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EULER CHARACTERISTIC OF REAL NONDEGENERATE TROPICAL

COMPLETE INTERSECTIONS

BENOIT BERTRAND AND FREDERIC BIHAN

Abstract. We define nondegenerate tropical complete intersections imitating the correspond-
ing definition in complex algebraic geometry. As in the complex situation, all nonzero inter-
section multiplicity numbers between tropical hypersurfaces defining a nondegenerate tropical
complete intersection are equal to 1. The intersection multiplicity numbers we use are sums of
mixed volumes of polytopes which are dual to cells of the tropical hypersurfaces. We show that
the Euler characteristic of a real nondegenerate tropical complete intersection depends only on
the Newton polytopes of the tropical polynomials which define the intersection. Basically, it is
equal to the usual signature of a complex complete intersection with same Newton polytopes,
when this signature is defined. The proof reduces to the toric hypersurface case, and uses the
notion of E-polynomials of complex varieties.

Introduction

Tropical geometry appeared recently in various fields of mathematics (See [31], [14], [29], [23]).
Tropical varieties can be defined as the topological closure of the image under the valuation of
algebraic varieties over the field of Puiseux Series K. For example T is a tropical hypersurface
if there exists an algebraic hypersurface ZK in (K∗)n such that T = V (Z) where V is the
coordinatewise valuation (we rather take minus the valuation). By a theorem due to Kapranov
(see Theorem 3.2) tropical hypersurfaces are nonlinearity loci of piecewise-linear convex functions
on Rn of the form f trop(x) = maxω∈Ω(< x, ω > −aω) where Ω is a finite subset of Zn and aω a real
number. One of the important application of tropical geometry is due to Mikhalkin [23] who gave
a combinatorial way to count the number of curves of given degree and genus passing through the
appropriate number of given generic points. Mikhalkin’s proof uses a complexification of tropical
curves and a patchworking principle. The algorithm exposed in [23] has a real counterpart for
which it is necessary to introduce the real part of complexified tropical curves. The relation
between these real tropical objects and objects appearing in Viro combinatorial patchworking
method is very deep (see [39], for example). Actually nonsingular real tropical hypersurfaces
are equivalent from the topological point of view to the so called primitive T -hypersurfaces
appearing in the combinatorial Viro method.

In [34], Bernd Sturmfels generalized the combinatorial patchworking method to complete in-
tersections (see Section 2). The above definition also applies for tropical varieties. Namely, one
can define a tropical variety to be the image of an algebraic variety over K under the valuation
map (see Section 3). This leads also to the notion of complex tropical variety and real tropical
variety (see Section 6). In Section 5 we give a definition for the notion of nondegenerate tropical
complete intersection which builds upon the definition of a nonsingular tropical hypersurface in
a manner similar to the classical complex situation, recalled in Section 1. We extend in Section 4
the definition of tropical intersection multiplicity numbers which was introduced by Mikhalkin
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2 BENOIT BERTRAND AND FREDERIC BIHAN

in [27] and show that our definition is consistent with the classical situation. In particular, all
intersection multiplicity numbers which occur in a nondegenerate tropical complete intersection
are equal to 1 (or 0). We think that our definition of tropical intersection multiplicity numbers
can be of independent interest. The goal of this paper is to extend a previous result of the first
author (see [3]) from the case of hypersurfaces to the case of complete intersections. Roughly
speaking, we prove that if f1, . . . , fk are polynomials in K[z1, . . . , zn] which define a nondegener-
ate tropical complete intersection Y trop, then the Euler characteristic of the corresponding real
tropical complete intersection RY trop depends only on the Newton polytopes ∆1, . . . ,∆k of the
polynomials and is equal to the mixed signature σ̃(Y ) of a generic complex intersection Y defined
by complex polynomials with the same Newton polytopes. The precise statement is given in
Theorem 8.1. The notion of mixed signature is defined by means of the so called E-polynomials
(see Section 7). When Y is a projective complete intersection of even dimension (over C), then
the mixed signature σ̃(Y ) is equal to the usual signature σ(Y ) =

∑
p+q=0 [2] (−1)php,q(Y ), where

the hp,q(Y ) are Hodge numbers. One advantage of the mixed signature is that it is defined even
for a non-projective variety and is additive, as it is the case for the Euler characteristic. With
the help of this additivity property, we are able to reduce the proof of the main result to a
proof of the toric hypersurface case. The proof of the toric hypersurface case uses heavily results
obtained by V. Batyrev and L. Borisov in the paper [1].

1. Toric geometry

We fix some notations and recall some standard properties of toric geometry. We refer to [15]
for more details. Let N ≃ Zn be a lattice of rank n and M = HomZ(N, Z) be its dual lattice.
The associated complex torus is TN := Spec(C[M ]) = HomZ(M, C∗) = N ⊗Z C∗ ≃ (C∗)n. Let
f ∈ C[M ] be a Laurent polynomial in the group algebra associated with M

f(x) =
∑

cmxm,

where each m belongs to M and only a finite number of cm are nonzero. We will usually have
M = Zn, so that C[M ] = C[x±1

1 , . . . , x±1
n ]. The support of f is the subset of M consisting of all

m such that the coefficient cm is nonzero. The convex hull of this support in the real affine space
generated by M is called the Newton polytope of f . This is a lattice polytope, or a polytope with
integer vertices, which means that all the vertices of ∆ belong to M . In this paper all polytopes
will be lattice polytopes and the ambient lattice M will be clear from the context. We denote
by M(∆) the saturated sublattice of M which consists of all integer vectors parallel to ∆ and by
N(∆) the dual lattice. The dimension of ∆ is the rank of M(∆), or equivalently the dimension
of the real vector space M(∆)R generated by ∆. The polynomial f (or rather x−mf ∈ C[M(∆)]
for any choice of m in the support of f) defines an hypersurface Zf in the torus TN(∆). Let X∆

denote the projective toric variety associated with ∆. The variety X∆ contains TN(∆) as a dense

Zarisky open subset and we denote by Z̄f the Zarisky closure of Zf in X∆. Let Γ be any face

of ∆. If fΓ is the truncation of f to Γ, that is, the polynomial obtained from f by keeping only
those monomials whose exponents belong to Γ, then Z̄f ∩TN(Γ) = ZfΓ and Z̄f ∩XΓ = Z̄fΓ . We
have the classical notion of nondegenerate Laurent polynomial.

Definition 1.1. A polynomial f with Newton polytope ∆ is called nondegenerate if for any face
Γ of ∆ of positive dimension (including ∆ itself), the toric hypersurface ZfΓ is a nonsingular
hypersurface.

Note that if Γ is a vertex of ∆, then ZfΓ is empty. In the previous definition, one may

equivalently consider fΓ as a polynomial in C[M ] and thus look at the corresponding hypersurface
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of the whole torus TN . Indeed, this hypersurface of TN is the product of ZfΓ ⊂ TN(Γ) with the
subtorus of TN corresponding to a complement of M(Γ) in M . If ∆ is the Newton polytope of
f , then the projective hypersurface Z̄f ⊂ X∆ is nonsingular if and only if f is nondegenerate
and X∆ has eventually a finite number of singularities which are zero-dimensional TN(∆)-orbits
corresponding to vertices of ∆. Consider polynomials f1, . . . , fk ∈ C[M ] and denote by ∆i the
Newton polytope of fi. Let ∆ be the Minkowsky sum of these polytopes

∆ = ∆1 + · · · + ∆k.

Each polynomial fi seen as a polynomial in C[M(∆)] defines a toric hypersurface Zfi,∆ in
TN(∆) and it makes sense to consider the toric intersection

(1.1) Zf1,∆ ∩ · · · ∩ Zfk,∆ ⊂ TN(∆).

Denote by Z̄fi,∆ the Zarisky closure in X∆ of Zfi,∆. For each i = 1, . . . , k there is a toric

surjective map ρi : X∆ → X∆i
such that Zfi,∆ = ρ−1

i (Zfi
) and Z̄fi,∆ = ρ−1

i (Z̄fi
). This leads to

(1.2) Z̄f1,∆ ∩ · · · ∩ Z̄fk,∆ ⊂ X∆.

Each face Γ of ∆ can be uniquely written as a Minkowsky sum

(1.3) Γ = Γ1 + · · · + Γk

where Γi is a face of ∆i. Substituting the truncation gi := fΓi

i to fi and Γi to ∆i gives the toric
intersection

(1.4) Zg1,Γ ∩ · · · ∩ Zgk,Γ ⊂ TN(Γ).

which leads to

(1.5) Z̄g1,Γ ∩ · · · ∩ Z̄gk,Γ ⊂ XΓ.

Similarly to the hypersurface case the intersection of (1.2) with TN(Γ) (resp., XΓ) coincides
with (1.4) (resp., (1.5)). Moreover, the intersection (1.2) is the union over all faces Γ of ∆ of the
toric intersections (1.4).

The Cayley polynomial associated with f1, . . . , fk is the polynomial F ∈ C[M ⊕ Zk] defined
by

(1.6) F (x, y) =
k∑

i=1

yifi(x).

Its Newton polytope is the Cayley polytope associated with ∆1, . . . ,∆k and will be denoted by

(1.7) C(∆1, . . . ,∆k) ⊂ MR × Rk.

Since F is a homogeneous (of degree 1) with respect to the variable y, the polytope C(∆1, . . . ,∆k)
lies on a hyperplane and has thus dimension at most n + k − 1. In fact, the dimension of
C(∆1, . . . ,∆k) is dim(∆) + k − 1. The faces of C(∆1, . . . ,∆k) are themselves Cayley polytopes.
Namely, the faces of C(∆1, . . . ,∆k) are the Newton polytopes of all polynomials

∑

i∈I

yif
Γi

i (x)

such that ∅ 6= I ⊂ {1, . . . , k} and Γ =
∑

i∈I Γi is a face of
∑

i∈I ∆i with Γi a face of ∆i for each
i. We will call admissible such a collection (Γi)i∈I . Note that by face we do not mean proper
face. In particular (∆i)i∈I is admissible for any non empty subset I of {1, . . . , k}. If (Γi)i∈I is
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admissible, we also call admissible the collection of polynomials (fΓi

i )i∈I and the corresponding
toric intersection

(1.8)
⋂

i∈I

Z
f
Γi

i
,Γ

⊂ TN(Γ).

Definition 1.2. The collection (f1, . . . , fk) is nondegenerate if the associated Cayley polynomial

F (x, y) =
∑k

i=1 yifi(x) is nondegenerate.

The following result is based on the classical Cayley trick (see, for example, [17]).

Proposition 1.3. The collection (f1, . . . , fk) is nondegenerate if and only if any admissible toric
intersection (1.8) is a complete intersection.

Proof. As mentionned earlier, we can consider the polynomials fΓi

i occurring in (1.8) as poly-
nomials in C[M ] and thus look at the corresponding intersection in the whole torus TN . An
easy computation shows that if hypersurfaces defined by polynomials gi ∈ C[M ], i ∈ I, do not

intersect transversally at a point X ∈ TN , then there exists λ = (λj)j∈J ∈ (C∗)|J | with J ⊂ I

so that
∑

j∈J yjgj(x) defines an hypersurface with a singular point at (X, λ) ∈ TN × (C∗)|J |.

Similarly, if a truncation
∑

i∈I yigi(x) of F to a face of C(∆1, . . . ,∆k) defines an hypersurface
with a singular point (X, λ) in the corresponding torus, then the hypersurfaces defined by gi for
i ∈ I will not intersect transversally at X ∈ TN . ¤

2. Combinatorial patchworking

The combinatorial patchworking, also called T -construction, is a particular case of the Viro
method. The general Viro method starts with a convex polyhedral subdivision of a polytope ∆
contained in the positive orthant (R+)n of Rn. Recall that in this paper all polytopes, including
those of a polyhedral subdivision, are lattice polytopes. Here, the ambient lattice is Zn.

Definition 2.1. A polyhedral subdivision of a polytope ∆ of dimension n is called convex (or
coherent) if there exists a convex piecewise-linear function ν : ∆ → R whose maximal domains
of linearity coincide with the n-polytopes of the subdivision.

We begin with a brief description of the combinatorial patchworking in the hypersurface case
(see, for example, [21], [38] or [17]). Let ∆ ⊂ (R+)n be a polytope of maximal dimension n.
Start with a convex triangulation S of ∆ and a sign distribution δ : vert(S) → {±1} at the
vertices of S. Let ν : ∆ → R be any function which certifies the convexity of S and consider the
polynomial

ft(x) =
∑

vert(S)

δ(w)tν(w)xw

where the sum is taken over the set of vertices of S. Such a polynomial is called a T-polynomial.
Denote by s(i) the reflection about the i-th coordinate hyperplane in Rn. Let ∆∗ be the union

of the 2n symmetric copies of ∆ via compositions of these reflections and extend S uniquely to
a triangulation S∗ which is symmetric with respect to the coordinate hyperplanes. Extend the
sign distribution δ to a sign distribution δ∗ at the vertices of S∗ so that a vertex of S∗ and its
image under a reflection s(i) have the same sign if and only if the i-th coordinate of the vertex is
even. If σ is an n-simplex of S∗ whose vertices have different signs, select the hyperplane piece
which is the convex hull of the middle points of the edges of σ with endpoints of opposite signs.
The union of all these selected pieces produces a piecewise-linear hypersurface H∗ in ∆∗.
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We perform identifications on the boundary of ∆∗ in the following way. Let Γ be any proper
face of ∆ and consider the cone generated by all outward real vectors which are orthogonal to
the facets of ∆ incident to Γ. The integer vectors in this cone form a finitely generated semi-
goup. Identify two points lying on two symmetric copies of Γ whenever they are symmetric

via s(1)
v1 ◦ s(2)

v2 ◦ · · · ◦ s(n)
vn for some v = (v1, . . . , vn) in this semi-group. Denote by ∆̃ the

result of these identifications. By a classical result (see, for example, [17] Theorem 5.4 p. 383 [34]

Proposition 2), there is an homeomorphism between the real part RX∆ of X∆ and ∆̃. Moreover,
this homeomorphism can be choosen so that it respects the stratification by torus orbits in the
sense that the real torus orbit corresponding to a face Γ of ∆ is sent to the image under the
previous identifications of the union of the symmetric copies of the interior of Γ. In particular,
the dense real torus (R∗)n ⊂ RX∆ is sent to the union of the symmetric copies of the interior of

∆. Denote by H̃ the image of H∗ in ∆̃.

Theorem 2.2 (T-construction, O. Viro). For t > 0 sufficiently small, the polynomial ft is

nondegenerate. Moreover, there exists an homeomorphism RX∆ → ∆̃ which respects the strati-
fication by torus orbits and induces an homeomorphism between the real part of the hypersurface

Z̄f ⊂ X(∆) and H̃.

We now describe the extension of the combinatorial patchworking to the case of complete
intersections due to B. Sturmfels [35]. Start with k ≥ 2 polytopes ∆1, . . . ,∆k in (R+)n. Assume
that each ∆i comes with a convex polyhedral subdivision Si induced by a convex piecewise-
linear map νi : ∆i → R. These functions ν1, . . . , νk define a convex polyhedral subdivision of
the Minkowsky sum ∆ = ∆1 + · · ·+∆k in the following way (see [34], [33] or [5]). Let ∆̂i be the

convex hull of the set {(x, νi(x)), x ∈ ∆i} in Rn × R . Let ∆̂ ⊂ Rn × R be the Minkowski sum

∆̂1 + · · ·+∆̂k. Let MS be the convex polyhedral subdivision of ∆ induced by ν. Each lower face
Γ̂ of ∆̂ can be uniquely written as a Minkowsky sum Γ̂1 + · · ·+ Γ̂k of lower faces of ∆̂1, . . . , ∆̂k.
Projecting to ∆, this gives a representation of each polytope Γ of MS as Γ = Γ1 + · · ·+Γk with
Γi ∈ Si for i = 1, . . . , k. Such a representation is not unique in general, and we shall always
use the one obtained by projecting lower faces of ∆̂. The polyhedral subdision MS together
with the associated representation of each of its polytopes is called a convex or coherent mixed
subdivision. Sturmfels’ theorem requires the following genericity condition. Namely, assume that
each subdivision Si is a triangulation and that

dimΓ = dimΓ1 + · · · + dimΓk

for any Γ = Γ1 + · · ·+ Γk ∈ MS with Γi ∈ Si. We call such a mixed subdivision a convex tight
mixed subdivision. (See [5, 6] for other versions of the Viro method for complete intersections).

Suppose now that for i = 1, . . . , k a sign distribution δi : vert(Si) → ±1 is given. Consider
the T-polynomials associated with these data

fi,t(x) =
∑

vert(Si)

δi(w)tνi(w)xw .

Extend MS to a subdivision MS∗ of ∆∗ by means of the reflections about coordinate hyper-
planes. Hence MS∗ consists of the polytopes s(Γ) = s(Γ1)+ · · ·+s(Γk) where s is a composition
of coordinate hyperplane reflections and Γ = Γ1 + · · ·+ Γk ∈ MS (Γi ∈ Si). Extend δi to a sign
distribution δ∗i at the vertices of S∗

i using the rule described above. Define a sign distribution
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δ : vert(MS) → {±1}k by assigning (δ1(v1), . . . , δk(vk)) to each vertex v of MS with represen-
tation v = v1 + · · · + vk. Extend δ to a sign distribution δ∗ at the vertices of MS∗ so that the
i-th sign of a symmetric copy s(v) of v = v1 + . . . + vk is δ∗i (s(vi)).

For any i = 1, 2, . . . , k, let H∗
i ⊂ ∆∗

i be the piecewise-linear hypersurface constructed via the

combinatorial patchworking from Si and δi. Let H∆,∗
i ⊂ ∆∗ be the union over all polytopes

s(Γ) = s(Γ1) + . . . + s(Γk) ∈ MS∗ of ⊕j 6=is(Γj) + H∗
i ∩ s(Γi) ⊂ s(Γ). Let H̃∆

i denote the image

of H∆
i in ∆̃.

Theorem 2.3 (B. Sturmfels). For t > 0 sufficiently small the collection (f1,t, . . . , fk,t) is nonde-

generate. Moreover, there exists an homeomorphism RX∆ → ∆̃ which respects the stratification
by torus orbits and induces for each i an homeomorphism between the real part of the hypersurface

Z̄∆
f ⊂ X(∆) and H̃∆

i .

These two versions – for hypersurfaces and complete intersections – of the combinatorial patch-
working are related by the so-called combinatorial Cayley trick. Consider the Cayley polynomial
Ft ∈ R[x, y] associated with (f1,t, . . . , fk,t)

Ft(x, y) =
k∑

i=1

yi fi,t(x) .

Its Newton polytope is the Cayley polytope C(∆1, . . . ,∆k) ⊂ Rn+k
+ . Let (a, b) be coordinates

on Rn+k = Rn × Rk. Consider the subspace B of Rn+k defined by b1 = b2 = · · · = bk = 1/k
and identify it with Rn via the projection (a, b) 7→ a. This identifies B ∩ C(∆1, . . . ,∆k) with
∆ = ∆1 + · · · + ∆k dilated by 1/k. Note that the space defined by bi = 1 and bj = 0 for
j 6= i intersects C(∆1, . . . ,∆k) along a face which can be identified with ∆i via the projection.
Consider a polyhedral subdivision of C(∆1, . . . ,∆k). If F is a polytope of maximal dimension
dim∆ + k − 1 in this subdivision, then it intersects the space defined by bi = 1 and bj = 0 for
j 6= i along a nonempty face Fi, which projects to a (nonempty) subpolytope Γi of ∆i. Then
F ∩ B is identified via the projection with the polytope Γ = Γ1 + · · · + Γk ⊂ ∆ dilated by
1/k. This gives a correspondence between polyhedral subdivisions of C(∆1, . . . ,∆k) and mixed
subdivisions of ∆ = ∆1 + · · · + ∆k. It is easily seen that triangulations of C(∆1, . . . ,∆k) are
sent to tight mixed subdivision via this correspondence. The following result can be found, for
example, in [33].

Proposition 2.4. The correspondence described above is a bijection between the set of convex
polyhedral subdivision of C(∆1, . . . ,∆k) and the set of mixed subdivisions of ∆ = ∆1 + · · ·+ ∆k.
Precisely, let ν : C(∆1, . . . ,∆k) → R be any convex piecewise-linear function and let νi denote
its restriction to ∆i identified with a face of C(∆1, . . . ,∆k) via the projection (a, b) 7→ a. Then
the correspondence described above sends the coherent polyhedral subdivision of C(∆1, . . . ,∆k)
defined by ν to the coherent mixed subdivision of ∆ defined by (ν1, . . . , νk).

Note that in the situation of Theorem 2.3, the Cayley polynomial Ft is a T-polynomial. The
non degeneracy of (f1,t, . . . , fk,t) in Theorem 2.3 follows from Proposition 1.3 and Theorem 2.2
applied to Ft.

3. Standard definitions and properties in tropical geometry

The setting and notation here are the same as in [3]. A detailed exposition can be found
in [23] and in [20], for example. Let K be the field of Puiseux series. An element of K is a series
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g(t) =
∑

r∈R brt
r where each br is a complex number and R ⊂ Q is bounded from below and

contained in an arithmetic sequence. Consider the valuation val(g(t)) := min{r | br 6= 0}. Using
Mikhalkin’s conventions, we rather use minus the valuation v(g) := − val(g). Define

V : (K∗)n −→ Rn

z 7−→ (v(z1), . . . , v(zn)).

Let f be a polynomial in K[z1, . . . , zn] = K[z]. It is of the form f(z) =
∑

ω∈A cωzω with A a
finite subset of Zn and cω ∈ K∗. Let Zf = {z ∈ (K∗)n | f(z) = 0} be the zero set of f in (K∗)n.

Definition 3.1. The tropical hypersurface Ztrop
f associated to f is the closure (in the usual

topology) of the image under V of Zf :

Ztrop
f = V (Zf ) ⊂ Rn.

There are other equivalent definitions of a tropical hypersurface. Namely, define

ν : A −→ R

ω 7−→ −v(cω)

Its Legendre transform is the piecewise-linear convex function

L(ν) : Rn −→ R

x 7−→ maxω∈A(x · ω − ν(ω))

Theorem 3.2 (Kapranov). The tropical hypersurface Ztrop
f is the corner locus of L(ν).

The corner locus of L(ν) is the set of points at which it is not differentiable. Another way to define
a tropical hypersurface is to use the tropical semiring Rtrop, which is R∪{−∞} endowed with the
following tropical operations. The tropical addition of two numbers is the maximum of them,
and thus its neutral element is −∞. The tropical multiplication is the ordinary addition with
the convention that x + (−∞) = −∞+ x = −∞. Removing the neutral element for the tropical
addition, we get the one dimensional tropical torus Trop := R = Rtrop \ {−∞}. A multivariate
tropical polynomial is a polynomial in R[x1, . . . , xn] where the addition and multiplication are the
tropical ones (strictly speaking, the coefficients are in Rtrop, but as usual we omit the monomials
whose coefficients are the neutral element for the addition). Hence, a tropical polynomial is
given by a maximum of finitely many affine functions whose linear parts have integer coefficients
and constant parts are real numbers. The tropicalization of a polynomial

f(z) =
∑

ω∈A

cωzω ∈ K[z]

where the coefficients cω ∈ K are all nonzero is the tropical polynomial

Trop(f)(z) =
∑

ω∈A

v(cω)zω ∈ R[z].

This tropical polynomial coincides with the piecewise-linear convex function L(ν) defined above.

Therefore, Theorem 3.2 asserts that Ztrop
f is the corner locus of Trop(f). Conversely, the corner

locus of any tropical polynomial is a tropical hypersurface (just take a polynomial in K[z] whose
coefficients have the right valuations). For these reasons, we will sometimes speak about the
tropical hypersurface defined by a polynomial f without specifying if f is in K[z] or if f is a
tropical polynomial (the tropicalization of the latter).
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The Newton polytope of the tropical hypersurface Ztrop
f is the convex hull of A and will be

denoted by ∆. One can associate to Ztrop
f a polyhedral subdivision S of ∆ in the following way.

Let ∆̂ ⊂ Rn × R be the convex hull of all points (ω, v(cω)) with ω ∈ A. Define

(3.1)
ν̂ : ∆ −→ R

x 7−→ min{y | (x, y) ∈ ∆̂}.

The domains of linearity of ν̂ form a convex polyhedral subdivision S of ∆. The hypersurface
Ztrop

f is an (n− 1)-dimensional piecewise-linear complex which induces a polyhedral subdivision

Ξ of Rn. We will call cells the elements of Ξ. Note that these cells have rational slopes. The
n-dimensional cells of Ξ are the closures of the connected components of the complement of
Ztrop

f . The lower dimensional cells of Ξ are contained in Ztrop
f and we will just say that they are

cells of Ztrop
f . Both subdivisions S and Ξ are dual in the following sense. There is a one-to-one

correspondence between Ξ and S, which reverses the inclusion relations, and such that if σ ∈ S
corresponds to ξ ∈ Ξ then

(1) dim ξ + dimσ = n,
(2) the cell ξ and the polytope σ span orthonogonal real affine spaces,
(3) the cell ξ is unbounded if and only if σ lies on a proper face of ∆.

Note that under this correspondence the cells of Ztrop
f correspond to positive dimensional poly-

topes of S. We now underline some similarities between complex toric hypersurfaces and tropical
hypersurfaces. As in the complex case, we can start with a polynomial f whose exponent vectors
belong to a lattice M ≃ Zn. Then, in view of the definition of L(ν) and Theorem 3.2, the tropical
hypersurface lies in the real vector space NR ≃ Rn generated by the lattice N dual to M . This
real vector space NR can be interpreted as the tropical torus TropN associated with the lattice
N , so that Ztrop

f ⊂ TropN = NR is in fact a toric tropical hypersurface. The polynomial f also

defines a toric tropical hypersurface in N(∆)R ≃ Rdim∆ and Ztrop
f ⊂ NR is the product of this

hypersurface with the tropical torus ≃ Rn−dim∆ associated with (the dual of) a complement of

M(∆) in M . The unbounded cells of Ztrop
f gives rise to toric tropical hypersurfaces defined by

truncations of f to faces of ∆. Namely, consider a face Γ of ∆ and let γ ⊂ N be the semigroup
formed by all elements of N which are identically zero on M(Γ) and are negative on any vector
w = m′ − m ∈ M(∆) with m′ ∈ ∆ \ Γ and m ∈ Γ (in other words, γ consists of all integer
vectors of N orthogonal to Γ and going outside ∆). Note that N(Γ) is the quotient N

γ+(−γ) ,

where γ + (−γ) is the subgroup of N generated by the semigroup γ. Consider the unbounded

cells of Ztrop
f which intersect any hyperplane {w ∈ MR | v ·w = c} with c big enough and v in γ.

The cells of the tropical hypersurface Ztrop
fΓ ⊂ N(Γ)R are exactly the images of these cells under

the quotient map NR → N(Γ)R. Comparing with the classical complex situation, this leads to
the notion of tropical variety Trop∆ associated with ∆ with properties analogous to those of the
complex projective toric variety X∆. Geometrically, one can think about Trop∆ as being the
image of ∆ by the composition of a translation and a dilatation, so that Z̄trop

f ⊂ Trop∆ can be

obtained from Ztrop
f by cutting the the unbounded cells of Ztrop

f along the faces of Trop∆. For

the sake of completness, we recall the definition of a tropical variety in NR (see, for example,
[14] and [16]).

Definition 3.3. A tropical variety in NR is the closure of the image under V of the zero set of
an ideal I ⊂ K[z1, . . . , zn] = K[z]. We will denote this tropical variety by Ztrop

I .
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It turns out that the tropical variety Ztrop
I is the common intersection of all tropical hyper-

surfaces Ztrop
f for f ∈ I (see [32, 30]). There exists a finite number of polynomials f1, . . . , fk ∈

I ⊂ K[z] so that Ztrop
I is the common intersection of the corresponding tropical hypersurfaces

(see [7, 18]). Such a collection of polynomials is called a tropical basis of Ztrop
I . On the other

hand, it is known that the common intersection of tropical hypersurfaces is not always a tropical
variety.

4. Intersection multiplicity numbers between tropical hypersurfaces

Recall that all polytopes under consideration have vertices in the underlying lattice M ≃
Zn. A k-dimensional simplex σ with vertices m0,m1, . . . , mk is called primitive if the vectors
m1 − m0, . . . , mk − m0 form a basis of the lattice M(σ), or equivalently, if these vectors can
be completed to form a basis of M . Obviously, the faces of a primitive simplex are themselves
primitives simplices.

Consider a k-dimensional vector subspace of MR with rational slopes. It intersects M in a
saturated subgroup γ of rank k and coincides with the real vector space γR generated by γ. Any
basis of γ produces an isomorphism between γ and Zk, and then by extension an isomorphism
between γR and Rk. Let Volγ be the volume form on γR obtained as the pull-back via such an

isomorphism of the usual Euclidian k-volume on Rk. For simplicity, we will write Volk instead
of Volγ since the lattice γ will be clear from the context. Note that Volk does not depend on

the isomorphism γ ≃ Zk since two basis of γ are obtained from each other by integer invertible
linear map which has determinant ±1. Any basis (γ1, . . . , γk) of γ generate a k-dimensional
parallelotope P ⊂ γR (isomorphic to the cube [0, 1]k ⊂ Rk) called fundamental parallelotope of γ
and which verifies Volk(P ) = 1. Two primitive k-simplices on γR have the same volume under
Volk (they are interchanged by an invertible integer linear map), and this volume is 1

k! since a
fundamental parallelotope of γ can be subdivided into k! primitive k-simplices. We will often
use the normalized volume

volk( · ) := k! · Volk( · )

on γR. This normalized volume takes all nonnegative integer values on polytopes (with vertices
in γ), and we have volk(σ) = 1 for a polytope σ if and only if σ is a k-dimensional primitive
simplex. We will use the following elementary fact.

Remark 4.1. Let γ be a subgroup of a free abelian group Λ of finite rank. Assume that Λ and
γ have the same rank k, so that the index [Λ : γ] of γ in Λ is well-defined. Then, for any basis
(γ1, . . . , γk) of γ and any basis e = (e1, . . . , ek) of Λ we have

[Λ : γ] = Volk(G) = volk(g) = |det(Gij)|,

where G (resp., g) is the k-dimensional parallelotope (resp., k-dimensional simplex) generated
by γ1, . . . , γk and (Gij) is the k × k-matrix whose j-th column is the vector of coordinates of γj

with respect to (e1, . . . , ek).

Consider now tropical polynomials f1, . . . , fk in R[x1, . . . , xn] or more generally in R[M ] with
M ≃ Zn. Denote by ∆i the Newton polytope of fi. Recall that each tropical hypersurface
Ztrop

fi
defines a piecewise linear polyhedral subdivision Ξi of NR which is dual to a convex
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polyhedral subdivision Si of ∆i. The union of these tropical hypersurfaces defines a piecewise-
linear polyhedral subdivision Ξ of NR. Any non-empty cell of Ξ can be written as

(4.1) ξ =
k⋂

i=1

ξi

with ξi ∈ Ξi for i = 1, . . . , k. Any cell ξ ∈ Ξ can be uniquely written in this way if one requires
that ξ lies in the relative interior of each ξi. We shall always refer to this unique form. Denote by
MS the mixed subdivision of ∆ = ∆1 + · · ·+∆k induced by the tropical polynomials f1, . . . , fk.
Recall that any polytope σ ∈ MS comes with a privileged representation

σ = σ1 + · · · + σk

with σi ∈ Si. The above duality-correspondence applied to the (tropical) product of the tropical
polynomials gives rise to the following fact.

Proposition 4.2. There is a one-to-one duality correspondence between Ξ and S, which reverses
the inclusion relations, and such that if σ ∈ MS corresponds to ξ ∈ Ξ then

(1) if ξ =
⋂k

i=1 ξi with ξi ∈ Ξi (and ξ lies in the relative interior of ξi) for i = 1, . . . , k, then
σ has representation σ = σ1 + · · · + σk where each σi is the polytope dual to ξi.

(2) dim ξ + dimσ = n,
(3) the cell ξ and the polytope σ span orthonogonal real affine spaces,
(4) the cell ξ is unbounded if and only if σ lies on a proper face of ∆.

We put weights on the cells of each subdivision Ξi in the following way. If ξi ∈ Ξi is a cell
of maximal dimension n (which means that ξi is not a cell of the tropical hypersurface Ztrop

fi
),

then its weight is defined by w(ξi) := 0. If ξi ∈ Ξi is a cell of positive codimension di, then

w(ξi) := voldi
(σi)

where σi ∈ Si is the polytope corresponding to ξi. We now define weights on the cells of Ξ in
the following way. Consider a cell ξ ∈ Ξ

ξ =

k⋂

i=1

ξi

where ξi ∈ Ξi for i = 1, . . . , k (and ξ lies in the relative interior of each ξi). Let σi ∈ Si be the
polytope corresponding to ξi. Set di := codim ξi = dimσi and d := codim ξ = dimσ. Recall
that for a polytope P ⊂ MR, we denote by M(P ) the subgroup of M consisting of all integer
vectors which are parallel to P .

Definition 4.3. The weight of ξ is defined as follows.

• (Tranversal case.) If d1 + · · · + dk = d, then

w(ξ) =
(∏k

i=1 w(ξi)
)
· [M(σ) : M(σ1) + · · · + M(σk)]

=
(∏k

i=1 voldi
(σi)

)
· [M(σ) : M(σ1) + · · · + M(σk)]

• (General case.) Translate the tropical hypersurfaces by small generic vectors so that
all intersections emerging from ξ are transversal intersections. Define w(ξ) as the sum
of the weights at the transversal intersections emerging from ξ and which are cells of
codimension d.
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Our weights are similar to those introduced by Mikhalkin in [27] in order to define tropical
cycles. Note that in [27] only top-dimensional cells are equipped with weights. In our situation,
the top-dimensional cells of the cycle corresponding to the intersection of our tropical hyper-
surfaces are cells ξ ∈ Ξ of codimension d = k. It follows straightforwardly from the definitions
and Lemma 4.4 below that on these top-dimensional cells our weights coincide with those of
Mikhalkin. We will show in Theorem 4.5 that our weight does not depend (in the non transver-
sal case) on the translation vectors. It is then natural to interpret w(ξ) as being the intersection

multiplicity number between the tropical hypersurfaces Ztrop
f1

, . . . , Ztrop
fk

along the cell ξ.

Lemma 4.4. Let γ1 and γ2 be saturated subgroups of a free group N such that γ1 + γ2 and N
have same rank. Then the index of γ1 + γ2 in N satisfies to

[N : γ1 + γ2] = [(γ1 ∩ γ2)
⊥ : γ⊥

1 + γ⊥
2 ],

where γ⊥ denotes the subgroup of the dual lattice M = HomZ(N, Z) consisting of all elements of
M which vanish on a subgroup γ of N .

Proof. If γ1 ∩ γ2 = {0} then (γ1 ∩ γ2)
⊥ = M and the corresponding equality has been proven

in [25]. The general case reduces to this case in the following way. Let n be the rank of N . If
γ1 and γ2 are saturated then so is γ1 ∩ γ2. This implies that the quotient N/(γ1 ∩ γ2) is a free
group of rank n − rk (γ1 ∩ γ2). We have a group isomorphism

N

γ1 + γ2
≃

N/(γ1 ∩ γ2)

(γ1 + γ2)/(γ1 ∩ γ2)

and also

(γ1 + γ2)/(γ1 ∩ γ2) =
γ1

γ1 ∩ γ2
+

γ2

γ1 ∩ γ2
.

The group dual to N/(γ1 ∩ γ2) is isomorphic to (γ1 ∩ γ2)
⊥ ⊂ M . It remains to note that if

γ1 and γ2 are saturated subgroups of N , then for i = 1, 2 the subgroup γi

γ1∩γ2
of N

γ1+γ2
is also

saturated. ¤

Let P1, . . . , Pℓ be polytopes with vertices in a saturated lattice γ of rank ℓ. The map
(λ1, . . . , λℓ) 7→ Volℓ(λ1P1 + · · · + λℓPℓ) is a homogeneous polynomial map of degree ℓ. The
coefficient of the monomial λ1 · · ·λℓ is called the mixed volume of P1, . . . , Pℓ and is denoted by

MVℓ(P1, . . . , Pℓ).

A famous theorem due to Bernstein states that this mixed volume is the number of solutions
in the torus associated with the lattice γ of a generic polynomial system f1 = . . . = fℓ = 0
where each fi has Pi as Newton polytope. Note that MVℓ(P1, . . . , Pℓ) = 0 if P = P1 + · · · + Pℓ

has not full dimension ℓ or if at least one Pi has dimension zero. We may also consider mixed
volumes associated with any number m ≤ ℓ of polytopes among P1, . . . , Pℓ (see [9]). Namely, let
P1, . . . , Pm be m ≤ ℓ polytopes with vertices in a lattice of rank ℓ and let t = (t1, . . . , tm) be a
collection of positive integer numbers such that

∑m
i=1 ti = ℓ. Then define

MVℓ(P1, . . . , Pm ; t) := MVℓ(P1, . . . , P1︸ ︷︷ ︸
t1

, . . . . . . , Pm, . . . , Pm︸ ︷︷ ︸
tm

),

where on the right each Pi is repeated ti times. We note that 1
t1!···tm! · MVℓ(P1, . . . , Pm ; t)

is the coefficient of λt1
1 · · ·λtm

m in the homogeneous degree ℓ polynomial map (λ1, . . . , λm) 7→
Volℓ(λ1P1 + · · · + λmPm) (see [9], page 327).
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We are now able to state a formula for the weight w(ξ) defined above which shows in particular
that this weight does not depend on the chosen translation vector.

Theorem 4.5. Let ξ be a cell of Ξ and w(ξ) be its weight as defined in Definition 4.3. If ξ is

not a cell of ∩k
i=1Z

trop
fi

, or equivalently if at least one di is zero, then w(ξ) = 0. Assume now

that all di are positive integer numbers.

• If the tropical hypersurfaces intersect transversally along ξ, which means that d = d1 +
· · · + dk, then letting d := (d1, . . . , dk) we have

(4.2) w(ξ) = MVd(σ1, . . . , σk; d)

• In the general case, we have d ≤ d1 + · · · + dk and

(4.3) w(ξ) =
∑

t , t1+···+tk=d

MVd(σ1, . . . , σk; t)

As a particular case, if d = codim ξ = k then

(4.4) w(ξ) = MVk(σ1, . . . , σk).

Note that in the hypersurface case we have ξ = ξ1 and thus w(ξ) = MVd1
(σ1, . . . , σ1) =

d1! · Vold1
(σ1) = vold1

(σ1) as required. Before giving a proof of Theorem 4.5, we need some
intermediate results.

A Minkowsky sum Q1 + · · ·+ Qℓ of polytopes such that dim(Q1 + · · ·+ Qℓ) = dimQ1 + · · ·+
dimQℓ is called a direct Minkowsky sum and is denoted by Q1 ⊕ · · · ⊕ Qℓ. A convex mixed
subdivision MS of a polytope P = P1 + · · · + Pℓ is called pure if for any polytope Q ∈ MS
with (privileged) representation Q = Q1 + · · · + Qℓ we have Q = Q1 ⊕ · · · ⊕ Qℓ. A convex tight
mixed subdivision is a convex pure mixed subdivision with the additional property that each
Qi is a simplex. Tight and pure convex mixed subdivisions are generic within all convex mixed
subdivisions of a given collection of polytopes.

Lemma 4.6. Let P = P1 + · · · + Pℓ ⊂ MR ≃ Rℓ.

(1) For any convex pure mixed subdivision of P = P1 + · · · + Pℓ, we have

(4.5) MVℓ(P1, . . . , Pℓ) =
∑

Volℓ(Q1 ⊕ · · · ⊕ Qℓ)

where the sum is taken over all polytopes Q = Q1 ⊕ · · · ⊕ Qℓ of the mixed subdivision
with dimQ1 = · · · = dimQℓ = 1.

(2) More generally, for any convex mixed subdivision of P = P1 + · · · + Pℓ, we have

(4.6) MVℓ(P1, . . . , Pℓ) =
∑

MVℓ(Q1, . . . , Qℓ)

where the sum is taken over all polytopes Q = Q1 + · · · + Qℓ of the mixed subdivision.

Proof. Formula (4.5) is well-known (see, for example, [9], Ch. 7) and not difficult to prove from
the definition of mixed volume given above. Formula (4.6) is a simple consequence of (4.5). In-
deed, we may perturb slightly functions ν1, . . . , νℓ determining a given convex mixed subdivision
of P = P1 + · · ·+ Pℓ so that the new functions induce pure mixed subdivisions of each polytope
Q = Q1 + · · · + Qℓ of the initial mixed subdivision. Then these functions define a pure mixed
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subdivision of P = P1 + · · · + Pℓ and it remains to apply (4.5) simultaneously to all these pure
mixed subdivisions. ¤

Proof of Theorem 4.5. Assume first that d = d1 + · · ·+ dk (transversal case). If some di is zero,
then it follows directly from Definition 4.3 that w(ξ) = 0. Assume that di ≥ 1 for i = 1, . . . , k.
We prove Formula (4.2) with the help of Bernstein’s theorem. Consider a generic polynomial
system

(4.7) f1,1 = · · · = f1,d1
= · · · · · · = fk,1 = · · · = fk,dk

= 0

of d = d1+· · ·+dk equations where each fi,j has σi as Newton polytope. By Bernstein’s theorem,
the system (4.7) has MVd(σ1, . . . , σk; d) solutions in the complex torus associated with M(σ),
where d = (d1, . . . , dk). Since σ = σ1 ⊕ · · · ⊕ σk, the number of solutions to (4.7) in the complex

torus associated with M(σ1)+ · · ·+M(σk) is the product N =
∏k

i=1 Ni where Ni is the number
of solutions in the complex torus associated with M(σi) to the system

fi,1 = . . . = fi,di
= 0.

By Bernstein’s theorem we have Ni = MVdi
(σi, . . . , σi) = di! · Voldi

(σi) = voldi
(σi). Let

(e1, . . . , ed) be a basis of M(σ) and identify the associated complex torus with (C∗)d via this
basis. Let z1, . . . , zN be the solutions to (4.7) in the subtorus of (C∗)d associated with M(σ1) +
· · · + M(σk). Then the solutions to (4.7) in (C∗)d are obtained by solving for each zl a system

xmi = zl,i , i = 1, . . . , d,

where m1, . . . , md are the vectors of coordinates of a basis of M(σ1) + · · ·+ M(σk) with respect
to (e1, . . . , ed) and zl = (zl,1, . . . , zl,d) ∈ (C∗)d. The number of solutions to such a system is the
absolute value of the (d× d)-determinant |mi,j | which is equal to [M(σ) : M(σ1) + · · ·+ M(σ)].
This proves Formula (4.2).

Consider now the general case. We have obviously d ≤ d1 + · · · + dk. let νi : ∆i → R,
i = 1, . . . , k, be the functions given by the tropical hypersurfaces and which induce the corre-
sponding mixed subdivision MS of ∆ = ∆1 + · · · + ∆k. Denote by Si the convex polyhedral
subdivision of ∆i induced by νi. Translations of the tropical hypersurfaces by a small generic
vector correspond to small perturbations ν̃i of the functions νi so that for each i = 1, . . . , k the
polyhedral subdivision of ∆i induced by the resulting function ν̃i coincide with Si. The inter-
sections between the tropical hypersurfaces which emerge from ξ after such small perturbations
are transversal intersections if and only if the mixed subdivision of σ = σ1 + · · ·+σk induced by
ν̃1, . . . , ν̃k is a pure mixed subdivision MS(σ). Then each polytope Γ ∈ MS(σ) has a privileged
representation

(4.8) Γ = Γ1 ⊕ · · · ⊕ Γk

where each Γi ∈ Si and the weight of ξ is by definition the sum of weights of the cells correspond-
ing to polytopes Γ ∈ MS(σ) such that dim Γ = d. Suppose that di = 0 for some i = 1, . . . , k.
Then for each Γ = Γ1 ⊕ · · · ⊕ Γk ∈ MS(σ) we have dim Γi = 0, hence w(ξ) = 0. Assume now
that di ≥ 1 for i = 1, . . . , k. We have then

(4.9) w(ξ) =
∑

Γ∈MS(σ) : dimΓ=d

MVd(Γ1, . . . ,Γk; (dim Γ1, . . . ,dimΓk))

where the sum is taken over all polytopes Γ = Γ1 ⊕ · · · ⊕ Γk ∈ MS(σ) with dim Γ = d and
dimΓi > 0 for i = 1, . . . , k. Let t = (t1, . . . , tk) be any collection of positive integer numbers
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such that t1 + · · · + tk = d. Consider the polytope

σ1 + · · · + σ1︸ ︷︷ ︸
t1

+ · · · + σk + · · · + σk︸ ︷︷ ︸
tk

together with the convex mixed subdivision induced by the functions ν̃1, . . . , ν̃k, where ν̃i is used
for each copy of σi. This mixed subdivision consists of the polytopes

Γ1 + · · · + Γ1︸ ︷︷ ︸
t1

+ · · · + Γk + · · · + Γk︸ ︷︷ ︸
tk

for Γ = Γ1 ⊕ · · · ⊕ Γk ∈ MS(σ). By Formula (4.6) in Lemma 4.6, we get

MVd(σ1, . . . , σk; t) =
∑

Γ∈MS(σ)

MVd(Γ1, . . . ,Γk; t).

This sum can actually be taken over all Γ ∈ MS(σ) such that dim Γ = d and dim Γi ≥ 1 for
i = 1, . . . , d since otherwise MVd(Γ1, . . . ,Γk; t) = 0. But now if t 6= (dim Γ1, . . . ,dimΓk) and
t1 + · · · + tk = dimΓ1 + · · · + dim Γk, then there exists i ∈ {1, . . . , k} such that dim Γi < ti and
thus volti(Γi) = 0, which implies that MVd(Γ1, . . . ,Γk; t) = 0. Therefore,

MVd(σ1, . . . , σk; t) =
∑

Γ∈MS(σ) : dimΓi=ti for all i

MVd(Γ1, . . . ,Γk; t).

and thus
∑

t : t1+···+tk=d

MVd(σ1, . . . , σk; t) =
∑

Γ∈MS(σ) : dimΓ=d

MVd(Γ1, . . . ,Γk; (dim Γ1, . . . ,dimΓk)).

This proves Formula (4.3). Finally, If k = d, then there is only one collection t = (t1, . . . , td)
of positive integer numbers such that t1 + · · · + td = d, namely t = (1, 1, . . . , 1). Hence, we get
w(ξ) = MVd(σ1, . . . , σk; (1, 1, . . . , 1)) = MVd(σ1, . . . , σk). ¤

Using our weights as intersection multiplicity numbers, we get a tropical Bernstein theorem
directly from Theorem 4.5.

Corollary 4.7. Suppose tropical hypersurfaces Z1, . . . , Zn ⊂ NR ≃ Rn with Newton polytopes
∆1, . . . ,∆n intersect in finitely many points. Then the total number of intersection points counted
with multiplicities is equal to the mixed volume MVn(∆1, . . . ,∆n).

Proof. The common intersection points are in one-to-one correspondence with the polytopes
σ = σ1 + · · · + σn in the dual mixed subdivision MS of ∆1 + · · · + ∆n. Each intersection point
is a cell of codimension n, hence by Formula (4.4), Theorem 4.5, the intersection multiplicity
number of the tropical hypersurfaces at this point is equal to MVn(σ1, . . . , σn), where σ =
σ1 + · · · + σn is the corresponding polytope in the mixed subdivision. Hence the total number
of intersection points counted with multiplicities is

∑
σ∈MS MVn(σ1, . . . , σn). But this sum is

equal to MV(∆1, . . . ,∆n) by Formula (4.6), Lemma 4.6. ¤

5. Non degenenerate tropical complete intersections

All the definitions in this section build upon the following definition of a nonsingular tropical
hypersurface in the same way as definitions in Section 1 built upon that of a nonsingular complex
hypersurface.
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Definition 5.1. A tropical hypersurface is nonsingular if its dual polyhedral subdivision is a
primitive (convex) triangulation, that is, a triangulation whose all simplices are primitive.

This definition is well-established in the case of tropical plane curves. In the general case, it
can be motivated by the fact that around a vertex corresponding to a primitive n-simplex, a
tropical hypersurface coincides with a tropical hypersurface with Newton polytope this simplex.
But such a simplex is given by a basis of the ambient lattice M , and identifying M with Zn via
this basis identifies the simplex with the standard unit simplex in Zn. Hence, up to a basis change
of the ambient lattice, a non singular tropical hypersurface coincides around each vertex with a
tropical linear hyperplane. Nonsingular tropical hypersurfaces with a given Newton polytope do
not always exist. The simplest example is given by the non primitive tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 2) in R3 which meets the lattice Z3 at its vertices and has thus
no primitive triangulation (see [4]). Recall that a tropical hypersurface lies in NR ≃ Rn, which is
the tropical torus associated with some lattice N . Hence, at this point, a tropical hypersurface
is in fact a toric tropical hypersurface. A primitive (convex) triangulation of a polytope induces
a primitive (convex) triangulation of each of its faces. Recall that the truncation fΓ of a tropical
polynomial f to a face Γ of its Newton polytope also defines a tropical hypersurface in the
corresponding tropical torus N(Γ)R. Hence, in contrast to the complex case, if f defines a
nonsingular tropical hypersurface in the corresponding tropical torus, then so do automatically
all its truncations. Comparing with the classical definition 1.1 of a nondegenerate polynomial,
this leads to the following definition.

Definition 5.2. A tropical polynomial is nondegenerate if all its truncations define nonsingular
tropical hypersurfaces in the corresponding tropical tori, or equivalently, if its dual polyhedral
subdivision is a primitive triangulation.

Consider now a collection (f1, . . . , fk) of tropical polynomials in R[x1, . . . , xn], or more gener-
ally in R[M ] with M ≃ Zn. Let ∆i be the Newton polytope of fi. Define the associated tropical
Cayley polynomial F ∈ R[M ⊕ Zk] by

(5.1) F (x, y) =
k∑

i=1

yifi(x).

where the operation are the tropical ones. Its Newton polytope is the associated Cayley polytope
C(∆1, . . . ,∆k). We have the following analogue of the classical definition 1.2.

Definition 5.3. The collection (f1, . . . , fk) of tropical polynomials is nondegenerate if the asso-
ciated Cayley polynomial F is nondegenerate which means that the dual polyhedral subdivision
of C(∆1, . . . ,∆k) is a primitive triangulation.

Recall that a collection (Γi)i∈I of faces of ∆1, . . . ,∆k is called admissible if I ⊂ {1, . . . , k}
and ΓI =

∑
i∈I Γi is face a of ∆I =

∑
i∈I ∆i. The faces of C(∆1, . . . ,∆k) are exactly the Cayley

polytopes of the admissible collections (Γi)i∈I . Since a primitive triangulation of a polytope
induces primitive triangulations of its faces, it follows that if (f1, . . . , fk) is nondegenerate, then
for any admissible collection (Γi)i∈I of faces of ∆1, . . . ,∆k, the collection of tropical polynomials

(fΓi

i )i∈I is also nondegenerate. For simplicity denote by Zi the hypersurface defined by fi. If Γi

is a face of ∆i, we will denote by Zi,Γi
the tropical hypersurface in N(Γi)R, or in NR, defined by

the truncation of fi to Γi. The next result is the tropical analogue of Proposition 1.3.
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Proposition 5.4. The collection (f1, . . . , fk) of tropical polynomials is nondegenerate if and
only if for any admissible collection (Γi)i∈I of faces of ∆1, . . . ,∆k the hypersurfaces Zi,Γi

have
only transversal intersections each with intersection multiplicity number 1.

Proof. If (f1, . . . , fk) is nondegenerate, then the corresponding convex polyhedral subdivision
of the Cayley polytope C(∆1, . . . ,∆k) is a primitive triangulation, and thus the corresponding
convex mixed subdivision MS of ∆ = ∆1+· · ·+∆k is tight. In particular, the mixed subdivision
MS is pure which means that the hypersurfaces Z1, . . . , Zk have only transversal intersections.
These intersections are in one-to-one correspondence with polytopes

σ = σ1 ⊕ · · · ⊕ σk ∈ MS

such that di := dimσi ≥ 1 for i = 1, . . . , k. Letting d = dimσ = d1 + · · · + dk, the intersection
multiplicity number of Z1, . . . , Zk along the cell ξ dual to σ is

(5.2) w(ξ) =

(
k∏

i=1

voldi
(σi)

)
· [M(σ) : M(σ1) + · · · + M(σk)]

We are going to show that

(5.3) vold+k−1 (C(σ1, . . . , σk)) =

(
k∏

i=1

voldi
(σi)

)
· [M(σ) : M(σ1) + · · · + M(σk)]

Since C(σ1, . . . , σk) is a primitive simplex, this will imply that w(ξ) = 1. Each σi is a simplex as
well as C(σ1, . . . , σk). Thus vold+k−1 (C(σ1, . . . , σk)) equals the absolute value of a (d + k − 1)-
determinant D whose columns are the coordinates with respect to a basis of M(C(σ1, . . . , σk)) =
M(σ)×Zk of vectors spanning C(σ1, . . . , σk). The corresponding determinant taken with respect

to a basis of (M(σ1) + · · · + M(σk)) × Zk is a determinant D̃ which factors into a product of
k determinants D1, . . . , Dk. Each factor Di has size di and is a determinant whose columns
are the coordinates with respect to a basis of M(σi) of vectors spanning the simplex σi. The
absolute value of Di is just voldi

(σi). Formula (5.3) follows now from Remark 4.1. The same

arguments also work for any admissible (Γi)i∈I since if (f1, . . . , fk) is nondegenerate then (fΓi

i )i∈I

is nondegenerate too. This show one implication of Proposition 5.4, let us show the reverse one.
Clearly, if for any admissible collection (Γi)i∈I of faces of ∆1, . . . ,∆k the hypersurfaces Zi,Γi

have only transversal intersections, then the mixed subdivision MS of ∆ = ∆1+· · ·+∆k is pure.
Consider a full dimensional polytope in the polyhedral subdivision of C(∆1, . . . ,∆k). It may be
written as a Cayley polytope C(σ1, . . . , σk) for some σ = σ1⊕· · ·⊕σk ∈ MS with dimσ = dim∆.
Set as above di = dimσi and d := dimσ = dim ∆. Set I := {i ∈ {1, . . . , k} , di 6= 0}. Then σ
is dual to a cell ξ of the common intersection of the hypersurfaces Zi for i ∈ I. Moreover, the
intersection multiplicity number between these hypersurfaces along ξ is voldI+k−1(C(σi, i ∈ I)),
where C(σi, i ∈ I) is the Cayley polytope associated with σi for i ∈ I and dI is the dimension
of

∑
i∈I σi. This Cayley polytope lies on the face C(∆i, i ∈ I) of C(∆1, . . . ,∆k). One can check

that

vold+k−1 (C(σ1, . . . , σk)) = voldI+k−1 (C(σi, i ∈ I)) .

Thus both members are equal to 1 and it follows that C(σ1, . . . , σk) is a primitive simplex. ¤

6. Complex and real tropical varieties

Complex and real tropical varieties were introduced by Mikhalkin in [23]. Here we follow [3]
and reproduce the definition and notations for the reader’s convenience. Consider a Puiseux
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series g =
∑

r∈R brt
r ∈ K∗. Recall that val(g) is the smallest exponent appearing in g (the usual

valuation of g), and that we defined v(g) to be − val(g) (see Section 3). Define the argument
arg(g) to be the usual argument of the coefficient bval(g) of the monomial with smallest exponent.
Consider the map

W : (K∗)n −→ Rn × (S1)n

z 7−→ (v(z1), . . . , v(zn), arg(z1), . . . , arg(zn)).

or alternatively

VC : (K∗)n −→ (C∗)n

z 7−→ (ev(z1)+i arg(z1), . . . , ev(zn)+i arg(zn))

We will define a complex tropical variety as the topological closure of the image of a variety in
(K∗)n under either VC or W . We will call both homeomorphic objects a complex tropical variety
and use one and the other in turns depending on the context. For the rest of this section, let
f, f1, . . . , fk be polynomials in K[z1, . . . , zn]. We denote by Zf the zero set of f in (K∗)n and by
Y the common zero set of f1, . . . , fk in (K∗)n.

Definition 6.1. The complex tropical hypersurface CZtrop
f,VC

(resp. CZtrop
f,W ) associated with f is

the topological closure of the image under VC (resp. W ) of the hypersurface Zf . The complex

tropical intersection CY trop
VC

(resp. CY trop
W ) associated with f1, . . . , fk is the topological closure

of the image under VC (resp. W ) of Y .

A polynomial
∑

cwzw ∈ K[z1, . . . , zn] is a real polynomial if the coefficients ar of each series
cω =

∑
r∈R art

r are real. Assume from now on that f1, . . . , fk and f are real polynomials.

Definition 6.2. The real tropical hypersurface associated with f is the intersection of CZtrop
f,VC

with (R∗)n, or alternatively the intersection of CZtrop
f,W with Rn × {0, π}n. More generally, the

real tropical complete intersection associated with f1, . . . , fk is the intersection of CY trop
VC

with

(R∗)n, or alternatively the intersection of CY trop
W with Rn × {0, π}n.

See [3] for pictures of real tropical curves. The sign of a Puiseux series g =
∑

r∈R brt
r ∈ K∗ is

defined to be the sign of the coefficient bval(g) of the monomial with smallest exponent.
For any ε = (ε1, . . . , εn) ∈ {0, 1}n, denote by R(ε) the connected component of (R∗)n (called

orthant) which consists of all (x1, . . . , xn) such that (−1)εixi > 0 for i = 1, . . . , n. We keep the

notation (R+)n for the positive orthant which corresponds to ε = (0, . . . , 0). Denote by RZtrop
f,VC,ε

the intersection of RZtrop
f,VC

with R(ε). If ε ∈ {0, 1}n, let ε̃ be the element of {0, π}n defined by

ε̃i = π ⇔ εi = 1, and define RZtrop
f,W,ε ⊂ Rn to be the image of RZtrop

f,W ∩ (Rn × {ε̃}) under the

natural identification of Rn × {ε̃} with Rn. If Ztrop
f is nonsingular one can reconstruct RZtrop

f,VC,ε

only from the data of Ztrop
f and the collection of signs of the coefficients of f (see [26] p. 25

and 37, [39], and [28] Appendix for the case of amoebas). Consider the tropical hypersurface

Ztrop
f ⊂ Rn, the induced subdivision Ξf of Rn and the dual subdivision Sf of its Newton polytope

∆f . Let δf be the sign distribution at the vertices of Sf such that a vertex ω is labelled with
the sign of the corresponding coefficient cω in f(z) =

∑
cwzw ∈ K[z1, . . . , zn].

Lemma 6.3. Assume Ztrop
f is nonsingular. Then its positive part RZtrop

f,W,(0,...,0) is the closure

of the union of the (n − 1)-cells of Ztrop
f which are dual to edges with vertices getting different

signs via δf . More generally, let ε ∈ {0, 1}n and define the polynomial fε by fε(x1, · · · , xn) =
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f((−1)ε1x1, . . . , (−1)εnxn). Then, RZtrop
f,W,ε is the closure of the union of the (n−1)-cells of Ztrop

fε

which are dual to edges with vertices getting different signs via δfε
.

It is worth noting that RZtrop
f,W,ε and RZtrop

f,VC,ε are homeomorphic for each ε ∈ {0, 1}n. In

particular RZtrop
f,W and RZtrop

f,VC
are homeomorphic. We use the notations of Section 2. Let

H ⊂ ∆∗ be the piecewise-linear hypersurface which is constructed by means of the combinatorial
patchworking out of the data Sf and δf . As a direct consequence of Lemma 6.3, we obtain the
following result.

Proposition 6.4. Assume that Ztrop
f is nonsingular, or equivalently, that the subdivision Sf is

a primitive triangulation. Then there exists an homeomorphism h : (R∗)n → (∆ \ ∂∆)∗ such

that h(RZtrop
f,W ) = H ∩ (∆ \ ∂∆)∗. The same property holds for RZtrop

f,VC
.

Here (∆ \ ∂∆)∗ is the union of the 2n symmetric copies of the relative interior of ∆ under the
hyperplane reflections. Denote by ∆1, . . . ,∆k the Newton polytopes of f1, . . . , fk, respectively,
and set ∆ = ∆1 + · · · + ∆k. Each polynomial fi determines a convex polyhedral subdivision Si

of ∆i and a sign distribution δi at the vertices of Si. Consider the piecewise-linear hypersurface

H∆,∗
i ⊂ ∆∗ constructed out of these data by means of the combinatorial patchworking for

complete intersections (see Section 2).

Proposition 6.5. Assume that f1, . . . , fk define a nondegenerate tropical complete intersec-
tion, which means that the corresponding convex polyhedral subdivision of the Cayley polytope
C(∆1, . . . ,∆k) is a primitive triangulation. Then, there exists an homeomorphism h : (R∗)n →

(∆ \ ∂∆)∗ such that h(RZtrop
fi,W

) = H∆,∗
i ∩ (∆ \ ∂∆)∗ for i = 1, . . . , k. The similar property holds

for the real tropical hypersurfaces RZtrop
fi,VC

.

Therefore, RY trop
W (resp., RY trop

VC
) is homeomorphic to the common intersection inside (∆ \

∂∆)∗ of the piecewise-linear hypersurfaces H∆,∗
i .

Recall that CY trop
VC

is a subset of the torus (C∗)n. We may assume without loss of generality

that the polytope ∆ has non empty interior. Consider the usual compactification of (C∗)n into
the toric variety X∆ associated with ∆, and let ι : (C∗)n →֒ X∆ denote the corresponding

inclusion. We define the compactification CY
trop
VC

to be the closure of ι(CY trop
VC

) in X∆. Note

that the stratification of X∆ into orbits of the action of (C∗)n defines a natural stratification of

CY
trop
VC

.
We sum up natural maps in the following commutative diagram.

RY trop
W

∼
//

Ä _

²²

RY trop
VC

Â Ä //
Ä _

²²

(R∗)n
Ä _

²²

Â Ä ιR
// RX∆Ä _

²²

CY trop
W

∼
// CY trop

VC

Â Ä // (C∗)n Â Ä ι
// X∆

Define RY
trop
VC

to be the intersection of CY
trop
VC

with the real part RX∆ of X∆. Clearly RY
trop
VC

is also the closure of ιR(RY trop
VC

) in RX∆. One can see that the natural stratification of RY
trop
VC

induced by the torus action corresponds to the stratification of the T -complete intersection of
Theorem 2.3 induced by the face complex of ∆. Consider for i = 1, . . . , k the piecewise-linear

hypersurface H̃∆
i ⊂ ∆̃ (see Section 2).
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Proposition 6.6. Assume that f1, . . . , fk define a nondegenerate tropical complete intersection.

Then, there exists an homeomorphism h : RX∆ → ∆̃ sending RY
trop
VC

to the common intersection

of the piecewise-linear hypersurfaces H̃∆
i .

7. E-polynomials and mixed signature

We recall briefly definitions and some properties of so-called E-polynomials, see [1] and [13].
Let X be a quasi-projective algebraic variety over C. For each pair of integers (p, q), we set

ep,q(X) =
∑

k≥0

(−1)khp,q(Hk
c (X)),

where hp,q(Hk
c (X)) is the dimension of the (p, q)-component of the mixed Hodge structure of

the k-th cohomology with compact supports. If X is a nonsingular projective variety then we
have ep,q(X) = (−1)p+qhp,q(X) (see [13]).

The E-polynomial of X is the sum

(7.1) E(X; u, v) =
∑

p,q

ep,q(X)upvq,

(see [1], and [13] where E(X; u, ū) was introduced). We have the following properties.

• If X is a disjoint union of a finite number of locally closed varieties Xi, i ∈ I, then

(7.2) E(X; u, v) =
∑

i∈I

E(Xi;u, v).

•

(7.3) E(X × Y ;u, v) = E(X;u, v) · E(Y ;u, v).

• If π : Y → X is a locally trivial fibration with respect to the Zarisky topology and F is
the fiber over a closed point of X, then

(7.4) E(Y ; u, v) = E(X; u, v) · E(F ; u, v).

In particular, we get (see [13]) E(CP 1; u, v) = 1 + uv, E(C;u, v) = uv, E(C∗; u, v) = uv − 1
and thus

E(Ck; u, v) = ukvk , E((C∗)k; u, v) = (uv − 1)k

Let us define

(7.5) ϕ(u) :=
E(X; 1, u) + E(X; u, 1)

2

and

(7.6) σ̃(X) := ϕ(−1).

We will call σ̃(X) the mixed signature of X. This is justified by the following result.

Proposition 7.1. If X is a nonsingular projective variety then its mixed signature and usual
signature coincide:

σ̃(X) = σ(X).
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Proof. If X is a nonsingular projective variety then

σ(X) =
∑

p+q=0 mod 2

(−1)php,q(X),

where hp,q(X) is the usual Hodge number of type (p, q) of X, and the result follows from the
fact that ep,q(X) = (−1)p+qhp,q(X) (see [13]). ¤

The mixed signature of a complex torus is given by

(7.7) σ̃((C∗)k) = (−2)k

The additivity of the E-polynomial implies that of the mixed signature.

Proposition 7.2. If X is a disjoint union of a finite number of locally closed varieties Xi, i ∈ I,
then

σ̃(X) =
∑

i∈I

σ̃(Xi)

Following [13] we show how the mixed signature of a toric complete intersection can be ex-
pressed in terms of mixed signatures of toric hypersurfaces.

Consider polynomials f1, f2 . . . , fk ∈ C[x], x = (x1, . . . , xn), which define a toric complete
intersection

Y = {f1 = f2 = . . . = fk = 0} ⊂ (C∗)n.

Introduce auxiliary coordinates y1, . . . , yk and for I ⊂ {1, . . . , k} define the toric hypersurface
XI by

XI =

{
∑

i∈I

yifi(x) − 1 = 0

}
⊂ (C∗)n+|I|.

Proposition 7.3. We have

σ̃(Y ) = (−2)n + (−1)k
∑

I⊂{1,...,n}

σ̃(XI).

Proof. Denote by X the hypersurface in (C∗)n × Ck with equation
∑k

i=1 yifi(x) − 1 = 0. The

restriction to X of the projection (C∗)n ×Ck → (C∗)n is a locally trivial fibration over (C∗)n \Y
with each fiber a linear subspace of Ck. It follows from the properties of the E-polynomial that

E(X; u, v) = E(Ck−1;u, v) · [E((C∗)n; u, v) − E(Y ;u, v)]
= (uv)k−1 · [(uv − 1)n − E(Y )] .

Passing to the mixed signature yields

σ̃(X) = (−1)k−1 [(−2)n − σ̃(Y )] .

By additivity, we have

σ̃(X) =
∑

I⊂{1,...,n}

σ̃(XI)

and the result follows. ¤
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Assume now that the polynomials f1, . . . , fk which define Y are real polynomials so that Y and
the hypersurfaces XI are in turn real algebraic varieties. We are interested in the (topological)
Euler characteristic of RY . Like the E-polynomial, the Euler characteristic is additive and

multiplicative. We have χ((R∗)k) = (−2)k and thus comparing with (7.7) we obtain

(7.8) σ̃((C∗)k) = χ((R∗)k)

Recall that a toric variety is a real variety (defined by polynomial equations with real coeffi-
cients) and is the disjoint union of torus orbits. The additivity of the mixed signature and the
Euler characteristic together with Formula (7.8) imply the following result, which will be not
used after.

Proposition 7.4. For any toric variety X, we have

σ̃(X) = χ(RX)

We obtain the following analogue of Proposition 7.3 for the Euler characteristic of the real
part in place of the mixed signature.

Proposition 7.5. We have

χ(RY ) = (−2)n + (−1)k
∑

I⊂{1,...,n}

χ(RXI).

Proof. We adapt the proof of Proposition 7.3. Let X the hypersurface in (C∗)n × Ck with

equation
∑k

i=1 yifi(x) − 1 = 0. Using the projection (C∗)n × Ck → (C∗)n together with the
additivity and multiplicativity properties of the Euler characteristic yields

χ(RX) = χ(Rk−1) · [χ((R∗)n) − χ(RY )]

and thus

χ(RX) = (−1)k−1 [(−2)n − χ(RY )] .

By additivity, we have

χ(RX) =
∑

I⊂{1,...,n}

χ(RXI)

and the result follows. ¤

8. Statement of the main result

We use the notations of Section 6. Consider real polynomials f1, . . . , fk ∈ K[z1, . . . , zn] with
Newton polytopes ∆1, . . . ,∆k. Denote by Y trop the corresponding tropical intersection in (the
tropical torus) Rn. Let RY trop denote the real tropical intersection with respect to either the

map W or the map VC: RY trop = RY trop
W or RY trop = RY trop

VC
(RY trop

W and RY trop
VC

are homeo-

morphic). Recall that Y trop is a nondegenerate tropical complete intersection if and only if the
corresponding convex polyhedral subdivision of the Cayley polytope C(∆1, . . . ,∆k) is a primitive
triangulation.

Theorem 8.1. Assume that Y trop is a nondegenerate tropical complete intersection.
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(1) The Euler characteristic of RY trop depends only on the polytopes ∆1, . . . ,∆k and is equal
to the mixed signature of a complete intersection in the complex torus (C∗)n of algebraic
hypersurfaces with Newton polytopes ∆1, . . . ,∆k, respectively. In other words, if Y alg

denotes such a complete intersection in (C∗)n, then its mixed signature σ̃(Yalg) depends
only on ∆1, . . . ,∆k and we have

χ(RY trop) = σ̃(Yalg).

(2) The Euler characteristic of RY
trop

depends only on the polytopes ∆1, . . . ,∆k and is
equal to the mixed signature of a generic intersection in the projective toric variety
X(∆) of algebraic hypersurfaces with Newton polytopes ∆1, . . . ,∆k, respectively. In other

words, if Y
alg

denotes such a generic intersection in X(∆), then σ̃(Y alg) depends only
on ∆1, . . . ,∆k and we have

χ(RY
trop

) = σ̃(Y alg).

In the second part of Theorem 8.1, we invoke the genericity in order to ensure that the

intersection of Y
alg

with any complex torus orbit in X(∆) is a complete intersection in that
torus orbit (this latter intersection is defined by polynomials whose Newton polytopes are faces
of ∆1, . . . ,∆k).

Proof of Theorem 8.1. Part (2) follows from part (1) using the stratification by torus orbits and
the additivity of the Euler characteristic and that of the mixed signature. Now, by Proposi-
tion 7.3 and Proposition 7.5, to prove part (1) it suffices to prove the case k = 1, that is, the
toric hypersurface case. This is the content of the rest of the paper (see Theorem 11.1). ¤

9. Mixed signature of a complex toric hypersurface

Let f be a nondegenerate Laurent polynomial with Newton polytope ∆ ⊂ Rn and assume
that ∆ has non empty interior. Denote by Z ⊂ (C∗)n the nonsingular hypersurface defined by
f .

Let C ⊂ Rn+1 be the cone with vertex 0 over ∆ × {1} ⊂ Rn × R. The set of faces of C
with the order given by the inclusion and the rank function ρ given by the dimension form an
Eulerian poset that we denote by P (See [1], Example 2.3). Hereafter, we refer to [1] for detailed
definitions. Taking the dual cones of elements in P , we get the dual poset P ∗ which is an Eulerian
poset with rank function ρ∗(z∗) = n + 1 − ρ(z) and rank n + 1. If x ∈ P is any face of C, then
we denote by [x, 1̂] the sub-poset of P formed by all the faces of C having x as a face. This is an
Eulerian poset with rank function z 7→ ρ(z)−ρ(x) and rank n+1−ρ(x) = ρ(C)−ρ(x). The dual
poset [x, 1̂]∗ is an eulerian poset of rank n+1−ρ(x) and with rank function ρ∗(z∗) = n+1−ρ(z).

Let M denote the lattice Zn+1 in which the cone C has its vertices and which contains the
vertices of ∆ × {1}. If m ∈ C ∩ M , define x(m) ∈ P to be the minimal face of C containing m
and degm to be the last coordinate of m. Hence, m = (m0,degm) for some m0 ∈ degm · ∆.
The following result gives a closed formula for E(Z; u, v) in terms of so-called B-polynomials of
the sub-posets of P ∗, which are defined by induction on the rank (see [1], Definition 2.7).

Theorem 9.1 ( [1], Theorem 3.24).

E(Z; u, v) =
(uv − 1)n

uv
+

(−1)n+1

uv

∑

m∈C∩M

(v − u)ρ(x(m))B([x(m), 1̂]∗; u, v)
(u

v

)degm

.
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Define two functions (see [1], Definition 3.5)

S(C, t) := (1 − t)n+1
∑

m∈C∩M

tdeg m

and

T (C, t) := (1 − t)n+1
∑

m∈Int(C)∩M

tdeg m,

where Int(C) is the interior of C. They satisfy the duality relation ([1], Proposition 3.6)

(9.1) S(C, t) = tn+1T (C, t−1)

In fact, S(C, t) is a polynomial of degree n (see, for example, [8] or Lemma 9.2 below). The sum
∑

m∈Int(C)∩M

tdeg m

can be written as
+∞∑

λ=0

Ehr∆(λ)tλ,

where Ehr∆(λ) is the number of integer points in λ ·∆. The number Ehr∆(λ) can be expressed
as a polynomial of degree n = dim(∆) in λ called the Ehrhart polynomial of ∆. Let a∆

l be the

coefficient of λl in this polynomial:

Ehr∆(λ) =
n∑

l=0

a∆
l λl.

Let ψi be the coefficient of ti in S(C, t):

S(C, t) =
∞∑

i=0

ψit
i.

The following lemma can be found in Section 4.1 of [11] (see also [12] p. 233) or [3].

Lemma 9.2. One has

ψi =

n∑

l=0




i∑

p=0

(−1)i−pCi−p
n+1p

l


 a∆

l

and ψi = 0 for i ≥ n + 1.

We are now able to state our main formula for the mixed signature of toric hypersurfaces.

Proposition 9.3. One has

(9.2) σ̃(Z) = −(−2)n +

n∑

l=0

a∆
l (

n∑

i=0

i∑

p=0

(−1)n+pCi−p
n+1p

l).

Proof. Recall that σ̃(Z) = ϕ(−1), and that ϕ(u) = [E(Z; 1, u) + E(Z;u, 1)]/2. Writing Im for
[x(m), 1̂]∗ in Theorem 9.1 yields
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ϕ(u) =
(u − 1)n

u
+

(−1)n+1

2u

∑

m∈C∩M

(u − 1)ρ(x(m))
[
B(Im; 1, u)u−deg m + (−1)ρ(x(m))B(Im;u, 1)udeg m

]

From [1], Definition 2.7 and Proposition 2.10, we have that B(Im; 1, u) = 1 if m ∈ Int(C) and

B(Im; 1, u) = 0 otherwise, and that B(Im; u, 1) = (1 − u)n+1−ρ(x(m)). It follows that

ϕ(u) =
(u − 1)n

u
+

(u − 1)n+1

2u

∑

m∈C ∩M

udeg m +
(1 − u)n+1

2u

∑

m∈Int(C) ∩M

u−deg m

The second and third terms in this sum are easily shown to be equal to (−1)n+1

2u
S(C, u) and

(−u)n+1

2u
T (C, u−1), respectively. Now, in view of the duality (9.1), this gives

ϕ(u) =
(u − 1)n

u
+

(−1)n+1

u
S(C, u).

The result follows then using Lemma 9.2 and putting u = −1. ¤

10. Euler Characteristic of a real nonsingular tropical toric hypersurface

Let X be a real nonsingular tropical hypersurface with Newton polytope ∆ ⊂ Rn where ∆
is assumed to have non empty interior. Hence, the dual polyhedral subdivision S of ∆ is a
primitive triangulation.

Lemma 10.1 ([19]). Consider a k-simplex of S which is contained in the interior of ∆. Its
number of non empty symmetric copies is 2n − 2n−k.

Denote by nb∆
k the number of k-simplices of S which are contained in the interior of ∆. We

will see that these numbers are in fact independent of the chosen primitive triangulation of ∆.
Let S2 be the Stirling number of the second kind defined by

S2(i, j) =
1

j!

j∑

t=0

(−1)j−tCt
jt

i.

Proposition 10.2 (see [3, 10]). We have

nb∆
k =

n∑

l=k

k!S2(l + 1, k + 1)(−1)n−la∆
l

Proposition 10.3. The Euler characteristic of X verifies

χ(X) = (−1)n
n∑

k=1

2n − 2n−k

k + 1

n∑

l=k

k+1∑

t=0

(−1)t+lCt
k+1t

l+1a∆
l

Proof. The (k− 1)-cells in the cellular decomposition of the T-hypersurface corresponding to X
are given by the non-empty symmetric copies of the k-simplices of S contained in the interior of
∆. Hence, this number of (k − 1)-cells is equal to nb∆

k (2n − 2n−k) by Lemma 10.1. This gives
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χ(X) =
n∑

k=1

(−1)k−1nb∆
k (2n − 2n−k).

Using Proposition 10.2, we obtain

χ(X) =
n∑

k=1

(−1)k−1(2n − 2n−k)
n∑

l=k

(−1)n−la∆
l

k+1∑

t=0

(−1)k+1−tCt
k+1t

l+1,

and the result follows. ¤

11. Main result for a toric hypersurface

Let X be any real nonsingular tropical hypersurface with Newton polytope ∆ ⊂ Rn. We
may assume without loss of generality that dim∆ = n. Let Z ⊂ (C∗)n be any nonsingular
hypersurface defined by a polynomial with Newton polytope ∆.

Theorem 11.1. We have

χ(X) = σ̃(Z).

This section is mainly devoted to the proof of Theorem 11.1. Before we give two technical
results that are repeately used.

Lemma 11.2 (See [3] appendix, and [22] p. 71). Let l and i be nonnegative integers. Then, for
l + 1 ≤ i, one has

(11.1)
i∑

q=0

(−1)qCq
i q

l =
i∑

q=0

(−1)qCq
i (i − q)l = 0

and, as a consequence, for any integer p,

(11.2)

i∑

q=0

(−1)qCq
i (p − q)l = 0.

Lemma 11.3 (See [3] appendix). One has
∑p

t=0 2p−tCk
t =

∑p+1
l=k+1 Cl

p+1.

Let us now begin the proof of Theorem 11.1. From Proposition 9.3, we have

(11.3) σ̃(Z) = −(−2)n +
n∑

l=0

a∆
l (

n∑

i=0

i∑

p=0

(−1)n+pCi−p
n+1p

l).

On the other hand, Proposition 10.3 tell us that

(11.4) χ(X) = (−1)n+1
n∑

k=1

2n − 2n−k

k + 1

n+1∑

l=k+1

k+1∑

t=0

(−1)t+lCt
k+1t

la∆
l−1

Note that the sum on l can be taken from 1 (and in fact from 0) according to Lemma 11.2.
Write

σ̃(Z) = −(−2)n +
n∑

l=0

Sl,n · a∆
l ,
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with

(11.5) Sl,n = (−1)n
n∑

i=0

i∑

p=0

(−1)pCi−p
n+1p

l,

and

χ(X) =
n∑

l=1

Cl,n · a∆
l

with

(11.6) Cl,n = (−1)n−l
n∑

k=1

2n − 2n−k

k + 1

k+1∑

t=0

(−1)tCt
k+1t

l+1.

Lemma 11.4. We have

Sl,n+1 = −2Sl,n if l 6= 0

Cl,n+1 = −2Cl,n,

and S0,n = (−2)n.

Proof. We have

S0,n = (−1)n
n∑

i=0

i∑

p=0

(−1)pCi−p
n+1

= (−1)n
n∑

i=0

i∑

b=0

(−1)i−bCb
n+1

= (−1)n
n∑

b=0

(−1)bCb
n+1

n∑

t=b

(−1)t

= (−1)n
n∑

b=0, b=n mod 2

Cb
n+1.

The sum and difference

n∑

b=0, b=n mod 2

Cb
n+1 ±

n+1∑

b=0, b=n+1 mod 2

Cb
n+1

are equal to 2n+1 and 0, respectively. This yields S0,n = (−2)n. We have

Sl,n+1 = (−1)n
n+1∑

i=0

i∑

p=0

(−1)p+1Ci−p
n+2p

l.

Use that Ci−p
n+2 = Ci−p−1

n+1 + Ci−p
n+1 to obtain

(−1)nSl,n+1 =
n+1∑

i=0

i∑

p=0

(−1)p+1Ci−p−1
n+1 pl +

n+1∑

i=0

i∑

p=0

(−1)p+1Ci−p
n+1p

l.
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By Lemma 11.2
∑n+1

p=0 (−1)p+1Cn+1−p
n+1 (p)l = 0 since l ≤ n. We have (−1)p+1Ci−p−1

n+1 pl = 0 if

p = 0 and l 6= 0, and Ci−i−1
n = 0. Hence for l 6= 0, we get

(−1)nSl,n+1 =

n+1∑

i=1

i−1∑

p=0

(−1)p+1Ci−p−1
n+1 pl +

n∑

i=0

i∑

p=0

(−1)p+1Ci−p
n+1p

l

=
n∑

j=0

j∑

p=0

(−1)p+1Cj−p
n+1p

l +
n∑

i=0

i∑

p=0

(−1)p+1Ci−p
n+1p

l,

with the change of index j = i − 1. This gives the equality Sl,n+1 = −2Sl,n for l 6= 0.
Finally, Let us show that Cl,n+1 = −2Cl,n. We have

Cl,n+1(−1)n−l+1 =
n+1∑

k=1

2n+1 − 2n+1−k

k + 1

k+1∑

t=0

(−1)tCt
k+1t

l+1

=
n∑

k=1

2n+1 − 2n+1−k

k + 1

k+1∑

t=0

(−1)tCt
k+1t

l+1 +
2n+1 − 1

n + 2

n+2∑

t=0

(−1)tCt
n+2t

l+1

= 2
n∑

k=1

2n − 2n−k

k + 1

k+1∑

t=0

(−1)tCt
k+1t

l+1

since
∑n+2

t=0 (−1)tCt
n+2t

l+1 = 0 by Lemma 11.2 ¤

Lemma 11.5. We have Sn,n = Cn,n

Proof.

Cn,n =
n∑

k=1

2n − 2n−k

k + 1

k+1∑

t=0

(−1)tCt
k+1t

n+1

=
n∑

k=0

2n − 2n−k

k + 1

k+1∑

t=1

(−1)tCt
k+1t

n+1.

Just notice that the two changes of range do not affect the sum. Then use that 1
k+1Ct

k+1t
n+1 =

Ct−1
k tn to get

Cn,n =
n∑

k=0

(2n − 2n−k)
k+1∑

t=1

(−1)tCt−1
k tn

=
n∑

k=0

2n
k+1∑

t=1

(−1)tCt−1
k tn −

n∑

k=0

2n−k
k+1∑

t=1

(−1)tCt−1
k tn

= 2n
n+1∑

t=1

(−1)ttn
n∑

k=t−1

Ct−1
k −

n+1∑

t=1

(−1)ttn
n∑

k=t−1

2n−kCt−1
k

= 2n
n+1∑

t=1

(−1)ttnCt
n+1 −

n+1∑

t=1

(−1)ttn
n+1∑

m=t

Cm
n+1
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by Lemma 11.3 and the fact that
∑n

k=t−1 Ct−1
k = Ct

n+1. Then, the first term is 0 by Lemma 11.2
and we get

−Cn,n =
n+1∑

t=1

(−1)ttn
n+1∑

m=t

Cm
n+1

=
n+1∑

m=1

m∑

t=1

(−1)ttnCm
n+1

=
n+1∑

k=1

k∑

t=1

(−1)ttnCk−t
n+1

with the change of indices k = (t − m) + n + 1. The sums over k and t can actually be taken
starting from 0. Moreover the sum over k can be taken until n since for k = n + 1 we get∑n+1

t=0 (−1)ttnCn+1−t
n+1 which is zero due to Lemma 11.2. This gives

−Cn,n =
n∑

k=0

k∑

t=0

(−1)ttnCk−t
n+1.

On the other hand, we have

Sn,n = (−1)n
n∑

i=0

i∑

p=0

(−1)pCi−p
n+1p

n.

Therefore, we get Cn,n = (−1)n+1Sn,n which is the desired equality for n odd. Suppose now
that n is even. Taking l = n in (11.5), and noting that the first sum can be taken until i = n+1
due to Lemma 11.2, we get

(−1)nSn,n =
n+1∑

i=0

i∑

p=0

(−1)pCi−p
n+1p

n

=

n+1∑

i=0

i∑

m=0

(−1)i−mCm
n+1(i − m)n

=
n+1∑

k=0

n+1−k∑

m=0

(−1)n+1−k−mCm
n+1(n + 1 − k − m)n

=
n+1∑

k=0

n+1∑

t=k

(−1)t−kCn+1−t
n+1 (t − k)n

=
n+1∑

k=0

n+1∑

t=k+1

(−1)k−tCt
n+1(k − t)n.

with the successive changes of indices m = i− p, k = n+1− i and t = n+1−m and using that
n is even. Suming up the second and last formula yields

2(−1)nSn,n =
n+1∑

k=0

n+1∑

t=0

(−1)k−tCt
n+1(k − t)n
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which is zero by Lemma 11.2. ¤

Proof of Theorem 11.1 We have S0,n = (−2)n by Lemma 11.4 and a∆
0 = 1 by definition

of the Ehrhart polynomial. Hence, Formula (11.5) can be written as σ̃(Z) =
∑n

l=1 Sl,n · a∆
l .

Comparing with Formula (11.6), it remains to prove that Sl,n = Cl,n for l = 1, . . . , n. But this
clearly follows from Lemma 11.4 and Lemma 11.5. ¤
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