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Abstract This paper presents the study of surface tension effects in compressible
mixtures in the framework of diffuse interface models. In the first part, we describe
results previously obtained on the so-called compressible Korteweg and shallow water
models and we present nonlinear stability using energy estimates and a new entropy
equality recently discovered. These diffuse interface models also allow to take account
of capillarity effects in turbulent mixtures and plasma flows subject to Rayleigh—Taylor
instabilities. The aim of the last part is to study the influence of surface tension on this
instability phenomena. More precisely we look at the expression of the growth rate
under a small perturbation of wave number k. We prove that for an appropriate choice
of the capillary number o in terms on the surface tension coefficient 7 (that means

The first author would like to thank the CEA/DAM (Bruyeres le Chatel, France) for its financial support
through the contract no. 4600052302/P6H28. He is also partially supported by the IDOPT project in
Grenoble and the “ACI jeunes chercheurs 2004 du ministére de la Recherche “Etudes mathématiques de
paramétrisations en océanographie”.

D. Bresch (X)) - M. Gisclon

Laboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie,
73376 Le Bourget du Lac, France

e-mail: didier.bresch@imag.fr; didier.bresch@univ-savoie.fr

M. Gisclon
e-mail: gisclon@univ-savoie.fr

B. Desjardins
E.N.S. Ulm, D.M.A., 45 rue d’Ulm, 75230 Paris cedex 05, France
e-mail: Benoit.Desjardins @cea.fr

R. Sart ()

Laboratoire de Mathématiques, UMR 6220 CNRS, Université Blaise Pascal,
24 avenue des Landais, 63177 Aubiere, France

e-mail: remy.sart @math.univ-bpclermont.fr

& Springer

a Journal: 11565 MS: 0043 CMS: 11565_2008_43_Article [_] TYPESET [_]DISK [_]LE [_]CP Disp.:2008/4/21 Pages: 26 Layout: Small-X




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

42

43

44

45

46

47

48

49

50

51

Ann Univ Ferrara

particular pressure laws), we find the same expression as for the two incompressible
fluids model with surface tension coefficient on a sharp interface studied for instance
by Chandrasekhar (Hydrodynamic and hydromagnetic stability. Dover Publications,
Inc. New York, 1981).

Keywords Surface tension effects - Rayleigh-Taylor - Korteweg models -
Instabilities - Compressible flows

Mathematics Subject Classification (2000) 35Q30

1 Introduction

In various applications, hydrodynamic instabilities can be observed at the interface
between different materials. A refined description of the mixture dynamics by numer-
ical codes is necessary in order to predict and reproduce experiments [15]. In previous
papers, we analyzed the stability and well posedness properties of diffuse interface
models used to catch the effect of surface tension in a transition zone of finite extension:
Korteweg and Shallow water type models, see [7,8].

In order to describe the zone separating two fluids of different properties, various
points of view may be adopted:

e A microscopic viewpoint, in which a transition zone of finite extension exists
between the two fluids, where the gradient of physical variables are large. Diffu-
sion effect at the molecular level has to be considered.

e A mesoscopic viewpoint, in which the fluids are separated by a zero thickness
layer, called “interface”. Most of the physics in the layer is contained in suitable
boundary conditions.

e A macroscopic viewpoint, where only large scale effects are represented in a
transition zone (diffuse interface) containing simultaneously the two fluids.

The instabilities are made of a combination of three basic type instabilities:
Kelvin—Helmholtz (induced by shear stress), Richtmyer—-Meshkhov (induced by a
shock at the interface), and Rayleigh—Taylor (which appears when the gravity and the
density gradient are in the opposite sense).

We will describe in this paper a surface tension model published in other physical
papers in the context of compressible turbulent mixtures [15] and we will give var-
ious mathematical properties. Such a model corresponds to the third description of
free boundary interface problem, see for instance [1]. In a first part, we will explain
the results obtained in two recent papers regarding the well posedness and energet-
ical consistency of the model. In the second part, we will establish some properties
concerning the influence of surface tension on some instabilities phenomena.

These modeling approach of surface tension, which includes a third order derivative
term with respect to the density, has good properties in some applications in liquid
water-steam mixtures (for instance with respect to the “sharp interface” limit), but has
not been studied in the presence of strong amplitude shocks.

We analyze here the influence of the surface tension term on the growth rate of
instabilities. We prove that until the first order expansion with respect to the wave
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number, surface tension does not appear in the asymptotic expansion. We follow the
lines of the paper [12] where a similar problem has been addressed without surface
tension effects. We formally generalize then the Rayleigh equation to the capillary
case and establish an asymptotic expansion of the eigenvalue and the eigenvector.
Then we put emphasis on the importance of the diffusive term when surface tension is
taken into account. We obtain the linear stability and the nonlinear stability for some
range regarding surface tension and some other hypothesis. Let us note some experi-
ments in microgravity, where viscosity and surface tension are present, cf. [23,24]. In
[23,24], Rayleigh—Taylor instabilities are investigated in the case of two fluids with
finite thickness including the effects of viscosity and surface tension terms. The system
consists in two horizontal layers of inhomogeneous incompressible fluids of thickness
t1 and 1, with surface tension T at the interface, under the influence of a gravity field
of amplitude g, directed from the heavy fluid of density p» to the light fluid of density
p1- See also [22]. A small perturbation of wave number k at the two fluid interface
increases exponentially in time in the linear regime with a growth rate y given by

y? P2 — p1 — k>Ty/g

gk  pcoth(kra) + p1 coth(kty)’

Remark that letting #; and #,, respectively go to —oo, +00, we get the standard
expression that we can find for instance in [10]

v _m-p—KT/e T o

. (1.1)
gk 02+ p1 g(p2 + p1)

where A is called the Atwood number. As we shall see, it turns out that in case of the
Korteweg model, the influence of surface tension on the growth rate y arises at the
same order as in (1.1). This kind of result where surface tension is found at order 3 in
k has been found too in [9] in the framework of Richtmyer—-Meshkov instabilities at
the interface between two incompressible viscous fluids with surface tension. Readers
interested by mathematical problems for miscible incompressible fluids with Korteweg
stresses is referred to [16]. For hydrodynamical stability results see is [10,20] for jus-
tified mathematical results regarding asymptotic methods for the Rayleigh equation
for the linearized Rayleigh—Taylor instability.

2 The Korteweg compressible model

In previous mathematical papers, see [7,8], we have established some mathematical
properties of plasma junction models very similar to Korteweg type models.

The aim of the two preceding papers was to look at the well posedness of diffuse
interface models such as the Korteweg model. The basic hypothesis derived from the
mean field theory, is that the volumic free energy F of the system depends not only
on the temperature 6 and density p, but also on its gradient V p, in a quadratic manner

o
F(p,Vp,0) = Fy(p,0) + 5|Vp|2,
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where Fy corresponds to the free energy per unit volume of the homogeneous material,
and o is the capillarity coefficient of the system.

The thermodynamic and conservation principles allow then to deduce the following
model from the expression of F:

00 +div(pu) =0,
d:(pu) + div(pu ® u) = div(S + K) + pf,
3 (p(e + [u]?/2) + %|vp|2) +div(pu(e + ul/2))
= div(aV0) + div((S + K) -u) + pf - u,

where u and p respectively denote the velocity and density of the fluid, e the specific
internal energy, 0 is the temperature, S the stress tensor, K the capillary tensor and f
the external bulk forces. The stress tensor S is given by

Sij = (Adivu — P(p, 0))8;; + 2uD;j(u),

with p and A the viscosities, D (u) the strain tensor and P the pressure; the capillary
tensor K is expressed as follows

Kij = Z(Ap* — |Vp)8ij — 0d; 08,
ij 3 0 P17)0ij iPOjp.

When a barotropic assumption can be made (for instance in the isothermal or in the
isentropic case), then the Korteweg model, in absence of forces, reads as

d;p + div(pu) =0, 2.1
9 (pu) + div(pu ® u) — 2vdiv(pD(u)) —opVAp + VP(p) = 0. 2.2)

In the previous work [7], we proved the existence for all times of weak solutions for
the above model in the case of barotropic equation of state, i.e. the pressure P only
depends on the density p. This corresponds to a global in time stability result with
respect to perturbations of the initial data (pg, poug). This stability result assumes that
the viscosity u is a linear function of the density p: u = vp (for some positive constant
v). Even though the parabolic system obtained on the velocity u degenerates when p
tends to 0, this viscous model allows to get some extra conservation law on a velocity
v characterizing the heterogeneities v = vV log p, that means the space variability of
the density.

In the article [8], we studied the viscous shallow water model, which is obtained
from the incompressible Navier—Stokes model with free surface in presence of surface
tension, in the limit of large wavelengths. The shallow water model captures at large
scale the effects of surface tension, which writes as a tensor of the form (1).

This study showed the crucial importance of drag forces on the stability properties.
Drag forces, in the Stokes regime, (proportional to u), or in the Newton-turbulent-
regime (proportional to u|u|), allow to control the oscillations of the solutions when
the density gets close to zero.
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The reader interested by recent mathematical results on the homogeneous
incompressible Navier—Stokes equations with free surface is referred to [13] and to
[18] for inhomogeneous flows. See also [15] for results on the retraction of viscous
films in one dimension in space.

3 Stability using energy estimates with surface tension and viscosity
3.1 Linear stability

We prove that the system (2.1)—(2.2) is linearly stable around a constant reference
state

(pFEfa uref) = (p,0),

provided some condition involving the pressure law and the surface tension is satisfied.
For simplicity, we take A = 0. The space domain §2 is assumed to be a periodic box
(0,27 L)4.

Linearizing around the constant state (p, 0) (p > 0), the density and velocity per-
turbations are still denoted (p, u). Using Laplace transform in time, and denoting «
the time coefficient, we get

ap + pdiva = 0, 3.1
P'(p)

au —2vdivD(u) —oVAp +

Vo = 0. (3.2)

Then we prove that we get linear stability for o large enough, more precisely, if we
assume P'(p)L% > —jo.
Let us multiply (3.1) by the conjugate p* of p. We get

a/|p|2+5/p*divu=o.
2 2

We multiply now the conjugate of (3.2) by u, we get

P'(p)

——p*diva = 0.
0

m/|11|2 + 20/ DW* + U/A,o* divu —
2 2 2

Multiplying now Eq. (3.1) by Ap*, this gives

—(x/|V,o|2—|—,5/divuA,0* =0.
2 2
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The three previous equalities give

o
a/|u|2+2v |D<u>|2+a5/|w|2+ (p)/|
2 2 2

Then we have

—v/ |Vu|2—v/ |diva|?
Q= 2 2
o P'(p)
/|u|2+—_/ Vo> + —; /|p|2
2 P Je P 2

Using the Poincare—Wirtinger Inequality (note that [, p = 0 and [, u = 0), we get
the linear stability if

re=NT 2
PoL
oo

In other words, we remark that in the case where P(p) = ﬁ(p/,é)a, é € R, we get
the linear stability condition ¢ > —8L?P/52. Remark that pressure may satisfy such
constraints, see for instance [2].

3.2 Nonlinear stability

We will prove in this part that the presence of viscosity and surface tension allow to
obtain the exponential stability if p is assumed to be uniformly bounded from below
and from above.

We begin by a classical monotone stability result.

3.2.1 Monotone stability

Using the direct energy inequality, we get the monotonic stability without any hypoth-
esis on the data, assuming o > 0. Indeed

d

1 2 g 2 2
- <§p|u| +11(p) + 51Vl ) <— [ vp|D(w)]
2

2

where

H(s)=s/£d > 0.

0

Let us prove that System (2.1)-(2.2) is monotonically stable if 17" (s) > —o/L2.
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171 From [7],we also have the following inequality

d 1 , 1 2 )
172 — (—,olul + —plu+vViogp|” + 20 (p) +o|Vp| )

dt 2 2

P’
173 < —v/ ('0) v0/|A,o|
0
Q

174 We remark that sI7”(s) = P’(s) then if we assume I7”(s) > —o/L?, then the
175 system is monotonically stable for a norm involving a space derivative for p.

176 Let us remark that without surface tension we would have to assume 17”7 (s) > 0
177 that means a convex potential. The presence of surface tension allow to consider some
178 transition zones. See [2] for some forms of P (p) such as the Van der Waals equation
179 of state.

1o 3.2.2 Exponential stability

181 We will look at the nonlinear stability around (o, 0). We prove that if we assume
w v >0,c1 <p<crand IT"(s) > —o/L?, then the basic motion is exponentially
183 stable.

184 ‘We have
4 2 Vlog p|? + 211 Vpl|?
185 o plul + plll+v ogpl”+2(p) +o|Vp|
2
/
o0 < —v/ ) gp2 - va|VV,o|2—v/,o|Vu|2.
2 2

w Thus if 0 < ¢ < p < ¢ and if [T”(s) > —o/L?, then we get the exponential
s stability of the model without restrictions of the size of the data. This allows to look
180 at the nonlinear stability of the model given in [15]. Let us note that the norm

1

®

1
90 /(p|u|2+§p|u+vVlogp|2+2H(p)+a|Vp|2)
2

1 is equivalent to the norm

[ (1 + 167 +196)
2

13 if p is assumed to be uniformly bounded from above and from below. The reader inter-
194 ested in nonlinear stability of the rest state as basic solution to the full incompressible
15 nonlinear Korteweg model is referred to [17].

1

©
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4 Rayleigh-Taylor stability

In this part, we study the influence of the surface tension coefficient on the growth
rate of Rayleigh—Taylor instabilities. The gravity field g is assumed to be constant and
directed along the z coordinate g = (0, 0, —g) for some positive acceleration g. Again,
we restrict to the case of barotropic equations of state for simplicity. We consider an
inviscid model and we show that the effect of surface tension may be seen only at the
order 3 with respect to the wave number k. This result is similar to the one obtained
in [24] on a superposition of two fluids with different densities. In addition, we prove
that in the presence of viscosity, an exponential stability result can be obtained under
the assumption of lower and upper bounds for the density.

4.1 Linear instability result
In this part, we will study the effect of the presence of surface tension term on the insta-

bility growth rate of Rayleigh-Taylor type. More precisely, looking at perturbations
around (0, p°, p?) (to be specified later on) under the form

p(x.z,1) = p(z) explikx +y1), @ = p,u, w, p,
we prove that the growth rate y satisfies the following expansion

gk

5 A~ Ao+ khp + ks,
12

where 1o, A1 and A; are given by

N _p%+pg_A_l
Tl
o0
N _1_A2 AZ_(pO_1)2d
1= 753 0 Z.
—00
Ay — (0 =0)
+o01dpY 2 +201dp% 12 (p0 — (1+ A))
Ao+ 1 — | dz+ A k—l/ —_— —d
Y (o )/0 ‘dz’z 0 (%o )0 ’dz‘ oY :
T 24

\@(2(”0‘“‘*‘”[12
dz

0 de 2 -0
—(Ao—l)/ R dz+ko(ko+l)/ o
—c0 l dz —00 P

/+OO ‘ﬁ Zw(l — ro)dz _/+oo @‘ZL[&
03— | Jo 0 Iz

dz (p9)2 dz
2 0 70912000 — (1 — 0 0,2
p” 12 (p" — (1 —A)) / dp 1
- LT (Mo + Ddz + ]— —d
/—oo’ dz ‘ TR N e B
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Remark that since we are interested in the surface tension coefficient on the growth
rate, only the terms depending on it are given here for A,. The expression of A‘z’:o is
given later on.

We assume that the density, the velocity u = (u, v, w) and the pressure p, function
of the density p satisfy

9 p +div(pu) =0,
d:(puw) + div(pu ® u) — vdiv(pVu) —opVAp + Vp = pg. “.1)

We remark that the diffusive term is a degenerate one as in [8], (1 (p) = vp, A(p) = 0).
More general viscosities may be chosen without extra difficulties. Let us consider a
hydrostatic profile p°, p® associated with u® = 0 that means a couple (p°, p°) such
that

Vp? =0p"'vAp° + plg, 4.2)

which writes as an ordinary differential equation on p° in z assuming barotropic
flows. See for instance [2] for such density profiles that means for corresponding
pressure laws: Van-der-Waals type laws for instance. This relation is linked to the
Maxwell equilibrium points. We consider incompressible perturbations of the basic
flow (0, p°, p°). Let us note that the study of weak stability associated with System
(4.1) has been achieved in [2,3] for uy 7# 0. Extensions of our results to nonvanishing
initial velocity profile and/or compressible perturbation could be an interesting open
problem. Here we consider a 2D incompressible perturbation.

4.2 Proof of growth rate ansatz

The perturbed density ,01, the velocity u! = (ul, 0, wl) and the pressure pl satisfy
the following equations

d 0
8t,01 + diwl =0,
Z
1 V

' + Eew1 =00’p! +00,02p" +vo2u' + Eaz(poaz”1)7
,O_ldS,OO B 'O_lg
00 dz3 00
deu' +o,wl =0.

1 v
Btw1+ﬁazpl :aafazpl+aaz3pl+a + v8§w1+E8Z(p081w1),

Let us forget the indices 1 and look for solutions of normal mode type, namely

o(x,z,1) = p(z) exp(ikx + y1), ¢ =p,u,w,p,
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where the wave number £ is considered as a parameter. This gives the following system

yp+@w=0
dz ’
ik .3 _d?p 5 vd(od)
U+ —p=—ik’op+iko—— — vk“u + — — —ul, 4.3
14 pop P ) 0 dz P 4.3)
Ldp _ pode dp o 00 p k2+Vd(od)
w+——=—kco—+o—%+0— ——g—vkw+ —— —wl,
v oV dz dz dz3 p0 dz3 pog pVdz Pz
dw
ik — =0.
lu+dz

By following the steps given in [12] that means by rewriting the equation under a non
dimensional form and denoting ¢ = k¢, it is easy to see that we can write the system
as a modified Rayleigh equation.

More precisely, we prove that if p, u, w, p is solution of (4.3) then the following
Rayleigh equation is satisfied for the vertical component of the velocity

v d* [ d? d 2ve2\ o oe?pdp’ 12\ dw

i 0 ) = (0 S S ) 3

y12dz2\" dz? dz y L2 y2e* l dz | ) dz
2 2

2— 0 0
2 ve o O&p|dp” |2 e~ dp
+ ((1+—) n —| ) A K 4.4

¢ ye2 P y2etl dz v v2e dz s 4

Note that the modified Rayleigh equation, in its dimensional form, may be written in
a form similar to Equation (19) in [1] where the following frequency N and velocity
M were introduced

[T (d_/’o)z
dz /)~

o
00 dz’ o0

4.2.1 Asymptotic limit

Let us now assume that v = 0 and perform the asymptotic analysis when ¢ goes to 0.
We note A° = £g/y2¢. Then, Equation (4.4) rewrites as

d[(o aeﬁﬁ‘dpo‘z dw] | 5/ awz‘dpo‘z dp°

—— — == )= — === Jw=er"—w.

dz|:(p + g’ ldz )dz te ('0 + gl’ ldz )w ¢ az "
4.5)

Assume now that the typical size of the interface scales as ¢ and that the density
profile connects two constant states at infinity (poy /p for positive z and pp/p for
negative z). We note
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Let us consider po(z) = ,50 (z/€) and w(z) = w(z/¢e) Then, the above equation reads

e

Taking the sharp interface limit in the weak formulation associated with (4.4) as in
[12], we get

dp? 2\ dw dp® 2y _ dp® _
p ’)_w apr” )w:ﬁ_p . (4.6)
dz dz dz dz

] + (50 +5e3A8

=0,

d (odws 0~ d,o*~
- -2
dz( * dZ )+,O*w* 0 dZ

where o0 = p¥ /o if z < 0and p? = p) /p elsewhere with o), > p%. This yields the
expression on (—oo, 0) U (0, +00)

w* (z) = IE*(O) eXP(—|Z|),
and

[ o dwy(0") Odw*
PyU——— —

o SO0 + 2olof) — P 0) =0,

and then, we get the well known expression of Aq

0%+ o

= A"l
oY — pY)

A =

4.2.2 Ansatz
In the following we choose the characteristic density scale equal to
P = (o) +PD)/2,
thus the non dimensional density connects two constants states at infinity (1 + A =
pg /p for positive zand 1 — A = pOD /p for negative z). Let us rewrite equation (4.5)

in terms of a® where

w?(z) = a®(z) exp(—¢lz]).

We getforz > 0

dl/ o NgdeZdag dl( o ~ .1de% 12\
—£|:(p +oel” | — )dz +26‘£ (p +oeh e )a
d /1dp° 2
_ & e.2 o &
—0F + 1) 516’ (( e ’ )a , “.7)
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and forz < O

_i[(po +aoer’ d—po)z) da€j| - 28i|:('00 +oer’ d_pO)Z)ae}

dz dz dz dz dz
dp® d ;1dp° 2
— e — Dy — &x%—(‘i )aa 4.8)
dz dz \l dz

Then we use a formal asymptotic expansion of the pair (A%, a®) under the form

Mo=hoter +eth o,
a® =ap+ea; +&*ar+ - .

and we will prove that

A.():A_l,
o8}
1—A2 AZ_(pO_l)Z
A= dz. 49
= | e 4.9)
—00

That means that Ag and A1 do not depend on o except by p°.
To derive such expressions, we follow the lines given in [12] plugging the Ansatz
in (4.7) and (4.8) and identifying the powers. We get, for z > 0

d Oda()
_ — ) =0,
dz('o dz)
d ( odai\ . d (1dp°2dag d dp®
—(p"— ,\—‘———z— =—(o+ D——ap,
dZ(P dz) o Odz( iz dz) dZ(P ap) (Ao + )dzao
d ¢ odaz\ . d (dp’Rdagy . d ;1dp°2da d
L (e x_\__ A_\___z_
dz(p dz) 7 ldz( dz dz) 7 Odz( dz dz) dz(p ar)
_.d dp? 2 dp® dp® . d gdp® 2
—ZA—‘—‘ — _p+ ) —x——)\—‘—‘ .
o Odz( iz ao) (Ao + )dzal 1dzao o Odz( iz )ao

As in [12], this gives, asking for da; /dz to tend to zero at 400
ao(z) =aou, z>0

+00 0 | A
—(1+
a1(z) =ar,u + (o — Dao,uy / (p;—o))dz, z> 0.
V4
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On the lower part, one has similarly

ap(z) =aop, 2<0

d-4),

Z ( 0
p —
@@ =ap = Go+ Danp [ L

Let us look at the second order of the Ansatz, that means a>. We get

d ( odaz\ . d (1dp°2day d
L4 An— ‘_ 4 _2_
dz(p dz) “ Odz( dz dz) (pan)
(A+1) o’ Adpo +/\d(‘dp02)
= — —a —Al—a —1 )ao.
0 ! 1a’z 0 dz \ldz 4

By integrating from z to 400, we obtain

+2,0 a; =21+ Aay

d(p%a da
=—(Ao+1)/Mdz+(xo+1>/p°—ld
dz d
z 4

Odaz ‘ da1

0 . 1dp°p2
—a1((1 4 4) = P,y — Fho| = a0.u.
dz
By using the expression of aj, this may be written, for z > 0:

daz
PO— -

2d(l1 0
10| 2 \ = —( = D( + Mary = pa)
dz dz

z < 0.

F(1=ad) / a0.0(0" — (1 + A)dz’

0 ~ 1dp° )2
M+ ) = oy —Fh0| |

At the lower part, that means z < 0:

0da2 2dal 0
L0492 ’ — = —(o+ D’ — (1 — A)ay.p)
dz dz

—R2—1) / a0.p(0° — (1 — A))dz’

0 . 1dp° 2
a1 (p® — (1 = A)ag.p — oxo]d—zj a0.p.

ao,u -

(4.10)

A.11)
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Now we use the continuity of the normal stress across the interface at order one in ¢

day day  _

—=(0") — —=(07) = 2a;(0),
iz 0" i (07) =2a,(0)
and the continuity of the vertical component of the velocity

ao(0) = ap(07) = ao(0),

T = 1+ 4)

p0 — (1 +

aiy —ai,p = ao((—)»o +1) / sz
0

0
0_(1—
—to+n) [ U 0

d d
By rewriting di;(oﬂ - di;(o—), we get, using (4.10) and (4.11),

d d
200001 0) = o (20"~ T207)

= —(0 = D(°a1 (0) = (1 + A)ay,y)
o0
+05 — Dao,u /(po —(1+ A)dz
0

—rao.u (02 (0) — (1 + A) + (o + D" (0)a1 (0) — (1 — A)ay.p)
0
+03 = Dag.p /(po — (1 = A)dz + riag, p(p°(0) — (1 — A))

—00

g)\,() ‘ d,OO 2 0 Odal 0 Oda1
—|— 0 —p — .= 0 —|.—0-)-
+ 0 az | \” ®ao,u — p iz l;=0+ + p"(0)ag,p + p i lz=0

(4.12)
As
Odal 0
p d_Z|z=0+ = —(k0 — Dao,u(p"(0) — (1 + A)),
Odal 0
P d_z|z:0— = —(*o0 + Dao.p(p"(0) — (1 — A)),

then the last quantity in terms of o vanishes using that ap,y = ap p and Ao = AL
Replacing a; by its expression and using that 1o = A™!, it gives the same expression
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as in [12]. More precisely, we get

+00 0
O _(1+A O—a1=-A4
sospfamm [ Oy [ P02,
0 —00

+00 0
—(1-— A%)(/ (0° — (14 A)dz + /(,00 — (- A))dz) +2Ax =0,
0 —0o0

and we obtain the expression of A given by (4.9).
Let us now look at the second order and prove that

A — a0 =0)
+00 d,OO 2 400 de 2(,00— (1+ A)
~ A 1 —1 d ro (A —1 — | ———d
Ok (o + )/0 ’dz‘ 220 (o )/() ‘dz‘ oY ‘
- 0 14002 0 7001200 = (1 —
p p” 2 (p" = (1—A))
—(Ao—l)/ ‘7‘ dz+x0(,\0+1)/ (— 5z
—oo ! dz J—oco ! dz o
400 dpo 2(,00— 1+ A)) +00 de 21
ol =D | Jo dz (0% 0 dz | p
2 O 1dp® 120 — (1 - 4)) O 1dp’2 1
—/ ’7‘ #()\Oﬂ-l)dzﬂ'/ ’— —dz
—oo0 ! dz (o) —ool dzl p
(4.13)

where A2(o0 = 0) is the expression of Ay when ¢ = 0. That means A, depends now
directly of the parameter o.
To derive such expression, we look at the third order in €. We have for z > 0:

()t () (4

dz'odz Oaz\l'az | az G]E dz | dz
—5K25—Z(’% de—azo) +25—Z(/00612) +25Mdiz(‘i—i) 2Clo)
—i-ZE)LO%(‘%‘za]) = (Ao + 1)%512 —G—M%a] +A2%ao
4330 (|22 s + 7 (|22 Yo

By using now the expression of p’das/dz and a;, we get

d { gdas\ —. d
(o) +an(
d 0
= —(Ao — 1)% — (Ao + 1)|:—()»0 - D1+ Aa v — 0%ay)

dp® 2dary\  _. d ;1dp® 12da;
) e ()
dz | dz dz\ldz | dz
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+00
-(g—1 / ao,u(p® — (1+ A)dz' — 11 ((1+ A) — p")ag v

50| 2° + A) Cjpdan] _, de (
o AQ dz apg,u T oA dZ ldZ anu
0 0
—(14+A d
P dz

+5Ao%(‘@‘2) (a1 v+ Oo—1) / ﬂ ao.u dZ)

d d
(| % oo+ 2500 |
ol —||—| )a o
1dz dz 0 0 dz
By integrating from z to 4-00, we get
das 2da2 012da ai
P2 AO] \ ZL (1 + 4) = pOaou
Z dz
+00

—(1 = 2)((1 4 A)az,y — paz) + (1 =) / ((1+ Aary — p’ar)

+00 400
—()»0-1-1)()»(2)—1)/ /ao,U<p°—(1+A>>
z &

0 = 3 dp° 2
k6ot D) [ @+ 1) =Py - Frao+ 1) [ |5 a0

+00
_ dp®2 (0" —(1+A)
+o (1 —)»%) / ‘d_) au————(p — (" = (1 + A)ary
Z 1Y
+ood 0 +oo 0 | A d
—(1+
+A1 (Ao — Dao,u / —/—(p s ))+ )»‘ L ‘al,U
dz £0
z &

4

_ T d o2y 00— (1 + A)
_GAO()LO_I)aO’U/[E<)d_z‘ )/ T]
&
0 2(p°—(1+A)>+~

+
- d dp® 2
+25 0 (k0 — Dao.y ’— . a)q’—‘ ay. (4.14)
d o dz
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At order 3 at the bottom, we have:

(o) ot () o )

—\» 0 —)+ori— —
dz dz dz\l dz | dz dz\ldz | dz
_. d (1dp° 2dag d _. d (dp° 2
b (722) <2t o (o)
o 2dz\l'az | dz * dz(p @) +20 Yae\Taz 1
_, d (dp° 2 dp” dp” dp”
2x—(‘—‘ ):—)\—1— — A ——aj — Ay——
t2oho (|7l @ (2o )dza2 g G Ramdo
g (s o ()
org—|\|—| )a oAr—\|—| )ao-
o\l | ) 1=\ | )

By using the expression of p’das/dz and a;, we get

)t () (0

Epdz OE dz | dz GIE dz | dz
d(p’ay) 0
=—(ho+1) - — (o —D|=(o+ D1 =A)arp—par)
z 0
2 0 0 ~. |dp”|?
05— [ a0 = (1= A) =1 (1 =) = Pao.p +Fho| 7| a0
—0o0
V4
_. 1dp°2da; dp® (P° — (1 — A))
x)—]——,\— — 1/—
+oko i | 4 'z (al,D o+ 1 0 ao,D)
—00
Z
dp® . d dp°p2 (P° — (1 - A))
—sz—zao—aloa(‘d—z‘ )(al,D—(?»o-i-l)/ B R ao,D)
—0o0
_.d 1dp° 2 . 1dp° 2da,
e (4 Do - o2 5
7 ldz( dz )aO’D ar0 dz | dz
By integrating from —oo to z, we get
d dp® 12d dp® 2d
— Oﬁ_gAO‘L‘ ﬂ_g)”’i‘ aa
dz dz | dz dz | dz
Z
= (o + D(Paz — (1~ A)agp) + (33 — 1) /(p°a1 — (1= A p)
—00
z &
+()»0—1)(?»%—1)/ /ao,D(pO—(l—A))
—00 —00
V4 Zz
0 = dp’ 2
#1100 =1 [ (0 = (1= Apavp+ 5o~ 1) [ |7 o
—0o0 —0Q
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Z
- o’ (p°— (1 - A))
51003 = 1) [ |2 a0 5= e~ 1= Aparp

+ 220" = (1 — A)ag,p

do® —(1-A
—)»1()\0+1)610,D/ P /M

—00
dp® |2 FTd dp® |2 ; (p° = (1 — A))
Gag| —— — Gaglho + 1 = (1= i S
to 0‘ dz ‘ @1,0 = G holho + 1)ao.p / |:dz(‘ dz )/ oY :|
—0o0 o
020" -1 —A) .. 1dp"2
—2axo(xo+1)a0D/( Tﬂm‘d—z a.p.  (4.15)

—00

By using the expressions involving A,, we obtain what we announced in (4.13).

In the same calculation time, we can also get the o-independent part of Ay which

is given by the following relation

1— A2
—2Aapr2(0 =0) = 2 (a2.v —a2.p),,_g+ Ari(aru + a1.p).
+00 0
+(1 —,\3)[ / (1 + Aary — plar) — / (plar — (1 — A)al,D):|
0 —00

“+00 +00

+ao(1—)\(2))[(ko+1)/ / (0" = (1+ 4))
0 z

—(Ao—l)// 0 —(1—A):|+aok[/(1+A)

0 0 (1 A) +00
[P0 iy [
0
—00 0
0

—(1+A
+<x0—1>/p—(1—A))+<xo—1>/ /" a+4d

0 z
dp® [ p%—(1-A)
—(A0+1)/d—z/—p0 ]
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where

(a2,U - aZ,D)UIO

Tt a) 0 P pOar — (1— 4)
+ A)aiv —p a par—(—A)aip
=()»0—1)/ —()»o+1)/

0 —00

p° p?

Jroo1 +o00 0 | z
+a0(A%—1)[/E/(po—(l—f-A))—/F/(po—(l—A))}
0 b4 —00 —00

+00 0
[/(1+A)—p° /po—(l—A):|

+aphi Y e—— — 0 |
) o . o

5 Low Atwood number limit for linear density profiles

In this part, we address the Rayleigh—Taylor instability in the framework of linear
density profiles and we derive the asymptotic expressions of the growth rate when the
Atwood number goes to zero.

This analysis is of particular interest in the framework of direct numerical simu-
lation of Rayleigh—Taylor instabilities. As a matter of fact, prior to launching large
computations, elementary evaluation of the code’s behavior has to be done. More
precisely, one important problem is to estimate for a given mesh size the wave num-
ber range in which the growth rate is correctly computed. Asymptotically analytical
solutions in the limit of small Atwood numbers provide such quantitative references.

We consider a nondimensional continuous density profile connecting two constant
densities away from a transition zone located in the neighborhood of z = 0, given by

1+ A ifz>A
pPP= 114z ifjz]<A
1—A ifz<-A

Looking at the behavior when A — 0 we obtain:

2
==+ o(A)
3
3o = 0) = — A+ o(A)
HO=W =50 Te

/4 4A
K2=K2(G=0)+U(§+E+O(A))
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2
€
Let’s now come back to the asymptotic behavior of y—k with respect to k = 7 and
8

see the influence of surface tension.

211 A Ao A2
r_Z [1 —le—(—z——;)serO(ez)].

gk ol g Ao A2
Since
~ _ ooy +pp)
2803
we obtain
Y. A[l _ 200y + pp) +pOD)k2].
gk 3gl
Choosing
- 2(p83—Tsp%)2Ae’ b
we get exactly
y? R

A — 5
gk g(p2+ p1)

Finally let us recall that the energy concentrated at the interface is interpreted as the
surface tension. It depends on the pressure law that is considered and is found look-
ing at the equation (4.2). The reader interested in a modeling paper on this subject is
referred to [21].

We recall that analytic solutions of the Rayleigh equation without surface tension
for linear profiles have been studied in [11].

6 Some known results on the compressible Korteweg system

Few works consider the diffuse interface model in the literature as far as Rayleigh—
Taylor or Richtmyer—Meshkov instabilities are concerned. We try there to describe
briefly different works devoted to stability results. In [1], the problems of internal
waves in quasi-critical fluids is addressed. The interface is represented by a transi-
tion zone with regular density. The static density profiles, frequencies of the internal
waves are computed and compared to experiments. In [3], the author studies the linear
stability on a transition phase problem for non viscous capillary fluids of Van der
Waals type. Two results are obtained: the capillary profiles are weakly linearly stable
in any space dimensions, by using an energy method; the technique of Evans functions
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shows a bifurcation phenomenon close to the origin. In [26], the stability and insta-
bility of oscillations of amplitudes O (1) in a Van der Waals fluid of Korteweg type is
investigated. The author obtains then some asymptotic models by letting the capillar-
ity and viscosity coefficient go to zero with the same order of magnitude. Solutions
with a given profile are considered but no assumptions on the structure of oscillations
are made. The analysis is globally formal with some points rigorously justified. The
main order is a system of three conservation laws. Indeed, a new variable has to be
introduced to close the final system. The other terms are solutions of a linear system.
Readers interested by recent mathematical results around Korteweg model is referred
to [4-7,14,19,25]. It could be interesting using such recent results to investigate again
the stability and instability of oscillations of amplitudes O(1).

Appendix: Ansatz

We need the following integrals appearing in the expressions of A1 and A;:

00 0
dpY |2 dpY |2
a7 _ 4. /‘L — A
dz dz
0 —00
00 0
A’ 1 o ata /‘dezl In(l — A)
—| 5 =In ; —| 5 = —Ind - A);
dz | p° dz I p°
0 —00
00 0
/dp021 A '/’dp02 1 A
dz | (02 1+A° dz | (p92  1-A4°
0 —00
o A2 9 2
/<1+A>—p°=7; /p°—<1—A>=—,
0 —00
ooooo A3 0 z . A3
4+ A) =" (1= A) ="
//p (1 +4)=-% //p (a-a="
0 z —00 — 00
To0—(1+A
/L()“L)zfx—(wfx)ln(wm;
o)
0
9 0
PP =1 -4 ,
2 =A+ (- A - A);
o)
—0Q
/(1 + Aary — plar = AL
0
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_aolz_AA (§ A+ +A)(ln(1 +A) — A;));

0
0 A?
pra;— (1 —=Aap= S LD
—00

. +A(— A ava —4)(In(-4) - A;));

24 3
1T 342 A (1+ A2
/O/po—(l+A) Tty I+ A
P 2
0
0
/1/0 (-m= AUy
J— — — = — — — ——In — :
P 4 2 2
—00 —00
o0 o0
dp® O—(1+4+4 A?
K*:/L/wz———A+(l+A)ln(l+A);
dz o0 2
0

/ 00 p—(l—A) A?
K*=/ / =—" 4 A+(1=A4)In(1 - A);

2
TAa+A 0 1—-A
+ A)a,y —pa -
( ) ;’OU PO — a1 u((+ A)In(l +4) — A) —ap Kt
P (1—A) 1+A
/ Pr— p_o a1.D = a1, p((1 = A)In(l — A) + A) — ag tAk-

—00

First of all, let’s look at A1, starting with its integral expression given in the preceding
section:

o
l_AZ/AZ_(pO_l)Z

Al = dz
2A3 00
—0o0
A
1-A? / A% -2
- 243 z+1
—A
A
_ I—AZ/A2—1—<z+1)2+2(z+1>
o248 z+1
—A
- [(A2 ~ D(In(1 + A) — In(1 — 4)) = & + A - (1A +44]
-2A] >
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= [(A2 — 1) (In(1 + A) — In(1 — 4)) + 2A]
1 —A? [4A3 443 N (A5)]
243 L3 "5 ¢
2 8A? 5
=375 + o(A9).

For the o-dependent part of A, we obtain

Ay —Ap(0c =0)

& [/1 1,1
:W[(X+1)A+Z(Z—1)(A—(1+A)1n(1+A))
1 1/1
—(Z—l)A+K(Z+1)(A+(1—A)ln(l—A))]
5(1—A?%) 1
+T|:(l—Z)(ln(l-i-A)—A)—ln(l—}-A)
1
—(1+Z)(—1n(1—A)—A)—ln(l—A)]
5[ 1 1-A2
:X_1+F+T(A+ln(l—A)—ln(1+A))]
. 1 1-A2 243 243 6
=X_1+E+T(_A_T_?+O(A))]
_i—i iz (A3):|
a3zt e
_~|:i+47A+ (Az)j|
B TR

And for the part which does not depend on o

—2Aaprr(oc =0) =

G )+ ama - a)

_ao(%—1)(—%2—A+(1+A)1n(1+A))]

—(% ¥ 1)[a1,D((1 — A)In(l — A) + A)

2

_ao(%—}-l)(—%ﬁ-A—i—(l — (i - )]

+ao(% . 1)[§+34ﬁ - #m(um
A 342 (1-— A

+5_T+Tln(1—A)]

+ao)»1[—A+(1+A)ln(1+A)—A—(1—A)ln(1—A)]]
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+AM(ar,y +a1,p)
1\ A2
—i—(l - —) [7(01,U —ai,p)

AP A 1+A
— 4+ — " In(1+A
5 2+ 5 n(l + ))

( 3
)( A° A 1;A
)

In(1 — A))]

(1= ) 5 () - 5 ()

+aoA1[—A+(1+A)1n(1+A)—A—(l—A)ln(l—A)
21

TGS G)
2 \A 2 \A

—l—(l—1)(—%2+(1+A)1n(1+A)—A)

_(%4_1)(—A?Z-}-(I—A)ln(l—A)vLA)].

And after some calculations we get

—2Aaprr(oc = 0)
1 — A2 A 1-—A?
= [(al,u - a1,D)(5 + A
1—A2 2 A 11 A2
al (

. §_ﬁ+7)(1n(1+A)—ln(l—A))]

(In(1 + 4) + In(1 = 4)) )]

+ A 3

+ao,\1[(1+%—A)(—2A+(1+A)ln(1+A)—(1—A)1n(1—A))

2

24 (In(1 + A) =In(1 — A))]

with

0 1+ A P (00— (1= 4y
al,U—al,Dzao((—AOH)/psz—(AoJrl)/ppiodz)
0 —00

ao[(l ¥ 1)(A —(I+A)Ind+ A)) _ (% + 1)(A n (I—A)ln(l—A))]

A
— A2
= ao[ <24 — " (In(1 + 4) —In(1 - 4))]
447 4A* 4
= | -5 - g5 +ouh)
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Putting together all these expressions we finally get the following ansatz:

—2Aapir(oc =0)

I O e e )

a0 315 2 24 2
L2 A+( ! +1+A2)(2A+2A3+2A5+ (AG))
A3 A2 27 3 15 ¢
1 A3
—4+1-A)(— = +o0(4
2 8A2 (5 +1-2)(
+aof 5 - 55 ]| ’

1 — A2 243
24+ — " (2A+ = A3)
+— ( + 5 +od)

which gives

4A
Ja(o =0) = 75 +o(A).
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