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IS EVERY TORIC VARIETY AN M-VARIETY?

FRÉDÉRIC BIHAN, MATTHIAS FRANZ, CLINT MCCRORY AND JOOST VAN HAMEL

Abstract. A complex algebraic variety X defined over the real numbers is
called an M-variety if the sum of its Betti numbers (for homology with closed
supports and coefficients in Z/2) coincides with the corresponding sum for
the real part of X. It has been known for a long time that any nonsingular
complete toric variety is an M-variety. In this paper we consider whether this
remains true for toric varieties that are singular or not complete, and we give
a positive answer when the dimension of X is less than or equal to 3 or when
X is complete with isolated singularities.

1. Introduction

Let X be a topological space equipped with a continuous involution σ, and let
Xσ denote the fixed point set of σ. For simplicity we assume that X is a finite-
dimensional cell complex and σ is a cellular involution. The Smith–Thom inequality
asserts that the sum of the Betti numbers of Xσ does not exceed the corresponding
sum for X,

(1.1)
∑
k

bk(Xσ) ≤
∑
k

bk(X).

Here and in the rest of the paper we consider ordinary homology groups with coef-
ficients in Z/2, or in the non-compact case homology groups with closed supports,
also known as Borel–Moore homology.

Consider the case where X is a complex algebraic variety defined over the real
numbers. Thus X is equipped with an antiholomorphic involution, complex conju-
gation. The fixed point set of this involution is called the real part of X and will
be denoted by X(R). In contrast we shall often denote X by X(C). The variety X
is called an M-variety (maximal variety) if equality occurs in (1.1). In other words,

(1.2)
∑
k

bk(X(R)) =
∑
k

bk(X(C)).

M-varieties have attracted much attention in the study of topological properties of
real algebraic varieties. One of the first results in this domain is due to Harnack
in 1876 (see [W] for a survey). He proved an upper bound for the number of
connected components of a real algebraic curve in the projective plane; his theorem
is a special case of the Smith–Thom inequality. He also showed that the bound
is sharp by constructing M-curves. In the same vein, Itenberg and Viro [IV] have
recently constructed M-hypersurfaces of degree d in n-dimensional projective space
for all positive integers n and d.

One of the most familiar M-varieties is projective space; in this case the sums
in (1.2) are equal to n+1, where n is the dimension. Projective space is the simplest
example of a nonsingular complete toric variety. Any toric variety is defined over the
integers, hence over the reals. There are many ways to see that every nonsingular
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2 BIHAN, FRANZ, MCCRORY AND VAN HAMEL

complete toric variety is an M-variety; see Section 4. In fact, there is a degree-
halving isomorphism of Z/2-algebras H2∗(X(C))→ H∗(X(R)) and the mod 2 Betti
numbers b2k(X(C)) = bk(X(R)) admit a simple combinatorial description in terms
of fan data.

Another example of a toric M-variety is the complex algebraic torus itself, whose
real part is a real algebraic torus of the same rank. Any toric variety is the dis-
joint union of torus orbits, hence of M-varieties. In itself, the existence of such a
stratification is not enough for a variety to be an M-variety (see for example Re-
mark 3.1). Nevertheless, our study of numerous examples has led us to the following
conjecture, which will be sharpened in Section 8.

Conjecture 1.1. Every toric variety is an M-variety for homology with closed
support.

Note that for singular or non-complete toric varieties there is no hope of getting
a correspondence between individual Betti numbers: In general the odd homology
groups of X(C) do not vanish, and in particular the homology is not algebraic. In
the nonsingular non-complete case this already happens for the 1-dimensional torus;
in the complete case such a phenomenon appears in dimension 2 (see Proposition 9.1
below, case (2)).

Systematic studies of the stratification of a toric variety by torus orbits and
the associated spectral sequence have been made by Fischli [Fi] and Jordan [J]. By
comparing this spectral sequence with another spectral sequence for the homology of
the real points, we arrive at our main results, whose proofs will appear in Section 8.

Theorem 1.2. Let X be a (possibly singular) toric variety such that
(1) X is complete and has isolated singularities, or
(2) the dimension of X is not greater than 3.

Then X is an M -variety for homology with closed supports.

In low dimensions straightforward spectral sequence calculations give the indi-
vidual Betti numbers of X(C) and X(R); see Proposition 9.1.

2. Preliminaries

All vector spaces are over Z/2 unless otherwise stated. We write H∗(X) for homol-
ogy with closed supports (also known as Borel–Moore homology) with coefficients
in Z/2. Recall that for compact triangulable spaces, homology with closed supports
coincides with singular homology.

We now describe basic properties of toric varieties and review some standard
notation, referring to [F] and [O] for details.

Any toric variety can be constructed in the following way: Start with a lattice N
of rank n and a rational fan ∆ in the real vector space NR = N ⊗Z R. To each
cone σ ∈ ∆ corresponds the affine toric variety Xσ = Spec(C[Sσ]), where M =
HomZ(N,Z) is the lattice dual to N , MR =M⊗Z R, σ∨ = {v ∈MR | v(u) ≥ 0 ∀u ∈
σ} is the cone dual to σ, and Sσ = σ∨ ∩M is the corresponding semigroup. If
τ is a face of σ, then Xτ can be identified with a principal open subset of Xσ.
The toric variety X∆ is constructed by gluing together the affine toric varieties Xσ
along their common open subsets. The (complex algebraic) torus associated with
the lattice N is

TN := Spec(C[M ]) = HomZ(M,C∗) = N ⊗Z C∗ ' (C∗)n.
The torus TN is open in X∆, acts on each Xσ, and this action extends to all of X∆
via the gluings. The TN -orbits of X∆ are in one-to-one correspondence with the
cones in ∆ via the map σ 7→ Oσ, where Oσ is the TN -orbit of the distinguished
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point xσ ∈ Xσ = Homsg(Sσ,C) defined by xσ(m) = 1 if −m ∈ Sσ and xσ(m) = 0
otherwise. The Zariski closure Oσ is the union of all orbits Oτ such that σ is a face
of τ . For any cone σ, define the lattices

Nσ := (σ ∩N) + (−σ ∩N) , N(σ) := N/Nσ.

The lattice Nσ has rank dim(σ) and N(σ) has rank n − dim(σ). The dual lat-
tices Mσ = HomZ(Nσ,Z) and M(σ) = HomZ(N(σ),Z) are respectively

Mσ =M/(σ⊥ ∩M) , M(σ) = σ⊥ ∩M.

The isotropy subgroup of the TN -action on Oσ is the isotropy group of the
distinguished point xσ, which consists of the t ∈ TN = HomZ(M,C∗) such that
t(m) = 1 for any m ∈ σ⊥ ∩M . This gives the identification

Oσ = TN(σ) = TN/TNσ .

3. Toric varieties as real varieties

This section is based on chapter 4 of [F]; see also [S]. A toric variety X∆ is defined
by polynomials with integer coefficients. Thus we can consider X∆ to be a real
algebraic variety, by which we mean a complex variety defined over the real numbers.
This is the standard real structure on a toric variety, and it will be the only real
structure we consider in this paper.

Remark 3.1. An example of a toric variety with a non-standard real structure is
the variety X = CP 1×CP 1 equipped with the antiholomorphic involution (z, w) 7→
(w̄, z̄) (where the bar designates the usual complex conjugation on each factor).
This type of real structure (compatible with the action of a torus with a nonstandard
involution) has been studied in great detail by Delaunay [De2], [De1]. In this case
the real part is homeomorphic to the 2-sphere, and it is easy to check that X is not
an M-variety. On the other hand, taking the diagonal D ⊂ CP 1 × CP 1, we have
that both D and its complement are M-varieties, so X does admit a stratification
where the open strata are M-varieties.

As mentioned before, we will denote the real part (i.e., the set of real points)
of a real variety X by X(R). For clarity we shall often denote the complex points
by X(C). The real part X∆(R) of a toric variety X∆ is covered by the affine open
subsets

Xσ(R) = Homsg(Sσ,R),
where R is the multiplicative semigroup R∗ ∪ {0}, and

TN (R) = Spec(R[M ]) = HomZ(M,R∗) = N ⊗Z R∗ ' (R∗)n,

Oσ(R) = TN (R) · xσ = TN(σ)(R) = HomZ(M(σ),R∗).
(Note that xσ ∈ Xσ(R).) The real part X∆(R) of a toric variety has an orbit
stratification similar to that of the underlying complex toric variety. X∆(R) is
obtained by gluing together the Xσ(R) for σ ∈ ∆, it is also the union of the
orbits Oσ(R) ' (R∗)n−dimσ under the action of TN (R), and the Zariski closure
of Oσ(R) is the union of all Oτ (R) such that σ is a face of τ .

As pointed out in [F], this construction works for any sub-semigroup of C =
C∗ ∪ {0}. In particular, considering the semigroup R+ = R∗+ ∪ {0} instead of R =
R∗ ∪ {0}, one obtains the positive part of a toric variety X∆. We will denote the
positive part of X∆ by X+

∆ . The positive part of X∆ is a semialgebraic subset of
the real part of X∆.

For any toric variety X∆, we have X+
∆ ⊂ X∆(R) ⊂ X∆(C) due to the semigroup

inclusions R+ ⊂ R ⊂ C. Moreover, the absolute value map z → |z| gives rise to
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a retraction R+ ⊂ C → R+ which restricts to a retraction R+ ⊂ R → R+. The
absolute value map can be extended in order to obtain the following retractions.

X+
∆ ⊂ X∆(C) → X+

∆
‖ ∪ ‖
X+

∆ ⊂ X∆(R) → X+
∆

For any lattice N , define the compact torus TN by
TN = HomZ(M,S1) ⊂ HomZ(M,C∗) = TN (C),

where S1 is the unit circle in C. Note that if N has rank n then TN ' (S1)n. The
set of 2-torsion points of TN will be denoted by TN [2]. We have

TN [2] = HomZ(M,S0) ⊂ HomZ(M,R∗) = TN (R),
where S0 = {±1} is the set of 2-torsion points of S1. If N has rank n, then
TN [2] ' {±1}n. The isomorphism C∗ ' S1 ×R∗+ given by the map z 7→ (z/|z|, |z|)
produces the identification

TN (C) = HomZ(M,S1)×HomZ(M,R∗+) = TN × T+
N .

Then, using the isomorphism R∗+ → R given by the logarithm, we obtain

T+
N = HomZ(M,R∗+) = HomZ(M,R) = NR,

hence
TN (C) = TN ×NR.

Similarly, we have that
TN (R) = TN [2]× T+

N = TN [2]×NR.

Applying this to the lattice N(σ) corresponding to a cone σ ∈ ∆, we obtain

O+
σ = N(σ)R ' Rn−dim(σ),

Oσ(C) = TN(σ) ×N(σ)R ,

Oσ(R) = TN(σ)[2]×N(σ)R .

From this discussion we get the following result, which is well-known for the
complex case (see [F, §4.1, p. 79]).

Proposition 3.2. The retraction r : X∆(C) → X+
∆ given by the absolute value

map identifies X+
∆ with the quotient space of X∆(C) by the action of the compact

torus TN , and it also identifies X+
∆ with the quotient space of X∆(R) by the action

of TN [2].

The fibers of the quotient maps
X∆(C)→ X+

∆ , X∆(R)→ X+
∆ ,

over a point p ∈ X+
∆ are TN(σ) and TN(σ)[2], respectively, where σ ∈ ∆ is the unique

cone such that p ∈ O+
σ ' Rn−dim(σ). Since the exponential map gives the obvious

identification
TN [2] = ( 1

2N)/N ⊂ NR/N = TN ,
where 1

2N = {u ∈ NR | 2u ∈ N}, Proposition 3.2 can be restated as follows,
cf. [GKZ, Theorem 11.5.4], [De1, Proposition 4.1.1].

Proposition 3.3. The toric variety X∆(C) is homeomorphic to the quotient space
X+

∆×TN/ ∼, where the equivalence relation on X+
∆×TN is given by (p, t) ∼ (p′, t′)

if and only if p = p′ and t− t′ ∈ TNσ = (Nσ)R/Nσ for the unique cone σ ∈ ∆ such
that p ∈ O+

σ .
The real part X∆(R) is homeomorphic to the quotient space X+

∆ × TN [2]/ ∼,
where the equivalence relation on X+

∆ ×TN [2] is given by (p, t) ∼ (p′, t′) if and only
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if p = p′ and t − t′ ∈ TNσ [2] = 1
2Nσ/Nσ for the unique cone σ ∈ ∆ such that

p ∈ O+
σ .

4. Betti numbers of nonsingular complete toric varieties

The fact that any nonsingular complete toric variety X = X∆ is an M-variety can
be deduced from known results by the following arguments.

(1) The Jurkiewicz–Danilov theorem [D, Proposition 10.4] implies that the cy-
cle map from the Chow groups Ch(X;R) toH∗(X;R) is an isomorphism for
arbitrary coefficients R. Since the Chow groups are generated by closures
of TN -orbits, which are conjugation-invariant subvarieties, it follows from
standard results in equivariant cohomology (cf. [AP, Remark 1.2.4 (2)]) that
X is maximal. Moreover, results of Krasnov [Kr] and Borel–Haefliger [BH,
§5.15] imply that there exists a degree-halving isomorphism of algebras.

(2) Using virtual Poincare polynomials (for homology with Z/2 coefficients), it
is easy to show that the Betti numbers of X(C) are the entries of the combi-
natorial h-vector of ∆, cf. [F, §4.5, §5.6] for the case of rational coefficients.
One can imitate this proof for X(R), using the virtual Poincaré polyno-
mial for real algebraic varieties defined by McCrory and Parusiński [MP].
Here one starts with the virtual Poincaré polynomial P̃R∗(t) = t−1 instead
of P̃C∗(t) = t2 − 1. This implies the relations between the individual Betti
numbers mentioned in the introduction:

(4.1) b2k(X∆(C)) = bk(X∆(R)) = hk(∆), b2k+1(X∆(C)) = 0.

(3) Nonsingular projective toric varieties are manifolds with a Hamiltonian
torus action. Since all fixed points for the action on X(C) are contained
in X(R), a result of Duistermaat [Du, Theorem 3.1] implies that the Betti
sum for X(R) is the number of these fixed points. Because the same is
true for X(C), this shows that every nonsingular projective toric variety
is an M-variety. Extending Duistermaat’s methods, Biss, Guillemin and
Holm also showed that there exists a degree-halving isomorphism of alge-
bras H2∗(X(C))→ H∗(X(R)) [BGH, Corollary 5.8].

(4) Relation (4.1) between the individual Betti numbers of the complex and
real points of a nonsingular projective toric variety is also a special case of
a result of Davis and Januszkiewicz [DJ, Theorem 3.1]. Both Duistermaat’s
and Davis–Januszkiewicz’s arguments are Morse-theoretic.

(5) Another proof in the projective case is by “shelling,” as in [F, §5.2]. (This is
closely related to the proof of Davis and Januszkiewicz.) If X is nonsingular
and projective, there is an ordering of the top-dimensional cones of ∆ that
defines a filtration

∅ ⊂ Zm(C) ⊂ · · · ⊂ Z1(C) = X(C)

by closed subvarieties Zi(C) with algebraic cells Yi(C) = Zi(C)\Zi+1(C) '
Cki . The corresponding filtration Zi(R) of X(R) has real algebraic cells
Yi(R) ' Rki . Since the closure of the cell Yi(R) is a real algebraic variety,
which is a cycle mod 2 [BH], it follows that b2k(X(C)) = bk(X(R)) and
b2k+1(X(C)) = 0 for all k.

5. The complex toric homology spectral sequence

Following Totaro [T], Fischli [Fi], and Jordan [J], we describe a spectral sequence
associated to the filtration of X = X∆(C) by the orbits of the torus action. Let ∆p
be the set of cones of codimension p of the rational fan ∆ in NR ' Rn. Recall that
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for each σ ∈ ∆p the orbit Oσ has dimension p, and the Zariski closure Oσ is the
union of all orbits Oτ such that σ is a face of τ . Taking

Xp :=
∪
σ∈∆p

Oσ

we get a filtration (in fact, a stratification)
(5.1) ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X∆(C)
with each open stratum X◦p := Xp \ Xp−1 equal to the disjoint union of the p-
dimensional orbits:
(5.2) X◦p =

∪
σ∈∆p

Oσ.

Hence,

(5.3) Hi(X◦p ) =
⊕
σ∈∆p

Hi(Oσ).

The filtration (5.1) gives rise to a spectral sequence
(5.4) E1

p,q = Hp+q(X◦p )⇒ Hp+q(X)
converging to the homology (with closed supports) of X (cf. [M, p. 327]). The
differentials

d1p,q : Hp+q(X◦p )→ Hp+q−1(X◦p−1)
at the E1 level coincide with the connecting homomorphisms in the long exact
sequence
· · · → Hp+q(X◦p−1)→ Hp+q(Xp \Xp−2)→ Hp+q(X◦p )→ Hp+q−1(X◦p−1)→ · · ·

for the pairX◦p ⊂ Xp\Xp−2 = X◦p∪X◦p−1. It follows from (5.3) and from the functo-
riality of the connecting homomorphism that we may describe each differential d1p,q
in block matrix form (dq,σ,τ )σ∈∆p, τ∈∆p−1 with

dq,σ,τ : Hp+q(Oσ)→ Hp+q−1(Oτ )
being the connecting homomorphism for the pair Oτ ⊂ Oσ ∪Oτ . The latter is zero
unless Oτ is in the boundary of Oσ, that is, unless σ is a face of τ .

Remark 5.1. The spectral sequence (5.4) is isomorphic with the Leray spectral
sequence of the retraction X∆(C) → X+

∆ . In particular, if X∆ is projective, (5.4)
is isomorphic with the Leray spectral sequence of the moment map.

The differential d1p,q permits a simple description in terms of the fan ∆, which
we are going to derive now. Recall that for each cone σ of codimension p we have

Oσ ' TN(σ) × Rp.
Since

Hk(Rp) =

{
Z/2 if k = p,
0 otherwise,

and since Z/2 has a unique generator, the Künneth formula gives for any q a
canonical isomorphism
(5.5) Hp+q(Oσ) = Hq(TN(σ))
in homology with closed supports. Hence each component dq,σ,τ of the differential d1
is canonically identified with a map

d′q,σ,τ : Hq(TN(σ))→ Hq(TN(τ)).
(If the characteristic of the coefficients was different from 2, we would have to choose
orientations, and signs would appear as in simplicial homology.)
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If σ is a face of τ , then the lattice Nσ ⊂ N of the isotropy group of TN act-
ing on Oσ is contained in the corresponding lattice Nτ . Hence we get a natu-
ral surjection N(σ) = N/Nσ → N/Nτ = N(τ), which gives natural split surjec-
tions TN(σ) → TN(τ) and TN(σ) → TN(τ), both of which we will denote by πσ,τ .

Proposition 5.2 ([Fi, Theorem 2.1], [J, §2.3]). If σ is a facet of τ , then the
homomorphism

d′q,σ,τ : Hq(TN(σ))→ Hq(TN(τ)).
coincides with the homomorphism induced by the split surjection

πσ,τ : TN(σ) → TN(τ).

Proof. See for example [J, §2.3], where it is derived from Proposition 3.2. Alter-
natively, it follows easily from the fact that the pair Oτ ⊂ Oσ ∪ Oτ is isomorphic
with the pair (C∗)p−1 × {0} ⊂ (C∗)p−1 × C for σ ∈ ∆p. To see this, consider the
star of σ, that is, the set of cones τ ∈ ∆ having σ as face. Taking the image of
each such τ in N(σ) gives a new fan, whose associated toric variety is Oσ, cf. [F,
pp. 52–54]. Hence, the pair (Oτ ,Oσ) is isomorphic with the pair given by ray and
the origin in N(σ). �

Totaro [T] noticed that for rational coefficients this spectral sequence degenerates
at the E2 level for any toric variety (cf. [J, Proposition 2.4.5]). In [Fr2], the sec-
ond author proved that over an arbitrary coefficient ring R this happens for toric
varieties which are R-homology manifolds, in particular in the nonsingular case.
Moreover, he conjectured that degeneration occurs for arbitrary toric varieties, as
with rational coefficients.

6. Homology of compact tori and their 2-torsion points

In order to construct a spectral sequence for X(R) which compares well with the
spectral sequence introduced for X(C), we need to relate the homology of an n-
dimensional compact torus T and its 2-torsion points T [2].

The homology of any compact topological group G is a graded algebra by the
Pontryagin product H∗(G)⊗H∗(G)→ H∗(G), which is constructed in the obvious
way from the Eilenberg–Zilber map H∗(G)⊗H∗(G)→ H∗(G×G) and the multi-
plication G×G→ G. (The restriction to compact groups is caused by our choice of
homology with closed supports.) The unit in H∗(G) is the homology class [1] of the
identity element 1 ∈ G. Since T and T [2] are commutative, the Pontryagin product
is (anti)commutative in these cases. Note that H∗(T [2]) = H0(T [2]) is nothing but
the group algebra of the finite group T [2] with coefficients in Z/2.
H∗(S1) is an exterior algebra on the fundamental class of S1. Similarly, the

homology of S1[2] = S0 = {1, g} is an exterior algebra on the fundamental class [1]+
[g] because (

[1] + [g]
)2 = [1]2 + [g]2 = 2 [1] = 0.

Hence, H∗(S1) and H0(S0) are isomorphic as ungraded algebras. Note that in both
cases the generators are unique, so that the isomorphism is canonical.

Choosing a decomposition of T into circles

T ' (S1)n,(6.1)

the Künneth formula gives isomorphisms

H∗(T ) ' H∗(S1)⊗n,(6.2)
H0(T [2]) ' H0(S0)⊗n.(6.3)
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Since (6.1) is a decomposition of topological groups, (6.2) and (6.3) are isomor-
phisms of algebras. This gives an isomorphism
(6.4) H∗(T ) ' H0(T [2]) as ungraded algebras.

The following example shows that this isomorphism does depend on the decom-
position of T as a product of copies of S1 and that it is not functorial, except for
homomorphisms that are compatible with the chosen product decompositions.

Example 6.1. Let T = S1 × S1, and let D ⊂ T be the diagonal torus. Then
[D] = [S1 × 1] + [1× S1] ∈ H∗(T ),

whereas

[D[2]] = [S0 × 1] + [1× S0] + [S0 × S0] ∈ H0(T [2]).
By functoriality, the same relations hold for any two circles representing different
elements in H∗(T ) and a circle representing their sum.

In order to get a better comparison of H∗(T ) and H0(T [2]) we will construct
a natural filtration on H0(T [2]). Let I = I(T [2]) be the kernel of the augmenta-
tion H0(T [2])→ Z/2 induced by the group homomorphism from T to a point. It is
an ideal in H0(T [2]), and there is a canonical direct sum decomposition of vector
spaces
(6.5) H0(T [2]) ' 〈[1]〉 ⊕ I,
functorial with respect to homomorphisms of tori.

Lemma 6.2. For k ≥ 1, the k-th power Ik of I is additively generated by the
fundamental classes of rank k subtori of T [2]. In particular, Ik = 0 if k is greater
than the rank n of T [2].

Proof. An element a ∈ H0(T [2]) is a formal linear combination of points of T [2].
We have a ∈ I if and only if there is an even number of such points. Denoting by A
the set of these points, we can rewrite a as

a =
∑
g∈A

[g] =
∑

1 6=g∈A

(
[1] + [g]

)
,

which is a sum of fundamental classes of rank 1 subtori.
Suppose the claim is true for k. Then Ik+1 is additively generated by prod-

ucts [H] ∗ ([1] + [g]) with g ∈ T and H a rank k subtorus. If g is contained in H,
this equals [H] + [H] = 0. Otherwise we get the fundamental class of a subtorus of
rank k + 1. �

We now look at graded quotient associated to the filtration
H0(T [2]) = I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ In+1 = 0.

Writing V = Hom(S1, T )⊗ Z/2, the assignment χ 7→ χ∗([S1]) gives a canonical
isomorphism of vector spaces V = H1(T ), which extends to an isomorphism of
graded algebras

(6.6)
∧∗
V = H∗(T ),

natural with respect to homomorphisms of tori.
The following result is crucial for the present paper in that it will finally enable

us to compare the homology of complex toric varieties with their real parts.

Proposition 6.3. There is a natural isomorphism of graded algebras
Gr∗I H0(T [2]) = H∗(T ).



IS EVERY TORIC VARIETY AN M-VARIETY? 9

Proof. The assignment χ 7→ χ∗([S0]) gives a map (not a homomorphism) V → I ⊂
H0(T [2]), which induces a map

V ' I/I2.

We claim that the latter is a homomorphism, i.e., compatible with sums: Take
two elements from V . We may assume that they are distinct and non-zero. Then
Example 6.1 shows that the image of their sum and the sum of their images in I
differ by an element from I2.

The square of any element a ∈ I is zero because a is a sum of terms of the
form [1] + [g]. Therefore, we get a homomorphism of graded algebras

(6.7)
∧∗
V → Gr∗I H0(T [2]).

Since Ik is additively generated by the fundamental classes of rank k subgroups,
the map (6.7) is surjective, hence an isomorphism.

The desired map is the composition of (6.6) and (6.7). It is clear from the
definitions that both isomorphisms do not depend on any choice and that they are
functorial in T . �

Remark 6.4. Together with the isomorphism (6.4), Proposition 6.3 implies that
H0(T [2]) and Gr∗I H0(T [2]) are isomorphic as algebras. Again the isomorphism
is not natural in general, but it is so with respect to homomorphisms that are
compatible with the chosen product decompositions. In particular, one can choose
isomorphisms compatible with a single injection or a single split projection.

7. The real toric homology spectral sequence

As for X(C), one can consider for the real toric variety X(R) the filtration by
TN (R)-orbit dimension. This gives the real analogue

(7.1) E1
p,q = Hp+q(X◦p (R))⇒ Hp+q(X(R))

of the spectral sequence (5.4). As in the complex case, the spectral sequence (7.1)
is isomorphic to the Leray spectral sequence of X∆(R)→ X+

∆ .
Because TN(σ) = TN(σ)[2]×Rp ' (R∗)p is a disjoint union of p-cells for σ ∈ ∆p,

the filtration on X(R) is actually cellular, and E1
p,q = 0 for q 6= 0, so our spectral

sequence degenerates at the E2 level for trivial reasons. The nontrivial row E1
∗,0

is just the cellular chain complex associated to the filtration. We will denote this
chain complex by C∗(∆).

Similar to the identification

(7.2) E1
p,q =

⊕
σ∈∆p

Hq(TN(σ))

in the complex case (cf. Section 5), we can identify the E1 term of the spectral
sequence at hand as

(7.3) E1
p,0 = Cp(∆) =

⊕
σ∈∆p

Hp(TN(σ)) =
⊕
σ∈∆p

H0(TN(σ)[2]).

The following real analogue of Proposition 5.2 is obvious.

Lemma 7.1. Under the above identification, the component

H0(TN(σ)[2])→ H0(TN(τ)[2])

of the differential is induced by the surjection TN(σ)[2] → TN(τ)[2] for σ a facet
of τ , and zero otherwise.
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Using the filtration on 2-tori introduced in the previous section, we introduce
a filtration on C∗(∆). It is this new filtration and not the one discussed above
which will lead to a generalization of Proposition 6.3 from tori to toric varieties.
For convenience, the new filtration is increasing instead of decreasing; its pieces are

Fp(C∗(∆)) =
⊕
σ∈∆

I−p(TN(σ)[2]) for p ≤ 0.

Then F−n−1(C∗(∆)) = 0 and F0(C∗(∆)) = C∗(∆). We write Gkp,q for the terms
of the resulting spectral sequence, which is concentrated in the second quadrant.
For n = 3, the possibly non-zero terms are located as follows:

∗ 6 = q
∗
∗ ∗
∗ ∗
∗ ∗
∗
∗ 0

p = −3 0
As a direct consequence of Proposition 6.3, we obtain the following result.

Proposition 7.2. The term G0
p,q of the spectral sequence for X(R) is isomorphic

to the term E1
p+q,−p of the spectral sequence for X(C), and this is compatible with

the differentials. Hence also G1
p,q = E2

p+q,−p. In particular, the G1 and E2 levels
have the same total dimension.
Proof. By construction, G0

p,q =
⊕
σ∈∆p+q Gr−pI H0(TN(σ)[2]). It now follows from

Proposition 6.3 and the discussion in Section 5 that G0
p,q = E1

p+q,−p for all p, q. The
fact that for each p, q differential d0pq : G0

p,q → G0
p,q−1 corresponds to the differential

d1pq : E1
p+q,−p → E1

p+q−1,−p is easy to check from Lemma 7.1 and Proposition 5.2.
�

Remark 7.3. The isomorphism G1
p,q ' E2

p+q,−p is not compatible with the differ-
entials. Indeed, the differential with source G1

p,q has target G1
p−1,q ' E2

p+q−1,−p+1,
whereas the one with source E2

p+q,−p has target E2
p+q−2,−p+1.

Remark 7.4. The decomposition (6.5) induces a direct sum decomposition of C∗(∆).
One summand is the complex G0

0,∗ = E1
∗,0, the other one the direct sum of the aug-

mentation ideals I(TN(σ)). Therefore, all differentials starting at the rightmost
column Gk0,∗ vanish for k ≥ 1.

8. Comparing the spectral sequences

We can now sharpen the conjecture stated in the introduction.
Conjecture 8.1. The spectral sequence Gkp,q for H∗(X(R)) degenerates at the
G1 level.

Notice that this implies that the spectral sequence Ekp,q converging to H∗(X(C))
degenerates at the E2 level: the comparison between G1 and E2 (Proposition 7.2)
implies that otherwise the Betti sum for X(R) would exceed that for X(C), in
contradiction to the Smith–Thom inequality (1.1). In particular, the conjecture
implies that X is an M-variety.

Numerous examples indicate that degeneration is at least not a rare phenomenon.
We have checked many examples using the Maple package Torhom by the second
author [Fr1]. So far this has not led to an example of a toric variety for which the
spectral sequence Gkp,q does not degenerate. Here is one example:
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Example 8.2. Let ∆ be the normal fan (cf. [F, Section 5.6]) of the five-dimensional
cyclic polytope with vertices (k1, . . . , k5) for k = 0, 1, . . . , 6. The dimensions of
the E2 terms and the G1 terms are:

q = 5 1
11 4

13 27 6
6 17 21 4

1 1 4 5 1
0 1 0 0 0 0 0

0 5 = p
E2
p,q

1 q = 10
4

11 6
27 4
13 21 1

17 5 0
6 4 0

1 0
1 0

0
1 0

p = −5 0
G1
p,q

Clearly there is plenty of room for higher differentials in both cases. Yet both
spectral sequences degenerate, as Torhom’s direct computation of H∗(X(R)) shows.

We now prove Theorem 1.2 by verifying Conjecture 8.1 in each case.

Proof of the first part. This is essentially an adaption of a result of Brion’s. In [Br,
§1.2], Brion considered the double complex

(8.1) Cp,q(∆) =
⊕
σ∈∆p

∧q
NR(σ)

with a horizontal differential, which is induced by the canonical projectionsNR(τ)→
NR(σ) for τ a face of σ. (In fact, Brion considered the dual complex, but that does
not matter here.) Note that in case of a rational fan, this is the E1 term of the
homology spectral sequence for the toric variety X∆ as discussed in Section 5, but
with real coefficients. Brion proved that the homology of the complex (8.1), which
is the E2 term in our context, is concentrated on the diagonals 0 ≤ p− q ≤ k+ 1 if
all cones of codimension at most k are simplicial. For rational fans, Brion’s argu-
ment generalises directly to coefficients in an arbitrary field K instead of R if one
replaces “simplicial cones” by “K-regular cones”. Here a rational cone σ in NR is
called K-regular if the images in N ⊗ZK of the minimal generators of the extremal
rays of σ can be extended to a basis of N ⊗Z K.

Since we assume X∆ to have at most isolated singularities, all cones in ∆ which
are not full-dimensional are K-regular for any K, in particular for K = Z/2. It fol-
lows immediately from the shape of the E2 term that non-trivial higher differentials
are impossible for G1. �

Proof of the second part. There can be no higher differentials starting at G1
0,∗ by

Remark 7.4. Hence the only higher differential can be d1 : G1
−1,4 → G1

−2,4 for 3-
dimensional varieties. Clearly, the source of this differential is non-trivial only if
the previous differential d0 : G0

−1,4 → G0
−1,3 is not injective. By Proposition 7.2 this

is the case only if the differential d1 : E1
3,1 → E1

2,1 is not injective, in other words,
if the map

H1(TN )→
⊕
τ∈∆2

H1(TN(τ))

is not injective. Since the kernel of each map H1(TN ) → H1(TN(τ)) is generated
by the image of the minimal representative of τ in V = N/2N , this implies that all
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τ ∈ ∆2 have the same image v in V . As a consequence, all 2-tori

TN(σ)[2] = ( 1
2N/v)

/
(N/v) =: T̃

of rank 2 are actually identical. By Remark 6.4, one can therefore choose isomor-
phisms H0(TN [2]) ' Gr∗I H0(TN [2]) and H0(T̃ ) ' Gr∗I H0(T̃ ) which intertwine the
differential

d0 :
⊕
p+q=3

G0
p,q = Gr∗I H0(TN [2])→

⊕
σ∈∆2

Gr∗I H0(TN(σ[2])) =
⊕
p+q=2

G0
p,q

and the underlying differential

d : C3(∆) = H0(TN [2])→
⊕
σ∈∆2

H0(TN(σ[2])) = C2(∆).

Hence the kernels of these differentials have the same dimension, and all higher
differentials dkp,q must vanish for p+ q = 3 and k ≥ 1. �

9. Explicit calculations in dimension 2

Jordan [J, Theorem 3.4.2] computed the integral homology with closed supports of
an arbitrary 2-dimensional toric variety. Together with our result, this leads to the
following classification in the case of complete toric surfaces.

Proposition 9.1. Let X be the complete toric surface associated to a fan ∆ with
respect to a lattice N of rank 2. Let s be the number of 1-dimensional cones of ∆.

(1) If at least two primitive generators of one-dimensional cones of ∆ have
different images in the quotient lattice N/2N , then

b0(X(R)) = 1 , b1(X(R)) = s− 2 , b2(X(R)) = 1,

b0(X(C)) = 1 , b1(X(C)) = 0 , b2(X(C)) = s− 2 , b3(X(C)) = 0 , b4(X(C)) = 1.
(2) If the primitive generators of one-dimensional cones of ∆ all have the same

image in N/2N , then

b0(X(R)) = 1 , b1(X(R)) = s− 1 , b2(X(R)) = 2,

b0(X(C)) = 1 , b1(X(C)) = 0 , b2(X(C)) = s− 1 , b3(X(C)) = 1 , b4(X(C)) = 1.

Proof. Recall that every complete two-dimensional fan ∆ is the normal fan of some
polytope P . The dimensions of the E1 level of the spectral sequence for X(C) are
as follows, where the q = 0 row is the cellular chain complex of such a P :

q = 2 1
s 2

0 s s 1
0 2 = p

The q = 0 row of E2 is the homology of P . As in the proof of Theorem 1.2, we
know that the differential E1

2,1 → E1
1,1 is either injective or has a one-dimensional

kernel. The latter occurs if and only if the minimal generators of the one-dimen-
sional cones in ∆ have the same image in N/2N . Hence, the E2 term is one of the
following:

(1)

q = 2 1
s− 2 0

0 1 0 0
0 2 = p

(2)

q = 2 1
s− 1 1

0 1 0 0
0 2 = p

From this we can read off the Betti numbers of X(C). To get the Betti numbers
of X(R), we simply have to sum up the dimensions in each column. �
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If X is a nonsingular complete toric surface, then the primitive generators of two
consecutive (with respect to either of the two cyclic orders) one-dimensional cones
have different images in N/2N , so that case (1) applies. It is instructive to use
Proposition 3.3 to find generators for the homology groups of X(R).
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