-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL Université de Savoie

HAL

archives-ouvertes

An experiment concerning mathematical proofs on
computers with French undergraduate students
René David, Christophe Raffalli

» To cite this version:

René David, Christophe Raffalli. An experiment concerning mathematical proofs on computers
with French undergraduate students. Journal of Applied Logic, Elsevier, 2004, 2 (2), pp.219-
239. <hal-00384656>

HAL 1Id: hal-00384656
https://hal.archives-ouvertes.fr /hal-00384656
Submitted on 15 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/47303377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00384656

An experiment concerning mathematical proofs
on computers
with French undergraduate students

R.David and C.Raffalli*

1 Introduction

The undergraduate students in mathematics of the University of Chambéry have
the opportunity of an optional course in logic during their third year. Some years
ago, this course was a classical introduction to logic as, for example, in [3]. Due
to the difficulties of the students, it became, step by step, a training course in
mathematical reasoning. The use of PhoX, the proof assistant developed by C.
Raffalli (see [14]), allowed to carry out, in detail, «real» proofs during lab sessions
on computers.

We started to use PhoX with students in 1999. At the beginning, the examples
we considered were very simple but, step by step, they became more and more
intricate and, in 2001, the students spent about 10 hours with PhoX. During the
2002-2003 academic year, this course (i.e. 50 hours) has totally been devoted to work
on computers. The students had to do, first with the computer and then on paper,
the proof of three classical mathematical theorems (see section 3.3). During the
2003-2004 academic year, only a short course (10 hours) of training to mathematical
reasoning was maintained : our colleagues (mathematicians but not logicians as we
are) did not consider that this course was important and they decided to suppress
it. During the 2001-2003 academic years, some first year students also did some
(more elementary) proofs with PhoX.

It is, as far as we know, the first time in France that math students, at this level,
have done proofs of that difficulty with a computer. The goal of this paper is to
describe these various experiments. We will mainly concentrate on the 2002-2003
academic year since it is, in some sense, its apogee. We also give the main important
points concerning the other years and the experiment for the first year students.

This paper is not, strictly speaking, a research paper. Even though it gives some
details on the way PhoX works and thus can be considered as a short introduction
to this software, we are here more concerned with pedagogical matters. However,
the problems we mention may interest computer science researchers working in the
field of formal methods because they may help them in prototyping proof assistants
designed for teaching mathematics.

2 Proof and computers

Proof assistants like ACL2 [10], COQ [8], HOL [7, 9], Isabelle [12], LEGO [13],
PVS [11] ... allow to do mathematical proofs with a computer and their correctness
is thus guaranteed. This is not automated deduction : the user can (and generally
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must) guide the machine in the reasoning. The software just checks that each step
of the proof is correct.

Most of the software above provides more or less sophisticated algorithms of
automatic deduction allowing to finish the proof without the participation of the
user. But this aspect does not have much teaching interest because the interesting
point is the correctness of each step of a proof. These systems were developed by
specialists primarily aiming for applications in formal verification for programs,
circuits, communications protocols, etc. Learning to use these systems is not simple
and clearly requires too much time for undergraduate students in mathematics.

PhoX can be used by undergraduate students because it uses the usual mathe-
matical language (see some examples below) and the small number of commands
(ten are mainly sufficient) makes its learning easy. As far as the authors know, it
is the only proof assistant used in France for teaching mathematics (and not just
logic).

Various other systems! are used to teach logic using computers. But, even though
we are logicians, our goal is now to teach mathematical reasoning using a computer
and avoid logic. Since, in France, most of the math students will never have a course
in logic, it appears to be necessary! We give some answers to the question «why
PhoX ?» in the appendix D.

3 The main experiment

We describe in this section what we have done during the 2002-2003 academic
year.

3.1 A bit of logic

Before starting to work with computers, we spent three or four hours on the
blackboard to describe the grammar of proofs and to do some examples.

We did not give a formal presentation of the notion of formula that can be found,
for example, in [3] : it is sufficiently intuitive to the students and this avoids the
distinction between first and higher order formulas. This distinction is important in
a classical course of logic but such a course is not our goal here. As it is traditional
in logic, we nevertheless introduced the symbols V for «or», A for «and» and - for
«not». We essentially said the following :

A proof is a sequence of steps : each of them corresponds to the ap-
plication of a rule. At each step of a proof, there is a knowledge list>
(denoted as KL). At the beginning of a proof, KL is empty : more pre-
cisely it contains only the results given during the course, i.e. theorems,
lemmas, axioms, etc. Some rules allow to extend KL for the rest of the
proof. If a proof has to consider several cases, the KL of each case are
identical at the beginning but they can change independently.

A first rule simply says that if a formula belongs to the KL, then it
is proved. For each logical symbol (connective and quantifier) there are
two rules concerning the formulas whose main connective is the corres-
ponding one. One, called the introduction, which is used to prove such
a formula. For example, to prove A — B one adds A to the KL and
one proves B. The other one, called the elimination, which allows to use
such a hypothesis (or a lemma, an axiom, etc.). For example, if AV B

1For example see www.cs. otago.ac.nz/staffpriv/hans/logiccourseware.html.

2This list is commonly called the hypotheses (or context) but this term, that logicians use most
often in this sense, can be misleading because it can be thought as constant. The fact that this
list is constantly changing is an important point which was not clear to the students.



belongs to the KL and one wants to prove C, it is enough to prove both
A — C and®> B — C. We also mentioned the absurdity rule which is,
usually, not clear for them.

These rules* are given (using PhoX’s terminology) in the appendix E (page 20).
It could be surprising that, with a few extra axioms like AC to specify the underlying
theory, this is enough to prove any mathematical result. This is not very difficult to
explain, but many mathematicians are not aware of Gédel’s completeness theorem !

3.2 The introduction to the software

After these few hours, the rest of the course took place in the computer lab. The
students worked in groups of two. The computer system was Linux but those who
wanted to use the software at home could use a version for Windows. We gave the
students a table with the main commands of PhoX (appendix E, page 20).

The first lab session took about four hours. The students proved some elementary
facts in propositional calculus and in first order logic : for example [(AAB) — C] «
[A— (B— C)]or d3z(AAB) — (3z AA 3z B).

The second lab session also took about four hours. The students showed that
if two one-to-one functions (from E into F) have disjoint supports®, then they
commute. This example is simple because it was seen during the course of algebra
(when it is shown that, in S, two disjoint cycles commute). After that, the students
were familiar enough with PhoX and they had no major difficulties with it.

3.3 The theorems proved

Then the students had three projects. Each of them took about ten hours.
They had to do the proof with the computer and to write it, in the usual way,
on paper. This work was evaluated and the corresponding mark was considered as
the continuous assessment. The exam has been done in the same way : a proof
to be done with the computer and, in the usual way, on paper. The files (ques-
tions and answers) of Heine, Noether and the exam can be found at the URL :
www.lama.univ-savoie.fr/~david/PhoX

Heine The goal was to prove Heine theorem : a continuous function on I = [a, ]
is uniformly continuous. It is not necessary to have «builty R. It is enough to have,
as lemmas, the properties of R that we need. It is in fact surprising that we actually
need very few things : some properties of the order (totality, density, ...), its relation
with the various operations (¢ > 0 — /2 > 0, ...) and, of course, the axiom of the
least upper bound. The proof has been decomposed into two results :

- They first had to prove the compactness of the interval I in the following way :
for every positive function lg there is a finite subset A of I such that each point of
I is at a distance less than lg(z) from a point = in A. This proof was prepared by
the introduction of the set P of points ¢ in I for which there is a finite subset A of
I such that each point of [a, ¢] is at a distance less than lg(z) from a point z in A.
The students had to prove, successively : (1) P is non empty and bounded, (2) if
m is its least upper bound, then m € P and finally (3) m = b.

- To prove Heine theorem the help was : take € > 0 , use the compactness with
the function lg(x) = a(x)/2 where a(x) is the number given by the continuity of f
at = with £/2. This gives A. The number a we are looking for is min{«a(z) / = € A}.

3Note that this «and» is very surprising for the students.

4In the rest of the paper, the rules are given their usual name. For example, A; is the introduction
rule for A.

5The support of a function from E to E is the set of points that are not mapped to themselves



The definition of continuity was given in a slightly unusual way in order to avoid
the use of the axiom of choice which, with the usual definition, must be used and
introduce a technical but uninteresting difficulty.

Noether The goal was to prove that, in a commutative ring with unit, the follo-
wing properties are equivalent : (1) every increasing sequence of ideals is stationary
(2) every ideal is finitely generated.

The formalization does not raise any particular problem. In preparation of the
main results, the students had to prove some useful lemmas, for example : if (I,,) is
an increasing sequence of ideals then UI, is an ideal or if [ is an ideal and X C I,
then the ideal generated by X is a subset of I, etc. For the direction (1) = (2), the
proof is by contradiction : one has to find, by induction, an increasing sequence of
finite sets. Moreover, this construction uses the dependent axiom of choice (a weak
form of the axiom of choice). This needs a more expert knowledge of PhoX and
the axiom of choice. Thus, the students were given the definition of the sequence,
including its construction using the dependent axiom of choice.

Other theorems For the third project, the students were asked to propose re-
sults, taken from their other courses, they had not well understood and that they
would like to work for better understanding. After some discussion (because most
of the subjects they proposed were only details in a proof) this gave the following
subjects. Unlike for the previous projects, they had to do everything. Actually it
was not so difficult since the preliminary work was, in fact, the same as the one for
Heine theorem.

- Proof of the completeness of R by using the axiom of the least upper bound.
There were three steps : (1) a Cauchy sequence is bounded (2) a bounded sequence
has an accumulation point (3) a Cauchy sequence converges to its accumulation
point.

- Definition of R by using the Dedekind cuts and proof of some of its properties :
Q is dense in R, the axiom of the least upper bound, etc.

- Definition of R by completion of Q i.e. as set of equivalence classes of Cauchy
sequences of rational numbers and proof of the completeness of R.

- If a sequence of continuous functions is uniformly Cauchy, then it converges
and its limit is continuous.

The exam Two proofs were given.
- If the union of two sub-groups is a sub-group, then one is included in the other.
- If f is continuous on I = [a, ], then it is bounded on I.
In both cases, the proofs were «prepared». For the second we had given the inter-
mediate results to be proved : let P = {c € [a,b] / f is bounded on [a,c|}. Show
that P is upper bounded and non empty and that its [ub is in P. To be sure it will
not be too long (they had three hours) and since the next step of the proof (the
least upper bound is in P) was very similar, they were not asked to do it.

3.4 The results

The proofs with PhoX

(1) All the students have completely done the proofs of the two first projects
(Heine and Noether) with the computer. Some of them with very little help, some
with more.

(2) For the last one, only the group with the fourth project finished. It was
clearly the easiest one. After they finished, they were asked to prove that the set



of piecewise linear functions on [a, b] is dense in the set of continuous functions but
they preferred to skip the class!

The group with the definition of R by Cauchy sequences did a good job but did
not succeed in proving the completeness of R, partly because of time. It was the
best group but the project was probably too difficult.

The two other groups did rather few things, mainly because of the mathematical
difficulties in their comprehension of what should be done.

(3) The results of the exam have been very disappointing. After 15 minutes,
we had to tell them that, for the exercise on the groups, they have to use a proof
by contradiction. There was actually no real choice but none of them had tried
that. Only half of them finished the proof. The other half were blocked after having
taken x1 in Gy — G2 and x5 in G5 — G1. For the exercise of analysis, except the best
student who almost finished the proof, nobody succeeded in proving that the least
upper bound of P was in P even though we told them many times that the proof
was exactly the same as for Heine theorem. Some of them, to prove a € P, did not
succeed in proving that f is bounded on [a,a] : they tried to use the continuity of

1.

The proofs on paper

After they had done the proof with PhoX, they were asked to write it on paper
as they had done for a traditional homework. During the practical we helped them
and answered their questions. Then, we corrected their first version (it was most
often catastrophic) and explained, in detail, what was wrong. Finally, they had to
give us a new version which was graded.

The results, for the proof of Heine theorem, were very disheartening : our im-
pression was that the proof with the computer has been useless. There even has
been a group that had written a proof of a result that looked like but did not cor-
respond to the compactness of [a, b]. To help them, we took our proof of Heine and
put, to the side of each command (or group of commands) a corresponding text in
French. This helped them to understand that the formal proof is very close to the
informal one.

Thankfully, this discouragement disappeared and, between the first and the last
project, the improvement was clear : there was almost nothing to criticize on their
last proof on paper.

3.5 The difficulties of the students
3.5.1 The difficulties to get a proof

To get a proof it is necessary (and sufficient) to use the rules. But,

The order in which the rules are applied is important

For example, to prove 3z (A(x)AB(z)) — (3zA(x) Az B(z)) the following list of
commands intro. intro. intro. left H. instance 71 x. is not the beginning
of a correct proof (the hypothesis 3x(A(x) A B(z)) coming from the first intro has
been denoted by H) and PhoX does not accept the last command. Indeed, this
commands yield to the following sequence :



>PhoX> intro.

H := 3z(A(zx) A B(x)) F 3z A(z) A 3z B(x)
>PhoX> intro.

H := Jz(A(x) A B(z)) F 3z A(x)
H := 3z(A(x) A B(z)) F 3z B(x)
>PhoX> intro.

H:= 3z(A(z) A B(x)) F A(?1)
H := Jz(A(x) A B(z)) F 3z B(x)
>PhoX> left H.

H:= A(z) A B(x) F A(71)

H := 3z(A(x) A B(z)) F 3z B(x)
>PhoX> instance 71 x.

Error : Fail match

It fails because the system keeps a constraint saying that 71 should not use the
variable z introduced by the command left H because the third intro introducing
71 came before.

The correct list is : intro. left H. intro. intro. instance 71 x. which
yields to the same first goal but without the constraint.

This mistake, that will even not be detected in a proof on paper, is in fact
crucial since it is similar to the very common mistake which consists, to prove that
the sequence (u,,) is bounded, in taking a bound which depends on n.

Similarly, PhoX rejects : intro. intro. intro. intro. instance ? x. and
answers that it does not know . This remark of the machine is better accepted and
understood by the students than if the teacher says something as : what is this 7

The choice of the rules that are applied is also crucial

Because of the fact that proofs are very formal and it is always possible to give a
command and see what the machine answers, the students search for proofs blindly.
One could consider that this is a drawback of proof on computers, but this makes
them realize that they have to stand back from what they are doing.

The following example (it is a real one) is a caricature but revealing. In the proof
of Heine, the fact that < is transitive on R was an axiom (claim or2 in the file Heine
of the appendix B, page 14). To help the students to become more familiar with the
software, they had to prove that < is also transitive : 2 < y is defined by (cf. line 4
of the file Heine) < y V x = y. In fact, by the command trivial, PhoX does the
proof itself. Some students were trying to prove z = z from the hypotheses x < y
and y < z. This came from the fact that, in a proof of a Vv, the default answer to
the command intro is the proof of the right hand side of the V. Of course, they did
not succeed but they had not understood, by themselves, that they had no chance
to succeed.

This let us realize that there is a point on which it is necessary to insist :
some rules are invertible (the new goal is provable iff the previous one is) but
some others are not and thus, using them can give a dead end. For example, A; is
invertible but V; is not : to prove A V B you must take the good choice! We also
told the students that the absurdity rule can, in fact, be limited to atomic formulas
(inequality, membership, etc) or formulas starting with 3, V.

Another example shows well this lack of distance. During the exam, on the
exercise on the groups, a student had, in his hypotheses, z.2=! = z. This was
surprising and we thus asked him how he proved that. He told us that it was one
of the given axioms. This let us realize that, effectively, one of the axioms for the
inverse was written as Vx z.2~! = z. Since our proof had not used it, we had not
seen the mistake but he had used it without scruples.



How to use the rules?

The following heuristic works in most of the cases the students have to work on
(both on the machine and on paper) : first do all the (invertible!) intro then use
a hypothesis by an elim or an apply and start again. The real difficulty should be
to find the tricks that are necessary to get the proof. Most of the time, they have
the good intuitions but it is the basic principles, i.e. what is a proof, that are not
clear for them.

We had to repeat many times the role of the three basic commands : intro is
used to «translate» the conclusion and does not care for the hypotheses. elim H
uses H and gives a new conclusion (from which the previous one follows). apply H
gives a new knowledge without changing the conclusion.

We had to repeat many times that a hypothesis of the form Vz(A[z] — Blx])
can be used only in the case an object ¢ for which it is possible to prove A[t] is
available. For example, in the proof that two one-to-one functions with disjoint
supports commute, some students were trying to use the injectivity of f at a point
where the only thing known was f(z) = .

We also had to repeat many times that to prove JzA[z], the command intro
can be used only when we know what is the object we are looking for. We also had
to say that if one gives such an object by chance, it very rarely works! The following
example, again very caricatured, is real : after having shown that a Cauchy sequence
is bounded the students (in the proof of the completeness of R) had to show the
existence of an accumulation point. Despite the fact we had given them the idea
to get this point, they had immediately given the command intro and they were
pretending that the accumulation point they were looking for was the upper bound
they had previously found.

The semantics of formulas

In the proof that two one-to-one functions with disjoint supports commute, we
have H := Va(f(z) = 2V g(z) = ) and we must show Vz(f(g(z)) = g(f(z))). We
take an x by intro, we use H by apply H with x and consider the two cases by
elim H. In the first case we thus have, for example, Hy := f(z) = x. The students do
not see clearly the difference between the use of Hy with g(z) (to get f(g(z)) = g(z)
which, of course, cannot be done) and the use of H with g(z) which can be done
but gives again two sub-cases.

Hypothesis versus conclusion

The students discovered that, in a proof, the set of hypotheses may change and
they must know, at each step of the proof, what can and what cannot be used. They
sometimes confuse hypothesis and conclusion : we often found students trying to
prove formulas which, in fact, are hypotheses !

The name given to objects

Naming variables is another very important point. PhoX takes care of this and
gives new names to the variables when it is necessary, i.e. for the rules V; and 3..
This eliminates an important source of errors : for example, it is impossible to do
with PhoX a such a wrong proof of 324 A3z B — Jz(A A B) since when we use the
command elim first with 3z A and then with dzB, PhoX will give distinct names
to the objects. Some years ago, the students were asked to do a formal proof of this
result (on paper) and about half of them did succeed !

One may decide, at some point of the proof, to rename z in y if we know that y
will no more be used. This is reasonable, and often done but, in the present version,
there is no warning and we had the case of students who found that renaming y
in = allowed to use the hypothesis © = 0 for y! They did not understand why the



computer refused to prove z = 0 even if it was a hypothesis : the machine had not
forgotten that there were two distinct x.

When the rules V. and 3; are used, the machine asks for the objects by intro-
ducing a «?» and the user has to say what the «7» is. This helps to understand
that, to use a hypothesis as VA we must say which x is used and, similarly, when
we want to prove drA, we must say what is the z we are looking for and we can
give it only when we, effectively, have found it.

Advantages and difficulties due to the software

We try to give examples that can be treated without being an «experty» of the
software. The first author is not such. The second author, PhoX’s father, often does
shorter or more elegant proofs than the former.

However, it happens that students are blocked because of the software. This is
sometimes (but more and more rarely) because of a «bug» in PhoX, but this comes
more commonly from the fact that they have to know a bit more about PhoX. The
most significant example has been the use of the axiom of choice (AC) in the Noether
example. Most of the time, in a mathematical proof, we do not mention the use of AC
since its «truth» seems very natural. This is often a good thing because this difficulty
is a secondary one. On the computer, this difficulty cannot be avoided because, if AC
is necessary (in the mathematical sense of this word) its use must appear somewhere
and it is not always easy. The chosen presentation was too subtle but, now, we have
understood the way it should be done : we should provide the form of AC they really
need. For instance, Vo € A3y € BP(x,y) — 3fVe € A(f(z) € B A P(z, f(x))
for ACand a € AAVz € Ady € AP(z,y) — Ju(u(0) = a AVn € N(u(n) €
AN P(u(n),u(n + 1)))) for the axiom of dependent choice. These results (which
are not trivially deduced from the form of AC presently given with PhoX) will be
included in the library of the next version.

On the machine everything must be very precise : this has advantages and draw-
backs.

- Advantages : requiring the students to write definitions by themselves is very
formative and it took them often a long time. The following fact (that happens
quite often) also is very revealing. Students are blocked on the proof of some point.
They complain on the machine : «Why PhoX does not accept ? It is trivial». It is
indeed easy but, nevertheless, we ask them to be a bit more precise : most often,
the arguments they give are totally wrong!

The fact that the machine has a typing algorithm, like in programming lan-
guages, is very useful and forbids meaningless formulas. The students who worked
on the definition of R either by cuts or by Cauchy sequences took benefit of that
because they had to use various types of objects.

- Drawbacks : anything that has been forgotten, even if it is not important,
obliges to restart at the beginning and, if you are not careful enough, it is often
with some difficulties : for example, in a definition on sequences, the lack of n € N
that is usually implicitly required a great deal of time (with PhoX this is not handled
by the type system, because we have partial functions).

3.5.2 Difficulties to write a proof

In a proof on paper, the reader must be able to understand the succession of the
given arguments. In this case, it is not very difficult to indicate the errors, to show
that an assertion is not correct by giving a counter-example, to adjust something
imprecise, etc. Otherwise, and it is often the case in bad papers, the reader is
disarmed and can only say that he does not understand anything and thus cannot
help the student.



As already mentioned, the first papers were very bad. But, the comparison bet-
ween the proof done on the machine (that is necessarily correct since PhoX cannot
do a wrong proof) and its translation on paper allowed to tell them, if what they
had written was not satisfying : «what you have written is not what you did on the
machine». This permitted, gradually, to improve their proofs on paper.

The main remaining difficulties are the following.

The good level of detail

In many papers, the proof of {a} C [a,b] took about ten lines : that came
from the fact that, on the machine, the students had used about ten commands
even though a trivial was enough (both on paper and on computer). Another
example : on the machine, when they had to consider differently the two cases
z < m and m < z, they had to use the axiom saying that the order on R was total
but, on paper, it was enough to say : 1% case : < m, 2"? case : m < . However
the reader will note that, in a similar proof on an ordered set, a paper that had not
explicitly mentioned the fact that these two cases can be considered because the
order is total would probably be criticized.

Being able to see what does not need to be detailed (because it is considered
as easy) and what must be is, intrinsically, not simple and also depends on the
teacher : there is no rule! But this is probably not a major problem because the
answer comes with the experience and it is easier to learn how to give less details
than to give more.

The semantics versus the syntax of formulas

The machine does not confuse Va(A[z] — B) with VzA[z] — B : in response
to the command intro it asks to prove A[z] — B in the first case and B (with
hypothesis VzA[z]) in the second case. This distinction is not so clear for the stu-
dents. In the Noether example (every ideal is finitely generated iff every increasing
sequence of ideals is stationary) the proof on paper of several students let us think
they had made a similar mistake. We asked them to be more precise. Despite the
fact they had done the correct proof on the machine, their answers clearly showed
they had made the confusion!

Mixing mathematical formulas and natural language

In sentences as (this example is taken from the construction of R by the cuts)
«I know that z < y and y < z thus < z = x € f(z)» are difficult to decode and
the students can have the same kind of confusion as above. It is thus also necessary
that students learn how to go, precisely, from the natural to the symbolic language
(and vice versa). But again, this is probably a question of experience and thus a
minor problem.

3.6 The point of view of the students

Below is the questionnaire given for the evaluation of this course. For each
question, the mean value of the answers is given. This value is, of course, not very
meaningful from a statistical point of view since only eight students have chosen
this course. However, since the answers are rather homogeneous, there are good
reasons to be optimistic.

The questionnaire The goal of this course was to teach you the way to do correct
proofs in mathematics. Please, answer to the following questions. This will help us
to improve the course for next years.



1) This course has not been a course of logic but only a help to learn the way of
reasoning. Would you have wished also a more classical part introducing the basis
of mathematical logic (as, for example, in [3]) : 7 yes and 1 no.

2) In the following questions, give a score between 0 and 5 : 0 = not at all, 5=
yes very much. Do you think that :

- this course has helped you in the comprehension of what a proof is : 3.9

- this course has helped you to write proofs on paper : 3.4

- the fact of doing very detailed proofs with the machine has been important in this
learning : 3.6

- learning the commands of PhoX is difficult : 2.0

- to use PhoX is difficult : 2.2

- this course should be mandatory : 3.1

- we should use PhoX with the first year students on simpler examples : 3.2

- you will recommend this course to the students if it is still optional next year : 3.8

4 The main points of the other years

4.1 Logic and/or PhoX

When we started to use PhoX with the students, this was simply to be able
to write proofs a bit too long to be written on paper but these proofs were toy
examples, i.e. the kind of proofs usually given in a logic course. The main goal of
the course was an introduction to logic. As we already said, we gradually thought
that doing real proofs (the kind of proofs students find in a course of algebra or
topology) in detail may help them to understand what a proof really is and also to
help them to correct the numerous mistakes of reasoning they do. We thus started
to give them real proofs.

At that time, we started with the syntax of first order logic and we introduced
the rules of natural deduction. It seems (see section 4.3) that this is not necessary if
the goal is to make proofs. However is it reasonable to teach mathematics without
defining first, even informally, what is a proposition and a proof, since they are the
basis of all the mathematics ? Nevertheless, this is done (at least in France) most
of the time. When we do not define these concepts, we enforce a division between
the students who discover their meaning by themselves (this is what happened to
those who became teachers!) and the others. Here is a «real» example : a second
year student, who just learned that all symmetric matrices can be diagonalized, did
not consider for certain that he would never have the «bad luck» to see a counter-
example.

4.2 The choice of examples

The main difficulties, for us, are to find examples for which :

- The formalization is very close to the informal reasoning that is given in the course
of analysis or algebra.

- The properties of the objects that are considered do not need a complicated
axiomatization.

- The reasoning, i.e. the chain of V and 3 is, from an educational point of view,
interesting.

Note that it is easier to find examples from analysis than from algebra and
that these results are often educationally more interesting because the alternation
of three quantifiers(VeJaVz...) in formulas is one of the main difficulties for the
students. Until now we never gave examples from linear algebra. This simply comes
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from the fact that the manipulation (which is considered as trivial by everybody)
of finite sums of reals or vectors is not so easy when one tries to formalize it. Since
this is a field with a lot of non trivial exercises, it will be interesting to find a good
solution.

The first «real» example we have done with PhoX was a proof of the intermediate
value theorem. Even though we had decomposed the proof into a list of rather simple
lemmas we realized (but too late) that is was too difficult for them : after more than
an hour none of them had been able to prove the first lemma (if f is continuous and
f(z) > ¢, there is an « > 0 such that f(y) > ¢ for all y in |x — o,z + «f). This is
probably not because of PhoX : they would also had been unable to write a precise
proof on paper.

Here are the most significant examples the students have done :

- The uniqueness of the limit,

- The closure of a union equals the union of the closures (in a metric space),

- The definition of continuity with strict inequalities (for example |z — y| < «) is
equivalent to the definition with non strict inequalities (i.e. |z — y| < ),

- The image of a connected set by a continuous function is connected (in a metric
space),

- Two permutations of a set E with disjoint supports commute,

- If the union of two subsets of R is unbounded, then one of them is unbounded,

- In a ring a prime ideal is irreducible.

- In a principal ring, an ideal is maximal iff it is prime,

4.3 Other experiments

First year students

During the last two years we had done simpler examples with students who were
in first year at the university. They essentially had to prove equalities between sets :
for example AN (BUC) = (ANB)U(ANC)or f(ANDB) C f(A) N f(B). The
most difficult example was the proof of the uniqueness of the limit. We then realized
that students that had been able to do the proof with PhoX were unable to write
it correctly "in French".

This experiment has been too short and with too few students to be able to
give some conclusions but the students (some of them were good in math but some
others were among the weakest) told us they had learned much.

However this has been the starting point for the experiment detailed above and
we decided to do more with the students in third year and to replace completely
the logic course by a training in mathematical reasoning : they were asked to do
proofs on the machine and then to «translate this proof» in French, on the paper.

The last experiment

The course given in 2002-03 is now suppressed : officially not because it is logic
but because mathematical reasoning is not considered as a priority! In the short
course (only 10 hours) that has been maintained in 2003-2004, we had not enough
time to give the same introduction as before. The learning of PhoX has been done
in the following way : we gave the students the table of the main commands (see
the appendix) and the file below (and two other similar ones) and told them : try
to understand how it works. You then will have to do the same thing by yourself.
We were happy (and even rather surprised) that it worked perfectly well since, from
the questionnaire we gave them, it appears that they have found that PhoX was
easy to learn and to use. They succeeded quite well with the three mathematical
proofs we gave them. Maybe these proofs were not difficult enough. It was : (1) the
equivalence of continuity by inverse image of open sets and the usual definition with
g, (2) the equivalence of two definitions of the closure of a set and (3) in a ring a
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prime ideal is irreducible. But the tactic trivial was working too much and some
students asked us, after trivial had worked ... what was the proof! They also had
less time to write the proofs «in French» and this remains a major difficulty for
them : what they write is often a paraphrase of the commands. Doing a synthesis,
understanding what has to be said and what can be ignored needs a longer time.

A file to start with PhoX
The comments in italic are the explanations to understand the proof. The stu-
dents are asked to do the same thing in their proofs.
Sort E.
def Infix[3] A "union" B = Ax (A x or B x).
def Infix[3] A "inter" B = Ax (A x and B x).
def Infix[5] A "subset" B = ¥x :A B x.
Cst open : (E — prop) — prop. (note that «opens is a symbol and is not defined :
this is simply because its definition is useless for our goal!)
def inverse f A x = A (f x).
def image f A x = Jy :A x=fy.
def connected A = VU,V :open (A subset (U union V) — Vx ((U inter V) x) —
(A subset U or A subset V)).
def continuous f = VA (open A — open (inverse f A)).
goal Vf,A (continuous f — connected A — connected (image f A)).
intro 4. (let f be continuous and A be connected)
intro 6. (let U and V be open sets with empty intersection. Assume f(A) is included
in U union V. Let us show that f(A) is included in U or in V)
apply H with H1. apply H with H2. (since f is continuous and U, V are open,
f71(U) and f~1(V) are open)
local Ul =inverse f U. local V1 = inverse f V.
prove A subset Ul union V1. (let Ul= f=Y(U) and Vi= f~1(V); let us show that
A is included in U1 union V1)
trivial = H3. (this comes immediately from the fact that f(A) is included in U union

prove Vx (U1 inter V1) x. (let us show that Ul inter V1 is empty)

trivial =H4. (this comes immediately from the fact that U inter V is empty)

prove A subset Ul or A subset V1. (let us show that A is included in Ul or in V1)
apply HO with G1 and G2.

trivial = H H1.

trivial = H H2.

axiom G3. (this comes from the connectivity of A used with Ul and V1)

trivial = G3. (we thus get the desired result)

save thm.

5 Conclusion and perspectives

Even if the results are not spectacular, this experiment seems to be extremely
positive : it helped us to better understand where the major difficulties of the
students are and it made them progress. For us, it has been very interesting and
stimulating. The course required more work to teach (much more than for a classical
course of logic) but the reward was to have done something that made the students
progress.

The simple fact of being able to tell the students precisely what is a proof is
already very useful. As long as one manipulates only simple sentences, it is not neces-
sary to know the underlying grammar but, when we want to understand sentences
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with a more complicated structure, the words to analyze them become necessary.
We think it is the same thing for proofs. A very detailed proof with a computer
allows one to be more precise about the difficulties and this helps to solve them.
At least the students have understood that, in a proof, after having done every
invertible intro, it is necessary to think to find the hypothesis on which an elim
can be done.

The association of the work with the machine and on paper allowed us to un-
derstand that finding a proof and writing it are two very distinct things : a student
can understand a proof and be unable to write it and vice versa. We thus must
teach the way of writing proofs. Usually the teacher spends very little time to help
the students to write proofs, to correct in detail what they have done, to suggest
improvements, etc. The possibility to compare what is written on paper with the
proof they have done with the machine is very helpful for that.

Only a few students took our (optional) courses because they are in competition
with courses on geometry and probabilities that both were dedicated to prepare
the Capes (the examination to become a teacher in secondary schools) and the
students who intend to prepare this examination considered the latter to be more
useful. However, we believe it has been very profitable for them. We are convinced
that, if students who did not attend our courses were asked to do the proofs we have
been working on, the results would be catastrophic. Will these courses be beneficial
for the other courses? Will they keep, later on, the good manners they got ? The
colleague who has given the course of algebra and did not know who, among his
students, was attending our course, told us several times that he could guess just
by seeing the way they did their proofs in his course. We must confess that he also
is logician and that his opinion can be sympathetic towards logic.

It is nevertheless clear that some improvements are necessary. The interface
of PhoX should be improved, it would also be nice if students could write proofs
in French (or English) instead of writing commands. In this direction, we have a
research project whose goal is that PhoX «understands natural language» i.e. that,
instead of using «intro» or «elimy», one can use «let x be positive, show that ...»

If we had enough money (this is not the case today!) to give such a course during
the two first years of undergraduate studies, should we do it for all the students
or only for those who want to do mathematics? Being able to reason correctly is
useful for everybody and the fact that it is somehow a game would probably be more
important than the formal side (at least for the students who are not discouraged
by computers) but does it have higher priority than the technique of computations
with which they are not familiar enough ?

The teachers in the universities complain about the fact that students coming
from secondary schools cannot reason correctly. Is it useful to have such courses in
these schools ?

If we want to progress, it seems necessary that this experiment keeps going.
Unfortunately, it is possible that it will stop there. The mathematicians in general
and our colleagues in particular do not like logic and want to throw it away from
the mathematical studies. The reader will appreciate the humor of the arguments
they give : the learning of reasoning is not a part of the program of the Capes
examination, this course comes too late. This is too bad because we really believe
that doing formal proofs on computers will help the student to progress.
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A Introduction to PhoX

PhoX is available (and free) on the web page of C. Raffalli. Its logic is higher
order logic. The typed aspect allows to distinguish between type errors (for example,
A+ x where ) is a scalar and z a vector) and the errors of reasoning. There is no
problem with the students since it is their «natural» language.

PhoX uses a functional notation, for example dzy for d(z,y) or Im fy for
y € Im(f) or open U = Ve(Uxz — Fe>0Vy(dzy < e — Uy)). This notation is
not a problem for the students but, unfortunately, it is not the case for some of our
colleagues (not logicians)! It would be very easy to define an infix symbol for the
membership relation (this is the main missing symbol) to be able to write y € Im(f)
instead of Im fy but this is really unnecessary with students. The notations for
the formulas do not introduce particular problems because they use traditional
mathematical symbols (except conjunction and disjunction). PhoX provides useful
abbreviations such as Va,y A for VaVy A, Vz€A B for Va(Axz — B) or Ja<y B for
Jz(x < y A B) as well as traditional priorities to avoid numerous parentheses. The
common associativity rule for the arrow (A — B — C isread as A — (B — (C)) is
very unfamiliar to the students and the fact that it is not equivalent to (A — B) —
C is not always clear for them.

The interface is made with XEmacs [1] and ProofGeneral [15] of D. Aspinall.
The appendix E shows an example of PhoX’s screen. The screen is divided into two
parts : the upper part contains the script of the commands given to the system
and the lower part, PhoX’s response to the last command.

B An example of file

The file below is the one for the proof of Heine theorem. This is exactly the one
(translated in English) on which the students have worked. We have only deleted
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the preliminary lemmas (mainly about the order) given to help the students to get
more familiarity with PhoX.

The commands beginning with Cst allow to introduce new symbols, those be-
ginning with def give definitions and those beginning with claim are axioms or,
more precisely, the properties (here on the reals) that we need to do the proof.
The commands beginning with prop introduce the results to be proved and those
beginning with prove are intermediate lemmas.

Some formulas are written as A — B — C instead of the (more common)
A A B — C : this is simply because this makes the proofs (a bit) shorter in PhoX.

Heine

Sort real.

Cst Infix[5] x "<" y : real — real — prop.
def Infix[5] x ">"y =y < x.

def Infix[5] x "<"y=x <y V x=y.

def Infix[5] x ">"y =y <x.

Cst lInfix[3] x "-" y : real — real — real.
Cst lInfix[3] x "+" y : real — real — real.
Cst lInfix[2] x "/" y : real — real — real.
Cst zero : real.

Cst one : real.

Cst two : real.

Cst a : real.

Cst b : real.

Cst abs : real — real.
defIx=a<xAx<h.
defmajm X =Vy € Xy <m.

def Maj X = 3m maj m X.

defsupm X =majm X AVy (majy X — m <y).
def empty = { x | False}.
defplusXa={x|xeXVx=a}l
Inductive Finite X = Empty : Finite empty
| plus : ¥X,a (Finite X — Finite (plus X a)).
def Image Ah={y|3xc€Ay=hx}

claim orl Vx,y - (x <y Ay < x).

claim or2 Vx,y,z (x<y — y<z — X<z).

claim or3 Vx,y (x <y V x > y).

claim ord Vx,y (x<y — 3z (x<z A z < y)).

claim orb Ve>zero Vx x > x-e.

claim or6 Ve>zero Vx x < x+e.

claim or7 Vx x - x =zero.

claim or8 one > zero.

claim or9 Vx,y,x0,y0 (x<x0 — y<y0 — x+y<x0-+y0).

claim orl0 a < b.

claim absl Vx abs zero = zero.

claim abs2 Vx,y abs (x-y)= abs (y-x).

claim abs3 Ve>zero Vx,m ( x<m — x>m-e — abs(x-m) <e).
claim abs4 Ve>zero Vx,m ( x<m+e — x>m — abs(x-m) <e).
claim abs5 Vx,y,z abs (x-y) < abs (x-z)+ abs(z-y).

claim axlub VX (3x X x — Maj X — 3m (sup m X)).

claim divl Vx>zero x/two > zero.

claim div2 Vx>zero x/two < x.

claim div3 Vx x/two + x/two=x.
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prop compact Vh (¥x h x > zero — JA Finite (A CI A Vx(a<x — x<b — 3Jy € A
abs (xy) < (b y)))).

intro 2.

local Pc=1c¢c A JA Finite (A CIAVx(a<x—x<c¢c— Jy€ Aabs(xy) < (h
).

prove P a. ....

prove maj? P. ....

prove dm sup m P. ....

left G1. prove I m. ....

prove P m. ...

prove = m<b. ....

prove m=b. ....

... SAVE.

def continuous f = Jg (Ve>zero Vx (g e x) >zero A Vx € I Ve > zero Vy € I (abs (x
-y) <gex —abs (fx-fy)<e)).
def UC f = Ve>zero dc>zero Vx,y € I (abs (x-y) <c — abs (f x-f y) <e).

prop Heine Vf (continuous f — UC f).

intro 2. left H. rename x g. left H.

intro 2. local el = e/two. local h x = (g el x) / two.
apply compact with h.

... SQVE.

C An example of proof

The example given below is typical of those which can be done with the stu-
dents. It has been treated by them. The goal is to prove that two definitions of the
continuity of a function are equivalent : this equivalence, obvious for the teacher,
is not at all immediate for the students. We give only one of the directions, the
other is similar. We have written it in a rather elaborate way in order to show the
possibilities of the system. In practice, the students make longer proofs by brea-
king up some commands with more elementary ones. Note that the first part of the
example is prepared by the teacher : the work of the student begins only after the
first paragraph. The prompt >PhoX> appears before each command and the answer
is given below.

>PhoX> Sort real.
>PhoX> Cst Infix[5]
>PhoX> Cst Infix[5]
>PhoX> def Infix[5] Uy =y < x.

>PhoX> def Infix[5] x ">=" y =y <= x.

>PhoX> Cst d : real -> real -> real.

>PhoX> Cst 0 : real.

>PhoX> def continuousl f x = Ve>03a>0Vy(dzy < a — d(fz)(fy) <e).
>PhoX> def continuous2 f x = Ve>03a>0Vy(dzy < a — d(fz)(fy) <e).
>PhoX> claim lemmel Vz,y(x <y — z <y).

>PhoX> claim lemme2 Vz>03y>0Vz(z <y — 2z < x).

"<="y : real -> real -> prop.

X
x "<" y : real -> real -> prop.
X
X

>PhoX> goal Vz, f(continuousl f x — continuous2 f x).
goal 1/1
F Vz, f(continuousl f x — continuous2fx)
>PhoX> intro 5.
goal 1/1
H := continuousl f x
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HO :=e>0
F3a>0Vy(dzy < a — d(fz)(fy) <e)
>PhoX> apply H with HO. rmh H HO.
goal 1/1
G :=3Ja>0Vy(dazy < a— d(fz)(fy) <e)
F3a>0Vy(dzy < a— d(fz)(fy) <e)
>PhoX> lefts G $3 $A.
goal 1/1
H:=a>0
HO :=Vy(dzy <a—d(fz)(fy) <e)
= 3ag>0Vy(dzy < ag — d(fz)(fy) <e)
>PhoX> apply lemme2 with H. rmh H.
goal 1/1
HO :=Vy(dzy <a—d(fz)(fy) <e)
G :=Jy>0Vz<yz<a
F3ap>0Vy(dzy < ag — d(fz)(fy) <e)
>PhoX> lefts G $3 $A
>PhoX>rename y a’.
goal 1/1
HO :=Vy(dzy <a—d(fz)(fy) <e)
H1 :=d' >0
H2 :=Vz<d' z<a
F3ao>0Vy(dzy < ap — d(fz)(fy) <e)
>PhoX> intros $V $3 $A $—.
goal 1/2
HO :=Vy(dzy <a—d(fz)(fy) <e)
H1 :=a' >0
H2 :=3:2<d' z2<a
F?1>0
goal 2/2
HO :=Vy(dzy <a—d(fz)(fy) <e)
H1 :=a' >0
H2 :=Vz<dad' z<a
H3 :=dzy< 71
Fd(fz)(fy) <e

>PhoX> axiom H1. auto +lemmel.

D Why PhoX?

The same course could probably be done using other systems but we believe
PhoX is one of the easiest to learn especially if you do not know logic. For instance,
if we compare with Coq (the most popular system in France), we can give the

following arguments :

— Coq has many commands to do proofs (tactics) and even if most proofs can
be carried out with a small set, this set will depend on the teacher! In PhoX
we really use about twelve tactics with students including the tactics for equa-
tional reasoning. The total number of tactics in the current 0.83 version is 19.
Moreover these tactics are extensible and contextual. For instance, the 1left H
command can be described as «simplify the hypothesis H». If His AA B, PhoX
will replace H by two hypotheses A and B but, if His x + 3 = y + 3, it will
transform H into x = y. The same command can be used in many situations
and can be modified by the teacher using the new_elim command.
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— In Coq there is a difference between intensional and extensional equality whe-
reas, in math, we use only the second. Thus, equational reasoning is not so
easy to do with Coq. PhoX uses higher-order unification modulo the known
(conditional) equations and can perform proofs with very simple equational
reasoning without using their specific commands.

— The calculus of construction (compared with HOL) is probably too complica-
ted for math students.

Making PhoX easy to learn has always been the first priority in its development

and a lot of improvements have been introduced since our first teaching experiment.
To use a software that we maintain by ourself is thus a good thing.
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E A typical PhoX screen and the table of com-

mands

Commands
already interprete

Commands not
interpreted

Answer of the
system

Restart the system

Navigation buttons

Interrupt the system

File Edit Apps A f Duls
EoE

(* un petit exercice trés court !
flag auto 1wl 1.

def injective £ = wx,y (f x = £

id
prop exol

vh,g (injective h A injective g »
=¥z (b (g =x)] = (g (h=x)])).
intro 2
S B
lefts H.
peply HO with =.
et

elim HO with h =.
apply H with H3.
intro.
| intro.
————— “Emacs: exol.phx

Progf-General PhoX Headfgs Show Hide

)

Vo= X =

Heilp

Y2 (h x = 2 v g x =

HNew goal isg:

goal 1/1
HO := wx0 (h =0 = =20 v g 20 = z20)
H := injective h

Hl := injective g

|— h (g =] =g (h =)

——x—xEmacs: #*phox-response

[(FhoX script Outl Font Script]

b
[ (FhoX response Font)] |

Find file: ~/af2-all/phox/1ib/
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0¢

Rules on Current goal Command PhoX answers In English we will say
The conclusion FA—B intro. H:=A FB Assume A and show B.
HAAB intro. (1) HA Let us first show A then B
(2) FB
HFAVB intro 1. (1 for left) FA It is enough to show A.
FAVB intro r. (7 for right) FB It is enough to show B.
FVzAlz intro. F Alz] Let = be any object. Show A[z].
F3zAlx intro. F A[7] We are looking for an x such that A[x]. ¢ is the
instance 7 t F Alt] object we are looking for, let us show Alt].
F-A intro. H:=A F False | Assume A and look for a contradiction.
A hypothesis H:=A FA axiom H. no goal created By H we have the desired result.
H:=A—B FB elim H. H:=A—B FA By A — B, it is enough to show A.
H:=AAB B elim H. no goal created By H we have the desired result.
H:=AANB FA elim H. no goal created By H we have the desired result.
H:=AVB FC elim H. ()H:=A FC Assume first A and show C.
(or left H.) (2) H:=B FC Assume next B and show C.
H := 3z Alz] FC elim H. H := Alz] FC Let x be such that A[z].
(or left H.)
H :=VzA[z] FC apply H with t. H :=VzA[z], FC By H we have A[t].
Hy = Alt]
H:=-A FC elim H. H:=-A FA Since we have —A, it is enough to show A.
Others H:=AAB FC left H. H:=AHy:=B FC By H we have A and we have B.
H:=A— B, apply H with Ho. H:=A— B, Since we have A — B and A we have B.
H()ZIA FC H()ZIA,HltzB FC
HA by _absurd. H:.=-A FA Do it by absurd and assume not A.
FA elim False. F False | Let us look for a contradiction.
H:=-AHy:=A FC elim H with Hy. no goal created H et Hy give a contradiction.
HA Prove B. (1) FB Let us first show B then A (assuming B).

(2) H:=B A




