235 

3.4 7c .103 

3.4 4 .059 

3.4 3 .044 

3.4 4 .059 

3.4 1 .015 

3.4 3 .044 

3.4 3 .044 

3.4 2 .029 

3.4 2 .029 

Note. - The eleven tests of this table are consi-
dered a family of tests. A one-tailed Bonferroni Pois- 
son test was used. 

a 	 - 

= [6 
0 0 
0 0 .6 
00 00 
0 0 0 0 .6 1 

mp  

160 

e31 

P32 

P41 

PL1.2 

t951 

P52 

/4°53 

P54 

P61 

iP62 

t'13 

p64 

N = 40 

bConditional empirical size is the proportion of 
sample replications with a Type I error on the com-
ponent test of IZ.1 	

40 
among those sample replications 

with a Type I errtil on P31' 31' cp 	.05 
. 01 ET <= .0009 FW 	-  
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.6 
O 0 
O 0 .6 
o o 0 0 
O 0 0 0 .6 1 

R = 
pb..p 

Table D.9. Conditional Empirical Size for Method I a  

161 

(31 

P32 

(42 

(151 

/952 

e53 

/254 

e62 

43  
tC)64 

Type I Errors Conditional 
Empiripal 

Size° Expected Observed 

49.0 49 

2.4 7C .143 

2.4 14** .286 

2.4 6c  .122 

2.4 4 .082 

2.4 6c  .122 

2.4 1 .020 

2.4 1 .020 

2.4 2 .041 

2.4 6c  .122 

2.4 4 .082 

2.4 1 .020 

Note. - The eleven tests of this table are consi-
dered a family of tests. A one-tailed Bonferroni 
Poisson test was used. 

a 

N = 100 

b Conditional empirical size is the proportion of 
sample replications with a Type I error on the com-
ponent test of /41 ;  among those sample replications 
with a Type I erreqk on ,49  

CP < .05 	 31 
414 

FW 	.01; PT 	.0009 



, N = 40 

0 

(21 

(31 

f32 

141 
(42 

(43 

/32 

(53  
(54 

42 

P3 

P4 

P65 

Table D.10. Conditional Empirical Size for Method I a  

Type I Errors Conditional 
Empirical 

4 

Sizeu Expected Observed 

58.0 58 

2.9 2 .034 

2.9 3 .052 

2.9 4 .069 

2.9 1 .017 

2.9 2 .034 

2.9 11** .190 

2.9 2 .034 

2.9 2 .034 

2.9 15** .259 

2.9 2 .034 

2.9 6 .103 

2.9 4 .069 

Note. - The twelve tests of this table are consi-
dered as a family of tests. A one-tailed Bonferroni 
Poisson test was used. 

empirical size is the proportion of 
sample replications with a Type I error on the com-
ponent test of e 4  among those sample replications 
with a Type I er 614 on 

**PFw  < .01; PT 	oo68 .  
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a 
1 
0 

R 	= 0 0 top 0 0 0 
.6 o 0 
.600001 

bConditional 



Type I Errors 
Observed 

Conditional 
Empirical 
Size° Expected 

48.0 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

48 

3 

7 c  

3 

0 

9** 

3 

.062 

.146 

.062 

.083 

.000 

.188 

.021 

.000 

.292 

.021 

.083 

.062 

Pl 
f'31 

/32 

(41 

/42 

/14-3 

/12 

f62 

/63 

/64 
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Table D.11. Conditional Empirical Size for Method 1 a  

Note. - The twelve tests of this table are consi-
dered as a family of tests. A one-tailed Bonferroni 
Poisson test was used. 

a 
1 
0 
0 0 

111) = 	0 0 	 N= 100 
.6 0 0 
.60 0 0 0 1 - bConditional empirical size is the proportion of 

sample replications with a Type I error on the com-
ponent test of4 	

/ 

among those sample replications 
with ca Type I err on  P4‹ .05 	 21  

*if) 	.01; PT  'd= .0008 — 

IV" 



Poisson test was used. 
a 

.6 
= .6 .6 

Rp 	0 0 0 
0 0 0 • 
0 0 o .6 .6 

Table D.12. Conditional Empirical Size for Method I a  

Type I Errors Conditional 
Empiri2a1 

Expected Observed Sizeu 

(41 

'242 

/1943 

/451l 

/52 

/453 

411 

(62 

/63 

54.0 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

54 

14** 

14** 

13** 

7* 

14** 

15** 

8* 

.5 

.259 

.259 

.241 

.130 

.259 

.278 

.148 

•093 

Note. - The eight tests of this table are consi-
dered a family of tests. A one-tailed Bonferroni 
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, N = 40 

bConditional empirical size is the proportion of 
sample replications with a Type I error on the com-
ponent test of /2; 4  among those sample replications 
with a Type I err611  on fill . 

*P <7:- .05, multistagi Bonferroni 
** 	< .01; PT  c .0013 FW 



Table D.13. Conditional Empirical Size for Method I a  

1 65 

Type I Errors Conditional 
Empirical 

Expected Observed Sizeb 

41.0 41 

2.0 9** .220 

2.0 13** .317 

2.0 14** .341 

2.0 5 .122 

2.0 2 .049 

2.0 11** .268 

2.0 6c .146 

2.0 5 .122 

A 2 

ei+3 
f .52 

P53 

P61 

P62 

/463 

Note. - The eight tests of this table are consi- 
dered a family of tests. A one-tailed Bonferroni Pois- 
son test was used. 

a 

N = 100 

Conditional empirical size is the proportion of 
sample replications with a Type I error on the com-
ponent test of 1474 . among those sample replications 
with a Type I err on 41 .  elm  .<.05 

**c.01: PT 	.0013 -11°FW  

1 
.6 

R .6 .6 = 
r•,  p 	0 0 0 

0 0 0 . 
0 0 o .6 .6 1 

b 
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