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SUMMARY

Multiple % tests can be used for multiple compari-
sons in analysis of variance and for multiple significance
tests of a set of intercorrelations. In both types of
analysis, if a nominal Type I error rate is applied to
each single test (e.g., +05), then the probability of
observing one or more Type I errors in the set of signif-
icance tests increases a great deal above .05. In mul-
tiple comparisons in analysis of variance, diverse mul-
tiple-test procedures have been recommended to correct
for this. However, in multiple significance tests of
intercorrelations, the same rationale for more stringent
Type I error rates remains largely ignored. In this
study a computer simulation was used to determine the effect
of using the ordinary single-test procedure on Type I error
rates in multiple significance tests of intercorrelations.
Population correlation matrices were specified, and random
samples were drawn from those populations. The results
indicated that when a nominal value of X= .05 is applied
to each single significance test, the familywise Type I
error rate increases rapidly to undesirable levels as the
number of variables increases. Two alternative procedures
were also investigated, a Bonferroni % procedure and an

assumed-independent-tests procedure. Both were successful



in keeping the familywise Type I error rate at the nominal
value of <X = .05 or below. Both over-controlled for

Type I errors when at least a small proportion of the null
hypotheses of interest were false. It was also found that
the mutual dependence of the component significance tests
results in high conditional Type I error rates if some
correlations between the variables of interest are moder-
ate or large in magnitude. Generally, this increases the
probability of a relatively large number of Type 1 errors
occurring simultaneously. A multistage Bonferroni %

procedure is outlined and recommended.



CHAPTER 1
INTRODUCTION

The purpose of this study is to examine the ef-
fects of different procedures for controlling Type I
error rates in multiple significance tests of intercor-
relations. When only one correlation coefficient is in-
volved, the t statistic is an appropriate statistical

test for a hypothesis of the form

HO t /p= 0 (1)

Hl $ /9% 0 .

But when the i statistic is used with an unadjusted alpha
level (i.e., 2 critical value appropriate for testing a
single correlation coefficient at a given alpha level) to

test each of the E—i%:ll intercorrelations in a correlation

matrix of k variables, the expected number of Type 1 errors
increases rapidly as k increases. Hays (1973, p. 712)
states that

The resulting significance levels are largely
meaningless, for reasons much like those making
% tests for all differences among a set of means
a dubious procedure. In the first place, even
for independent tests of significance, when so
many tests are carried out the probability that
some Type I errors are being made may be very
high. Even worse, the 1 tests for correlations
are quite redundant and are not statistically in-



dependent when carried ocut on a table of inter-

correlations. Consequently, the set of results

can be grossly misleading.
If such significance tests are used, he adds, the experi-
menter should interpret the significance levels with con-
siderable latitude.

As the above quote from Hays indicates, the problem
of controlling Type I error in multiple tests of inter-
correlations is similar to the problem of controlling Type
I error in multiple comparisons in analysis of variance.
Multiple-test procedures are fairly widely used in psycho-
logical research for multiple comparisons in analysis of
variance. Although the rationale is very similar for the
use of multiple-test procedures in multiple tests of inter-
correlations, ordinary, single-test procedures continue
to be widely (if not universally) used with multiple tests
of correlations. This contradictory state of affairs prob-
ably has resulted from the historical fact that the major
multiple-test procedures were first published in text-
book form in Analysis of Variance (Scheffé, 1959), and from
the mathematical fact that multiple tests of intercorre-
lations do not generally meet the assumptions of the better-
known multiple-test procedures. As early as 1959 Ryan
specifically mentioned multiple tests of intercorrelations
as one case where multiple-test procedures should be ap-
plied. However, following historical precedent, the bulk

of his article was about multiple comparisons in analysis



of variance. Later he presented a general multiple-test
method for statistical analyses other than comparisons
among means. His method can be applied to any set of two-
sample significance tests with hypotheses of the form

P

H = P

'
0 1 2 (2)
Hy + Py # P,
where Pi represents a population parameter for the ith popu-

lation (Ryan, 1960). This is only a short step away from a

general method which can be applied to hypotheses of the form

(3)

where a is the hypothesized parameter value. However,
there have apparently been few further developments in the
application of multiple-test procedures to intercorre-
lations in a correlation matrix since Ryan's (1959, 1960)
papers, at least not in sources used much by psychological
researchers.

Marascuilo (1966) did consider multiple-test pro-

cedures for hypotheses of the form

Hy o .'plzzfgu = fap = v = /(n-l)n

Hl 1 lp(i'l)i ?(/0(']-1)'] ; for some i, j .

(&)



His method assumes mutually independent tests and has un-
known adequacy for small samples. Harris (1967) investi-
gated the effects of the non-independence of significance
tests of correlations in correlation matrices. He concluded
that the Type I error rate was greatly distorted by non-
independence and that there may be no feasible correction
for such distortion. He did not consider any multiple-
test procedures to correct this distortion. Currently,
psychological researchers continue to ignore questions
about the distortion of Type I error rates in ordinary
single~-test procedures for multiple significance tests of
intercorrelations.

This thesis examines the problem of controlling Type
I error rate in multiple tests of intercorrelations by
first reviewing the literature on multiple-test techniques
and then reviewing those mathematical characteristics of
correlation matrices which must be taken into account in
applying multiple-test procedures to them« Thirdly, an
empirical investigation of Type I and Type II errors under
several procedures when the population correlation matrix
is known is reported. Finally, the implications of the re-
sults of the literature review and the empirical findings

are discussed.

Multiple-Test Procedures
Widely Divergent Opinions and Procedures

Several authors (Carmer & Swanson, 1973; Dunnett,



1970; O'Neill & Wetherill, 1971; Waller & Duncan, 1969)
have commented recently on the controversy among statis-
ticians about multiple-test procedures and their disagree-
ment concerning the basic principles involved. Contro-
versy seems to exist concerning the nature of the basic
problems, relevant criteria for multiple-test procedures,
and properties of currently proposed procedures. Such dis-
agreement was illustrated in a meeting of the Royal Sta-
tistical Society on this very topic. Following O'Neill and
Wetherill's (1971) paper, the first discussant mentioned
that it was good to have a meeting on these issues since
the problems their paper discussed still existed after 30
years and some 200 odd papers on the topic (Plackett, 1971).
The next discussant stated that "multiple comparison
methods have no place at all in the interpretation of data
(Nelder, 1971, p. 244)", adding that their principle pur-
pose was to lend an air of respectability to otherwise un-
interesting data.

Disagreements among statisticians are also evident
in their recommendations for multiple-test procedures.
Currently available techniques for multiple comparisons
lead to very different results in many cases. For example,
the error rate per experiment varied from essentially zero
for Scheffé's procedure to over 1.00 for Duncan's Mulitple
Range Test in one case simulated in Petrinovich and Har-

dyck's (1969) study. Yet both procedures have their pro-



ponents among applied statisticians. For example, Pet-
rinovich & Hardyck (1969) recommended Scheffé's or Tu-
key's procedures as vastly superior to Duncan's method,
whereas Carmer & Swanson (1973) concluded that Scheffé's
& Tukey's procedures were both clearly inferior to Dun-
can's procedure.

Aside from such major issues, opinions differ
greatly on other matters, such as the importance of dis-

tinguishing between a priori and a posteriori tests and

of distinguishing between the cases of independent tests
and non-independent tests.
o) xiti an Sinzle-Test Pro u

Probably a primary factor behind such widely di-
vergent opinions is the greater complexity involved in
multiple tests as compared with a single significance
test. At the single-test level, confidence limits also
indicate the result of a significance test; this is not
always true with multiple tests. Distinctions can be made
between different kinds of Type 1 error rates for mul-
tiple tests; all these are the same at the single-test
level. At the single-test level, a decision is made be-
tween the null hypothesis and an alternative hypothesis;
with multiple-test situations there are more distinct
decisions possible, involving various combinations of de-

cisions on the component significance tests. This also



complicates the relationship between Type I error rate
and power.

Probably the central issue of multiple-test pro-
cedures is the appropriateness of various generalizations
from a single-test procedure to a multiple-test procedure.
For example, what kind of Type I error rate is an appro-
priate multiple-test-procedure generalization from the
usual single-test Type I error rate? Does it indicate
the same dependability of results as a reported Type I
error rate for a single test? This issue is considered in
more detail in the next section.

Tvpe 1 Error Rates

As already indicated, expressing Type 1 error rates
for multiple tests in a way that is directly analogous
to single tests is not a simple problem. Waller and Dun-
can (1969) call this issue a major source of disparities
in multiple-test procedures.

Three Type 1 error rates have been distinguished
for multiple tests, error rate per individual test ( 0<T),
error rate per family ( CKPF)' and error rate familywise

(X The simplest multiple-test situation will be

Pl
used to illustrate the differences among these Type I
error rates. This multiple-test situation involves a set
of two statistically independent significance tests.

In any multiple~test procedure, the set of individual

significance tests (in this case 2) is called a family



(This concept of a family is considered in more detail
later in this chapter). The individual significance
tests are called component tests.

Table 1 gives the probabilities of observing zero,

Table 1. Probability of a Given Number of Type I
Errors in a Family of Two Independent Tests@

mnea—— ——
m——— et

Number of Type I Errors

Probability + 9025 «095 + 0025

a =

one, or two Type I errors in this particular family of
tests, given C’& = ,05 when the null hypothesis is true
for both tests (i.e., two true component null hypotheses).
The Type 1 error rate per test ( r*’(T) is simply the pro-
bability of a Type I error on a single statistical test,
in this example, +05. The Type I error rate per family
is the expected number of Type I errors in the entire

family of tests, i.e.,

CXPF = E(total Type I errors) . (5)

Note that foF is actually not a probability but an ex-

pectation. In the example in Table 1, the error rate per



family is

(:XfF = 0 (.9025) + 1 (.095) + 2 (.0025)
(6)

= L0010

The familywise Type I error rate is the probability of

obgserving one or more Type I errors in a family of tests,

i.e.,

Hog = 1 = Pr(zero total Type I errors) , (7)

In Table 1, the familywise error rate is

ey = 1 - .9025
= 0975 .

(8)

Both the error rate per test and the familywise
error rate are used in current psychological literature.
The overall F test in analysis of varlance is an example
of the use of familywise error rate, whereas tests of inter-
correlations in a correlation matrix (e.g., Kolb, 1973;
Paige, 1973) or between predictor and criterion vari-
ables (e.g., Brooks, 1973; Jessor & Jessor, 1974; Peder-
sen, 1973a, 1973b; Siess, 1973) are examples of the use
of error rate per test.

When a statistic exceeds the critical values as
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determined by all three error rates, the null hypothesis
is clearly rejected. When it is smaller than the cri-
tical values for all three error rates, the null hypothesis

is always accepted. When only one significance test is
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Figure 1. Borderline Region for Type I Error in Multiple
Tests
under consideration, this exhausts all the possibilities.
However, when a family of two or more tests is under con-
sideration, some statistical values are possible which ex-
ceed the critical value for ch = .05 (for example) but

are less than the critical value for “’%F = .05, Such
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statistical values would fall in the shaded region of
Figure 1. A central issue in multiple-test procedures

is what conclusion to make when the statistical value
falls in this borderline region. This issue is equivalent
to the issue of which kind of Type I error rate to con-

trol for. If <X, 1is controlled at .05, then the border-

T
line region is included in the rejection region. If CXPF
is controlled at .05, then the borderline region is in-
cluded in the acceptance region. Notice that the border—-
line region gets larger as the number of component tests
increases.

What Type I error rate should be controlled for?
The literature on multiple-test procedures and current
practices in statistical analysis of psychological research
suggests that no general clear-cut answer can be given.
TwWo major issues, however, should be kept in mind to an-
swer this for a particular situation. Ryan (1959) has
pinpointed perhaps the most important issue: Which Type I
error rate is the best representation of our results?
Most psychological researchers associate a strong degree
of dependability with experimental "facts" at the .05
level, and a greater degree of dependability with "facts"
accepted at the .01 level. When .05 is the reported sig-
nificance level associated with "facts" presented in a

multiple-test situation, it should represent the same de-

gree of dependability as a .05 significance level in a
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single-test situation.

Some statisticians view this issue as an attempt
to formalize into a Neyman-Pearson statistical model some-
thing which should be much more flexible (e.g., 0'Neill
& Wetherill, 1971). Such a statement is not without merit,
but the fact of the matter is that psychologists are much
more familiar with Neyman-Pearson statistical concepts
than with Bayesian concepts. A Neyman-Pearson model is
useful for reporting the dependability of experimental
results, which psychologists use, in turn, to distinguish
between findings that must be integrated into their
theories and findings that may be ignored until their re-
plicability can be demonstrated. If findings were re-
ported in terms of Bayesian concepts, most psychologists
would have difficulty in interpreting the dependability
of the reported fimdings. So the issue of a known degree
of protection for a family of tests against Type 1 errors
seems to be most crucial, at least for current psycholo-
gical research.

A second issue is the consistency of treatment of
research results regardless of the type of analysis.
Currently, a familywise Type I error rate is commonly
used in analysis of variance (e.g., an overall F test),
while a Type I error rate per individual test i1s commonly
used in statistical tests of a set of intercorrelations.

This inconsistency is unreasonable. One researcher should
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not be penalized simply because an analysis of variance
is applicable to his research while another researcher
can use tests with more power simply because he has cor-
relational data.

The advantages and disadvantages of the three
Type I error rates are considered next. The Type I error
rate per test ( C*T) is the easiest to use and results
in more powerful tests than the other two more conservative
alternatives. Although generally favoring C%%W' Miller

(1966) indicates that =X, can be appropriate if the con-

T
sulting statisticlan and the researcher are both aware of
the implications of using QXT in a multiple-test situation.
However, the logical extension of this is that the aver-
age reader should be aware of these implications if C*T

is used in publishable research. And one implication is
that the probability of observing at least one Type I

error in a family of tests increases rapidly as the number
of component tests increases. For example, in a family of
five independent component tests with CXT = .05, there
would be at least one Type I error over 22% of the time; in
a family of 10 tests, over 40% of the time; and in a family
of 20 tests, over 64% of the time. Ryan (1959) has pointed
out that if ch is used, then the more variations of ex-
perimental conditions a researcher investigates, the

better the chance of finding some apparently significant
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results. This leads to a greater reward for working harder
on irrelevant variables.

Most of the literature on multiple-test procedures
favors a more conservative Type I error rate (e.g., Miller,
19663 Ryan, 1959; Scheffé, 1959). The Type I error rate
familywise ( CXFW) and the Type I error rate per family
(‘3¥PF) are usually almost equivalent, particularly when
the desired alpha level is small and when CXFW can be
calculated accurately. Of these two, CXFW is generally

preferred. The most common use of CN%W is the overall F

test in analysis of variance. The Type I error rate family-
wise is a probability whereas C%PF is an expectation and
not a probability. The Type I error rate familywise gives
a known probability of protection to the family of tests
against any Type I error. These may be the main reasons

for the preference for CXFW' Ryan (1959), however, con-

cluded that <, and CXfF simply represent different view-

Fw
points. If one Type I error is viewed as nearly as costly
as several Type I errors, then C’%w is to be controlled.
If two errors in one family of tests is considered as bad
as one error in each of two families, then CX§F is to be
controlled. But in general the literature favors Cﬁ%w
over the other two Type I error rates, although CXFW is
usually practically equivalent to‘sKPF-

If we decide to control‘j*fw, then most statis-

tical values in the borderline region (Figure 1) result
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in acceptance of the null hypothesis, since CXFW is usually
nearly equivalent to CXPF‘ But at the single-test level,
this borderline region becomes the single critical value
itself. So, analogously, it should be remembered that
the borderline region represents statistical values on the
fence between the acceptance and rejection regions. As
such they would represent more dependable results than sin-
gle test results reported as "tending toward significance".
The implication of this is that results in the borderline
region might be especially worthy of follow-up studies.
So, as recommended elsewhere (Miller, 19663 Petrinovich
& Hardyck, 1969), CX& is useful for exploratory research,
whereas definitive, publishable research should use CX%W.
The distinction here is similar to the distinction
made by Fisher (1935) between results which can suffice
in themselves to establish the point at issue and results
which are of less value except insofar as they confirm
or are confirmed by other experiments of like nature. Sta-
tistical effects which are large enough to reject the null
hypothesis even with C)Fw = .05 can be considered to stand
alone in establishing the point at issue, whereas other
statistical effects which fall in the borderline region
need to be confirmed by other research.
One necessary consequence of a more stringent Type
I error rate, such as Cwa, is the accompanying loss in

power. Ryan (1962) points out that this decrease in power
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will result in Type II errors only for small, and there-
fore, generally less important, effects (empirical demon-
stration of this: Carmer & Swanson, 1973). It is diffi-
cult to evaluate this because the knowledge of power func-
tions for multiple test statistics is very limited ex-
cept for the F and t statistics (Miller, 19663 0'Neill &
Wetherill, 1971). However, as the number of tests per
family increases, the power decreases rapidly. Multi-
stage procedures have been proposed to lessen the loss of
power.

As the name suggests, multistage procedures involve
several stages in the analysis. 1In the first stage the
critical value for the component tests is determined so
that C{FW is controlled at the desired level. If no com-
ponent null hypothesis is rejected at this stage, the pro-
cedure terminates. However, 1if at least one component null
hypothesis is rejected, less stringent critical values are
used in the following stages to test the component null
hypotheses which were not rejected in the first stage.

The rationale for this is that the multistage pro-
cedure increases power without increasing the familywise
Type 1 error rate for the complete null hypothesis (i.e.,
the overall hypothesis that all the component null hypo-
theses are true). Consider once again the example of a
family of two statistically independent component tests.

Let CKFW = ,05. Then C<T = ,0253. In a non-multistage
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procedure, the smaller of the two sample statistical values
must still exceed the critical value based on c:*T = .0253
even if the larger sample statistic results in the rejection
of its component null hypothesis. $So, in effect, a non-
multistage multiple-test procedure is unfair to the smaller
statistical value. A multiple-test procedure gives a more
stringent critical value to allow for the possibility
that all the component null hypotheses may be true, but even
if some of those component null hypotheses are rejected,
a non-multistage procedure retains the same stringent cri-
tical value. So a component significance test is penalized
just because it happens to be grouped with m-1 other com-
ponent tests, even if those other component tests involve
strongly significant effects. A multistage procedure, on
the other hand, relaxes the critical values after at least
one component null hypothesis has been rejected. Since
for the complete null hypothesis, the rejection of any
component null hypothesis is a Type 1 error, the probability
of having zero Type I errors is the same as for a non-
multistage procedufe (since the procedure terminates if
all component null hypotheses are accepted at the first
stage). Therefore, the familywise Type I error rate is
unchanged also (see equation (7)).

The fact that CXFW is affected only by the first
stage permits a great diversity in multistage procedures

after their first stage. Consequently, there exists a
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large variety of multlistage procedures for multiple com-
parisons in analysis of variance.

Two criteria have been proposed for evaluating
multistage procedures. One is Duncan's (1955) concept
of a p-mean significance level. This is designed to repre-
sent the Type I error rate at various stages of a multi-
stage procedure in analysis of variance. Miller (1966)
provides a good explanation of the details of p-mean sig-
nificance levels.

A second criterion for multistage tests is the maxi-~
mum s maximized over all possible combinations of true
component null hypotheses (Tukey, 1953, cited by Ryan,
1959). Most multistage procedures control C(Fw only for
the complete null hypothesis. For many multistage pro-
cedures, CKFW can be much larger for other possible com~
binations of true component null hypotheses. For multiple
comparisons in analysis of variance, keeping the maximum
4 FW at .05 is generally more conservative than keeping
all p-mean significance levels at .05.

Families

The question of what constitutes a family of tests
is an obviously important issue concerning multiple test
procedures. Yet there are no set rules for what constitutes
a family (Aitkin, 1971; Miller, 1966). It is on this issue
that statisticians must leave mathematics and be guided

by subjective judgment (Miller, 1966).
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Ryan (1959) and Miller (1966) consider the experi-
ment as the normal choice for a family of tests. Ryan
adds that there should be strong specified reasons for any
exceptions to this. Miller sees large experiments as an
exception since if it were considered to be one family of
tests there would be an unjustifiable loss in power. Others
(Kirk, 1968; Wilson, 1962) favor the hypothesis as the unit
for a family of tests. Researchers who ignore multiple
test methods in their analyses are actually regarding
each single test as the family. Miller (1966) points out
that some justification can be given to this last position
from a Bayesian viewpoint if the total loss for a se-
quence is the sum of the component losses. Different
loss structures would yield different results. However,
he does not consider any Bayesian approach a practical
solution since it is almost impossible to specify a priori
probabilities of Type I and Type II errors. Also the
decision loss functions become quite unrealistic for
practical applications such as data analysis (Plackett,
1971).

It is the opinion of this author that a useful
distinction could be made between an alpha family and an
analysis family. An alpha family is the set of tests
which is being protected from one or more Type I errors
at the reported alpha level. An analysis family is the

set of tests which is being analyzed as a group. This is
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what 1s called a family in the multiple-test literature.
In many multiple-test procedures the alpha family and the
analysis family are equivalent. The procedures in which
they are different (e.g., Duncan's multiple range test)
have been the source of additional confusion in this area.

In multistage procedures, the alpha family may
change from stage to stage while the analysis family is
the first stage's alpha family. In a non-multistage pro-
cedure, the alpha family and the analysis family are the
sames The purpose of the concept of an alpha family is to
clarify what is being protected from the occurrence of a
Type 1 error at the reported alpha level.

The purpose of a research study affects what set
of tests should be considered as an alpha family. For ex-
ploratory research it would be good to consider each in-
dividual test as an alpha family for discovering leads
for future research (Miller, 1966; Petrinovich & Hardyck,
1969). Note that this is equivalent to the previous
recommendation of using CKT for exploratory research.
When the results are to be used to support a particular
theoretical position or are to be proclaimed to the sci-
entific community as experimental "facts"”, then a larger
alpha family should be used (Miller, 1966, Ryan, 1959).
This is also where the issue of a priori vs. a posteriori
analysis fits in. As Ryan (1959) points out, the central

issue is the number of tests in the alpha family. However,
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a priori analyses can be made more powerful by selecting
to analyze only some of the possible tests. In g pesteriori
analyses, the alpha family must include all conceivable
tests, not just those that 1look interesting as a result
of the data (Williams, 1973).
S 1f] 1] P s

Most multiple-test procedures have been proposed
for multiple comparisons in analysis of variance. Some
of them are useful for calculating confidence intervals
but are considered to be unnecessarily conservative for
significance tests (Miller, 1966). These include Tukey's
Honestly Significant Difference procedure, Scheffé's S
method, and a non-multistage Bonferroni i method. Multi-
stage procedures give better power for significance tests,
but are not considered applicable to confidence intervals.
Although many of them increase X oy beyond the specified
level for some possible combinations of true component
null hypotheses, this need not be the case. Such procedures
include Ryan's (1960) Method of Adjusted Significance
Levels, the Newman-Keuls procedure, Duncan's (1955) New
Multiple Range Test, and Fisher's Least Significant Dif-
ference procedure, in decreasing order of conservativeness.
Dunnett proposed a procedure for the special case in which
one group is a control and other groups are to be com-
pared with it but not with each other (Miller, 1966).

Other approaches to the problem have included Bayesian
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methods (Waller & Duncan, 1969), Simultaneous Test Pro-
cedures, which are closely related to Tukey's and Scheffé's
methods (Gabriel, 1969), and subset selection procedures
(Gupta & Panchapakesan, 1972).

Duncan's New Multiple Range Test and the Bonferroni
%t method will be discussed further because Duncan's ration-
ale is unique and because the Bonferroni 1 is applicable to
the case of tests of intercorrelations. Duncan's ana-
lysis family is different than his alpha family. He ad-
vocates increasing the familywise Type I error rate above
the reported alpha level. He protects each possible
statistically independent test at a .05 level (for example)
and computes his overall protection level as l-(l--OS)n,
where n is the possible number of statistically independent
comparisons. In a comparison among four means there are
three statistically independent comparisons possible,

so Duncan's D<FW would be

1 - (1 -.05)2 = .14 (9)

although his reported o¢ would be .05. As n increases, CKFW
continues to increase rapidly. In general, Duncan's New
Multiple Range Test is less conservative than the New-
man-Keuls procedure and more conservative than the Least
Significant Difference procedure. However, at the first

stage of the multistage procedure (which is equivalent to
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u*Fw under the complete null hypothesis), Duncan's pro-
cedure is the least conservative of the three by far.

His rationale for allowing GAFW to increase seems to be
(1) this gives increased power, while affording greater
protection than that provided by non-multiple-test pro-
cedures, (2) this gives alpha levels consistent with a
series of the possible independent tests among the means,
and (3) this resembles a Bayesian solution with an addi-
tive loss function.

The Bonferroni % method is apparently an old but
little-used statistical tool. The first statistical user
of the method is unknown (Miller, 1966). Fisher (1935)
recommended its use for a posteriori it-tests. The name
Bonferroni is connected with the probability inequality
on which it is based,

1__0( = 1 -~ m <X

. (10)

where m is the number of tests in the family of tests.

This reduces to

and

e . (12)
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If we want to keep C’%w at .05 or less, we can give QXFW
a nominal value of .05, calculate QXT according to the

equality in equation (11), and we get the desired upper
bound of .05 on “%?w regardless of the dependence of the
component tests. Actually this sets CXPF at .05, Since
A

- >
PF —
C*Fw is no more than .05. For example, for a family of

\

ey for a given CXT(Ryan, 1960), the actual

four component significance tests, which need not be
mutually independent, we can set CXFW nominally at .05.
The CXT that we would use for each component test would

be & = .05/4 = .0125. By the Bonferroni inequality

T
(10), the true GXFW is less than or equal to 4 x .0125
= ,05. Therefore, we can be certain that the true f”fw
is not greater than .05 by using GKT = .0125. The Bon-
ferroni inequality could be applied in the same way to
many other statistics, but it is usually applied to the
t-statistic for paired comparisons in analysis of variance,
hence the name Bonferroni i method. For most purposes
it has been found to approximate the nominal‘7<Fw very
well (Dunn & Massey, 1965).

In order to compare multiple-test procedures, it
is necessary to distinguish between the complete null
hypothesis and other combinations of true component null
hypotheses (Ryan, 1959). The complete null hypothesis
occurs when all component null hypotheses are true.

Under the complete null hypothesis for pairwise
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comparisons in analysis of variance, the multiple test pro-
cedures can be listed in the following order of decreasing
conservativenessi Scheffé's S method, the Bonferroni t
method, Tukey's HSD procedure, Fisher's protected Least
Significant Difference method, the Newman-Keuls procedure, the
Waller-Duncan Bayesian procedure, Duncan's New Multiple
Range Test, and the use of multiple 1 tests with unad-
justed CXT values (Boardman & Moffitt, 1971; Carmer &
Swanson, 19733 Petrinovich & Hardyck, 1969). Tukey's,
Fisher's, and the Newman-Keuls procedures have identical
&Xfw's under the complete null hypothesis and could be
interchanged in this list. Under other combinations

of true component null hypotheses, Fisher's L3SD and the
Bayesian method may approximate the Type I error rate of
multiple }-tests with unadjusted Cx& values (Carmer &
Swanson, 1973), and the Newman-Keuls procedure may approach
Duncan's Type I error rate (Petrinovich & Hardyck, 1969).
Only Scheffé's S Method, Tukey's HSD procedure, and the
Bonferroni 1 method keep CﬂFW at about the nominal alpha
level (usually .05) or below for all possible null hypo-
thesis combinations. Miller (1966) calls these methods
unnecessarily conservative for significance testing, but
this can be corrected by a multistage modification such

as suggested by Tukey (1953, cited by Ryan, 1959).

Ryan's (1960) method of adjusted significance levels is

actually a multistage version of the Bonferroni t method.
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Either of these multistage modifications increases the
power over its non-multistage analog, but keeps the actual
c’ﬂFw at .05 or below for any null hypothesis combinations.
When methods are determinable for controlling Vij
exactly, such methods are generally superior to the Bon-
ferroni % method. However, the Bonferroni i may compete
with Tukey's HSD procedure (Aitkin, 1971), at least when
robustness is a critical issue (Miller, 1966; O'Neill &
Wetherill, 1971). Whenever no exact methods are applic-
able, the Bonferroni it is definitely a method to consider,
and it is usually more powerful than alternative methods
(F+ B. Alt, personal communication, 1974; Christensen,
19733 Keselman, 1974). It is based on minimal assumptions
and consequently can be applied to almost any situation
(Miller, 1966). For example, it gives a conservative
approximation to C*%w when the component significance
tests are not independent. This approximation is not too
crude if m is not too large and if (XT is small (Miller,
1966). The only complication is the need for critical
values of the 1 statistic at oddball values of—c&T- Miller
describes three methods for interpolation from ordinary
%1 tables. Dunn & Massey (1965) have fairly adequate tables
for the necessary critical values. Perlmutter & Myers

(1973) state that the equation
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3 -
1 S 2, Fo " L,
v T 4 (v-2) o V. the degrees of (13)

can be used to calculate the necessary critical value
for the % statistic from ordinary unit normal distribution
(2) tables.
A i ipl oced

As previously noted, multiple-test procedures have
been applied mostly to analysis of variance. Most of the
same procedures are apparently applicable to comparisons
between regression coefficients in linear multiple regres-
sion as long as the regressors are mutually independent
(Dunnett, 19703 Williams, 1972). When the regressors are
not independent, Scheffé's S method and the Bonferroni %
method can be applied (Christensen, 1973). Multiple-
test procedures have also been applied to other linear
regression problems, including choosing among the possible
regression functions (Spjgtvol, 1972), setting confidence
intervals for points predicted by the regression equation,
and setting confidence intervals for the regressor value
which would be associated with a known criterion variable
(Miller, 1966; 0'Neill & Wetherill, 1971). Multiple-
test procedures have also been proposed for certain non-
parametric and multivariate analysis problems (Miller,
1966). Ryan (1960) presented multiple-test procedures for

comparisons among medians, variances, or proportions and
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a general method for comparisons among any statistics

(the previously mentioned Method of Adjusted Significance
Levelg). Marascuilo (1966) presented large sample mul-
tiple-test procedures for comparisons among independent
bivariate correlations, among parameters of independent
binomial populations, among interaction measures in contin-
gency tables, and among parameters of normal populations with
unequal variances. Ryan (1959) also suggested that mul-
tiple-test procedures should be applied to multiple tests
of intercorrelations, multiple variables in analysis of
variance, replicated tests of a single hypothesis, and

overlapping measures relating to a single hypothesis.

Some Related Aspects of Intercorrelations

There are two major situations in which psychological
researchers are concerned with a set of tests regarding
Pearson product-moment correlation coefficients. The first
situation involves testing individual hypotheses about each
of the intercorrelations in the correlation matrix ﬁ of

k variables. The complete null hypothesis is

t R = ':E . (14)

The second situation is represented by testing all the cor-
relations between k-1 predictor variables and one cri-

terion variable. In this second case all the correlations
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»

in a (k-1) x 1 correlation vector r are tested, which is
equivalent to testing only the correlations in the first
column of the matrix Bp in the first situation. The

complete null hypothesis in this case is
=0 (15)

Testing the correlations in equation (14) is equi-
valent to testing whether the covariances are zero. So
equation (14) is equivalent to testing the null hypothesis

that the covariance matrix is a diagonal matrix, i.e.,
£=2 (16)

Testing a single correlation ‘/31 in equation (15) is
equivalent to testing the null hypothesis that the slope
coefficient /éil is zero in an analysis in bivariate linear

regression, i.e.,

Hy o /il =0 (17)

L3

where féil is the slope coefficient for predicting the

th

first variable from the i variable.



30

As for tests of a single correlation coefficient, the

1 statistic for testing the hypothesis

0 (18)

is a uniformly most powerful test among unbiased tests

(UMPU; Kendall & Stuart, 1967). Similarly, for testing

(19)

Fisher's r to Z transformation provides a simply calcu-
lated statistic which is a good approximation of the normal

distribution even for fairly small samples (Cole, 1969).

Table 2. Type I Error Rates for
Various Correlation Matrices

e e e —— e e~ e et e e~ ieneed
error rate _number of varjables
2 3 4 5 6 7 8 9 10
o‘Fw +05 J14 .26 .40 .54 .66 .76 .84 .90
A 005 015 -30 -50 -75 1!05 1040 1.80 2025
PF

Note. - Independent tests assumed, CKT = .05,

However, when either or both of these statistlics
are used to test all the correlations in either a corre-

lation matrix or a correlation vector, the probability of
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observing at least one Type 1 error usually increases above
the specified alpha level in a manner similar to multiple
1 tests with unadjusted CfT values in multiple comparisons
in analysis of variance. Even if the tests were mutu-

ally independent, the probability of observing at least
one Type I error ((CXFW) would increase rapidly for an
increasing number of tests. Letting m represent the number
of tests of correlation coefficients in either a matrix or
a vector,'ZXFw would exceed .50 for m = 14. Table 2
illustrates, for example, how 'wa and (XfF increase with
increasingly larger correlation matrices.

The true d‘FW error rate is further complicated by
the fact that the significance tests are not independent
in general. For correlation matrices thils is evident from
the joint probability density function of the sample rij's
when the population correlation matrix 5p = E. This joint
probability density function implies a zero probability
for all sample R's which are not positive definite (i.e.,
Gramian) (Cramér, 1946). The average of all intercor-
relations among k variables cannot be less than - E%T
(Hays, 1973). Therefore, the sample rij's are not inde-
pendent even when the variables themselves are independent.

The dependencies among the tests of the rij's
become more severe when gp %;}, which is precisely the
cagse for which multiple-test procedures are most needed.

This can be illustrated by the extreme case whereigp
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consists of intercorrelations within and between two sets
of variables, each set of which is perfectly correlated (+1)
within itself, but the two sets are actually independent

of each other. That is,

(20)

i

The observations on any one variable can be represented
ags a vector and the sample correlation between two vari-
ables as the cosine of the angle between those vectors
(Fisher, 1962). If %;j = 1, then any sample rij = 1,

as can be seen easily, for example, from the confidence
interval tables in Guenther (1965). So all the vectors
representing variables in one set will fall on the same
line, differing only by a scalar (since the cosine of the
angle between them is one). Therefore, we are only
concerned with the angle between two vectors, the sample
vector for any variable in the first set and the sample
vector for any variable in the second set. The cosine of
this angle will simultaneously be the sample correlation
corresponding to all ,/éj = 0 in R« So the sample cor-

relations rij between the two sets will all be identical
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for any given sample. The direct implication of this is
that either a Type I error will be made for each /5;j =

0 (5% of the time, for‘5’<T = .05) or no Type I error will
occur for any fﬁij'

While this exact case would not apply to any re-
search, it is typical for a psychologist investigating the
relationship between two concepts to use several highly
correlated operational measures for each concept and to
investigate the correlations between these two sets of
variables. If the two concepts are statistically indepen-
dent (assuming normality), the probability of simultane-
ously making Type I errors on most or all of the inter-
correlations of interest would approach one in twenty
(.05) for the typical‘s*T. If it does happen to be that
one occurrence in twenty, the researcher will be impressed
by all the significant between-set correlations and will
likely conclude that he has conclusively demonstrated a
relationship between the two concepts. Later a journal
editor will probably agree, and some psychological re-
search will be wasted following up the erroneous conclusions.
Actually, for this particular case a multivariate procedure
such as cananical correlation (Mulaik, 1972) may be more
appropriate. However, the main purpose of this example
is to highlight some problems in significance tests of
intercorrelations which apply also to more general cases

for which multivariate procedures may not meet the re-



searcher's needs.

Ryan (1959) suggested that non-independence was
not a critical factor in analysis of variance multiple
comparisons, but added that such a conclusion would not
necessarily apply to other applications of multiple-
test procedures. It seems likely that non-independence
may be a very critical factor in tests of intercorrela-
tions and that more stringent Type I error rate controls,
such as multiple-test procedures, may be necessary to take
this into account.

The effect of non-jndependence seems to be critical
also for correlation vectors. There are no restrictions
on the sample correlations due to positive-definite-matrix
restraints, but all the other sources of dependence pre-
viously discussed affect correlation vectors as well. In
particular, if the correlation vector under consideration
were the first column of the matrix in equation (20),
there would be either no Type I errors or all possible
Type 1 errors on any given sample. In realistic cases,
with high positive correlations rather than correlations
of +1 as in equation (20), this case is closely analogous
to the case of multiple tests of slope coefficients in
multiple linear regression among highly correlated re-
gressors (Christensen, 1973).

Exact methods for controlling CXFW are not gener-

ally determinable for either the correlation matrix or
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the correlation vector case. Such methods require know-
ledge of the joint probabilities of Type I error, which
are generally mathematically unobtainable in such statis-
tical problems (Dunn & Massey, 1965; Miller, 1966).

However, some multiple-test procedures can be direct -
ly applied to tests of intercorrelations. The rationale
for Fisher's Least Significant Difference (LSD) proce-
dure can be applied to a correlation matrix, since over-

all tests are known for the hypothesis

1t R =1
°c P (21)

HlaRp;!I

H

(e.g., Anderson, 1958). Just as the LSD procedure uses
a preliminary overall F test, and when that is signifi-
cant, proceeds to test all comparisons, a researcher could
use a test of equation (21) followed by the usual f-tests
when the overall null hypothesis is rejected. However,
such a procedure would reduce Type I error rates very
little when there existed a few large effects. For
example, in the hypothetical example of equation (20), this
procedure would not reduce the Type I error rate at all.
Other multiple test procedures which are appli-
cable to tests of intercorrelations are the Bonferroni i
method and apparently Scheffé's 5 method (Christensen,

19733 Miller, 1966). Both are approximate methods, general-
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AL Scheffe's

W’

method is conservative because it controls CAFW for the

ly providing conservative estimates of

complete set of linear combinations of the component
tests, while only a few of these are of interest. The
Bonferroni § method is conservative because it controls
for cﬁPF which is always a conservative estimate of QXFW'
Since both methods overcontrol for CX%W. the preferred
method would be the more powerful one. Christensen
(1973) compared the power of the two methods for the
closely related problem of hypothesis tests of the slope
coefficients in multiple linear regression when the re-

gressors are correlated. He concluded that the Bonfer-

roni method always resulted in more powerful individual

\\V§§§§S§§i\!( __Acceptance region

0% S §Z7 for Bonferroni
\\~“ s, Au Only.

—=<=7Acceptance region

\‘ \L N for Scheffé only.
Ny

7 Acceptance region
for both methods.

Figure 2. Null Hypothesis Acceptance Regions for the
Bonferroni and Scheffé Methods (after Miller, 1966)
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tests (i.e., less stringent CXT'S) with “*FW = 405 Al-
though he showed that the power of the joint hypothesis
favored Scheffe's method in most cases, he only considered
the case of two regressors. Figure 2 illustrates the

null hypothesis acceptance region when Bcheffe's method is
more powerful for the joint hypothesis (which is some-
times true) and the Bonferroni method is more powerful
for individual null hypotheses (which is always true with
CXFW

in acceptance of the alternative hypothesis by Scheffé's

= .05). All statistical values which would result

method but not by the Bonferroni £ method fall in the re-

gions marked 4. For such statistical values, the re-

searchers would reject HO t ;?l = ﬁ?é = 0, but would ac-

cept Hy 1 /71 = 0 and Hj 1 /?2 = 0. So even when power

could be gained by Scheffé's method for the joint hypo-
thesis, the power gained is only an advantage for results
not interpretable in terms of the imd ividual tests. So
Scheffe's method is probably not a competitor with the
Bonferroni method for multiple tests of intercorrelations
of the kind considered in this thesis (i.e., tests of
equation (1)).

The Bonferroni i test can also be modified into a
multistage procedure to increase power still further.
Ryan (1960) describes such a method for analysis of vari-
ance. For testing intercorrelations, the alpha family

could be reduced to the number of non-rejected component
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null hypotheses after the first stage. In the second
stage, a new C‘T could be calculated by using this new
number for m in equation (11). If any more component

null hypotheses were rejected, a new value of m would

be used in a similar way for a third stage. This would
continue until a stage is reached with no new rejections
of component null hypotheses, whereupon the procedure
terminates. Such a procedure would increase power but
keep CXPF at «05 (and therefore (V%w < .05) for any combin-

ation of true component null hypotheses (see Appendix A ).

H ) i Object f Stud

The literature review covered so far has emphasized
previous studies closely related to the problem of con-
trolling Type 1 error adequately in multiple significance
tests of intercorrelations. It is apparent that few in-
vestigations have been done on multiple tests of intercor-
relations themselves (Harris, 1967). The present study in-
vestigated multiple tests of intercorrelations by means of
an empirical study of Type I error rates in such multiple
tests for which the population correlation matrices were
knowne.

Three methods were used for controlling Type 1
error. Method I was the customary procedure of setting
dT(I) = ,05 for all the tests. Method II calculated
a more conservative CXT(II) such that C*Fw would be .05

if all the individual significance tests were mutually in-
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dependent, which they are not. Method I1III was the Bon-
ferroni i test with (X .., calculated so that Ap, =.0s.
Dunn & Massey (1965) suggested Methods II and III as
approximate methods for controlling familywise Type I
error rates for multiple-it tests.

In the empirical investigation, these three methods
were examined for various cases of the number of vari-
ables (k), sample size (N), and population correlation
parameters gﬁp)-

The major dependent variables in the study were
familywise Type I error rate and conditional Type I
error rate. For familywise Type I error rate, the family
of tests was the set of all m tests in the correlation

matrix, i.e.,
- l{__(l&_:..l). (22)

or the set of all m tests in the first column, i.e.,
m=k -1 . (23)

Conditional Type I error rate here means the Type I
error rate of one component test given that a Type I
error has occurred on one other component test in the same

family of tests. For example, in the hypothetical example
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of equation (20), the conditional Type I error rate would
be 1.0 (i.e., 100%). That is, whenever a Type I error
occurs on any one individual significance test, Type I
errors will always occur on any other test for which {1j
is actually zero. The empirical study investigated con-
ditional Type I error rate under more realistic conditions.

The effect of Methods I, II, and III on statistical
power was also investigated, but it was expected that this
would merely reflect the differences in familywise Type I
error rate. As Games (1971) has pointed out, when the
same statistic is used for different procedures which vary
only the critical value, any "reduction in risk of Type I
error is paid for by an increase in the risk of Type II
error (p. 101)."

The major hypotheses were as followss

(1) For Method IL,C”%W is significantly larger

than the nominal value of .05 for k < 3. Table 2 showed

that the value of fow increases above .05 for k £ 3 under
the assumption that the component significance tests are
mutually independent. Although this assumption does not
actually apply to multiple tests of intercorrelations, it
can be shown mathematically that this hypothesis holds for
the general case. In a sense, this hypothesis is trivial,
but its implications have not had any effect on procedures
for statistical analyses of intercorrelations. So the
primary purpose of this hypothesis is to highlight the

effect of Method I on O<Fw'
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(2) Familywise Type I error rate (<5<Fw1_i§_ngx

significantly greater than the nominal value of .Q% for
Methods II and III. As discussed previously, the Bon-

ferroni t always provides a conservative estimate of the
nominal alpha level. Dunn & Massey (1965) conjectured that
Method II was also conservative for most families of sig-

nificance tests.

(3) As the number of variables gets larger, <A,
for Method III becomes significantly legss than the nominal

value of .05. Miller (1966) reported that the Bonferroni

X procedure provides an adequate approximation of the nom-
inalc7(Fw for small Gwa and a small number of component
tests. As the number of variables increases the number of
component tests increases and Method III may not provide
such a good approximation.

(4) The conditional Type I error rate is greater
than QZTH That is, when a Type 1 error occurs on one cor-
relation test, then the Type I error rate is increased
for other component tests in that family. If the component
tests were mutually independent, the conditional Type I
error rate would equal C%T. However, the component tests
in this case are not mutually independent and this is ex-
pected to result in higher conditional Type I error rates.

(5) The effect hypothesized in hypothesis (&)

is especially strong when some of the variables of jnterest
are highly correlated. In the discussion of the hypothe-
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tical population correlation matrix equation (20), it was
noted that the conditional Type I error rate would be 1.00,,
while CXT would be «05. A similar phenomenon (although
less striking) is expected for more realistic correlation
matrices with some reasonably high correlations.

(6) In general, the Type II error rates reflect

the differences in CXT. When the critical value is set

to allow more Type I errors, then the Type 11 error rate

decreases. Whatever is gained in Type I error rate is

gained at the expense of Type II error rate.
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CHAPTER II

METHOD

Monte Carlo Method

A Monte Carlo method generally involves a computer
simulation in which samples are randomly drawn from a
hypothetical population to evaluate a particular method
of statistical analysis (Halton, 1970). Such a method is
especially appropriate when it can aid the researcher in
selecting appropriate statistical procedures where the
necessary theoretical information is incomplete (Cole,
1969). The theoretical information for multiple tests
of intercorrelations is incomplete because the deter-
mination of exact critical values for multivariate t dis-
tributions depends on many nuisance parameters which are
generally not known beforehand by the researcher (Lunn &
Massey, 1965). Therefore, an empirical Monte Carlo in-
vestigation of multiple tests of intercorrelations was
considered appropriate. Such Monte Carlo investigations
have been made for other questions concerning multiple
test procedures (Boardman & Moffitt, 1971; Carmer & Swan-
son, 19733 Keselman, 1974; Keselman & Toothaker, 1973;
Petrinovich & Hardyck, 1969; Smith, 1971). In this pre-
sent study sample correlation matrices were computed from

samples of scores randomly drawn from multivariate normal
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populations with specified population correlation matrices.

Generation of Independent Random Normal Deviates
Generation of Uniformly Distributed Random Numbers

Review of the Literature. The foundation of the
Monte Carlo method is the pseudorandom number generator.
The term "pseudorandom” indicates that the numbers gener-
ated are not actually random. A pseudorandom number gener-
ator gives the same sequence of numbers every time un-
less one of the starting values is changed. However,
such generators have been preferred over random number
generators which are not deterministic (such as a set
of dice), because the latter generators are nonrepeatable,
slower, often unstable, and need to be tested frequently
for randomness. Some of these disadvantages may be re-
moved by recently developed non-deterministic generators
(esg., Cohn, 1971; Maddocks, Matthews, Walker, & Vincent,
19723 Murry, 1970), but such methods have not been widely
proven and necessitate equipment which is often unavail-
able.

Many pseudorandom number generators have the ad-
vantages of rapid number generation, small computer stor-
age requirements, and repeatable sequences. If the method
and the starting values are carefully selected, a pseudo-
random number generator can provide an adequate simulation
of random numbers for most applications. Halton (1970)

states that true randomness cannot be evaluated, anyway.
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If a sequence behaves randomly with respect to any num-
ber of tests of randomness, it is generally impossible
to be sure that it would not miserably fail another
test of randomness (Knuth, 1969). This would be quite
limiting for any random number generator, except that only
a few properties of randomness are usually required.
Pseudorandom number generators can be designed so that the
generated number sequence will pass most ordinary tests
of randomness.

The multiplicative pseudorandom number generator,
originally due to Lehmer (1949, cited by Dieter, 1971),
computes pseudorandom numbers Xys Xpseee Xip Xgpqpeee SUCT

cessively by the equation

Xipp = @ Xy (mod m) (24)
where a is a multiplier and mod m denotes modular arith-
metice Modular arithmetic involves first performing the
arithmetic normally (e.g., a xi) and then subtracting the
largest possible integer multiple of m. For example,

in modular arithmetic

4(mod 3)

]
-

i
[aV]

8(mod 3)

and
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2 x 5(mod 4) = 2 .

The multiplicative congruential pseudorandom number
generator {equation (24)) is considered by many to be
the most successful pseudorandom number generator (e.g.,
Coveyou & MacPherson, 1967; Knuth, 1969). It is supported
by the literature on number theory (Keuhl, 1969), it passes
most tests of statistical performance (Dieter, 1971;
Jansson, 1966), and it is fast and easy to program (Dieter,
1971). However, there are some sequences of p numbers
(p > 1) which can never be sampled in a pseudorandom
number sequence for a given multiplicative generator
(Coveyou & MacPherson, 1967; Marsaglia, 1968, 1970).
Marsaglia's alternative, the combined congruential method,
has not proven any better in some direct comparisons
(Brown & Rowland, 1970; Seawright, Larkin, & Locks, 1966)
and takes about twice as much computer time. As Knuth
(1969) has illustrated, merely designing a more complex
pseudorandom number algorithm apart from theoretical con-
siderations often results in a poorer simulation of ran-
dom numbers. So a multiplicative congruential pseudo-
random number generator was chosen for this study. The
combined congruential generator may prove to be superior
in the future after knowledge about proper selection of
parameters becomes more complete. But currently more is

known about selection of parameters and advantages of the
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multiplicative congruential generator as well as more about
its disadvantages.

A good multiplicative generator must have pro-
perly chosen parameters (Coveyou & MacPherson, 1967;

Jansson, 1966). The multiplier
amg (V5 - 1) (25)

recommended by Ahrens, Dieter, & Grube (1970; also Dieter
& Ahrens, 1971) is reported to result in a sequence of
numbers best approximating independent numbers. In order
to provide the longest possible period of the pseudorandom

number sequence before it repeats itself, a must be either

)
H

3 (mod 8) (26)

or

w
]

5 {(mod 8) (27)

and the starting number X, must be odd (Dieter & Ahrens,

1971).
Generator Used. In the present study, a multi-

plicative pseudorandom number generator

X;,, = 5308871541 x, (mod 27°) (28)
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was used. The modulus 235 is the word size on the UNIVAC
1108 computer. The multiplier is the one recommended by
Ahrens et al (1970), calculated by equations (25) and (27).
A machine-language subroutine written for the UNIVAC 1108
(Math~Pack, 1970) was used to generate the numbers accord-
ing to equation (28) for this study. This subroutine
generated pseudorandom numbers uniformly distributed on
the interval (0, 235)- This was transformed to a uniform

distribution on (0,1) in subroutine NORGEN (on file in

the School of Psychology).

X,
= .
Ui 235 (29)
a ation N 1lly Distri d N

Review of the Literature. Box and Muller (1958;

Muller, 1959) developed a method of transforming uniform
random numbers to random normal deviates which has an
accuracy limited only by the accuracy of a few available
computer library programs. Letting U, and U, ., Dbe two
independent random variables from a uniform distribtuion

on (0,1), they showed that

X; = - 21nU; cos 2 U, (30)

and

Xip1 = - 2 1n U sin 2 pU, (31)
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are independent random deviates. Muller (1959) demonstrated
that this method gave better accuracy and comparable speed
with respect to other such methods of normal deviate
transformations which were known at that time. Later
Marsaglia and Bray (1964) improved the Box-Muller method

with the equations

; 2, 42 ]| %
2 1n (Vj + vj+l)

- (32)
4775 vZ 4+ v
B jrl
and
- 2 1n (V% + V% ) 3
i+l j+1 VZ + v2
J J+l

where Vj and Vj+l are uniform on (-1, 1), conditioned by
V? + V§+l<: 1. This method is faster on a computer than
equations (30) and (31) and just as accurate.

Marsaglia and his associates have also designed
methods for the transformation to the normal distribution
which are much faster and just as accurate, although
they take more computer space and are more difficult to
program (Marsaglia & Bray, 1964; Marsaglia, Maclaren, &
Bray, 1964).

Neave (1973) reported an unsatisfactory attempt to
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use the Box-Muller transformation together with a multi-
plicative pseudorandom number generator. He reported
several local maxima and tails truncated at -3.3 & and
+3.6 O in the generated distribution. Although his
problem was caused partly by setting the multiplier too
small in his pseudorandom number generator, he pointed
out that equations (32) and (33) would also correct the
problem.

Normal Digtribution Transformation Used. This
study used equations (32) and (33), Marsaglia and Bray's
(1964) form of the Box~Muller (1958) transformation. The
interval of the uniform distribution was first changed
to (-1, 1) from the (0, 1) interval obtained in equation

(29) as follows:

V. = 2 (Ui - é‘) (34)

1

Then equations (32) and (33) were applied to successive
pairs of V, that met the condition V5 + v5, <1 until
a k x N matrix Z of N observations on k independent vari-
ables was complete.
S igtical s of Pseud dom N Num

The computer generation of normally distributed
random numbers was tested in three ways. Two of these

tests were statistical tests of the independent pseudo-

random normal numbers (gi) and are discussed in this
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section. The first test was the Pearson/\(2 test of fit
to an 8-variate mutually independent normal distribution.
For this test each marginal univariate normal distribution
was divided into three intervals of equal theoretical
probability. This resulted in 38 = 6561 cells in the
8-variate joint probability distribution. The expected
frequency for any of these cells in a given computer

run was

£ = l—%-g—g-l—m (35)

where N is the sample size for that run. Pearson's

chi-square statistic

661 (foxn(i) = for :.:)2 (36)
- S Texp(i)

was computeds Since the degrees of freedom were so large
(6560), a direct reference to a computer library sub-
routine or to a ;(2 table was impossible. Therefore, a

normal approximation to the;X‘Z distribution,

\[ 2 -Vzv-1 , (37)

was used, where 3 is the degrees of freedom. This normal

approximation is considered adequate with z/>100 (Hays,

1973).
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The second test was a test-of-fit to a bivarjiate
normal distribution of two independent variables. This
was similar to the previous test except that the random
deviates for only two variables were considered, those
corresponding to the first variable and one other speci-
fied variable. For this test, each marginal univariate
normal distribution was divided into 50 intervals of
equal probability. This resulted in 502 = 2500 cells in
the bivariate normal joint probability distribution,

each with an expected frequency of

_ 1000 N
fexp(i) = "2500 . (38)

The normal approximation to the chi-square distribution
was used as in the first test, except with a sumpation
limit of 2500 in equation (36) and 2499 degrees of freedom
in equation (37).

For both of these statistical tests, the probabil-
ity of obtaining a j[z greater than the one observed was
reported. For different runs of the computer program
these reported probabilities should vary somewhat over
the range (0, 1). If all the‘l 2 values are small this
could indicate that the pseudorandom normal numbers are
not random enough. A large proportion of 1arge;X'2 values
would indicate nonnormality or non-independence. If the

;{ 2 values are neither too large nor too small the pro-
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bability of obtaining a ){2 greater than that observed
should be less than .05 about once in twenty computer

runs. If such small probabilities occurred significantly
(p <« .05) more often according to a two-tailed binomial
test, then it would have been considered that the normal
numbers deviated significantly from a distribution of
independent normal numbers. This two-tailed binomial test
was based on a binomial distribution with p = «05 and n
equal to the number of tests of fit of each type (bivariate

or 8~variate).

Geperatjon of Sample Correlation Matrices

The multiplicative pseudorandom number generator
and the normal distribution transformation were used to
produce a k x N matrix Z of N independent observations
on k independent (uncorrelated) normal variables. For
certain cases in this study, Z was transformed to a
k x N matrix Z of N independent observations on k multi-
variate normal variables with specified population cor-
relations.
Review o ] a

Recently, Barr and Slezak (1972) and Oplinger (1971)
both evaluated methods of transforming a matrix 5 of
uncorrelated multivariate normal scores to a matrix Y of
multivariate normal scores with a desired population co-

variance matrix Qp' Both studies investigated the same
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three methods, the conditional density function approach,
the similarity transformation technique (also called the
rotation method), and the general recursive method (also
called the triangular factorization method). Both con-
cluded that the general recursive method was the preferred
method. Barr and Slezak demonstrated that it was faster
and took less computer space than the other methods.

The general recursive method transforms the matrix

5 to correlated data Y by

Yeaz (39)

A AT =R ) (40)

The matrix A is calculated by recursive equations which

turn out to be identical to the equations for the square

root method of linear algebra (Capra & Elster, 1971;
Oplinger, 1971; Scheuer & Stoller, 1962) and for the Cholesky
method of factor analysis (Harman, 1960, 38-41; Mulaik,

1972, 108-109). Wold (1948) was apparently the first

to recognize such an application of this system of equa-
tions. Scheuer & Stoller have presented a fairly general
discussion of it.

A fourth method, not considered by Barr and Slezak
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(1972) or Oplinger (1971) has been proposed by 0Odell and
Feiveson (1966a, 1966b). Rather than calculate Y at all,
their method used generated independent }(2 observations as
well as independent unit normal observations to generate

a sample covariance matrix directly by a Crout factorization

method.
Procedure Used

In this study all sample correlation matrices were

derived from a multivariate normal population such that

ab
-.O‘
and
Cy = (42)

Since the variance of each variable was 1, the population
covariance matrix was identical to the population cor-

relation matrix,

(43)

it
Q
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Therefore, the recursive equations, which are stated gener=-
ally in terms of the elements of SY for the general case
could be restated in terms of/Bp for this particular case.
The resulting equations for the elements of the k x k

matrix A (in equation (40)) were

aj; = A1 =1 ()

= 2, 3,000, k (45)

5= A g5y s i B ek )
and
, A
I I S VI VI
2y - RES I ITETR
1] 33 '] = 2, 34006, i-1 .

These equations were used in subroutine ACOMP (on file
in the School of Psychology) to calculate A from the speci-

fied Ep for each computer run. Then for each of the 1000
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sample correlation matrices in a computer run, a matrix é‘was

generated which was then transformed to a matrix } of cor-

related observations by equation (39). This matrix Y repre-
sented N subjects' scores on k variables with the intercor-
relations specified in Bp. The sample correlation ma-

trix R was computed from Z in the usual way,
-4 -1
R = Dy*vy'pi® (48)

where PQ% is a diagonal matrix consisting of elements d.li

such that

.
S.

1

(49)

d53

where Ch is the sample estimate of the standard deviation

th

of the i variable.

Additional Statistical Tests of Pseudorandom Numbers

Shreider (1966) has stated that "the quality of
pseudorandom numbers may also be investigated by means of
a model problem for which the exact solution is known
(pe 334)."” This seemed to be appropriate in this study
since, as previously discussed, no sequence of numbers
can definitely be considered random in every sense. Also
Coveyou and MacPherson (1967) and Marsaglia (1968, 1970)
have shown that the pseudorandom number sequence of the

type used in this study is never random in at least one
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particular sense. However, Halton (1970) pointed out that
only a few properties of randomness are of interest for

any particular application. Shreider's suggestion seemed

to be the best way to investigate those properties of random-
ness (some of which are unknown) which are of interest

for this application.

Consequently, a method was used to test the pseudo-
random number generator by means of a model problem. The
model problem was a significance test of one correlation
coefficient between two uncorrelated variables. This
problem was simulated by specifying two independent vari-
ables (i.esy, k = 2 andlﬁp = 5) for this test run of the
computer program. The program then generated 1000 sample
2 X 2 correlation matrices, which only had one unique inter-
correlation coefficient in it, ryipe Since the t-test is
an exact test of this null hypothesis and no multiple
test considerations are involved, it is known that Type I
errors should occur on about 50 out of 1000 independent
trials when CXT = +05. The observed number of Type I
errors was compared against this expected number using a
two-tailed Poisson test ( A = 50)¢ The observed number of
test runs with number of Type I errors significantly dif-
ferent than 50 (p < .05) was compared with the binomial
distribution with p = .05 and n equal to the total num-
ber of test runs. This evaluated whether the number of

test runs with a significantly different number of Type I
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errors could be reasonably explained by random variation

alone.

o) 0 ses i Stud

Populations Studied

All populations in this study from which samples
were drawn were multivariate normal populations with mean
vector p, and covariance matrix C, (identical to R_) as

“'Y ¥, Y hoS p
specified in equations (41) and (42). Nine cases were
sampled in which the complete null hypothesis was true,

iees,
. (50)

For three cases each, the number of variables (k) was
3, 4, or 8. For each k, sample size (N) was 15, 40, or

100 for one case each.

Other cases were selected mostly to provide realis-
tic analogues of equation (20). The following population

correlation matrices were used:
L (51)

1
0 1 | (52)
0




3
o
i

y

3

- 3
(o Ne RN

i

1

OOOO O

OOOCO
L]

OO M,

(o Ne]

*

N

=~

!

i

i
i
OO O O

!

L ] L]
QOO OMH

'

Qoo

1
QO+
|

e e
NN

o O

QOO0
o

OOO O,

- ~
O QOO
L ] L ]
ONON
L]
N

.
(@28 o
el

[0)}

L

60

(53)

(54)

(55)

(56)

(57)

(58)

For each 3-variable Rp, sample correlation matrices were

generated using a sample size of 15, 40, or 100 respective-

ly for each of three cases.

For larger k, sample sizes



61

of 40 and 100 were investigated for each Ep'
Flow of the Computer Program

The population correlation matrix and the sample
size were specified for each run of the computer program.

A series of tests of hypotheses of the form

1 / . =0
° - 4 (59)
Hy oo /gy # 0

were performed on all the sample correlations in 1000
sample correlation matrices.

Three methods were used to calculate the critical
value for the hypothesis tests. Method I was the customary
procedure of setting ‘f&(l) = .05 for all the tests.

Method II calculated U%T(Il)aaccording to the

equation

erry = L oW1 - .05 (60)
where m is the number of significance tests in the matrix
or vector. This equation sets the glﬁ(II) rate correctly

for (7}W +05 under the assumption that all significance

i

tests in the family are mutually independent. It is
realized that this assumption is not tenable in the inter-
correlation case, but it provides an easily calculated

.—‘" * (‘,;& .
Aqp(rr) Which seems to control "y, more appropriately
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than Method I.

Method III was the Bonferroni 1 method discussed
previously. For this method

- =09
‘7<T(111) T Tm . (61)

This always yields a conservative estimate of 27%w» Dunn
and Massey (1965) have previously investigated Methods II
and III and found them to be adequate for most cases of
equicorrelated multiple % tests.

The single~test alpha levels . /T(I)' ‘/&(II)' and
AT(III) were calculated once considering the entire

correlation matrix as the family of tests, with

m = _k_.(.h:.l.). (62)

and once regarding the first column as the family of tests,

with
m = k-1 . (63)

This resulted in six distinct single-test alpha levels,
3 3 f\ "7(\ ‘7:’\
which were designated T(I)M’ T(II)M’ T(III)M’
X Iy A RPN :
T(I)V* '7T(II)V' and T(III)V to distinguish between

a matrix family of intercorrelation tests and a vector
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(first column) family of intercorrelation tests (Note
that c%T(I)M = ‘JT(I)V’ but the other single-test alpha
levels are generally numerically different). Correspond-
ing to the six single-test alpha levels were six distinct
critical values for T ;5
One thousand sample correlation matrices were gener-

ated. For each matrix, Type I and Type II errors were
counted according to all six critical values for the first
column and according to the three applicable critical
values for the rest of the matrix. After all matrices
were generated and analyzed, tables were printed summar-
izing the frequency of Type I and Type II errors. An
example of these tables is printed in Appendix B.

Options were available in the program to test the
pseudorandom normal indeperdent numbers by means of a

Pearson 7{2 test-of-fit to a multivariate normal distri-

bution.
Methods of Analysis of Matrices of Correlations

I Q mpl Null sis. For
each computer run with its particular case of a given
sample size N, a given number of variables k, and 5@ = E.
empirical size was evaluated in several ways. For Hypotheses
1, 2, and 3, the familywise empirical size was evaluated
for Methods I, II, and III with the family of tests in-

cluding a component test for each intercorrelation in the

matrix. Familywise empirical size is the proportion of
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the 1000 sample correlation matrices in which one or more
Type I errors occur.

Hypothesis 1, that the familywise Type 1 error rate
is larger than .05 for Method I with k -_ 3, was evaluated

by testing the statistical hypothesis

Hy + “ “pw(r)m = *05 (64)
Hy ¢ Zpw(r)m =+ 05

where '(FW(I)M is the familywise Type I error rate for the
entire matrix according to Method I. The binomial dis-
tribution was used for this test since the 1000 trials
were considered to be 1000 independent replications of the
experiment. In such a case the binomial distribution
assigns probabilities with each possible number of ob-
served trials having one or more Type 1 errors, with

p = .05 Because of the large number of trials (1000), a

Polsson approximation to the binomial distribution

X
1P (xs A)=1- =
l:’_

2= 1000 x .05 = 50 (65)

x = 1000 x familywise empirical size

was used to determine the probability of obtaining a larger
familywise empirical size than that observed, given an

actual & of «05., If the familywise empirical size

Fw
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was significantly (p < .05) more than an Vwa of .05,
the null hypothesis of equation (64) would have been re-

. . A
Jected, and it would have been concluded that FW(I)M

is actually greater than .05.
3 iy
The second hypothesls was that C’FW(II) and
i A 05,
“7\FW(III) are not greater than the nominal FW of .05
This was evaluated by testing the statistical hypotheses

Ho 1 oA

o ' Ri(Inm -05 (66)

By v Py (znm > 005

and

H «05

A .
0 FW(III)M (67)

Hy ' A PW(IID)M A 0

The Poisson approximation to the binomial distribution
(equation (65)) was also used for these statistical analy-
ses as above. A two-tailed alternative hypothesis was
used in equation (67) because one tail is of interest
for the second hypothesis and the other tail for the third
hypothesis, that as the number of variables gets larger,
‘7<FW for Method III becomes significantly less than .05.
The fourth hypothesis was that the conditional Type

I error rate is greater than JAT- Two analyses were
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performed concerning this hypothesis. The first analysis
was a test of fit to a binomial distribution of the fre-
quencies of each possible number of Type I errors for the
1000 sample correlation matrices. The family of component
tests on the m intercorrelations in one sample correlation
matrix may result in 0, 1, 2, 3,¢.., or m Type I errors.
If the component tests are mutually independent, a binomial
distribution with n = m and p = .05 should describe the pro-
babilities éf each péssible number of Type I errors. From
this, the expected frequencies of each possible number of
Type I errors can be calculated for a total frequency of
1000 sample correlation matrices. If the observed fre-
quencies of each possible number of Type I errors for the
1000 sample correlations differ significantly (2_41.05)
from the expected frequencies, then the conclusion would have
been made that the component tests could not be considered
mutually independent. If the component tests are not
mutually independent, then the conditional Type 1 error
rate differs from the unconditional Type I error rate
( C*TJ. A Pearson )(2 statistic was used for the test of
fit. The cells for the larger numbers of Type I errors
were lumped together so that each cell had an expected
frequency of five or more for the test of fit.

The second analysis of conditional Type I error rate
was conditional empirical size. For this analysis, a

component test such as
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Hy 1 A2 = 0 (68)
Hl-flzr'o

was selected for the conditional empirical size to be
conditional on. The conditional empirical size for any
other component test was the proportion among the sampling
replications with Type I errors on component test (68)
which also had Type 1 errors on the other component test.
For example, if 50 of the 1000 sampling replications had
a Type I error on component test (68) and there was also
a Type I error on the component test of /‘33 on 15 of those
50 replications, then the conditional empirical size for
/533 would be %g = .30. The conditional empirical size wasg
calculated for all component tests (except component test
(68)) in this way. A one-tailed Poisson test was used to
evaluate whether each conditional empirical size was sig-
nificantly more than .05. In the above example the expected
number of Type I errors on /‘13 (among the 50 replications)
would be 2.5. Therefore, the observed number of replications
with Type I erros on /913 (in this case, 15) would be
statistically evaluated against a Poisson distribution with
A= 2.5.

These two analyses of conditional Type I error rate
were done only for Method I. Methods II and III resulted

in too few cells for the test of fit and in too few Type

I errors for conditional empirical size.
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Type 1 Error Rates Other Null Hypotheses. The analy-
ses mentioned thus far have been only those in which the
complete null hypothesis is true (i.e., ﬁp = i)- Other
population correlation matrices were also examined in this
study. In general, the same analyses were used with res-
pect to Hypotheses 1, 2, 3, 4, and 5 as were used for samples
from populations of independent variables. Of course,

Type I errors are possible only for true component null
jypotheses. If a component null hypothesis is actually

false (i.e., fﬁj ¥ 0) then no Type I errors are possible

on that component test. The critical value for the three
Methods were the same as in the previous cases, computed with

X = .05 and by equations (60) and (61). For the analy-

T(I)
sis, however, of conditional empirical size, the binomial dis-~
tribution of number of Type I error was based on the number

of true component null hypotheses. The only other change

from the previous analyses was that a two-tailed alter-

native hypothesis was used in equation (66) for the analysis
of the familywise Type I error rate by Method II.

Type II Error Rate. The cases of population corre-
lation matrices‘Bp # I also provided opportunities to evalu-
ate Type II error rates (Hypothesis 6). There were no
statistical analyses of Type II error rates. Instead,
the empirical power per component test was calculated.

This is the proportion of times that a false component

null hypothesis was correctly rejected in the 1000 trials.
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For some population matrices, there was more than one false
component null hypothesis. In these cases, the familywise
empirical power was calculated, i.e., the proportion of
times that all false component null hypotheses in the family
of tests were correctly rejected. The empirical power
per test and, when applicable, familywise empirical power
were compared for the three methods of determining G*T.
A fv o Correlations

These analyses Were based on the data from the
first column of each correlation matrix, using the same
data generated for the analyses of matrix intercorrelations.
Familywise empirical size, conditional empirical size,
and empirical power were analyzed similarly to the matrix
cases discussed previously. The main difference was that
the family of tests included only those in the first col-
umn of the matrix rather than those in the entire matrix.
Therefore, the value of m used for calculating O(T accord-
ing to the three methods was calculated by equation (63)

rather than equation (62) which applied in the matrix cases.

summary of Analyses

Table 3 presents an overview of the analyses of the
Monte Carlo empirical data. One thousand sample correlation
matrices were generated for each indicated combination of
sample size, number of variables, and population correlation

matrix. The indicated analyses were performed on those 1000
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Table 3. Summary of Analyses of this Study
Familywise Conditional
Type 1 Type 1 Type II
Ep k N Error Rate Error Rate Error Rate
Matrix Vector |Matrix Vector | Matrix Vector
1s S S B B
3 Lo S S B B
100 S ) B B
15 S S B B
I L Lo S S B B
- 100 S S BC BC
15 S S B B
8 Lo S S B B
100 S S B B
a 15 S S B B F
(51) 3 40 S S B B F
100 S S B B F
a 15 S S B B F
(52) 3 40 S S B B F
100 S ) B B F
a 15 S S B B F
(53) 3 Lo S ) B B F
100 S S B B F
a 4o S S BC BC F P
(%)% % 900 s S BC BC Fp
a L0 S S BC BC FP F
(55) b 100 S S BC BC F P F
a Lo S S BC BC PP F
(560 6 100| s S BC BC FP F
a Lo S S BC BC F P F P
(579 6 100| s S BC BC |FP FP
(58)a 5 Lo S S BC BC F P FP
100 S S BC BC FP FP
Note. - Keyt S, familywise empirical size; B, test-of-

fit to binomial distribution;
P, empirical power per test; F, familywise empirical power.
The left column indicates the population correlation ma-
trices and sample sizes investigated.

d4Refers to the correlation matrix designated by this
equation number in the text.

C, conditional empirical size;
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sample correlation matrices for each of the three methods

of determing <X and the corresponding critical values for

T

I‘ijt
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CHAPTER III

RESULTS

Statistical Tests of Pseudorandom Number Generator
o ] =Vari Norm istri io
The unit normal pseudorandom number generator was

used to generate scores for as many as eight variables
at a time. To test the hypothesis that these scores
are jointly distributed as an 8-variate normal distri-
bution with mean vector i = 0 and covariance matrix
C = 28' a ‘X? goodness-of-fit test was performed as des-

m
cribed in Chapter II. The results are shown in Table 4.

Table 4. Summary of Tests of Goodness of Fit to
An 8-Variate Normal Distribution

kK N Total , X° value® Probability of
8-Tuples Larger )f

8 40 40,000 6743.06 . 056

8 100 100,000 6578.08 o4l

Notes = There were 6561 frequency cells with
equal expected frequencies for each cell.

8An 8-~Tuple is one set of observations on
the variables.

Degrees of freedom = 6560

The tests of goodness of fit indicate that the generated
numbers adequately fit the desired 8-variate normal dis-

tribution (2_4..05). So the null hypothesis was accepted
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that the pseudorandom normal numbers did fit an indepen-
dent 8-variate normal distribution. Additional tests
would have been preferable, but limitations of computer
time prevented this.
Test of Fit to Bivariate Normal Distributjon

The test of goodness of fit to an 8-variate normal
distribution was limited both by computer time and by
having each variable divided into only three equally
probable intervals. Tests of goodness of fit to bi-
variate normal distributions were used because they
diminished these limiting factors. Such tests used less
computer time and permitted more intervals on each vari-
able. To test the hypothesis that observations on two
variables were jointly distributed as a bivariate normal
distribution with mean vector My = 0 and covariance matrix
E = 32. a xz goodness-of-fit test was performed as des-
cribed in Chapter II. The results (Table 5) indicate that
the generated pseudorandom numbers adequately fit the de-
sired bivariate normal distribution. The probabilities of
observing a X2 value larger than the one actually ob-
served range from .14 to .83 for the different tests. So
the null hypothesis was accepted that the pseudorandom nor-
mal numbers did fit an independent bivariate normal dis-
tribution.
S isti of e i -

lati fici
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As discussed in Chapter 11, the expected propor-
tion of Type I errors 1s known when only one significance
test of one correlation coefficient is of interest. This

case was simulated six times in this study by specifying

k = 2 and ﬁp = 1 for six runs of the computer program of
1000 trials each. The results of these computer runs are
presented in Table 6. It can be seen that for two of the
six runs, the number of observed Type 1 errors was sig-
nificantly (p < .05) different than 50 (the expected num-
ber). The probability of observing two or more signi-
Ticant results at the .05 level of significnace in a
family of six independent tests of fit is .033 according
to the binomial distribution. So this test indicated that
the method of generating simulated sample correlation
coefficients resulted in a different rate of Type 1 errors
than truly random numbers would produce.

The implications of the results of these tests will
be discussed further since they suggest that some of the
main results of this study must be somewhat qualified.
From Table 6 there seems to be a tendency toward fewer
Type 1 errors than should be expected. This will be called
the "undergeneration of Type 1 errors". Note that the
observed number of Type I errors is less than expected on
each of the six computer runs. It will be shown in the
next chapter that there seemed to be a tendency toward

undergeneration of Type I errors in the computer runs of



Table 5. Summary of Tests of Goodness of Fit to

a Bivariate Normal Distribution

k | N T™wo | Total x° Value® | Probability
Variables 2-Tuples of Larger X2
3 | 40 1,3 40,000 2503.75 47
3 40 1,2 40,000 2447.00 77
L | 15 1,4 15,000 2505.32 s
4 40 1,3 40,000 2576.25 14
8 | 15 1,8 15,000 2431.732 .83
Note. - There were 2500 frequency cells with equal
expected frequencies for each cell.
380f the k variables, these were selected for the
goodgess of fit test.
A 2-Tuple is one set of observations on the 2

variables.
CDegrees of freedom = 2499

Table 6. Summary of Statistical
Tests of Type I Error Rate of a
single Correlation Coefficient

Computer N Observed
Run Type 1
Errorsa

1 15 49

2 15 3%

3 40 49

4 40 36%

5 100 43

6 100 45

9The expected number of Type
1 errors was 50 for each case.

*p € .05 two-tailed Poisson
probability.
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primary interest in this study. Out of 28 such computer
runs, only seven had more total Type I errors than the
expected number. The undergeneration of Type 1 errors
seemed to be more pronounced for cases with small sample
size than for cases with large sample size. A detailed
summary of the observed total Type I errors for each com-

puter run is presented in Table C.l1 in Appendix C.

sult sts _of otheses o hi ud

The major hypotheses of this study involve the Type
I error rates, the conditional Type I error rates, and
the Type 11 error rates of a family of significance tests
of intercorrelations using the three different methods of
finding <’& for each significance test. These hypotheses
are listed at the end of Chapter I. 1In this section,
the results of the tests of hypotheses about Type I error
rates are discussed first; followed by the results con-
cerning Type II error rates.
T LK tates

The results of tﬁe tests of hypotheses about Type
I error rates are considered in two groups here. The
first group consists of the results concerning family-
wise Type I error rates. The second group consists of
the results concerning conditional Type I error rates.

Fapilywise Tvpe I Error Rates. Three hypotheses
concerned familywise Type I error rates. The major kind

of data relevant to these hypotheses was familywise
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empirical size, which was the proportion of familywise
Type 1 errors that occurred on a given computer run.
Table D.1 in Appendix D reports the familywise empirical
size, the population correlation matrix,and the sample
size for each computer run.

The first major hypothesis was that the familywise
Type 1 error rate ( C*FW) would be significantly larger
than .05 when Method I was used with CX& = +05. Table
D.1 indicates that this hypothesis was strongly supported.
Furthermore, the familywise empirical size became larger
as the number of true component null hypotheses increased.
The number of true component null hypotheses is the number
of hypothesis tests in the family of tests (tests of all
intercorrelations in either the matrix or the first ceol-
umn) for which ,/ij = 0. Table 7 summarizes the family-
wige empirical sizes according to the number of true com-
ponent null hypotheses. Note that as the number of true
component null hypotheses increases, the familywise empiri-
cal sizes increases

The second major hypothesis was that c’%w would not
be significantly larger than .05 for Methods II and III.
This was supported by the data. Using lMethods II and III,
the familywise empirical size was never larger than .05
except for a few cases that could easily be attributed
to chance (see Table D.1l). However, these results must

be qualified somewhat because the undergeneration of Type



Table 7. Familywise Empirical Sizes by Number
of True Component Null Hypotheses in a
Family (Method I)

Cogggient Familywise Empirical Sizeb
Null
Hypothesesa Mean Range
2 . 087 .062 - .119
3 .125 L0904 - 164
4 162 .139 - .181
6 <239 . 209 - .262
vi . 276 224 - .305
9 o 244 «239 - 248
12 - 396 -393 - .398
13 g 452 - 456
21 «725 669 - .755

aThe number of significance tests in the
family of tests (matrix or vector) for which

the Bull hypothesis was true.
Proportion of test samples containing at

least one Type I error.

I errors is a confounding factor. This qualification
does not seem too serious, though, since the familywise
empirical sizes supported the hypothesis even for sample
sizes of 100, for which there was no apparent under-
generation of Type I errors.

The third major hypothesis was that the family-
wise Type I error rate for Method III would be less than

+05 for a larger number of variables. This was not sup-
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ported by the data. The familywise empirical size was
significantly less than .05 for many computer runs (E_<'
+05), but this did not seem to be related to the number
of variables. The cases for which ﬁp = 1 are considered
first. In these cases familywise empirical size was
significantly less than .05 for three out of 18 cases.
Two of these three deviant cases occurred with eight
variables. Furthermore, these three deviant cases could
be attributed to the undergeneration of Type I errors.

There were more cases with R # I in which the

p
familywise empirical sizes for Method III were signifi-
cantly less than .05. However, these were not related
to the number of variables in any apparent way. For the
cases in which the entire matrix of intercorrelations
provided the data for the family of significance tests,
the only familywise empirical sizes not significantly less
than .05 were for cases with the largest number of vari-
ables.

The familywise empirical sizes for Method III
seem to be explained best by considering the proportion
of true component null hypotheses. The proportion of true
component null hypotheses is the ratio of the number of
true component null hypotheses in the family of tests to
the total number of component null hypotheses in the family
of tests. For example, when Bp = I, all component null

hypotheses are true, so this proportion is 100%. Table 8
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Table 8. Range of Familywise Empirical
Slze by Proportion of True Component
Null Hypotheses in a Family (Method III)

Proportion Familywise Empirical Sizeb
True Cgiponent
Null Hypotheses Wean Range
100% 042 «026 - .057
87% « 039 «.035 -~ .042
80/ . 039 .034 - .0b2
67% « 027 .018 - .033
60% «025 «019 - 034
50% .022 .016 - .023

dThe proportion of component significance
tests (matrix or vector) for which the null hy-
pothgsis is true.

Proportion of test samples containing at
least one Type 1 error.

summarizes the trend in familywise empirical size ac-
cording to the proportion of true component null hypo-
theses in a family. It can be seen that as the proportion
of true component null hypotheses decreases, the family-
wise empirical sizes decrease also.

It is interesting that Methods II and III led to
making decisions that differed very little from each
other in this study. In 25 of the 56 comparisons, the
familywise empirical size was identical for the two
methods. In another 24 comparisons, they differed by only

.001.
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Conditional Type 1 Error Rates. Two major hy-

potheses concerned conditional Type I error rates. The
first hypothesis was that the conditional Type 1 error
rate is greater than CxT. The second hypothesis was that
this effect is particularly strong when some of the vari-
ables in the sample are highly correlated. Since these
hypotheses are similar they are considered here together.
The data indicated that the conditional Type I error rate
increases above be whenﬁp # 1 but not when)Bp = I.
Two types of analysis of conditional Type I error rates
were used. The first was a test of fit of the frequencies
of each number of Type 1 errors for the 1000 sampling
replications to a binomial distribution, as explained
in Chapter II. The results of these tests of fit are
reported in Table D»2 in Appendix D. The second type
of analysis was conditional empirical size, the observed
proportion of Type I errors on one component test, given
that a Type I error occurred on the same sampling repli-
cation on another previously specified component test
in the same family of tests. This is also explained
in more detail in Chapter II.

The cases for which.»l?p = 5 are considered first.
From Table D.2 it can be seen that in five of the 18 tests
of fit, the observed fregquencies of number of Type I

errors deviated from the expected binomial distribution

more than could be accounted for by chance (p < .05 for
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each test of fit). Taken together, this indicates a sig-
nificant deviation from the expected binomial distri-
bution (p < .05). However, four of the five significant
tests of fit could easily be explained by the undergener-
ation of Type I errors for small sample sizes. In each
of these cases, there were a larger-than-expected fre-
quency of zero Type 1 errors and smaller-than-expected
frequencies in most of the other cells. This implies
that the deviations from the expected binomial distri-
bution could be attributed to p not being Cx& rather than
the component tests not being mutually independent.

The second type of analysis, conditional empiri-
cal size, was performed for only one case (k = 4; N =
100). It can be seen from Table D«3 in Appendix D that
the conditional empirical sizes are close to ‘7E = .05,

Now the cases for which R, #‘i are considered.
Conditional Type I error rates were often greater than

C*T for many of these cases. This was evident from

the results of many of the tests of fit reported in Table
D.2 in Appendix D. For each Pearson 7(2 test of fit the
expected frequency of each number of Type 1 errors was
calculated according to a binomial distribution, as ex-
plained in Chapter II. The tail of the distribution was
combined so that each cell would have an expected frequency
of at least five. Thus, for example, with ‘9% = .05,

1000 sampling replications, and three component null hy-
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potheses, the expected frequencies would be 857.4 repli-
cations with zero Type I errors, 135.4 replications with
one Type I error and 7.2 replications with two or more
Type I errors.

Of the 20 cases in which Bo # I and there were
more than two cells for the test of fit, 19 cases had
observed frequencies of number of Type I errors which
deviated from the expected binomial distribution (p <
.05; see Table D.2). Most of these Pearson 7{2 values
are very large.

Most of the cases with Sp # ;_and two cells for the
test of fit are reported as adequate fits to the binomial
distribution in Table D.2. However, this is because all
replications with any Type I errors were counted in the
same cell for the test of fit. Table 9 gives a detailed
report of these cases. 1t can be seen that there were
consistently more cases with two Type I errors than would
be expected if the component tests were mutually inde-
pendent. However, because the expected frequency of two
Type I errors was only 2.5, the cell for one Type I error
was combined with the cell for two Type I errors for the
Pearson 7(2 test of fit. Thus the fact that Type I errors
tended to occur together was obscured by the requirements
for the Pearson K° test of fit. If none of the three
cells had been combined for the tests of fit, 8 of the 10

cases in Table 9 would have been considered significant
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Table 9. Distribution of Number of Type I Errors
for Cases with Two Component Null Hypotheses
in the Family of Tests (Method I)

i

r~' Observed
Frequencies of
Matrix Number of Conditional
R k N or Type I Errors® Empirical
~P Vector T Sizeb
0 1 2
15 Both 921 76 3 . 073
(51)¢| 3 | 40| Both 910 84 6 125
100 | Both 909 84 7 <143
c 40 Both 923 69 8 .188
(52) 3
100 Both 908 80 12 «231
15 Both 3138 55 7 « 203
(53)%| 3| 40| Both | 908 79 13 248
100 Both 914 79 7 | «151
40 | Vector 918 78 4 « 093
(55)°] &
|1 100 } Vector 903 82 15 . 268

Note. -~ Expected frequencies of number of Type I
errorss O errors, 902.5; 1 error, 95; 2 errors, 215.

aBpy Method I

bPThe observed proportion of Type I errors on one
component test, given that a Type I error occurred on
the other component test. These values in this column
were calculated by assuming that the frequencies of one
Type I error was divided evenly among the two component

tests.
CRefers to the population correlation matrix desig-

nated by this equation number in Chapter II.

deviations from the expected binomial distribution (However,
this would necessitate an expected frequency of 2.5,
which is smaller than is generally acceptable for Pearson

')(2 tests of fit).
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In conclusion, in the cases considered in this
study for which Ep # I, the observed frequencies of number
of Type I errors deviated significantly from the binomial
distribution expected if the tests had been mutually
independent. The deviation generally followed a simi-
lar pattern, with higher-than-expected frequencies of
zero Type I errors, higher-than-expected frequencies of
a large number of Type I errors, and lower-ihan-expected
frequencies of intermediate numbers of Type I errors.

In Table 9, for example, the observed frequencies of zero
and two Type I errors are consistently higher than ex-
pected, whereas the observed frequencies of one Type I
error are consistently lower than expected.

The second type of analysis, conditional empiri-
cal size, also showed the effect of the dependence of the
significance tests. The conditional empirical size for
certain component tests given that a Type I error occurred
on a specified test is reported in Tables D.4 through
D.13 in Appendix D. These tables report the observed
numbers of Type I errors on a test of rij given that
Type I error has occurred also on another specified
test (on Toyo rBl’ or rul)- Most of the significant
results reported in Tables D.4 through D.13 involve what
will be called here "strongly-linked" component tests.

Such "strongly-linked' component tests are two component

tests
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(69)
Hy o %ij A0
and
Hoa/ﬁkj=0
(70)

Hy /ij # 0

in which the null hypothesis is true for both of them

and 2, = «6. In other words, “"strongly-linked" com-
ponent tests involve a pair of correlations with one
variable in common (represented by j) and the other vari-
ables correlated .6 with each other (represented by k and
i)e On any "strongly-linked" component test the condi-
tional empirical size (conditional on a Type I error
occurring on its "strongly-linked" partner) was more than
.05 (the unconditional Type I error rate, C<T)- Table
10 reports the data on conditional empirical size for
"strongly-linked"” component tests. It can be seen that
the number of conditional Type I errors are generally
significantly larger (EFW-<:.01) than would be expected
if the two component tests were independent. The mean
conditional empirical size for these "strongly-linked"
component tests is .242. Conditional empirical sizes are
also reported in Table 9. Most of these also involve

"strongly-linked" component tests (All except those using



87

Table 10. Conditional Empirical Sizes of
"Strongly-Linked "2 Component Tests

Con- “Stronglg- Conditional Con-
From ditional Linked* Type I Errors| ditional
R Table | on Type I r; . Ex- Actual [Empirical
P Noe Error oni J pectedP SizeC
r 202 8** 0182
(s D4 21 rps 2.2 12%% .273
r 2.15 12%% + 279
D5 21 rpy 2.15 10%* .233
r 2.3 Be* 174
(s5)d D.6 T3y rp2 2.3 4 . 087
r 2.7 16%% . 296
D.? r3y rp 2.7 1ges .278
r Fel4 1 5%* 221
P
f
r 2.45 v .143
D9 '3 rp- 2.45 1l .286
r 2.9 L1 % «190
(57)d D.10 ry rgg 2.9 15%% .259
r 2.4 gu»€ .188
D1l} 1y rg2 2.4 1hw .292
Tyo 247 lﬁ** «259
r 2.7 14%% 0259
D.12 rul r;f 2.7 13 . 241
(58)d r61 2.7 Lo%* .278
rLFZ 2.05 Q¥ * e 220
r 2,05 13%% 317
D131 1y rg% 2,05  1hww 341
r6l 2.05 1] %% . 268
Note:- These data are based on Method I, with C<T

= -051

a"Strongly-linked" comporient tests involve a pair of
correlatiors with one variable in common and the other
variablss correlated .6 with each other.

Expectation based on assumption of independence of
the sec8nd test from the first. .

The observed proportion of Type-1 errors on one
component test (on r. .in 4th column) among the sampling
replications with Tyﬁé I errors on the "strongly-linked"
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Table 10 Cont'd
partner (on r.. in 3rd column).
Refers tdYthe population correlation matrix desig-

nated by this equation number in Chapter II.
€mul tistage procedure

ng < ,05
**prw < +01, Bonferroni Poisson one-tailed test,
with the tests for one table (e.g. Table D.4) regarded

as a family of tests.

ﬁp equation (51)). For most of these cases, however,
the exact number of Type I errors on each component test
is unknown. Therefore, the values for conditional em-
pirical size were calculated by assuming that the Type
I errors on sampling replications with one Type 1 error
were divided evenly among the two component tests. For
the five cases which were not analyzed directly in Table
10 (the cases using ﬁp equation (55) were analyzed both
ways), the mean conditional empirical size was .202.

The other significant results and some borderline
results in Tables D.4 through D.13 involve what will be
called here "moderately-linked” component tests. Such "mod-

erately-linked” component tests are two significance tests

Ho t (1= 0 (71)
fr; # 0

—

and

(72)
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in which the null hypothesis is true for both of them and
/Qik = .6 and /532 = .6. In other words, "moderately-

linked" component tests involve a pair of correlations

Table 11. Conditional Empirical Size of
"Moderately-Linked"@ Component Tests

Con- "Moder- Conditional Con-~
From ditional ately- Type 1 Errors | ditional
R Table { on Type 1 Linked"® Ex- Actual Empirical
p No. Error on: rij pected Size
d
¢ D.b r r 2.3 6 <130
(5507 1.7 r%i rﬁ% 2.7 5 . 093
c D.8 r r 3.4 74 103
(56)7 p.g rgi rﬁg 2,45 69 122
e | 5l | 3
r . .
b.12 Ty r23 2.7 g* 148
(58)° 3
22 | 208 2 L 0lsg
r . .
.13 Th1 r22 2.05 &% 146
r63 2.05 5 122

Note. = These data are based on Method I, with c%T
= oOSn

arModerately~linked" component tests involve a pair
of correlations for which the two variables of one cor-
relation are each correlated .6 with one of the vari-
ableg of its partner correlation.

The observed proportion of Type I errors on one
component test (on rj; in 4th column) among the sampling
replications with Typg I errors on the moderately-linked
partner (on rj j in 3rd column).

CRefers to“the population correlation matrix desig-
nateg by this equation number in Chapter II.

#*Ppy < .05, Multistage Bonferroni one-tailed test,
with the tests for one table (e.g., Table D.4) regarded as
a family of tests.

**EFW4< .01, Multistage Bonferroni as above.
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for which the two variables (i,j) of one correlation are
each correlated .6 with one of the variables of its part-
ner (i with k and j with £). Table 11 reports the con-
ditional empirical size for such cases. It can be seen
that no definite conclusions can be made based on this
data alone, but it is suggestive that conditional Type
I error rates do increase above .05 for "moderately-
linked” component tests. The mean conditional empirical
size for the cases in Table 11 is .126.

There were no other clear effects present in the
data on conditional empirical size, although Tables D.9
and D.11 include a total of three other instances of re-
sults of borderline significance.

E Ra

Power. The power of the different methods of deter-
mining ‘3<T was investigated in terms of the empirical
power of component tests and, in some cases, in terms of
familywise empirical power. The data concerning empirical
power of component tests is summarized in Table 12. When
the population correlation coefficient was equal to =% .6
and the sample size was 100, the empirical power was 1.00
in all cases for all methods. When the population corre-
lation coefficient was equal to * .6 and the sample size
was 40, the empirical power was about .99 for Method I,

which set <<, equal to .05. For Methods II and III,

T
the empirical power varied also with the number of tests

in the family of tests (Methods II and III were nearly
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Table 12. pEmpirical Power on Individual Component

Tests
Number of Empirical Power?
Empirical
fQ’ N K Power Method I Method III
1J Estimates Mean Range Mean Range
100 3,4,6 18 1.00 1.00 1.00 1.00
40 3 2 .991 .988-.993] .971 .966-.975
+.6 4o & 5 +991  .988-.994| .951 .943-.956
L“O 6 ll 0991 0985—-994 0909 0896‘0927
15 3 2 «757 .705-.809| .587 .517-.656
100 3 1 . 863 .863 <741 741
.3 40 3 1 472 472 « 301 . 301
15 3 1 « 200 «200 . 094 . 094

Note. = This table includes empirical power based on
analyses of correlation matrices only.

aThe proportion of sampling replications of a compo-
nent test without a Type II error occurring.
identical in empirical power). For /Qij = ¢.6 and N = 40,
the power for these methods decreased from about .97 for
k = 3 to about .91 for k = 6. So the difference between
Method I and Method III (or II) in terms of power becomes
greater as the number of component tests in a family of
tests increases.

Only two estimates were made of power given /Caj = 4.6
and a sample size of 15. These estimates were both for
cases of k = 3 and they varied a good deal from each other.
However, empirical power by Method III (about .59) was
further below empirical power by Method I (about .76) than
for any other cases Where /iaj = 1.6,

Empirical power by Method III was also about .10 to

+17 less than empirical power by Method I when /Qij = .3,
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The results of the analysis of power was very simi-
lar for correlation vectors. FPower for component tests
by Method I is exactly the same for correlation vectors
as for correlation matrices. Empirical power for com-
ponent tests by Method III was higher for correlation
vectors of k variables than for correlation matrices of k
variables, but this was only a result of the different
number of tests in their respective families of tests
(see equations (62) and (63)).

The analysis of familywise empirical power added
nothing to the analysis of empirical power per component
test. In all computer runs with N = 100 for which family-
wise empirical power was applicable, the empirical power
was 1.00 regardless of method of determining C)(T. In the
other applicable computer runs, with N = 40, familywise
empirical power for correlation matrices varied from .952
to «984 for Method I, and from .637 to 900 for Method III.
For both methods, familywise empirical power was related
to the number of false component null hypotheses in the
family of tests. The lowest values of familywise empirical
power occurred when there were the most non-zero population

correlation coefficients.
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CHAPTER IV

DISCUSSION

This chapter first discusses the results of the em~
pirical study and then relates the findings to some ex-
amples of statistical analyses of intercorrelations from
recent journal articles. The discussion of the empirical
study begins with a consideration of the adequacy of the
pseudorandom number generator which was used in this study.
There is some indication that the pseudorandom numbers did
not demonstrate some important properties of randomness.
The implication of this for the main results of this study
are considered.

Secondly, the primary results of this study are dis-
cussed. The control of Type I error rate is considered
first, followed by a discussion of the control of Type Il
error rate.

Then the major conclusions from this study are sum-~
marized. Following the summary, a multistage Bonferroni
procedure is recommended for controlling Type I error rate
in multiple significance tests of intercorrelations.

Finally, the major findings of this study are re-
lated to two recent journal articles. This final section

includes an illustration of the use of a multistage Bon-
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ferroni procedure applied to one of the sets of data.

A (s) u ndom Numb e

The results of two of the statistical tests of the
pseudorandom number generator used in this study indicate
an adequate fit to the bivariate normal distribution and
to an 8-variate normal distribution. However, the other
test indicates that the computer simulation is biased
toward producing fewer total Type I errors than expected.
If the generated independent normal numbers were truly
random and if the transformations were applied correctly
in the computer program, no such bias would exist.

There was also some tendency toward an undergener-
ation of the total number of Type I errors in the computer
runs of primary interest in this study. No exact infer-
ential statistical analysis seemed applicable to this data
as a whole, so descriptive statistics are emphasized in
this presentation rather than inferential statistics.

The observed number of total Type I errors for each
computer run is presented in Table C.l. These are com-
pared with the expected number of total Type I errors,
which is actually the error rate per family ( O(PF) mul-
tiplied by the number of sampling replications (1000).

As Miller (1966) and Ryan (1959) have noted.‘s’(PF is not
affected by the dependence of component tests in a family

of tests. The expected number of Type I errors on one com=-
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ponent test in 1000 sampling replications is

E (total Type I errors on one component test) (73)
73

= A
1000 T

If Bp = ;k' then the expected number of Type I errors on

the L—ék:ll component tests in this family of tests in 1000

sampling replications is

k{(k=1) E[&total Type 1 errors on one component testi]

= ls_Lk..J..).z ~+. (1000 0‘<T) (74)
- <
1000 Fpp

Since no assumption of independence is necessary for this
conclusion, equation (74) holds regardless of any depen-
dence among the component tests.

Although the expected number of total Type I errors
is known, the variance of the total Type I errors is un-
known and therefore, exact statistical inference is im-
possible. The binomial distribution and its normal approxi-
mation would be appropriate if the component tests were
mutually independent. Technically the component tests of
interest are never mutually independent, but the results of
this study indicate that if Ep = I, the component tests do

not deviate significantly from mutual independence. If it
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is assumed that a mutual independence assumption is justi-
fied, then a normal approximation to a binomial distribu-
tion can be used to make inferences about the possible un-
dergeneration of Type I errors. Admittedly, this proce-
dure is not entirely justified, but it provides some infor-
mation needed for evaluating the main results of this study.

Table 13. Total Number of Type 1 Errors
on Each Computer Run (Bp = I only)

_—; N Total Type I Errors
Expected Observed
15 150 147
3 4o 150 132
100 150 168
15 300 2 7uns
4 40 300 284
100 300 297
15 1400 1109%%%
8 40 1400 32?*
100 1400
Total 5550 5112%%%

Note. - The observed total Type I
errors may be slightly underestimated due
to incomplete data. The statistical
analyses are based on two-tailed normal
approximations to binomial distributions
A= Np=-1000m X .05y O = Pq =
VI000 m X .05 X .95).

< .0
ETP < 5001

Table 13 reports the total Type I errors for cases
for which ﬁp = i- The total of the total numbers of Type

I errors is significantly less than expected (2 = -6.03;
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p < -001). Three of the eight computer runs produced sig-
nificantly less total Type 1 errors than expected (R‘:
.05).

There are four possible explanations for the under-
generation of the total number of Type I errors. First,
it could have been a case of a large random deviation
from the expected value that does occur a small percent-
age of the time. Second, it could have been due to some
misapplication of the appropriate transformations from
independent normal numbers to correlated normal numbers.
Third, it could have resulted from inaccuracies in count-
ing Type 1 errors, such as would result from an erroneous
critical value. Fourth, it could have been a result of
some non-random properties of the pseudorandom number gen-
erator.

The first explanation seems unlikely since the two
tests which resulted in a conclusion that the Type 1 error
rate was undergenerated were carried out on entirely sepa-
rate data.

The second explanation appears unlikely because the
computer simulation did not undergenerate the Type I error
rate for large sample sizes, but only for smaller sample
sizes (see Table 14). Of the computer runs with N = 100,
5 of 11 had more total Type I errors than expected. The
range of observed total Type I errors deviated equally in

either direction from the expected value. So no undergen-
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Table 14. Summary of Total Number of
Type I Errors by Sample Size

net—— —"

"] Number of Runs with Total |
N Computer Type I Errors Range?
Runs Greater Than Expected
Number

100 | 11 5 88%-112%
bo 11 | 2 85%-105%
15 6 0 69%-98%
Total 28 7 j 69%-112%

*‘aﬁange of the observed numbers of total Type I errors
expressed as a percentage of the expected number.

eration of Type I errors was evident for cases with N = 100.
However, with N = 15, all computer runs had fewer total
Type I errors than expected. Furthermore, the range of ob-
served total Type 1 errors deviated further from the ex-
pected value than for any other sample size. The computer
runs with N = 40 were intermediate between these extreme
sample size cases. The transformation that the computer
program used to transform a matrix of independent normal
pseudorandom deviates to correlated normal deviates and then
to a sample correlation matrix were also checked by a
hand calculator and found to be accurate.

The third explanation also appears unlikely since
no inaccuracies were found in a careful check of the com-
puter program's count of Type I errors. Using the case of

two independent variables (B = 52). 500 sample correla-

P
tion matrices were generated and printed. The computer

program's count of the number of Type I errors was exactly
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what i1t should have been.

The most plausible explanation seems to be that the
fault lies with the pseudorandom number generator. Previously,
multiplicative congruential generators have been found
sometimes to produce systematic biases when certain trans-
formations involving combinations of pseudorandom numbers
have been used (e.g., Marsaglia, 1968; Neave, 1973).
Apparently something on the same order occurred with the
transformations of this study. Two explanations of this
bias seem possible. The first one is that large sequences
of these particular pseudorandom numbers may have better
statistical properties than short sequences. Jansson
(1966) has made a distinction between global randomness
and local randomness. Local randomness deals with the sta-
tistical properties of relatively small samples whereas
global randomness is concerned with asymptotic statistical
properties of randomness. The particular pseudorandom
number generator used in this empirical study was recom-
mended on the basis of a crucial asymptotic statistical
property of the generated number sequence, the serial
correlations of the longest possible sequence of numbers
(Ahrens, Dieter, & Grube, 1970). It may be that the gener-
ator used in this study has adequate global randomness for
this type of application but not adequate local randomness
for small sample sizes. Table 15 shows that there does

seem to be an increasing undergeneration of total Type I



100

Table 15. Summary of Total Numbers of Type.I Errors
by Number of Normal Numbers Generated in a
Run of the Computer Program

Number of Unit Runs with
Normal Numbers Computer More Type 1 Rangeb
in Runa Runs Errors Than
Expected

320-1,600 8 3 88~-1083%
240-300 7 3 93%-112%
120-160 8 1 79%-105%
45-60 5 0 69%-112%

“In thousands
Range of the observed numbers of total Type I errors

expressed as a percentage of the expected number.

errors as the total number of normal pseudorandom numbers
generated increases.

The second possible explanation for the bias is
that the starting number for each run of the computer pro-
gram was less than 227, This meant that the starting
number was limited to E%gth of the overall possible inter-
val (0, 235). Perhaps this caused a systematic under-
generation of Type I error rate in the first group of sam-
ple correlation matrices generated, but that this bias was
negligible for runs of the computer program which required
larger sequences of normal pseudorandom numbers.

In any case the undergeneration of total Type I
error rate somewhat qualifies the results in the main part
of this study. How serious is this undergeneration of
total Type I errors? The 95% confidence interval for C*T

based on all six computer runs in Table 6 is (.0376,
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.0478). The 95% confidence interval from the grand total
in Table 13 is (.0449, .0473). This would indicate that
the simulated GXT for the computer program was about
.046 rather than .050. The simulated CXT would appar-
ently be lower for small sample sizes (Table 14) and for
small sequences of generated normal deviates (Table 15).
For larger sample sizes and/or large sequences of gen-
erated normal deviates, the simulated C%& probably ap-
proximated .050 very well. So the undergeneration of
total Type I errors somewhat qualifies the results of
this study, particularly those results based on small
sample sizes or small sequences of generated normal de-
viates.

For future research there are several methods for
pseudorandom number generation which may improve on the
method here. Knuth (1969) recommends using a congru-
ential pseudorandom number generator with a modulus of
235 +1 rather than 235 (for a computer with a word size
of 235). This makes the right hand digits of the pseudo-
random numbers on the interval (O, 235) more random than
using a modulus of 235.

The generator used in this study could perhaps be
improved by allowing XO Yo vary over the entire range
(0423%).

Future research might benefit from using one of
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Maclaren & Marsaglia's (1965) two alternative methods

for pseudorandom number generation, a combined congru-
ential method and a method using a table of uniform ran-
dom umbers. They claim that such alternative methods
produce pseudorandom numbers with better statistically
random performance (Marsaglia 1968, 1970). Their me-
thods certainly have the potential of achieving this,
although as noted previously, direct comparisons have not
shown them to be superior to the multiplicative congru-

ential method used here.

Control of Type I Error Rate
This section considers the main results of this
study, i.e., those related to the major hypotheses.
First the results concerning familywise Type 1 error
rate are considered, then the results concerning con-

ditional Type I error rate.

Familywi T I E Ra
Method I. Method I for controlling Type 1 error

rates and setting the corresponding critical values was the
customary procedure of setting 67& = .05 for each indivi-

dual significance test of a hypothesis

ot f1y = 0 (75)
le/@lj;!o
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Using Method I, the familywise Type I error rate increases
rapidly as the number of true component null hypotheses
increases. The present empirical study showed this

as summarized in Table 7 in Chapter III. In this

study whenever there was more than one true component null
hypothesis, the familywise Type I error rate was almost
always significantly (p <.0l1) greater than .05. In three
cases with 21 true component null hypotheses each, family-
wise empirical size (which is an empirical estimate of
familywise Type I error rate) ranged from .669 to .755. So
if the intercorrelations among eight variables are being
analyzed and if the complete null hypothesis is true

<§p = 5), then at least one Type I error occurs in the
analysis about % to 2 of the time. Psychologists do not
often analyze eight gompletely unrelated variables. How-
ever, it is not uncommon in the literature to analyze a
much larger number of intercorrelations which could easily
include 21 true component null hypotheses. How many

true component null hypotheses actually exist would be un-
known to the experimenter. The important point is that the
familywise Type I error rate increases above .05 (given
CXT = .05) i1f there are even two true component null hy-
potheses. If more component null hypotheses are true,
then the familywise Type I error rate reaches proportions
at least as high as .75 In all cases, however, the only

reported Type 1 error rate is usually .05, the Type I
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error rate per component test.

Using Method I to control Type I error rates is
very similar to using t-statistics for all palrwise com-
parisons in analysis of variance with CXT = ,05 for each
1 - test. Because of similar results in familywise Type
I error rates, various methods for multiple compairsons
in ANOVA have been proposed to control LXFW more stri-
gently. The rationale in favor of these more conservative
procedures in analysis of variance should also be applied
against Method I in statistical analyses of intercor-
relations. The fact that multiple-test procedures are
widely used in analysis of variance but used hardly at
all in analyses of intercorrelations indicates that the
rationale for simultaneous procedures has been applied
inconsistently to analysis of variance and correlational

analysis.

Methodg II and III. Methods II and III were con-
servative alternatives to Method I for controlling the

Type 1 error rate. Method II set ch such that <>%w
would equal .05 if all the component significance tests

were mutually independent. Method III used the Bonfer-
roni inequality to set CXT such that ‘“%w would be less
than or equal to .05 regardless of any dependencles amang
the component significance tests. The results of this em-

pirical study indicate that in practice these two methods
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give almost identical conclusions. In the cases examined
in this study Methods II and III led to different conclu-
sions for only about one out of 1000 significance tests.
If Methods II and III were calculated using a larger

i’?W and if the number of significance tests in the family
of tests were large then the two methods would differ

more in their results. However, if the experimenter
wants to control LZKFW at the .05 level, it apparently
makes little practical difference whether Method II or

IIT is used.

The alternate methods (Methods II and III) resulted
in familywise empirical sizes which generally were near the
desired .05 level when the complete null hypothesis was
true (Bp = I). The familywise empirical sizes for Method III
were significantly different (p <£.05) from .05 for 3 out
of 18 cases (9 correlation-matrix cases, 9 correlation-
vector cases) for which R, = 1. While this is a higher
proportion than we would usually expect, it is not sig-
nificantly higher (p < .06, binomial distribution prob-
ability of 3 or more successes of 18 observations with p
= .05). Furthermore, the deviant familywise empirical sizes
occurred when shorter sequences of pseudorandom numbers
were used, suggesting that this may be due to the under-
generation of Type I errors rather than due to the Bon-
ferroni method itself.

In cases for which the complete null hypothesis is
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not true (i.e., ﬁp # 1), Methods II and Iil are consis-
tently over-conservative in controlling for Type I errors.
In 28 out of the 38 cases with‘ﬁp # I, familywise empirical
size was significantly (p < .05) less than .05. The less
the number of true component null hypotheses proportion-
ately, the more the Bonferroni method tended to be over-
conservative. Table 8 shows that the lower the propor-
tion of true component null hypotheses among the null
hypotheses to test, the less the mean familywise empiri-
cal size. These findings support Miller's (1966) obser-
vation that the Bonferroni 3 test is unnecessarily con-
servative unless a multistage procedure is used. Later,
a multistage Bonferroni 3 method will be discussed, which
would correct for over-conservativeness.

Note here also thaf the Bonferroni t method was
also over-conservative for the family of significance

tests

Hy+ fop =0
0" /i i=2, 3,000y k (76)
Hy o i # 0
when all fgl.= 0, but some fij # 0 (i.es, the family of
tests involve intercorrelation between k-1 predictor vari-
ables and one criterion variable, with some predictors cor-
related with each other). This was the situation for the

population correlation matrices described in equations (51)
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through (54). For 5 of the 11 cases using the first col-
umn of these matrices, the familywise empirical size was
significantly less (p < .05) than the nominal C;KFW of .05.
So we must conclude that ﬂiwa is actually less than .05
for such a family of tests. (A word of caution, however:
this finding may again be a result of the undergeneration
of total Type I errors for smaller sequences of pseudo-
random numbers. The 11 cases included 7 cases based on

relatively smaller sequences of pseudorandom numbers

(160,000 or less)).
Conditional Type I Error Rate

This section focuses on the effects on conditional
Type I error rate of using Method I to control for Type I
error. Conditional Type I error rate is the Type I
error rate on one component test given that a Type I error
occurs on another component test. Methods II and III are
not considered in this section. Similar effects would
occur with Methods II and III, but the effects are coun-
teracted somewhat by controlling CX%W at a given level
rather than controlling only C>(T as Method I does. Not
enough Type I errors occurred in this study with Methods II
and III to make a meaningful analysis of conditional Type
I error rate for those methods possible.

Using Method I, the conditional Type I error rate
was greater than the unconditional Type I error rate (‘3<T)

of .05 for tests of
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(77)
Hy ﬁlJ # 0
and
Ho : /ik = 0
(78)
Hy /?k # 0
when the actual population correlation matrix among the
three variables was
i h| k
i |1
(79)
J 0
k |0 +.6 ™1 .
L - Ny

This represents the case in which the first of three
variables is actually uncorrelated with the second and
third variables, while the second and third variables are
correlated +.6. The conditional Type I error rate may

be the Type I error rate in testing equation (78) con-
ditional on a Type I error in testing equation (77) or
vice versa (the choice between these two is arbitrary).

The configuration of equation (79) may be the entire inter-

correlation matrix of interest or may be embedded in a
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larger intercorrelation matrix. In any case the condi-
tional Type I error rate deviates greatly from the uncon-
ditional Type 1 error rate for such cases of "strongly-
linked' component tests. Table 10 summarized all the cases
in which this configuration (equation (77)) was embedded
in a larger correlation matrix. Almost all of these had
significantly larger numbers of conditional Type I errors
than expected. As noted previously, the mean conditional
empirical size was .242. This indicates that in such a
configuration as equation (77), if a Type I error occurs
on a test of fﬁj’ then the probability of a Type I error
on a test of ik increases to about .242, i.e., to about
2 of the time. This means that the probability of Type I
errors occurring simultaneously on both tests for the same
sample is much higher than would be expected if the tests
were independent. Both Type I errors would occur simul-
taneously about 1.21% of the time, rather than .25% of

the time, which would be the case if the component tests
were independent (given ch = .05).

Equations (52) and (53) were two 3 x 3 correlation
matrices that fit the configuration of equation (79). The
number of times that two Type 1 errors occurred on the same
sample is reported in Table 9. The five computer runs in-
volving these matrices had a mean percentage of trials with
two Type I errors of .94%. Similarly, the estimated mean
conditional empirical size was also a little lower than

would be expected from the above findings, about .202.
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Three of these five computer runs had smaller sequences of
pseudorandom numbers, so this difference may have been par-
tially due to undergeneration of total Type I errors. Harris
(1967) ad six computer runs using the population corre-
lation matrices of equations (52) and (53) with C*T = ,05
and sample sizes of 25, 100, and 200. The mean estimated
conditional empirical size from his data is .238.

Combining Harris' (1967) results with this study's
results, the conditional Type I error rate is about .24
( CXT = ,05) for the second significance test given a
configuration such as equation (79) and a Type I error
on the first significance test. This will obviously change
when the value of /ﬁﬁk (the nonzero correlation coeffi-
cient in equation (79) is different. If the absolute
value of végk is greater than .6 the conditional Type I
error rate will be greater; if /%k is less than .6, the
conditional Type I error rate will be smaller. The only
empirical estimate of such a change from this study is
based on the three computer runs using equation (51).
With /%k = ,3, the mean percentage of two simultaneous
Type I errors was .533% and the mean estimated conditional
empirical size was .114. While this is based on a very few
cagses, it suggests that even such small values of 'ﬁak
increase conditional Type 1 error rate to more than twice
the stated CxT. These empirical estimates along with

estimates from Harris' (1967) data give the results
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Table 16. Estimated Mean Conditjonal
Empirical Size for Various /%k

Estimated Mean
/Qk Conditional
J Empirical Size

.05
.05
.11
.15
o 24
. 52

F
t

VAR WLWNO

|
Notes - /3, iB the nonzero correlation
coefficient in é 3 x 3 matrix such as equa-
tion (79). These estimated mean conditional
empirical sizes are based on data from this
study and from Harris (1967).

summarized in Table 16. While some of these estimates of
conditional Type I error rates are based on limited in-
formation, it gives some idea of the effect of the mag-
nitude of /Gk on conditional Type I error rates in testing
such hypotheses as equations (77) and (78).

Note that these considerations of conditional em-
pirical Type I error rate are applicable not only when an
intercorrelation matrix is of interest, but also when a
correlation vector is of interest. A correlation vector
is of intergst, for example, whenever a researcher is inter-
ested in the correlations between two or more predictor
variables and one or more criterion variables. In such
studies there is often no information given concerning

correlations between predictor variables or correlations
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between criterion variables, both of which could corres-
pond to fﬁk in equation (79). So it is generally difficult
to estimate the probability of observing a group of Type I
errors in a given sample, since the relevant J:‘J.k is not re-
ported. But the problem of conditional Type I error 1is
just as relevant in such cases.

The findings of the present study suggest that condi-
tional Type I error rates may be affected far other pairs of
correlation coefficient tests, too. For example, Table 11
summarized the conditional empirical size results for *"mod-
erately-linked" intercorrelations. Two correlations rij and
rkﬂlwould be "moderately-linked" if they involve four dis-
tinct variables (e.ge., i, j, k, and£ ) with each variable
(e«ge, 1) in the first correlation of interest correlated
.6 with one variable (e«g., k) in the second correlation of
interest. While only a few of the results in Table 1l were
significantly different (EFW‘i-OS) from the unconditional
Type I error rate, the mean conditional empirical size for
these cases was .126. This suggests that conditional Type I
error rates may be affected by "moderately-linked"” inter-
correlations, although not conclusively so from this data
alone. Harris (1967) also has data that fits this defini-
tion of "moderately-linked"” intercorrelations. His data
yields an estimated mean conditional empirical size of .270.
Such a high value appears somewhat dubious since it is not
logical for the conditional Type 1 error rate for "moder-

ately-linked"” intercorrelations to be higher than



Table 17.

Frequencies of Various Numbers

of Type I Errors in Certain
Intercorrelation Samples®

113

Number Frequency
of wype I Method I Wethod 111
Expected® Observed Expected” Observed

0 1261 1513 1941 1957
1 597 301 59 31
2 126 109 0 8
3 15 41 0 3
4 1 13 0 1
5 0 10 0 0
6 0 7 0 0
7 0 0 0
8 0 2 0 0

8Intercorrelation samples

one with N = 40, and one with
bExpected frequencies for

Bp =

O QOO
O OO

6
0 O

6 .81

N = 100,
2000 replications of 9 in-

in two computer runs with

dependent significance tests according to the binomial dis-

tribution.

that for "strongly-linked” intercorrelations and since it

deviates 80 much from the results of the present study.

However, the possibility remains that conditional Type I

error rates for "moderately-linked” intercorrelations may
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be much higher than the estimate from this present data.

In actual intercorrelation matrices 4 x 4 and larger,
there could be complex relationshipsof "strongly-linked"
and "moderately-linked" intercorrelations and other de-
pendent interrelationships. One such example would be the
population correlation matrix of equation (58). Table 17
gives the frequencies of various numbers of Type I errors
for the two computer runs using this population corre-
lation matrix. It can be seen that there was an unex-
pectedly large frequency of three or more Type 1 errors
occurring simultaneously on a sample intercorrelation
matrix. This is the result of a two-fold problem: 1)
the non-multiple~test procedure of setting CKT = ,05
ensures a high probability of at least one Type 1 error,
and 2) the moderately high non-zero population correlation
coefficients result in high conditional Type I error rates.
Consequently, there were three or more Type I errors (out
of nine possible) on 3.85% of the sample correlation ma-
trices despite a reported alpha (‘><T) of .05.

This result illustrates a need for a method of con-
trolling Type I error that takes conditional Type I error
rates into account. It can be seen from the right-hand
columns of Table 17 how Method III, the Bonferroni %
method, would control Type I error rates in this parti-
cular example. The effect of the dependence of the com-
ponent tests causes this also to deviate sharply from the

expected frequencies of number of Type I errors. However,
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by keeping the probability of the first Type I error be-
low .05, Method III improves greatly over Method I in

controlling against multiple Type I errors.

control of Type II Error Rate

The sample sizes, number of variables, and popu-
lation correlation matrices for this study were chosen with
effects on Type I error rates primarily in mind. This
study does not provide an adequate analysis of the relative
power of Methods I, II, and III. It is clear that Methods
II and III are nearly identical in power for the kinds of
intercorrelation matrices examined here. Also it is clear
then that whatever is gained in controlling Type I error
rate is gained at the expense of Type II error rate. This
is to be expected since the three methods differ only in
setting the critical value for the rejection of a component
null hypothesis.

Although Method I fares poorly in controlling Type I
error rates, it is the best of the three methods for con-
trolling Type II error rates. This supports Miller's (1966)
contention that some justification can be given to Method I
if the total loss for a sequence of hypothesis tests is the
sum of the component losses and a Bayesian approach is take
taken. So the possibility remains that a Bayesian approach
would yield a better solution. However, Miller (1966)
thinks otherwise, and the major Bayesian multiple-test pro-

cedure to date (Waller & Duncan, 1969) resembles Fisher's
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protected Least Significant Difference method, a pro-
cedure which loses all conservativeness once any signi-

ficant effect is found.

n ions

The major conclusions will be reviewed at this point:
Method I, the customarily used procedure of setting CﬁT
= ,05, results in a large familywise error rate. This
familywise Type I error rate increases quickly to unde-
sirable levels as the number of variables increases
(and thus the number of true component null hypotheses
increases). Method II, which is based on a false assump-
tion of independent significance tests, and Method 11II,
the Bonferroni % procedure, successfully keep the family-
wise Type I error rate at .05 or below. However, both of
these methods over-control for Type 1 error when even a
small proportion of the component null hypotheses in a
family of tests are false. The mutual dependence of the
component significance tests in an intercorrelation ma-
trix or an intercorrelation vector is an important factor
if any correlation between any variables involved is moder-
ate or large in magnitude. This dependence may dramatically
increase conditional Type I error rates over uncondition-

al Type I error rate levels.

Recommended Procedure for Controlling
Iype I Error Rates
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Taking these major results into account, this writer
recommends a multistage modification of Method III, the
Bonferroni { method. Method III is chosen over Method I
because of its superiority in keeping the familywise Type
I error rates at .05 or below. As noted previously, this
becomes even more crucial when the mutual dependence of
the component significance tests is an important factor.
The multistage modification is recommended to counter the
ma jor drawback of Method III, which is its over—<on-
gservativeness under certain conditions. This multistage
modification will be described in detail in the next section.

Method II is nearly identical to Method III for all
practical purposes. These two methods result in different
acceptance versus rejection decisions only about .1%
of the time. Furthermore, Method II is slightly more
powerful and has been shown to control kaw to .05 or
less for all 3 x 3 matrices and for all matrices without
negative population correlation coefficients (Dunn &
Massey, 1965). However, Method III is recommended over
Method II because it is more widely known (e.g. in mul-
tiple comparisons in analysis of variance), it gives a
conservative~estimate of C*éw regardless of the dependence
of the significance tests, and it is easier to use.

Finally, a word about borderline results ig here
given. A borderline result is one that would result in

a rejected null hypothesis by Method I but that results in
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an accepted null hypothesis by the multistage modification
of Method III. As illustrated in Figure 1, such a border-
line result is analogous to a result in a single signi-
ficance test that falls exactly at the critical point.

As such, borderline results should not be lumped together
with "non-significant" results but should be placed in a
category between "non-significant” results and conclu-
sively "significant” results. Borderline results should
be considered as conclusive evidence only when considered
together with similar (or more conclusive) results from

other samples.

Applicatione to Extant Data

In this section the findings of this study will be
related to two examples of correlational analysis taken from
Brooks (1973) and Jessor & Jessor (1974). An example will
be given of how to use a Bonferroni multistage procedure,
using the Jessor & Jessor (1974) data.

Jessor & Jessor's (1974) article dealt with the re-

lationships between maternal ideology and adolescent pro-
blem behavior. Table 18, which is reproduced from Jessor
and Jessor, summarizes their analysis. Note that the
reported intercorrelations are between five predictor
variables (maternal ideology and home climate) and three
criterion variables (adolescent problem behavior) for two
separate samples (males and females). For each sample,

the 15 reported correlations are part of the 28 possible
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Table 18. Product-Moment Correlations
between Maternal Socialization Measures and

Junior and Senior High School Student
Behavior and Attitudes

Student measure®

Problem behavior Total negative Total postuve

Maternal socialization index functions functions
measure Females Males Females Mules Females Males
Ideology
Mother’s traditional
beliefs 297 — 34 35 03 -.13 —.23%*
Mother's rehigiosity K - 20 23 08 - 18 -.16
Mother's atiitude toward
deviance 42%ens 13 L33 .05 - .23 ~.22%*
Home chmate
Mother’s controls and
regulations Al LUk 29%* 18* -.11 -.17
Mother's affectionate
ik - 08 12 20 P add -.03

mnteraction

Nate pooalues are hused on two tled tests
* The n fur femates range. from 7S {0 9} for the different measures, for males, the n ranges lrom 79 to 93,

e
vep o 08
A

e, o 001

Table 19.

Total Positive
Functions

Total Negative
Functions

Problem Behavior
Index

Traditional
Religiosity

Attitude Toward
Deviance

Controls
Affection

Note.

7—N6%e. - Rébrinted'from Jessor & bessor (1974, p. 251).

Hypothetical Population
Correlation Matrix for Maternal Ideology and Control
and Adolescent Problem Behavior

=N
- 32
025 "0465
0 0
0 0
0 0
0 0
0 o0

0
0 «505

0 .505 .505

0 .30

0 .01

N

N

<30 .30
.01 .01 .175°1

- The non-zero correlations are based on

estimates primarily from Jessor and Jessor (1974).
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intercorrelations among the ei ght variables.

Now suppose that all the population correlations of
interest were actually zero. Then the population corre-
lation matrix might look something like Table 19. If
this were the actual population correlation matrix, what
would be the probability of observing as many significant
results (which in such a case would be Type I errors)
as Jessor & Jessor (1974) did? To answer this question
partially, a computer simulation was performed using the
same program as the main part of this present study,
but with the population correlation matrix of Table 19,

Table 20. Frequencies of Number of Type I

Errors in Computer Simulation of Samples from
the Bp in Table 19

Number of Frequencies of
Type I Errors Given Number
in a Sampling of Type I Errors

Replication Observed Expected™

0 263 206
1 329 343
2 211 267
3 116 129
L 38 43
5 32 10
6 or more 11 2

Note. - Total sampling replications =
aAssgming mutually independent component
tests
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with N = 85, and with C’% = .10. The sample size chosen
was the average of the sample sizes reported in Table 18
and the alpha level of .10 was the one used by Jessor &
Jessor (1974) to determine a "significant" result. Table
20 summarizes the results of this computer simulation.
Note that there was at least one Type I error on almost
three~fourths (73.7%) of the sampling replications.
Furthermore, there were five or more Type I errors (out
of fifteen possible) on 4.3% of the sampling replications.
By comparison, Jessor & Jessor (1974) reported 7 corre-
lations significantly different from zero in their male
sample and 11 in their female sample. If all the rela-
tionships of interest are actually zero (i.e., Table 19
represents the actual relationships), there is less than
a «5% chance of obtaining 7 significant results (as in
their male sample) and a negligible chance of obtaining
11 significant results (as in their female sample). So
there is no reasonable basis for suggesting that Jessor

& Jessor's (1974) results are entirely Type I error
artifacts. However, this example is useful to show how
this type of analysis compares with others in controlling
Type 1 errors.

This type of analysis is compared first with an
analysis involving only one significance test of a cor-
relation coefficients Such a single-test analysis would
result in a Type I error about 10% of the time (given C*&
= ,104 /élj = 0). As noted previously, the Type I error
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rate in a multiple-test situation (such as Jessor & Jes-
sor's) differs from a single-~test situation because

1) multiple tests greatly increase the likelihood of the
occurrence of a Type 1 error even if the tests are mutu-
ally independent and 2) the interdependence of the com-
ponent tests affects the Type 1 error rate in generally
unknown ways. The right-hand column of Table 20 gives the
expected frequencies (out of 1000 sampling replications)
of various numbers of Type I errors if the component tests
were mutually independent. Note that if the independence
assumption were justified, there would still be a .055
probability of observing 4 or more Type I errors out of

15 possible Type 1 errors. But the independence assump-
tion is not justified, since the observed frequencies in
Table 20 do not adequately approximate the expected fre-
quencies ()(?5) = 101.97, p £.001). From the observed
frequencies, there is approximately a .043 probability of
observing five or more Type I errors.

Now compare this with a single-test analysis. 1If
the correlation of interest were zero in a single-test
analysis, a Type I error would be obtained 10% of the time
(given p = «10). However, if the 15 correlations of
interest to Jessor & Jessor (1974) were all zero, four or
more Type I errors would be obtained about 8.1% of the time
(given <X = .10). Furthermore, most of the time (about

T
65.5%) one to three Type I errors would be obtained out
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of the 15 possible, whereas there would be no Type 1
errors 90% of the time in a single-test analysis. The
high probability of at least one Type I error in a mul-
tiple~test situation and the substantial probability of
several simultaneous Type I errors are not obvious from
the nominal probability level of .10.

Thus far Jessor & Jessor's (1974) analysis (a
Method I analysis) has been compared only with a single-
test analysis. At this point Method III, the Bonferroni
1 method, is applied to the Jessor & Jessor data. Be-~
cause of the over-conservativeness of this method, a
multistage modification is applied. At the first stage of
the multistage procedure, Method III1 is applied in the
usual way. However, if any component null hypotheses
are rejected at the first stage, a second stage is then
performed with new critical values based on the number of
remaining non-rejected component null hypotheses. By
this method, the familywise Type I error rate remains at
or below the nominal probability level (e.g., .10) for
any possible set of true component null hypotheses with-
out being unnecessarily conservative. The significance
tests of fifteen correlations of interest on one sémple
(male or female) is considered a family of tests. The
alpha level per test at the first stage of the analysis

is calculated by the equality of equation (11),
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o
= —t _ =10 _ 2
C%T m = 15 00063 (80)
Since two-tailed significance tests are appropriate in

this analysis, CXT is divided by two,

<
_EI = -003% . (81)

While the two critical values of the 1 distribution cannot
be obtained from readily available tables, they can be ap-
proximated by equation (13)s

-z3c>rT/2 * z-c><T/2
Yog/2,v = oz T (TS 2)

= 12,71 + EE= (82)
= ¢ 2078 .
Next the formula
% ;
K/ 2, Y
Foty/2 ~ = (83)

‘/N-Z*tzosr/z

can be used to obtain a critical value of the sample cor-

relation coefficient. In this case,

r - *2-78
""I‘/2 vV 85 -2 + (2.78)%

= 1 .292 (84)
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Consider the data for the male sample first. Two
of the fifteen component tests result in rejection of the
component null hypothesis in the first stage of the analysis.
They correspond to the two sample correlations which are
larger than 292 in absolute value. If no component null
hypothesis were rejected at this first stage, the analysis
for the male sample would be terminated. However, since
two component null hypotheses are rejected at the first
stage, the procedure continues on to the second stage.

The analysis at the second stage is done just like
the analysis at the first stage except that CXT is com~-
puted with a value of 13 for m in equation (80). Thir-
teen is the remaining number of non-rejected component
null hypotheses. The computations of equations (80) through

(84) are repeated again using this new value for m. This

<X

results in -E*I = ,00385, thT/2'1/ = t2.74, and rc:<T/2 =

+.288. None of the sample correlations corresponding to
the 13 previously non-rejected component null hypotheses are
larger than the new critical value in absolute magnitude.
Since no further component null hypotheses were rejected,
the multistage procedure is terminated at this point.
The conclusion of this analysis is that two of the fifteen
sample correlations are considered significantly different
from zero at the C}%w = +10 level.

The first stage of the multistage Bonferroni pro-
cedure for the female sample is identical to the first

stage for the male sample. Equation (84) gives the cri-
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tical value of rch/Z = $.292. Using this critical value,
four component null hypotheses are rejected for the female
sample. Therefore, the multistage procedure proceeds to

the second stage, which uses m = 11 in recalculating
equations (80) through (84). Two of the sample corre-
lations (.29 and -.29) are larger than the new critical
value (%.281) in absolute value. Therefore, a third

stage 1s performed which in turn results in the null
hypothesis being rejected for the sample correlation of -.28.

Table 21. Summary of a Multistage Bonferroni
Analysis Applied to Jessor & Jessor's (1974) Female Samplea

S o Continue
tage m _T r Multistage
2 CXT/2 Procedure?

1 15 000333 +. 292 yes

2 11 000455 t. 281 yes

3 9 « 00556 . 274 yes

4 8 000625 + 270 ! no
a -

CKFW = ,10

Since an additional null hypothesis was rejected at the
third stage, a fourth stage is performed, with m = 8. At
this stage no additional null hypotheses are rejected, so
the procedure is terminated. If another null hypothesis
would have been rejected at the fourth stage, a fifth
stage would have been performed. This would continue un-

til a stage is reached in which no additional null hypo-
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theses are rejected. A summary of the four stages of the
multistage Bonferroni procedure is presented in Table 21.
seven of the sample correlations are considered to be sig-
nificantly different from zero at the CXFW = .10 level.

The first stage of the multistage Bonferroni pro-
cedure is identical to the usual Bonferroni procedure,
which has been called Method III in this study. The above
examples illustrate how the multistage modification in-
creases power over its non-multistage alternative. The
multistage procedure for the female sample terminated
with a final critical value of #.270 instead of a criti-
cal value of +.292, which a non-multistage Bonferroni
analysis would give. The multistage procedure increases
power without increasing the familywise Type I error
rate above the nominal level (.10 in this case), as shown
in Appendix A.

Table 22 gives the results of the multistage Bon-
ferroni procedure for the female sample as they would be
presented in a publication. A couple of features of this
table facilitate comparisons with the more common corre-
lational analysis procedure (Method I). First, in the
footnote section of the table, the equivalent Type 1
error rates per test are given for each familywise Type I
error rate. This information tells the reader, for ex-
ample, that a significant result with pg, < ,10 in this

analysis is equivalent to a significant result with
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Product-Moment Correlations Between

Maternal Socialization Measures and Junior and Senior

High School Student Behavior and Attitude
(Females; Multistage Bonferroni Analysis)

I

Student Measure

Maternal Socialization Problem | Total Total
Measure Behavior Negative Positive
Index Functions Functions
Ideology
Mother's Traditional b
Beliefs -'29* e 35** -023
Mother's Religiosity - 32%% .23b -.16
Mother's Attitude b
Toward Deviance — ol 2% nNx o« 33 -e22
Home Climate
Mother's Controls b
and Regulations -.22 « 29% -.17
Mother's Affectionate
Interaction -.28% .12 -.03

Note.~ Two-tailed multistage Bonferroni procedure.
pFwW is based on familywise Type I error rate; Ry is based
on Tgpe I error rate per test.

The n was assumed to be 85 for this analysis.

bBorderline significance;

**B < s 05' ET < 0045
*#dpw < .01y Dp < .00036

*ru¥ppw < «001; pp <. 00004

RT < 005

Bp << +0125 in the common correlational analysis procedure

(Method I).

Secondly, results for which the null hy-

pothesis would be rejected according to the usual non-

multiple-test procedure are considered in Table 22 as

borderline results.

derline region of Figure 1.

These results would fall in the bor-

They do not provide strong

enough evidence by themselves to conclusively reject the
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23.

Adult Q Sort Items (Males).
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Correlations between Childhood Ratings
"Satisfactions in Artistic Pursuits" and

Satisfactions in Artistic Pursuits
Age in Years
g-11 114 14-18
Adutt Q- Sort ltams N 35 N 35 N--34
1. Is critica!, skeptical. .33* .21 .27
27. Shows condescending behavior to others. 32* .18 .30*
17. Behaves in sympathetic, considerate manner. —-.30* —.25 —~.22
43, Is facially, gesturally expressive. 30* .23 29
33. Is calm, relaxed in manner. —.29* --,29* —.17
94, Expresses hostile feelings directly. 29* a3 a2
29. Is turned to for advice. —.28* —.24 ~7
#66. Enjoys esthetic impressions, esthetically reactive. 21 L45%** KT S
100. Does not vary roles; relates to everyone in
same way. --.27 —.40** -2
13. Is thin-skinned; vulnerable to slight. 23 3 a1
24. Pridus self on being objective, rational. —.1 —.31* -1
50. Is unpredictable, changeaoble in behavior, ottitude. .21 .30* .24
# 3. Has a wide range of interests. 17 28" 36
47, Tends to feel guilty. ~.23 -2 —.35**
#63. Judgos self, others in conventional terms. .09 --.19 —.32*
18. tnitiates huntor. a2 R .30*
84. 1s cheerful. .08 A3 .30
15, The light touch as compared to the hcavy touch. .05 BRI .29*
41. Is maralistic, —.04 -.27 —.29*

Note. - Reprinted from Brooks
*Significont ot .10 level.
**Significant at .05 level.
***Significant at .01 level,
Fltems alse significantly correlated for femalos.

Table 24,

(1973, p. 116).

Correlations between Childhood Ratings

of "Satisfactions in Artistic Pursuits" and
Adult g Sort Items (Females)

14-18
N= 37

46%*"

38+
—.37
Agre

—.24
-.18

327
350
.33*
~.06
—.03
.05
.01
—.25
.29*
26
—.20
.30*

Satistactions in Artistic Pursuits
Age in Ycars
8-11 11-14
Adult Q-Sort ltems N~-38 N - 38
5. Guenuinely values intellectuan!, coanitive mattaers., 441 S R
8. Appears to have a high degree of int divctual
capuacity, 407%™ 39**
54, Emphasizes being with others; gregarious. —.40** —.45**
# 3. Has o wide range of interests. 39** N rahd
59. Is cancerned with own body und adequacy of
functianing. -.35** --.19
93, Behaves in a feminine siyle and manner. -.35*" —.25
#66. Enjays esthetic impressians; is esthetically
reoctive. .33** .20
90. Is cancerned with philosaphicol problems. 33 A%
39. Thinks and associctes to ideos in unusuol ways. 32% A41¥*
11, Is protective of those clase to him. —.30* —.10
5. Behaves in a giving way tawards athers. —.29* —-.12
69. Is bothered by demond. 29* RE
22. Feels a lack of persona! meaning in life. ,28* .25
#63. Judges self and others in canventional terms. —-.21 ~.39%*
60. Hos insight info own motives, a2 32
16. Is introspective. .25 31*
7. Favors conservative values in a variety of areas. —.18 —.30*
57.1s an interesting, arresting person. .08 .29*

Note. - Reprinted from Brooks
*Significont at .10 level.
**Significant at .05 level.
***Significant at .01 level.
#ltems olso significantly carrelated for males.

(1973,

Pe

117).
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null hypothesis. However, when considered together with
gsimilar results from different samples they might con-
stitute just as conclusive evidence. But they are not
conclusive from this one investigation alone.

With the commonly-used procedure for correlational
analysis, it is possible to obtain a large number of "sig-
nificant” results which actually could be due to chance
alone, simply by examining a large enough number of vari-
ables. For example, Brooks (1973) reported the data in
Tables 23 and 24. This data is taken from the Berkeley
Guidance Study. The correlations are between measures of
adult functioning at age 30 and satisfactions in artistic
pursuits at each of the three adolescent age periods.
Tables 23 and 24 only include the adult functioning vari-
ables which showed at least one significant correlation
with an artistic interest variable. Actually, 100 adult
functioning variables were used in the investigation.
Consequently, for each sample (males or females) there were
300 sample correlations of interest (100 adult functioning
variables X 3 artistic interest variables). Since an

alpha level of .10 was used for each component significance

test, the expected number of Type I errors would be 30. For
each sample Brooks (1973) found 24 "significant" results for
the male sample and 33 for the female sample. This by it~
self suggests that almost all the “"significant" results are

actually Type I errors. However, this conclusion is obscured
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by leaving out all variables which did not correlate with
artistic interest at any age, by the apparent consistencies
across ages and by the fact that three variables correl-
ated significantly with artistic interests for both the male
and the female samples. The apparent consistencies across
ages 1s especially noticeable for the female sample.

Six variables correlated significantly with artistic
interest at all three age levels and three others correl-
ated significantly at two age levels. This is probably
an artifact, due to conditional Type I error rate. Brooks
(1973) reports that the average intercorrelation of the
ratings of female artistic interests for the three age
periods was .76. So for any one unrelated variable, the

population correlation matrix might be

unrelated Tl i

variable

1st age 0
R = (85)
p 2nd age 0 .76

Brd age 0 n76 076 lJ

This closely resembles some of the population correlation
matrices that have been used in this present study (e.g.,
equation (54)), except that the nonzero correlations are
even higher. Therefore, the effect of the dependence of
the component significance tests on conditional Type I

error rates would be even more pronounced than in the ex-
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amples used in this present study. This means that if

a Type 1 error did occur on one significance test of one
intercorrelation in Table 24, a Type I error would be
much more likely to occur on another component test that
involves the same adult functioning variable. This could
very easily account for the apparent consistencies across
adolescent age levels.

As for the fact that three adult functioning
variables related "significantly"” to artistic interest
variables for both males and females, this could also
have easily occurred by chance. Since 19% of the variables
were related to artistic interest for males and 18% for
females, 3.42% would be expected to overlap by chance
(419 X +18 = .0342).

If a multistage Bonferroni procedure were used on
Brook's (1973) data with <><Fw = .10, only one result for
either sample would be significant, the .64 correlation
between adult functioning variable 66 and artistic interest
in males at 14-18 years (see Table 23). Again, the other
correlations which were deemed significant by Brooks'
(1973) analysis could be classified as borderline results.

These two examples from the literature illustrate
the main conclusions of this study. First, as the number
of component significance tests increase, the probability
of observing one or more Type 1 errors increases rapidly

regardless of any dependence of the component tests.
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Secondly, the dependence among significance tests of inter-
correlation further complicates the Type I error rates.
Generally, the dependence increases the probability of a
relatively large proportion of Type 1 errors occurring
simul taneously. Thirdly, the high conditional Type I
error rates that can occur with certain intercorrelation
patterns can lead to some apparent regularity in results
which would otherwise be discarded as probable Type I
error.

Multiple-test procedures have been widely recom-
mended for multiple comparisons in analysis of variance
for similar reasons. Some multiple-test procedure seems
to be the best kind of solution for the problems in the
currently-used procedure for intercorrelational analysis
(Method I). A multistage Bonferroni procedure has been

outlined and recommended.



134

APPENDIX A

PROOF ABOUT THE TYPE I ERROR CONTROL OF
THE MULTISTAGE BONFERRONI PROCEDURE

Let there be M component significance tests in a
family of tests of intercorrelations. Assume each com-

ponent significance test is of the form

ot iy 0 (Ae1)
Hll Pij- 0 .

Assume further that there are n true component null hy-
potheses (n < M). Specify some nominal value of CD<FW(N)
(esge, +05) to be used in the calculation of O<T by equation
(80). We want to show that the actual familywise Type I
error rate ( CXFW(A)) does not exceed the nominal family-
wise Type I error rate ((:<FW(N)) for any value of n,
0<n<M

For the purposes of this proof, let the multistage
procedure be restricted by the requirement that only one
component null hypothesis may be rejected at any one stage
(this would be impractical for using a multistage pro-
cedure, but the final results would be no different from
the results if this restriction were omitted). Further-

more, let m, be the number of previously non-rejected com-
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th

ponent null hypotheses at the beginning of the 1 stage.

Then my = M at the first stage, m; = M-1 at the second
th

stage, and m; = M=-i+l at the i stage in general (as-

th stage is reached before the termination of

suming the i
the procedure).

First it will be shown that only the first M-n+l
stages need to be considered, since the remaining stages
cannot affect the familywise Type I error rate. For if

the (M-n+2)th stage is reached, then the number of compo-

nent null hypotheses which have been rejected is

M= Mgy = M - [M-(-nv2) + 1]
= M- (n-2+1) (A.2)
=M-n+1 .

However, there are only M-n component null hypotheses
which can be correctly rejected, so NM-n+l rejected com-
ponent null hypotheses must include at least one Type I
error. Since a Type I error must have occurred if the pro-
cedure reaches the (M-n+2)th stage, at no stage following
the (M—n+l)th stage can the first Type I error in the
procedure be made. And the first Type I error is the
critical one since familywise Type I error is the proba-
bility of the occurrence of one or more Type I errors.

So only the first M-n+l stages need to be considered.

For a Type I error to occur in the first M-n+l
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stages, a sample statistical value corresponding to one of
the n true component null hypotheses must exceed the
critical value at the (M-n+l)th stage. For if a Type I
error occurs in the first M-n stages (i.e., the sample
statistical value corresponding to a true component null
hypothesis exceeds the critical value for one of the first
M-n stages), the corresponding sample statistical value
will also exceed the critical value at the (M--n+l)th
stage, since each successive stage gives a less stringent
critical value. By the multistage Bonferroni procedure
the critical value for each component test at the (M-n+l)th

stage is based on

A
~ = . PW(N)
m(M-n+l)
A (N

T M=(M-n+l) + 1 (A.3)

= FW(N)

n .

But by the Bonferroni inequality, the probability of a
sample statistical value corresponding to one of the n
true null hypotheses being greater than the critical value

for the component test (C>(FW(A)) is

!
5
"3

= <
FW(A)
(A.4)

IN

"y
FW(A)
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So, by the multistage Bonferroni procedure, the actual
familywise Type 1 error rate does not exceed the nominal
familywise Type 1 error rate regardless of how many of the

component null hypotheses are actually true.
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APPENDIX B

SAMPLE COMPUTER PROGRAM OUTPUT

This appendix presents a sample of the output

of the computer program used in this study.
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TABLE CONCERNING PSEUDORANDOM NUMBER GENERATOR

Table C.le¢ Total Number of Type I Errors
Total
" N Normal Total Type I Errors
Numbers

Generated Expected Actual
3 15 45,000 150 1472
3 15 45,000 100 82
3| 15 45,000 200P 177
3 15 45,000 100 69
3 4o 120,000 150 1322
3 4o 120,000 100 96
3| 40 120,000 100 85
31 4o 120,000 100 1059
3 | 100 300,000 150 16824
3| 100 300,000 100 98
3 | 100 300, 000 100 1049
3 | 100 300,000 100 93
4 | 15 60,000 300 2372
N 4o 160, 000 300 2842
4L | 4o 160,000 150 133
4 | 40 160,000 200 176




Table C.1 - Continued

150

Total
K N gazggis Total Type 1 Errors
Generated Expected Actual
4 | 100 400,000 300 2972¢
4 | 100 400,000 150 148
4 | 100 400,000 200 2174
6 | 4o 240,000 600 585
6| uo 240,000 650 654
6 40 240,000 450 436
6 | 100 600,000 600 6374
6 | 100 600, 000 650 645
6 | 100 600,000 450 394
8 15 120,000 1,400 1,109%
8 40 320,000 1,400 1,327
8 | 100 | 1,600,000 1,400 1,4112¢
A%This number may be slightly underestimated.

value.

c «10 for this computer run

This number could possibly ‘have exceeded the
expected value.

This actual value was larger than the expected
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TABLES CONCERNING TYPE I ERROR RATES
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Table D.l. Familywise Empirical Size
Matrix Vector
2 Method|Method |Method i, Method | Method | Method
Rp |¥| N |m I I 111 m I 11 III
15| 3 «14h** 047 . 046 2 .093%% ,049 . 048
3 40| 3 .122%* ,036 < 036# 2 .090%* . 0U9 . 049
100 | 3 162%% 044 . Olly 2 J119%* 047 « 046
156 «209%% .04l «0l2 3 116%% [ Ohk . Okl
I 4 4o|6 .246%*% .052 . 048 3 .126%* 04O . 0k 0
100 | 6 .262%* .058 <057 3 137%%  .0kO . 040
15 R1 .669%* ,027 c0264# | 7 <224 03 « O34#
8 40 Fl «752%% L 0hl <043 7 +300%% 046 . OLS
100 R1 .755%* .050 . 0L48 7 .305%% ,051 . 050
15] 2 .079%% .024## .023## | 2 .079**% .033# .033#
(51)° 3 40| 2 .090%* .028## .027# | 2 .090%* .048  .048
100 | 2 +091%* .034#  .033# 2 .091%% 049 . 048
159 2 .150C** . OL6T##F OBUT## | 2 .150°%*% 079 ## 078 ##
(52)b 3 Lo | 2 .077%% J023## J022## | 2 077%%  L028## . 028##
100 | 2 «092%* .033#  .032## | 2 .092** ,048 . 048
15| 2 .062% .QL8## .OL8## |2 062%  .02B## +028##
(53)® 3 4o |2 .092%*% .030## .030## |2 .092%* .06  .O04S
100 | 2 .086%* ,028## .027## |2 .086%* QU8 . 047




Table D.1 - Continued

ot

o Matrix o Vector
a Method|Method | Method n Method | Method | Method
Bp ki N |m I IT ITI I II III
(54)b LO| 3 .110%% .028## «028## 3 .110%* 042 . O41
100| 3 .118%* .016## .Ql6## | 3 J118%* .Q3W# . Q33#
(55 & LO| &4 139*%* .025## .025## | 2 .082%*% .025## .025##
100| 4 160%% 032## «03L## | 2 097%%  .032## .« 03244
(56)P 6 Lol12 .393*% .042 . 042 L ,167%%  ,035#  .034#
10012 .398%% .039 .037 L ,181%* 043 . 042
(s7)® 6 LO{13 .452%% ,042 .042 3 J164%%  02B## +02B##
100|13 .456%* .037 « 035# 3 J134%%  ,035# «034#
(58)b ¢ LO| 9 248%% ,019## OL9## 3 «097%%  L022## «022##
100] 9 «239%* (024## . O024## 3 O04*%  022## 022##

Note. - Familywise empirical size is the proportion of

replications out of 1000 sample replications in which there
occurred one or more Type I errors in the family of tests.
The family of tests includes either the tests of intercorre-
lations in the entire matrix or the tests of intercorrelations
in the first column (vector) only. Method I set o, = .05;
Method II was the assumed-independent-tests correctTo ngy Method
III was the Bonferroni %.
%Number of true component null hypotheses.
Refers to the population correlation matrix designated
by thls equation number in Chapter II.
Xpw = <10 for this computer run
*p < .05; one-tailed test
¥%¥p < .01; one~tailed test
#P < «05; two-tailed test
##p < +01; two-tailed test
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Sumnmary of Tests of Fit of Frequencies
of Number of Type I Errors to a Binomial Distribution

—————

rre———

Matrix Vector
R, N 2 | df's Xz Value | m® |df's x?. Value
151 3 2 2.73 2 1 .23
bo| 3 2 5.58 2 1 . 64
100 3 2 3.80 2 1 5e25%
15| 6 2 16.05%* 3 2 G L *
I bo| 6 2 2.91 3 2 2.31
00| 6 2 .06 3 2 .86
15121 5 72.60%% 7 2 28.086%%
4o | 21 5 7.00 7 2 47
100 | 21 5 348 7 2 .75
151 2 1 3.89% 2 1 3.89%
(51)° yo| 2 1 yin 2 1 .6l
100 2 1 A48 2 1 48
15 | 2 2°  BB.93%* 2 2C LB.95%%
(52)P bo| 2 1 4.78% 2 1 4.78%
100 2 1 . 34 2 1 . 3%
151 2 1 14, 32%* 2 1 14, 32%%
(53)° ho| 2 1 . 34 2 1 . 34
100 2 1 1.50 2 1 1.50
(54)P ko | 3 2 34 . 83% 3 2 34, 83%%
100 | 3 2 63.10%% 3 2 63.10%*
(55)b Lo | & 2 46 72%% 2 1 2.73
100 | 4 2 750 25%% 2 1 «003
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Table D.2 - Continued

T e e .'—_*—zﬁ:-__.m
Matrix Vector
B, k N | u?|af's X value| i |af's A° Value

(56)P ¢ 40|12 3 57.82%% | 4 2 40.91%
100 12 3 107.11%* | 4 2 45.78%

(57)P ¢ “0|13 3 22.90%* 3 2 .1k
100| 13 3 23,51 %% 3 2 6o17%"

(58)P g H0| 9 3 249.89%+ 3 2 123.50%*
100 9 3 174 39%* 3 2 53.01%#

Note. - The characteristics of each case investigated
are reported in the left-hand columns. For each particular
case the observed frequencies for each number of Type 1
errors were compared to frequencies expected by the binomi-
al distribution under the assumption that the component
significance tests are mutually independent. The expected
binomial distribution had p = .05 and n = n'. The statis-
tic for the test of fit was a Pearson X <. The upper tail
of the distribution was lumped together so that the expected
frequency (out of 1000 sample replications) was at least
five.

aAThe number of true component null hypotheses in a
fami%y of tests

Refers to the population correlation matrix designated
by this equation number in Chapter II.

c CXIT = .10 for this computer run

*g< 005

* P - nOl
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Table D.3. Conditional Empirical Size for Method 12

Conditional

Type I Errors Empirisal
Expected Observed Size

/gl 59.0 59

/31 2.9 4 « 068
,ﬂul 2.9 2 <034
/ﬁz 2.9 6 .102
,043 2.9 1 .017

=1, k=154, N=100

aR
bﬁgndit

ional empirical size is the proportion

of sample replications with a Type I error on the

component test of .
cations with a Type tlerror on’/%l.

/. . among those sample repli-
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Table D.4. Conditional Empirical Size for Method 12

Conditional
Type 1 Errors Empirical
Expected Observed Sizeb
/21 W o0 bl
/031 2.2 i .182
_/ﬂl;]_ 2.2 . 12%% .273

Note. - The two tests of this table are com-
sidered a family of tests. A one-talled Bonferroni

Poisson test was used.
a

1
= |0 -
ﬁp - ;\TB\\\ » N= 4o
6.6

0 1
bconditional empirical size is the proportion
of sample replications with a Type I error on the
component test of 3 among those sample repli-
cations with a Type terror on 21°
*fgpw¢: 'Ol"BT £ .005
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Table D.5. Conditional Empirical Size for Method 12

) Conditional
Type I Errors Empirigal
Expected Observed Size
fZl 43.0 43
/31 2.1 12%% .279
,ﬂul 2.1 10%* «233

Note. = The two tests of this table are con-
sidered as a family of tests. A one-tailed Bonfer-
roniaPoisson test was used.

1
R = |9 N = 100
~mp 0 06 ’

0 «6 +6°1
b

Conditional empirical size is the proportion
of sample replications with a Type I error on the
component test of /7. among those sample repli-

cations with a Type Ylerror on pﬁ%l'
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Conditional
Type I Errors Empirigal
Expected Observed Size
/‘?1 46.0 46
/32 2.3 gx# 174
ﬁ,l 2.3 b4 . 087
Puo 2.3 6¢ 130

Note. - The three tests in this table are con-
sidered as a family of tests. A one-tailed Bonfer-

roni Poisson test was used.
a

3p = i\;\\\\ » N =40
0 0 .6

bConditional empirical size is the proportion
of sample replications with a Type I error on the
component test of . among those sample repli-
cations with a Type tderror on /Gbl’

Cp.< .05

*xP

Pp < .0033
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Table D.7. Conditional Empirical Size for Method 1@
Conditional
Type I Errors Empirigal
Expected Observed Size

/ﬂ31 54.0 54

/32 2.7 16%# . 296
Ful 2.7 15%# .278
Pz 2.7 5 +093

Note. - The three tests on this table are considered
a family of tests. A one-tailed Bonferroni Poisson test
was used.

1
R~'6\ N = 100
~ | 00 » T

6

0 0.6°1
b

Conditional empirical size is the proportion
of sample replications with a Type I error on the
component test of : . among those sample replica-
tions with a Type I’ &fror on ,ﬂgl.

#¥p < 015 Pp<< .0033
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Table D.8. Conditional Empirical Size for Method I?

e

Type 1 Errors ngg%:i%g?l

Expected Observed Size
1 68.0 68
f%z 3.4 154 0221
fﬁl 3.4 16%% <235
PLZ 3ok 7C .103
/31 3ol L .059
/52 3ok 3 . 0Ll
/%3 3.4 4 059
/%4 Jeolt 1 «015
/%1 3ok 3 . Ol
Fo 3.4 3 . Oltly
/%3 3ok 2 .029
Fou 34 2 .029

Note. - The eleven tests of this table are consi-
dered a family of tests. A one-tailed Bonferroni Pois-
son test wag used.

a per T

QOO0
leoXeoRe]

06 '
00
| 0 0 00 .6 %J

bConditional empirical size is the proportion of
sample replications with a Type I error on the com-
ponent test of /.. among those sample replications
with a Type I errd? on Iﬁal'

Cp_ < .05
* %

W< «01; £T< + 0009
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Table D.9. Conditional Empirical Size for Method IZ

Type I Errors C%ggiﬁi%gil

Expeeted Observed Size
f%l 49.0 49
/%2 2.4 7¢ c143
fﬂl 2.4 14 286
Ao 2.4 6° .122
/21 2.4 " .082
/?2 2.4 6° 122
f?B 2.4 1 .020
f%u 2.4 1 020
A 2.4 2 .O41
/%2 2.4 6° .122
/%3 2.4 " .082
Ao, 2.4 1 .020

Note. - The eleven tests of this table are consi-
dered a family of tests. A one-tailed Bonferroni

Poisson test was used.
a p —

N 100

n

R
~p

oo O
oo0o

6 ’
00
| 0 0O 00 .6 %J

bConditional empirical size is the proportion of
sample replications with a Type I error on the com-
ponent test of . among those sample replications
with a Type I errd? on /91-

Cp_< .05 3

*¥p

=FW

< +01; P < .0009

T



Table D.10. Conditional Empirical Size for Method I?
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Type I Errors nggiﬁi%gil

Expected Observed Size
f%l 58.0 58
f%l 2.9 2 . 034
/32 2.9 3 .052
A 2.9 4 . 069
fzz 2.9 1 . 017
fus 249 2 034
/22 2.9 11%* .190
/53 2.9 2 034
/5# 2.9 2 «034
f%z 2.9 15%% 259
ng 2.9 2 <034
/Z4 2+9 6 »103
f%5 2.9 4 + 069

Note. - The twelve tests of this table are consi-
dered as a family of tests. A one-tailed Bonferroni

Poisson test was used.
a - o~

—
-

Is
0
R 0
wD 0
.6
.6

b

with a Type I er 3§ on
*¥P < 013 Py < oo/é%

Condltlonal empirical size is the proportion of
sample replications with a Type I error on the com-
ponent test of among those sample replications
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Conditional Empirical Size for Method 12

Type 1 Errors ngg%ﬁ%%gﬁl

Expected Observed Size
/21 48.0 48
fjl 2.4 3 . 062
@2 2.4 7 c146
/11 2.4 3 .062
Bz 2.4 Y . 083
/ﬂ% 2.4 0 . 000
/Ez 2+ 4 g .188
A 2.4 1 . 021
/54 2.4 0 . 000
/ﬂéz 2.4 1h%s «292
péj 2.4 1 .021
/gn 2.4 L . 083
p65 2.4 3 . 062

Note.

dered as a family of tests.
Poisgon te

R
~Pp

b

-

- The twelve tests of this table are consi-

st was used.

-

NO OO+
SO O

0
00

L'6 0 000 %J
Conditional empirical size is the proportion of

-y

s N =100

A one-talled Bonferroni

sample replications with a Type I error on the com-

ponent test of ;
withca Type 1 errd? on

Pr< +05

3 %

=FW

< oOl'

Py

/21

< .0008

. among those sample replications
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p—— = — =

Conditional

Type 1 Errors Empirigal
Expected Observed Size

fr 5.0 54
/12 2.7 1L « 259
fij 2.7 14 .259
/?i 2.7 13%% o241
/?2 2.7 7% .130
f%j 247 14%% «259
A 2.7 1% .278
#o 2.7 g* 148
3 2.7 5 +093
Note. - The eight tests of this table are consi-

dered a family of tests. A one-tailed Bonferroni

Poisson test was used.
a - o

i

006 -6‘J

bConditional empirical size is the proportion of
sample replications with a Type I error on the com-
ponent test of /. . among those sample replications
with a Type I errd? on 1°

*P_ .. < .05, multistag% Bonferroni

*a Fw< 0013 _PT< 00013
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Table D.13. Conditional Empirical Size for Method 12

mmmmm

Conditional

Type I Errors Empirical
Expected Observed Sizeb

/ﬁl 41.0 41

/12 2.0 gx* .220
/0‘4’3 200 13** '317
/21 2.0 1l . 341
/%2 2.0 5 .122
f%B 2.0 2 . 049
/%l 2.0 11%% . 268
/%2 2.0 6° 146
/%3 2.0 5 .122

Note. - The eight tests of this table are consi-
dered a family of tests. A one-tailed Bonferroni Pois-
son test was used. -

a ol

» N 100

R
™p

(oNeoe No N, o
O OO

0
0 .6
LO 0006061J

bConditional empirical size is the proportion of
sample replications with a Type I error on the com-
ponent test of . . among those sample replications
with a Type I errdt on ,%zl-

CPn < .05
**_Fw< «01; E < '0013

T
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