
Reification of substitutions in the asynchronous

pi-calculus

Noël Bernard, Yves Dumond

To cite this version:

Noël Bernard, Yves Dumond. Reification of substitutions in the asynchronous pi-calculus.
Submitted to publication. 2009. <hal-00387065>

HAL Id: hal-00387065

https://hal.archives-ouvertes.fr/hal-00387065

Submitted on 23 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL Université de Savoie

https://core.ac.uk/display/47303039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00387065

Reification of substitutions in the asynchronous π-calculus

Noël Bernarda, Yves Dumondb

aLAMA, University of Savoie, Le Bourget-du-Lac, France
bLISTIC, University of Savoie, Le Bourget-du-Lac, France

Abstract

In this paper, we bring in a dialect of the π-calculus, namely the πS -calculus, which involves explicit substitutions. This

mechanism has the property to handle substitutions in such a way that it avoids deep parsing of the terms concerned.

Then, we show that the πS -calculus can faithfully simulate the π-calculus, thus putting in evidence the fact that terms

of the latter can be interpreted more efficiently.

Key words: concurrency, process algebra, π-calculus, explicit substitutions.

1. Introduction

Name substitution is a basic feature in the semantics

of the λ-calculus and of many process calculi. For in-

stance, let us pay attention to the following reduction

rule which is part of the semantics of the π-calculus:

a(r).P
a(v)
−→ P{v/r}

Here, the name v is received on the channel a and it is

then substituted for the free occurrences of the place-

holder r in the term P. Therefore, this one must be

parsed in order to perform this task. Moreover, if the

process P is made of a set of processes running in paral-

lel, e.g.:

P ≡ P1 | . . . | Pn

the substitutions should normally involve several

communications, which are not considered in the usual

semantics. Consequently, as it stands, this mechanism

might appear fairly artificial. Thus, we investigate in

this paper the reification of name substitution under the

form of dedicated π-processes.

Explicit substitutions are well known in the λ -

calculus, starting from [2]. The question of adding

a similar construct in the π-calculus has not been so

widely studied. The first attempt has been the πξ-

calculus of [7]. A term in this calculus consists of a

pair denoted ξ :: P of an environment ξ, that is a list of

equalities between names, and a process P.

A closer proposal to ours can be found in [9, 11], where

processes are ordinary processes of the π-calculus with

an additional construct P[s], where s is a substitution,

i.e. a correspondence between names in P and values.

Explicit fusions [8] adopt a point of view very close to

that in this paper: they present an equality x = y as a

process in itself. The main difference is the use of struc-

tural equivalences such as symmetry and transitivity re-

lations between equalities, which amount to neglect of

the computational aspect of explicit substitutions.

The Applied π-calculus [3, 1] also introduces processes

{M/x} but unlike the present paper these processes act

globally on a process P not taking into account the com-

putational content of deep propagation of substitution

inside P.

2. Syntax

The syntax of the π-calculus widely differs from one

author to another. Our point of view about this calcu-

lus is strongly influenced by the Chemical Abstract Ma-

chine [5]. This leads us to choose an asynchronous ver-

sion of the π-calculus [6, 10] involving guarded sums

as the reference dialect. In addition, we define explicit

substitutions as a specific kind of process:

Definition 1 (πS -calculus syntax). The following is an

inductive definition of the syntax of the πS -calculus:

P ::= ā b
∣

∣

∣ S
∣

∣

∣ P|P
∣

∣

∣ (ν x)P
∣

∣

∣ [x = y]P
∣

∣

∣ D(~w)
∣

∣

∣ {{r←v}}
∣

∣

∣ 0

the syntactic category S denoting ”guarded sums”:

S ::= a(x).P
∣

∣

∣ S + S

each constant invocation D(~w) being associated to a

defining equation D(~w)
de f
= P , such that all the names

that occur free in P must appear in ~w.

The πS -terms (also called πS -processes) have to fulfill

the Barendregt’s hygiene condition (Bhc) [4] which pro-

hibits name capture: for any two occurrences of a given

name, either both are free or both are bound in the same

binding.

The set of the πS -terms is denoted ΠS . Moreover, in the

explicit substitution {{r ← v}}, the name r is called the

repository while v is called the value.

With regard to the Bhc, it is important to point out the

fact that such a property can only be managed globally.

Therefore, in this paper we study the derivation of pro-

cesses considered individually but with the proviso that

they are embedded in a syntactical context under the

form of a πS -process that complies with the Bhc.

3. Action of explicit substitutions

The outer names are names which, with regard to

their location in a given πS -term, are potentially subject

to the action of explicit substitutions.

Definition 2 (outer names). Let P and P′ be two πS -

terms. The set O(P) of outer names of P is defined by

induction on P by the following list of equations:

- O(0) = ∅

- O({{r←v}}) = ∅

- O(āb) = {a, b}

- O(a(x).P) = {a}

- O(P|P′) = O(P) ∪ O(P′)

- O(S + S ′) = O(S) ∪ O(S ′)

- O((ν x)P) = O(P) − {x}

- O([x = y]P) = O(P) ∪ {x, y}

- O(D(~v)) = {v1, . . . , vn} with ~v = (v1, . . . , vn)

Definition 3 (occurrences in outer name position).

Let P be a πS -term. An occurrence x of an element of

O(P) is said to be in outer name position if and only if x

is not in the scope of an input prefix.

We denote Oc(P) the set of occurrences which are in

outer name position in P.

Remark 1. For any πS -term P, O(P) is finite. Moreover,

the outer names of P can be found in one step starting

from the root of the syntactical tree related to this term

and consequently any deep parsing of P is not necessary.

This appears as a direct consequence of the syntax cho-

sen for πS -terms, in particular the fact that sums must

be guarded.

Now, we have to discriminate among the explicit sub-

stitutions, those which, due to their location in a given

term, are in a position to act on outer names. These are

called active explicit substitutions:

Definition 4 (active explicit substitutions). Let P be a

πS -term. We call active explicit substitutions of P the

explicit substitutions embedded in P which are not in

the scope of an input prefix.

Definition 5 (set of repositories). Let P be a πS -term.

We denote ρ(P) the set of the repositories of the active

explicit substitutions embedded in P.

The semantic rules below give the details of imple-

mentation of the effect of active explicit substitutions

on outer names as a function of the morphology of

the terms concerned. This specification involves a

meta-operator denoted by ”≻”, the corresponding

meta-transitions, which are obviously not performed

in the πS -calculus, being all labeled by the symbol ”τk”.

−
(a1)

{{r←v}} ≻ r(x).P
τk
−→ v(x).P

r ∈ {a, b}
(a2)

{{r←v}} ≻ āb
τk
−→ āb{v/r}

{{r←v}} ≻ P
τk
−→ P′ ∧ x , r

(a3)
{{r←v}} ≻ (ν x)P

τk
−→ (ν x)P′

r ∈ ~w ∧ ~w′ = ~w{v/r}
(a4)

{{r←v}} ≻ D(~w)
τk
−→D(~w′)

{{r←v}} ≻ S 1

τk
−→ S ′1 ∧ r < O(S 2)

(a5)
{{r←v}} ≻ S 1 + S 2

τk
−→ S ′1 + S 2

{{r←v}} ≻ S 1

τk
−→ S ′1 ∧ {{r←v}} ≻ S 2

τk
−→ S ′2

(a6)
{{r←v}} ≻ S 1 + S 2

τk
−→ S ′1 + S ′2

{{r←v}} ≻ P
τk
−→ P′

(a7)
{{r←v}} ≻ [x = y]P

τk
−→ [x = y]{v/r}P′

r ∈ {x, y} ∧ r < O(P)
(a8)

{{r←v}} ≻ [x = y]P
τk
−→ [x = y]{v/r}P

{{r←v}} ≻ P
τk
−→ P′

(a9)
{{r←v}} ≻ Q | P |R

τk
−→Q | P′ |R

These rules deserve the following comments:

(a1) The process P remains unchanged.

(a3) Because of the Bhc, the names r and x are sup-

posed to be different.

(a5) This rule is written up to left-right symmetry.

(a6) Occurrences of the repository r are substituted

both in S 1 and in S 2.

2

4. Semantics

The operational semantics for the πS -calculus is

given hereafter under the form of a list of conditional

term rewriting rules. The rules b1, b2 and b3 are spe-

cific to the πS -calculus. The other rules have the form

which they take in usual specifications of the semantics

of the asynchronous π-calculus apart from the side con-

ditions. Indeed, while giving the π-calculus a transition

semantics, side conditions are associated to some rules

with the goal of imposing α-conversions which avoid

name capture. There is no need to take such precautions

in the πS -calculus since the Bhc radically prevents this

phenomenon:

{{r←v}} ≻ P
τk
−→ P′ ∧ r , v ∧ r ∈ O(P)

(b1)
{{r←v}} | P

τs
−→{{r←v}} | P′

−

(b2)
a(r).P

a(v)
−→ (ν r)({{r←v}} | P)

D(~u)
de f
= P ∧ Pα{~v/~u}

γ
−→ P′

(b3)
D(~v)

γ
−→ P′

−
(b4)

āb
āb
−→ 0

P
γ
−→ P′

(b5)
[a = a]P

γ
−→ P′

S 1

γ
−→ S ′1

(b6)
S 1 + S

γ
−→ S ′1

P
γ
−→ P′

(b7)
P |Q

γ
−→ P′ |Q

P
γ
−→ P′ ∧ x < γ

(b8)
(ν x)P

γ
−→ (ν x)P′

P
āb
−→ P′ ∧ Q

a(b)
−→Q′

(b9)
P |Q

τ
−→ P′ |Q′

P
āx
−→ P′ ∧ a , x

(b10)
(ν x)P

ā(x)
−→ P′

P
ā(x)
−→ P′ ∧ Q

a(x)
−→Q′

(b11)
P |Q

τ
−→ (ν x)(P′ |Q′)

These rules deserve the following comments:

(b1) This rule, which is written up to left-right sym-

metry, specifies the effect of an active explicit substi-

tution on processes of another kind. No action is pos-

sible on explicit substitutions since they have no outer

names. The corresponding transition, performed in the

πS -calculus, is labeled by the special action τs. The con-

dition r , v prevents infinite derivations of the form

{{r ← v}} | P
τs
−→{{r ← v}} | P

τs
−→ . . . Furthermore, this rule

stresses the fact that explicit substitutions are permanent

processes, i.e. they do not disappear, nor are modified,

after an interaction with another process.

(b2) When the value v is received, the explicit substitu-

tion {{r← v}} is created and this one runs in parallel with

the process P. Both the new explicit substitution and the

process P are in the scope of the restricted name r which

was formerly a placeholder.

(b3) The Bhc must be preserved by constant unfolding.

Hence, all the bound names of P are first replaced by

fresh names, the corresponding process, denoted Pα, be-

ing obviously not unique. Then, actual parameters are

substituted for formal ones. Once the corresponding

process Pα{~v/~u} has been built up, the transition γ can

be performed.

(b6), (b7), (b9), (b11) These rules are written up to left-

right symmetry.

(b10) The label ā(x) denotes the emission of the re-

stricted name x on the channel a.

Proposition 1. The Bhc property is preserved in the

πS -calculus.

Proof. Consider a πS -term P. We reason by cases on

the action γ performed by P, i.e. P
γ
−→ P′ :

– Case γ = āb and γ is not combined with a constant

unfolding. The emitting process āb is replaced by 0 in P′

and the status of the remaining names is unchanged.

– Case γ = ā(b) and γ is not combined with a constant

unfolding. Again, the emitting process āb is replaced

by 0 in P′. In addition, the concerned restriction state-

ment (ν b) is removed from P. Therefore, b becomes

free in P′ but remains different from the bound names of

P′.Moreover, the status of the other names of P′ is un-

changed.

– Case γ = a(v) and γ is not combined with a constant

unfolding. Then, P encompasses a process of the form

S ′ + a(r).Q + S ′′ . This one is turned into (ν r)({{r← v}} |Q)

in P′. Hence, the name r is a placeholder before the tran-

sition and becomes a restricted name after it. Therefore,

it remains a bound name different from the other bound

and free names of P′ , including the incoming name v

(because of the Bhc). Moreover, the status of the other

names remaining in P′ is unchanged.

– Case γ = τ, γ is not combined with a constant un-

folding and the exchanged name is free. This case is a

simple combination of the first and the third ones.

– Case γ = τ, γ is not combined with a constant unfold-

ing and the exchanged name b is bound. The process

P is subject to the following modifications:

• The emitting process āb is replaced by 0.

• The scope of the restricted name b is extended and

no α-conversion is required since name capture is

not possible in πS .

• A new explicit substitution is created and a place-

holder is turned into a restricted name.

3

Again, the status of all the names remaining in P′ is not

modified.

– Case γ = τs and γ is not combined with a constant

unfolding. The consequence of a τs-action consists in

substituting one or several occurrences of a given repos-

itory which stand in outer name position in P, by the cor-

responding value. This does not bring in any new name

nor modifies the status of the names remaining in P′.

– Case γ is combined with a constant unfolding. The

process P encompasses a constant invocation D(~v) and

a constant defining equation, i.e. D(~u)
de f
= T, is associated

to the process P. First, fresh names are substituted for

all the bound names of T: this generates a term Tα. By

definition, all the names that occur free in T appear in ~u.

Then, these ones are replaced in Tα by the names of ~v,

i.e. by names already present in P. Let us denote Q the

process P in which the term Tα{~v/~u}has been substituted

for D(~v). Then, the names of ~v occur free in Tα{~v/~u} and

they have in Q the status, i.e. bound or free, that they

had in P. Moreover, the only names that have appeared

in Qby the fact of the unfolding process of the constant D

are the fresh names. The latter are bound in Tα{~v/~u}, and

consequently in Q, and they differ, by construction, from

all the other names of Q. Furthermore, the status of the

latter, in particular that of the names of ~v, has not been

modified by the constant unfolding. Thence, Q fulfills

the Bhc. At this stage, the action γ can be performed,

and we are led to consider one of the previous cases.

5. Reduction of π-terms in πS

From now on, we focus on derivations carried out

in the πS -calculus under the assumption that they start

from π-terms. This criterion characterizes a specific

subset among the πS -terms. In particular, all the ex-

plicit substitutions present in these terms are active: this

comes from the fact that they are the result of the appli-

cation of the rule b2.

Definition 6 (π′
S

-calculus). We denoteΠ′
S

the set of πS -

terms which can be obtained by derivation of π-terms

and we call π′
S

the calculus made of Π′
S

outfitted with

the semantic rules of πS .

The next definition characterizes terms on which rule

b3 can no longer be applied.

Definition 7 (enacted processes). Let P be a π′
S

-term

which encompasses the following explicit substitutions

{{r1 ← v1}}, . . . , {{rn ← vn}}. The process P is said to be

enacted if and only if O(P) ∩ ρ(P) = ∅ .

Definition 8 (enactment phase). Let P be a π′
S

-term.

Any (possibly empty) sequence of τs-actions, due to the

action of the explicit substitutions of P, which turns it

into an enacted process P′ is called an enactment phase.

The corresponding derivation is denoted P ❀ P′.

We define hereafter a property which is fulfilled by

the set of explicit substitutions of π′
S

-terms provided the

latter are reduced according to a given strategy. This

property is subsequently used to establish the termina-

tion and the confluence of the enactment phase.

Definition 9 (disjunction property). Let P be a π′
S

-

term which encompasses the following explicit substi-

tutions {{r1 ← v1}}, . . . , {{rn ← vn}}. The term P is said to

fulfill the disjunction property on repositories and val-

ues if and only if:

- all the repositories ri are distinct,

- no value vi is equal to a repository r j .

We denote D(P) the fact that P abides by this property.

Lemma 1. Let P be a π′
S

-term that derives from a π-

term P0 . Then,D(P)holds provided along the derivation

that leads from P0 to P, all the actions different from τs

have been performed by enacted processes.

Proof. Consider a π′
S

-term P that encompasses the list

of explicit substitutions {{r1← v1}}, . . . , {{rn← vn}}. We rea-

son by induction on the length of a derivation path that

complies with the aforementioned constraints.

Base case : no explicit substitution is present in P0 and

consequently D(P0) is verified.

Induction step : by induction hypothesis, D(P) holds.

According to the semantics of the π′
S

-calculus, active

explicit substitutions are permanent processes, i.e. they

cannot disappear nor be modified. Therefore, the only

transitions which are worth considering are those that

generate a new explicit substitution: this expels the ac-

tions āv, ā(v) and τs. The mechanism of constant un-

folding does not generate new explicit substitutions, ei-

ther. Hence, in the proof below, the two actions, i.e. a(v)

and τ, are considered with the proviso that they are not

combined with a constant unfolding. Thus, if we denote

{{r←v}} the explicit substitution which has appeared in P′,

then for all explicit substitution {{ri← vi}} of P, we have

to prove that r , ri, r , vi, r , v and ri , v. We proceed

by cases on the action γ performed by P , i.e. P
γ
−→ P′ :

– Case γ = a(v):

• r , ri. The repository ri either is a placeholder

present in the original term P0 or a fresh name that

has appeared due to a constant unfolding. In both

cases, because of the Bhc, r , ri.

4

• r , vi. We reason ad absurdum. Assume that for

some i, r = vi. Then, P necessarily encompasses:

– a process S ′ + a(r).Q + S ′′ , which becomes

(ν r)({{r←v}} |Q) in P′,

– an explicit substitution {{ri← r}}which, by hy-

pothesis, cannot be embedded in Q since in

π′
S

-terms, all the explicit substitutions are ac-

tive.

Here, Q is the scope of the placeholder r and this

name also occurs outside Q, namely in the explicit

substitution {{ri← r}}. This is clearly in contradic-

tion with the Bhc.

• r , v. Again, we reason ad absurdum. Assume

that r = v. Then, P necessarily encompasses a

process S ′ + a(v).Q + S ′′ which becomes (ν v)({{v←

v}} |Q) in P′. Here, the incoming name v appears

in P as a placeholder and outside P in an emitting

process of the form āv. This is in contradiction

with the Bhc, to which the context encompassing

P is supposed to comply.

• ri , v. Here, we have to prove that the incoming

name v cannot be equal to one of the repositories

ri. Each of them either was a placeholder in the

term P0 or has appeared as a fresh name during a

constant unfolding. In both cases, it could not oc-

cur anywhere else. So, it can be received by Ponly

if it has been previously sent out by a process from

which P derives, and subsequently sent back to

P. Consider the explicit substitution {{ri← vi}}: be-

cause of

the disjunction property, ri , vi. Under this as-

sumption, any action āri or ā(ri) is prohibited be-

cause the encompassing process is not enacted:

the value vi must be substituted for ri before the

emission. Therefore, the received value v cannot

be equal to one of the repositories of P.

– Case γ = τ and the emitted name is free:

• r , ri and r , vi. We can reason in the same way

as in case γ = a(v): the only difference is that the

emitting process is embedded in P.

• r , v. We reason ad absurdum. Assume that r = v.

Then, P necessarily encompasses:

– a process āv,

– a process S ′ + a(v).Q + S ′′ which becomes

(ν v)({{v←v}} |Q) in P′.

Moreover, the emitting process āv is obviously not

embedded in Q. Hence, the name v occurs in Qas a

placeholder and outside Q in the emitting process,

which is in contradiction with the Bhc.

• ri , v. Again, we reason ad absurdum. Assume

that for some i, ri = v. Then, P necessarily encom-

passes:

– a process āv,

– a process S ′ + a(r).Q + S ′′ , which becomes

(ν r)({{r←v}} |Q) in P′,

– an active explicit substitution {{v← vi}} which

is not embedded in Q.

SinceD(P)holds, we have v , vi. Here, the contra-

diction comes from the fact that the action τ can-

not be performed because P is not enacted: vi must

be substituted for v in the process āv prior to this

action. As a result, the repository v cannot be emit-

ted and ergo cannot become the value of the newly

created explicit substitution.

– Case γ = τ and the emitted name is bound, i.e. is a

restricted name:

• r , ri, r , vi and r , v. We can reason as we did

in the previous case.

• ri , v. We reason ad absurdum. Assume that for

some i, ri = v. Then, P necessarily encompasses:

– a process (ν v)(R′ | āv |R′′),

– a process S ′ + a(r).Q + S ′′ , which becomes

(ν r)({{r←v}} |Q) in P′,

– an explicit substitution {{v ← vi}} which, be-

cause of the Bhc, is necessarily embedded in

R′ or R′′ and such that v , vi.

Again, we can argue that the τ-action cannot be

performed if P is not enacted: the name vi has to

be substituted for v before the emission.

Remark 2. If the π′
S

-term P0 has been derived up to

P according to the hypotheses made in the terms of

Lemma 1, then D(P) is verified whether P is enacted

or not.

Lemma 2 (finiteness of enactment phase). Let P be a

π′
S

-term such that D(P) holds. Then, any enactment

phase of P is finite.

Proof. If P is enacted, then the enactment phase is

empty. Now, assume that P is a non enacted π′
S

-

process. The outer names which are affected during

the enactment phase are the elements of the finite set

E = O(P) ∩ ρ(P) . By the fact of the disjunction property,

each element of E can be subject to the action of one,

and one only, explicit substitution. Once the substitu-

tion(s) has (have) been performed, the names(s) appear-

ing at the corresponding location(s) cannot be modified

5

anymore since no value is equal to a repository. There-

fore, if nb−occ(x, P) denotes the number of occurrences

of x in outer names position in P, we can argue that the

integer value
∑

e∈E nb−occ(e, P) strictly decreases, up to

zero, at each τs-step.

Lemma 3 (confluence of enactment phase). Let P be

a π′
S

-term such that D(P) holds. Then, the enactment

phase of P has the property of confluence.

Proof. Obvious: due to the disjunction property, any

occurrence of an element of the set E = O(P)∩ρ(P)is sub-

ject to the action of one, and one only, explicit substitu-

tion. Hence, any τs-action is performed in total causal

independency towards the other.

6. Simulation of π by π′
S

We show in this section that any π-term can be de-

rived, respectively in π and in π′
S

, in such a way that,

at each step, the terms reached are closely related, thus

putting in evidence a relation of simulation between the

derivations they respectively belong to. This clearly

shows the possibility to interpret π-terms in an efficient

way, avoiding the parsing phases of terms made neces-

sary by in-depth substitutions.

To begin with, we need to define the two calculi, one

compared to the other:

• The Bhc is assumed to be implemented both in π

and in π′
S

.

• The only difference between the two syntaxes re-

sides in the fact that in π′
S

, explicit substitutions do

not exist.

• From a semantic point of view the relationship be-

tween the two calculi is specified hereafter. Thus,

for what concerns the π-calculus:

– Substitutions are performed in-depth after each

reception, so there is no need for a meta-operation

handling them. Consequently, the rule b1 must be

removed and the input rule b2 has to be written un-

der its usual form:

a(r).P
a(v)
−→ P{v/r}

– All the other semantic rules, in particular b3

which preserves the Bhc, are unchanged.

At this point, we introduce a notion that aims at defin-

ing a morphological relation between π- and π′
S

-terms.

The latter are characterized by the presence of explicit

substitutions and of restriction statements (ν ri) related

to the repositories. Hence, these features have to be re-

moved in order to make the comparisons possible be-

tween terms of the two calculi.

Definition 10 (concrete term). If P is a π′
S

-term, we

denote 〈P〉 the π-term defined by the following set of ax-

ioms, where ≡ is the syntactic identity between terms:

- 〈P | . . . |Q〉 ≡ 〈P〉 | . . . | 〈Q〉

- 〈a1(x1).P1 + . . . + an(xn).Pn〉

≡ a1(x1).〈P1〉 + . . . + an(xn).〈Pn〉

- ∃v, {{r←v}} is a subprocess of P

⇒ 〈(ν r)P〉 ≡ 〈P〉

- ∄v, {{r←v}} is a subprocess of P

⇒ 〈(ν r)P〉 ≡ (ν r)〈P〉

- 〈({{r←v}} | P)〉 ≡ 〈P〉

- 〈[x = y]P〉 ≡ [x = y]〈P〉

- 〈āb〉 ≡ āb

- 〈D(~w)〉 ≡ D(~w)

- 〈0〉 ≡ 0

We bring in below the simulation relation considered

in this paper, as well as some related notions:

Definition 11 (name occurrence location). Let x be

an occurrence of a name n in the π′
S

-term P. We call

location of x and denote loc(x, P) the number of symbols

preceding x in P, the names and the constant identifiers

being counted as 1.

Definition 12 (֒→-transition). If P and Q are two π′
S

-

terms and γ an action different from τs, any derivation

of the form P
γ
−→ P′ ❀ Q is denoted P

γ
֒→Q.

Corollary 1. Let P0 be a π-term and consider the

following derivation P0

γ0
֒→ . . .

γn−1
֒→ Pn performed in π′

S
.

Then, for all i, Pi is enacted and D(Pi) holds.

Proof. Obvious since the above derivation of P0 is in

conformity with the reduction strategy defined by the

terms of Lemma 1.

Definition 13 (M-equivalence). Let P be a π-term and

Q an enacted π′
S

-term such that D(Q) holds. Consider

the list {{r1 ← v1}}, . . . , {{rn ← vn}} of explicit substitutions

encompassed by Q. Then, the terms P and Q are said to

beM-equivalent if and only if:

M.1 P ≡ 〈Q〉{v1/r1} . . . {vn/rn}

M.2 (x ∈ Oc(P) ∧ x is an occurrence of n

⇒ ∃x′ ∈ Oc(Q) s.t. :

(x′ is an occurrence of n ∧ loc(x, P) = loc(x′, 〈Q〉)))

and conversely

TheM-equivalence is denoted ∼ .

6

Definition 14 (σ-simulation). A relation ≍ is said to

be a σ-simulation of π by π′
S

if for any derivation

∆ : P ≡ P0

γ0
−→ P1

γ1
−→ . . .

γn−1
−→ Pn in π there exists a deriva-

tion ∆′ : P≡Q0

γ0
֒→Q1

γ1
֒→ . . .

γn−1
֒→ Qn in π′

S
such that for all i,

Pi ≍ Qi.

Remark 3. At first sight, one may be surprised that we

consider a simulation relation between derivations and

not between terms as it is usually done. In fact, by ex-

plicitly considering derivations of the process P as a

whole, we deal with terms which encompass all the re-

quired explicit substitutions.

Proposition 2. The relation∼ is a σ-simulation of π by

π′
S

.

Proof. We reason by induction on the length of a

derivation path. Moreover, in the proof below, any ex-

pression of the form [~x = ~x] denotes a list of adjacent

matching statements [x1 = x1] . . . [xn = xn].

Base case : The π-terms P, P0 and Q0 are identical,

i.e. P ≡ P0 ≡ Q0 and the set of explicit substitutions

encompassed by Q0 is empty. Thence P0∼Q0.

Induction step : We reason by cases on the transition γn

undergone by the π-term Pn, i.e. Pn

γn
−→ Pn+1:

– Case γn = āb and γn is not combined with a constant

unfolding. By induction hypothesis, Pn ∼ Qn . There-

fore, the processes Pn and Qn are such that they both

encompass an emitting process of the form [~x = ~x]āb,

the location of the corresponding occurrences of a be-

ing respectively the same in Pn and in 〈Qn〉. Hence,

there exists a π′
S

-term Qn+1 for which Qn

āb
−→Qn+1. More-

over, Pn+1 and Qn+1 can be respectively deduced from

Pn and Qn by replacing the process [~x = ~x]āb by 0. By

induction hypothesis, Qn is enacted and since no new

explicit substitution has appeared in Qn+1 , this one is

enacted too. Consequently, the π′
S

-term Qn+1 is such

that Qn

āb
֒→Qn+1. Furthermore, under the assumption that

Pn ≡ 〈Qn〉{v1/r1} . . . {vn/rn}, if we respectively replace

[~x = ~x]āb by 0 in Pn and in Qn, the location of all the oc-

currences of the remaining names is either unchanged

or shifted symmetrically in Pn and in 〈Qn〉. This is in

particular true for:

• the occurrences of the different repositories ri and

ergo Pn+1 ≡ 〈Qn+1〉{v1/r1} . . . {vn/rn},

• the occurrences in outer name position which re-

main identical, at any concerned location, respec-

tively in Pn+1 and 〈Qn+1〉.

In conclusion,M.1 andM.2 hold and thence Pn+1∼Qn+1.

– Case γn = ā(b) and γn is not combined with a con-

stant unfolding. Here, the reasoning is basically the

same as that of the previous case. The only difference

lies in the fact that in addition to the emitting process, a

restriction statement (ν b) disappears from Pn and Qn as

well.

– Case γn = a(v) and γn is not combined with a con-

stant unfolding. The process Pn encompasses a process

of the form [~y = ~y](S ′ + a(ρi).P
i
n + S ′′). By induction hy-

pothesis, Pn ∼ Qn and consequently Qn encompasses a

process of the form [~y = ~y](T ′ + a(ρi).Q
i
n +T ′′) for which:

• Q i
n is a π-term such that P i

n ≡ Q i
n{v1/r1} . . . {vn/rn},

• the location of the corresponding occurrences of a

is the same in Pn and in 〈Qn〉,

• S ′∼T ′ and S ′′∼T ′′.

After the reception of the value v on the channel a, the

two receiving processes are respectively replaced by:

• P i
n{v/ρi} in Pn+1, i.e. the substitution {v/ρi} is per-

formed in-depth in the process P i
n ,

• (ν ρi)({{ρi ← v}} |Q i
n) in the immediate derivative of

Qn here denoted Q, i.e. a new explicit substitution

{{ρi ← v}} is created that runs in parallel with the

process Q i
n , the whole being in the scope of the

restricted name ρi.

By induction hypothesis, D(Qn) holds. Thence, after

Lemma 1 D(Q) does too. Moreover, after Lemma 2 and

Lemma 3 the enactment phase of Q is finite and con-

fluent. Therefore, there exists a unique enacted π′
S

-term

Qn+1 for which Q❀Qn+1 and Qn

a(v)
֒→Qn+1. From a morpho-

logical point of view, the processes Q and Qn+1 do not

differ since the latter can be deduced from the former

by a finite set of τs-actions. In fact, Q is subject to the

action of the previously existing explicit substitutions,

i.e. {{r1← v1}}, . . . , {{rn← vn}} plus that of the new created

one {{ρi← v}}. Consequently, at the end of the enactment

phase, the process Q i
n has been turned into a process Q i

n+1

such that P i
n{v/ρi} ≡ Q i

n+1
{v1/r1} . . . {vn/rn}{v/ρi}, which, by

the fact that 〈(ν ρi)({{ρi←v}} |Q i
n+1

)〉 ≡ Q i
n+1

, leads to:

P i
n{v/ρi} ≡ 〈(ν ρi)({{ρi←v}} |Q i

n+1
)〉{v1/r1} . . . {vn/rn}{v/ρi}

By hypothesis, Qn is an enacted process and because of

the scope definition of ρi, occurrences of its own cannot

be found outside Q i
n. Hence, the enactment phase of Q

only affects the process Q i
n. From this, we deduce:

Pn+1 ≡ 〈Qn+1〉{v1/r1} . . . {vn/rn}{v/ρi}

So,M.1 holds.

From P i
n{v/ρi} ≡ Q i

n+1
{v1/r1} . . . {vn/rn}{v/ρi}and by the fact

that Q i
n+1

is no longer subject to the action of any explicit

7

substitution, we can deduce that for any concerned lo-

cation, the occurrences of names in outer name posi-

tion are identical in P i
n{v/ρi} and in Q i

n+1
. Furthermore,

the processes that appear in the following couples, i.e.

(S ′, T ′), (S ′′,T ′′)and (P i
n{v/ρi}, Q i

n+1
)being all respectively

made of the same number of symbols, the location of

the occurrences of outer names present in Pn+1 and in

〈Qn+1〉 outside P i
n{v/ρi} and Q i

n+1
are either unchanged or

shifted symmetrically. Therefore,M.2 holds.

Again, we can assert that Pn+1∼Qn+1.

– Case γn = τ and γn is not combined with a constant

unfolding. If the name subject to the communication

is free, the present case is a simple combination of the

cases γn = āb and γn = a(b). If the emitted name is

bound, i.e. is a restricted name, the reasoning is globally

similar, the only difference lying in the fact that a scope

extrusion must be considered, the restriction statement

(ν b) remaining in Pn+1 and Qn+1.

– Case γn is combined with a constant unfolding. By

induction hypothesis, Pn and Qn respectively encompass,

at the same location in Pn and in 〈Qn〉, an occurrence of

the same process D(~u). This assumes the existence of

a constant defining equation D(~w)
de f
= T . At this point,

consider that:

• During the constant unfolding phase, we are free

to assume that D(~u) is replaced by the same term

Tα{~u/~w} both in Pn and in Qn. Remember that this

term is obtained by respectively substituting fresh

names for all the bound names of T and the names

of ~u for those of ~w. Thus, the process Qn being en-

acted, neither D(~u) nor Tα{~u/~w} is subject to the ac-

tion of any explicit substitution. Now, if we denote

P δn and Q δn the terms Pn and Qn in which Tα{~u/~w}has

been substituted at the same location for D(~u), then

under the assumption that Pn ≡ Qn{v1/r1} . . . {vn/rn},

we can state that P δn ≡ Q δn {v1/r1} . . . {vn/rn}, i.e. that

M.1 holds for P δn and Q δn.

• As mentioned above, the same term Tα{~u/~w} is sub-

stituted for D(~u) both in Pn and in Qn. Therefore,

the respective locations of the occurrences of outer

names of P δn and Q δn appearing respectively outside

Tα{~u/~w} are either unchanged or shifted symmetri-

cally. Consequently,M.2 holds for P δn and Q δn.

We can deduce from what precedes that the M -

equivalence is preserved by any constant unfolding

phase, i.e. P δn ∼ Q δn . Note that as constant unfolding

is not an actual transition, P δn and Q δn are not, strictly

speaking, P -derivatives. Nevertheless, D(Q δn) holds

since Q δn and Qn encompass the same set of explicit sub-

stitutions. Therefore, while considering the transition γn

starting from P δn and Q δn , the same reasonings as in the

previous cases can be applied, which leads to Pn+1∼Qn+1.

References

[1] Abadi, M., Blanchet, B., Fournet, C., 2007. Just fast keying in

the pi calculus. ACM Trans. Inf. Syst. Secur. 10 (3), 9.

[2] Abadi, M., Cardelli, L., Curien, P.-L., Lvy, J.-J., 1990. Explicit

substitutions. In: Conference Record of the Seventeenth Annual

ACM Symposium on Principles of Programming Languages.

ACM SIGACT and SIGPLAN, ACM Press, pp. 31–46.

[3] Abadi, M., Fournet, C., 2001. Mobile values, new names, and

secure communication. In: POPL ’01: Proceedings of the 28th

ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages. ACM, New York, NY, USA, pp. 104–115.

[4] Barendregt, H. P., 1984. The Lambda Calculus: Its Syntax and

Semantics, revised Edition. No. 103 in Studies in Logic and the

Foundations of Mathematics. North Holland, Amsterdam.

[5] Berry, G., Boudol, G., April 1992. The chemical abstract ma-

chine. Theoretical Computer Science 96 (1), 217–248.

[6] Boudol, G., May 1992. Asynchrony and the π-calculus (note).

RR 1702, Institut National de Recherche en Informatique et en

Automatique, Sofia-Antipolis, Rocquencourt.

[7] Ferrari, G. L., Montanari, U., Quaglia, P., 1994. A π-calculus

with explicit substitutions: the late semantics. Lecture Notes in

Computer Science 841, 342–351.

[8] Gardner, P., Wischik, L., 2000. Explicit fusions. In: Nielsen, M.,

Rovan, B. (Eds.), Mathematical Foundations of Computer Sci-

ence , 25th International Symposium, MFCS 2000 (Bratislava,

Slovakia). Vol. 1893 of LNCS. Springer, pp. 373–382.

[9] Hirschkoff, D., 1999. Handling substitutions explicitely in the π-
calculus. In: Proceedings of the Second International Workshop

on Explicit Substitutions.

[10] Honda, K., Tokoro, M., 1992. On asynchronous communication

semantics. In: M. Tokoro, O. Nierstrasz, P. W. (Ed.), Proceed-

ings of the Workshop on Object-Based Concurrent Comput-

ing (1991 European Conference for Object-Oriented Program-

ming). Vol. 612 of LNCS 612. Springer-Verlag, pp. 21–51.

[11] Stehr, M.-O., Sep. 2000. CINNI – A generic calculus of explicit

substitutions and its application to λ-, σ- and π-calculi. In: In-

ternational Workshop on Rewriting Logic and its Applications

(WRLA). Vol. 36 of Electronic Notes in Theoretical Computer

Science. Elsevier Science.

8

