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1 Introduction

If computer is going to become a new medium to think with and work, if we are
going to be able to interact and communicate in multiple modalities, an efficient
and intuitive means of supporting our use and interaction with computer must
be developed. We specially need ways of encoding mechanisms to support user
interactions, involved in an activity inherently temporal and dynamic, as web
navigation and search, eLearning activity, etc. Such mechanisms will allow
human and computational agents to parse, process and assist users in their
complex and dynamic activities.

However, if we want to design such a system capable of behaving intelli-
gently in some environment, then we need obviously to supply this system with
mechanisms to declare, evolve and improve the sufficient knowledge to observe,
interpret and reason about its observations of this environment. To do that, we
need an unambiguous language capable of expressing this knowledge, together
with some precise and well understood way of manipulating sets of observations
which allow us to draw inferences, answer queries, make interpretations and
update both the knowledge base and the desired system behaviour.

In this paper, the main contribution is to consider traces of user computer
interaction as system’s knowledge of user activities and experiences. As a
knowledge-based system (KBS) exploits an explicit representation of different
kinds of knowledge, we describe Trace-Based System (TBS) as a kind of KBS
whose main source of knowledge is the set of trace subsuming user-system in-
teractions and evolving with his/her activities. The remainder of the paper is
organized as follows. Section 2 presents the general architecture of our frame-
work describing the several services offered by TBS. Sections (5-6-7) present a
formal representation of the concept of modelled traces so called and the as-
sociated languages supporting reasoning about them and their interpretation.
Firstly, we focus on formalization of trace model and M-Trace in offline ex-
ploitation. Then, we specify with precise semantics and based on M-Traces, a
languages to describe patterns, queries, transformations. Section 3 extends this
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formalisation to the case of online exploitation by defining the notion of online
M-Traces and continuous transformations and queries. Section 9 describes the
implementation of our framework by defining a translation of our concept into
the logic-based language datalog. Section 10 we discuss our proposition and the
future works.

2 Trace-Based Systems Framework

Although it seems to have become common sense that traces are important
matters for observing user interaction, there is no shared understanding of what
a trace is. In this paper, we consider interaction traces as a sequence of observed
elements recorded from a user’s interaction and navigation through a specific
system. The term Sequence refers to an existing order relation representing a
history of the user’s interaction process during the observed activity. Observed
Elements indicate that the trace data result from an observation. Such elements
could represent an action, a message, a object, etc.

We assume that trace-based systems use an abstract architecture as shown
in Figure 1. At the top of the general architecture of a TBS is the tracing
system, which captures or collects the observed data from different input sources
(log files, streamed actions, video records, interface events, etc.). The tracing
system elaborates so called primary traces (often low level) from active or passive
tracing sources. Conceptually, observed elements are stored in two partitions:
working storage containing on-line traces captured from active tracing sources
and persistent storage for off-line traces collected from several passive tracing
sources or stored after the observation.

Figure 1: Trace-Based System Architecture

A Transformation System can perform operations on traces like applying
filters, rewriting and aggregating elements, computing elements attributes, etc.
so as to produce so called transformed modelled traces that can be more easily
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reusable and exploitable in a given context than primary traces. Transforma-
tions can also be considered as semantic abstractions when associated with mod-
els (ontologies) like task model. The Querying System enables the extraction of
episodes and patterns from the traces.

Users or systems may query, transform off-line or on-line traces. The work-
ing storage is persisted automatically on demand or periodically. Persistent
queries and transformations are registered in the transformation or querying
systems. Results of queries or transformations may be streamed to users or
another system or materialized in the TBS.

To define and implement such a system, we have defined languages to model,
query and transform M-Traces. Modelling, representing and processing trace
elements involve having a precise language with well-defined semantics. As
explicit semantic admits a wide variety of forms, we have formally defined the
concepts of trace and trace-model avoiding ambiguities in reasoning, computing,
resolving queries and transformations in off-line and on-line exploitations.

Thus, our approach towards common model and semantics uses a declarative
language with well-defined semantics for expressing modelled traces, queries
and transformations. Our formal framework is described in details in the next
section.

3 A Formal Framework of Trace-Based Systems

Let S be an ordered set, I(S) is the set of finite intervals on S. Let I be an
interval, inf(I) is the greatest lower bound of I, sup(I) is the lowest upper
bound of I.We assume that there exist a set V of literal values (sometimes
called concrete values), and a set D of datatypes. Each datatype d ∈ D has a
value-space Vd ⊆ V. An example of such sets are the ones defined by XML-
Schemas [25]. For convenience, we will not distinguish in this document between
the datatype and its value space, hence v ∈ d will mean that v ∈ V belongs to
the value-space of d ∈ D.

4 Representing time

Traces are about time-situated observations, hence they require a representation
of time. In this section we define the formal notions we need to represent time
in trace-based systems, and discuss how they are operationally used.

4.1 Formal representation

Different traces or trace models may have different representations of time.
However, they all share a common ground, namely, that time can be seen as
an order collection of discrete instants, such that every instant has a unique
successor.
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Definition 1 (Temporal Domain). A Temporal Domain T is a countable set
of instants. A bijective function succT : T → T associates to every instant its
successor, and defines a total order ≤T on T .

Inside a given temporal domain, a trace only describes a finite interval of
time in that domain. We call such an interval the temporal extension of the
trace.

Definition 2 (Temporal Extension). Given a temporal domain T , a Temporal
Extension ET is any element from I(T ).

4.2 Operational representation

In an operational Trace-Based System, we need to be able to identify different
temporal domains and temporal extensions, to address the different require-
ments of different applications. More precisely, we differentiate between ap-
plications only requiring an order between instants, and applications requiring
the notion of duration between instants. We call the first kind of temporal ex-
tensions Sequential Temporal Extensions, and the second kind Chronometrical
Temporal Extensions.

4.2.1 Sequential Temporal Extensions

This kind of temporal extension implies nothing more than what is defined
in definitions 1 and 2. However, for the sake of simplicity and without loss
of generality, we will assume that all sequential temporal extensions belong a
unique temporal domain named Tseq.

4.2.2 Chronometrical Temporal Domains

In order to account for the notion of duration in chronometrical temporal ex-
tensions in a domain T , we will assume that the duration between any instant
t ∈ T and its successor succT (t) is a constant amount of time, or unit. Hence,
the duration between two instants t and t′ can be computed by simply counting
the number of instants between t and t′, and that measure is consistent across
all temporal extensions from I(T ). More precisely, for every temporal unit u,
we define the temporal extension Tu.

Note that we impose no restriction on the notion of unit, hence allow for
different notions of time to cohabit under the notion of chronometrical temporal
domain. For example, Tday and Tmonth are not directly commensurable, because
all months do not have the same number of days, although it is possible to
measure durations in days or in months. It is also important to note that
comparing Tday and Thour is not easy either, because events located in the
former are nor measured precisely enough to be automatically located in the
latter.
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4.2.3 Chronometrical Temporal Extensions

Given a chronometrical temporal domain Tu, we can specify any temporal ex-
tension by a triple (o, b, e) where o ∈ Tu, b ∈ N and e ∈ N. It represents the
interval between the bth and the eth successors of o, or more formally the inter-
val [succbTu(o), succeTu(o)]. Every instant in that interval can be represented by
an integer i ∈ [b, e], representing the ith successor of o; i is called the index of
the corresponding instant.

Figure 2: Chronometrical Temporal Extensions Example

We did not define yet how one may represent the origin o of a chronometrical
temporal extension. They are actually three ways to do this:

• Self-defining chronometrical extension. An arbitrary name is given
to the origin, not allowing to compare it to any instant from another
extension (figure 2). Durations in that extension are still commensurable
with durations in other extensions from the same domain, but its instants
cannot be located relatively to those from that extension.

• Relative chronometrical extension. The arbitrary name from another
extension is given for the origin, indicating that this extension is reusing
a previously defined origin (figure 2). In all extensions using the same
origin, not only durations but also instant indices can be meaningfully
compared.

• Absolute chronometrical extension. The origin is specified according
to a given standard, like for example [29]. This allows us to compare
two origins. Hence, in all absolute extensions from the same domain,
durations and indices can be compared even if they do not have the same
origin (figure 2).
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5 M-Traces and M-Trace model

Before we define the notion of M-Trace (short for modelled trace), we need to
define the notion of a trace model.

Definition 3 (Trace Model). A Trace Model is defined as a tuple

MTr = (T , C,R,A,domR, rangeR,domA, rangeA)

consisting of

• a temporal domain T ,

• a finite set C of observed element types (or classes), with a partial order
≤C defined on it,

• a finite set R of relation types, disjoint from C, with a partial order ≤R
defined on it,

• a finite set A of attributes, disjoint from C and R,

• two functions domR : R → C and rangeR : R → C defining the domain
range of relation types,

• two functions domA : A → C and rangeA : A → D defining the domain
and range of attributes,

It must also hold for any two relations r1 and r2 that

r1 ≤R r2 ⇒ domR(r1) ≤C domR(r2) ∧ rangeR(r1) ≤C rangeR(r2)

Intuitively, a trace model defines a vocabulary for describing traces: how
time is represented (T ), how observed elements are categorized (C), what rela-
tions may exist between observed elements (R), what attributes further describe
each observed elements (A). The domain and range function constrain the kind
of relations and attributes that an observed element of a given type may have.
Partial orders ≤C and ≤R induce a type hierarchy for observed elements and
relations. The last constraint guarantees the consistency of domain and range
between a relation and its parents in the hierarchy. To exemplify our model
in the context of web navigation observation., we present in the sequel a trace
model instanciated by a key-logger that we have developed.

It is difficult to force a user to perform the actions required to create history
trace such as when and how he or she viewed a web page. So we developed a
tracking module that automatically saves detailed traces of the user’s interac-
tion. The automatic module monitors the event messages of an operation system
(OS) and it does not depend on specific applications. Specifically, it collects the
computer’s mouse, keyboard, copying, and printing event and window condi-
tions, etc. Figure 3 shows the entire trace model used by the tracking module1.

1The tracking has also an encryption function to protect the user’s privacy.
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Figure 3: An example of Trace Model

In the rest of this papier, for the sake to describe and demonstrate all possibil-
ities supported by our framework, we will use in some examples only a subsect
of this M-Trace model or models resulting from transformations starting from
traces conforming to this model.

Definition 4 (M-Trace). A M-Trace is a tuple

Tr = (MTr , ET , O, id, λC , λR, λA, λT )

consisting of

• a trace model MTr = (T , C,R,A,domR, rangeR,domA, rangeA),

• a temporal extension ET ,

• a finite set O of observed elements, disjoint from C, R and A

• an invertible total2 function id : O → V (i.e. id is bijective between O
and range(id)),

• a total function λC : O → C called element type labeling,

• a relation λR ⊆ O ×O ×R called relation type labeling,
2id(o) is defined on every o ∈ O
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• a partial3 function λA : O ×A→ V called attribute labeling,

• a total function λT : O → I(ET ) called time labeling.

Furthermore, a trace must be consistent to its model, i.e. verify the following
constraints:

• ET ∈ I(T )

• ∀(o1, o2, r) ∈ λR, λC(o1) ≤C domR(r) ∧ λC(o2) ≤C rangeR(r)

• ∀(o, a, v) ∈ λA, λC(o) ≤C domA(a) ∧ v ∈ rangeA(a)

As a convenient notation, we will sometimes use λR as a function such that
λR(o1, o2) = {r, (o1, o2, r) ∈ λR}.

Intuitively, an M-Trace represents, according to a trace model (MTr ), a
given period of observation (ET ). It contains a set of typed observed elements (O
and λC), each with a unique identifier (id), located in time (λT ), in relation with
each other (λR), and described by attribute values (λA). Each observed element
o has exactly one direct type (λC is a total function); note that the relation ≤C
induces a kind of type inheritance, so every type c ≥C λC(o) may be considered
an indirect type of o. There may be no, one or several relation(s) between two
given observed elements (λR can be any relation). Finally, attribute values are
never mandatory. The M-Trace is consistent with its model if its temporal
extension actually belongs to the model’s temporal domain, and if domain and
range constraints on relations and attributes are all satisfied. The figure 4 will
examplify a portion of an M-Trace having a sub-model of the M-Trace model
presented in precendent definition.

Figure 4: An example of simplified keylogger M-Trace

3λA(o, a) may be undefined for some (o, a) ∈ O ×A
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6 M-Trace Pattern and Query Language

In this section, we introduce the notions necessary to querying an M-Trace,
i.e. identifying in that M-Trace a set of observed elements satisfying a number
of criterions. Those critierions are expressed in a pattern.

In the following, we will assume that there is an infinite set ϑ of variable,
disjoint will all the sets introduced in M-Tracesand trace models.

6.1 Pattern Syntax and Query

Definition 5 (M-Trace Alphabet and Pattern). For a given trace Tr, we define
the pattern alphabet ΣTr as follow:

ΣTr = ϑ ∪ T ∪ C ∪ R ∪ A ∪ V ∪ O ∪ N ∪ K

where ϑ, T , C,R,A,V, O,N and K are pairwise disjoint; T , C,R,A and O are
the temporal domain, set of types, relations, attributes and observed elements
defined by the trace and its model; N is an infinite set of query names; and K
is the set of keywords, i.e. all the terminal symbols between double quotes in the
grammar below.

We define an M-Trace pattern on Tr as any word on ΣTr matching < P >
in the following grammar:

< P > ::= o “ : ” c | o r o | AE(< AT >) < Cp > AE(< AT >)

| < P > “, ” < P > | “(” < P > “)”

| < PX >

< AT > ::= v | o“.”a | t | o“.begin” | o“.end” | o“.id”

< Cp > ::= “ =
′′ | “ 6=′′ | “ <′′ | “ ≤′′ | “ ≥′′ | “ >′′

< PX > ::= < W > | < GP >

< PX > ::= < Q > | < W > | < GP >

< Q > ::= q “(” < params > “)”

< params > ::= o “, ” < params > | o
< W > ::= < P > “without” “{” < P > “}”
< GP > ::= < P > “or” < P > | < P > “opt” < P >

with o ∈ O ∪ ϑ, c ∈ C, r ∈ R, v ∈ V, a ∈ A, t ∈ T , x ∈ ϑ, q ∈ N

AE(< AT >) is a generic production rule for arithmetic expressions evalu-
ating to a value where terms match the production rule < AT >.

Note that we didn’t commit to explicitly define the syntax of arithmetic
expressions. It will depend on the actual set of datatypes used by applications.
We envision that implementations may authorize basic operators, but also stan-
dard functions on numbers (cos, sin...), strings (substring, regular expression
matching...) or instants (substraction for chrometrical temporal domains, con-
version from one domain to another...). It is not the purpose of this document
to exhaustively describe such epressions, but rather to focus on aspects that are
specific to M-Traces.
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Example 1. Let we consider theM-Trace Tr1 examplified in section 5. We can
express the following pattern
P1=((X: Application),(Y: Action),(X ref Y),(Y.Title="Save As"))
The result of evaluation of pattern P1 is obviously {X = O70, Y = O71}.

The next section will present the semantics of such pattern evaluation. Fore-
most, we need to describe some notions required to define the pattern semantics.
Let P be anM-Trace pattern. The set of bound variables, noted bϑ(P ), is the set
of all variables appearing only inside curly brackets (in production rule < W >).
The set of free variables, noted fϑ(P ), is the set of all variables appearing in P
that are not bound. If fϑ(P ) = ø, P is said to be grounded, else P is said to be
ungrounded.

The fact that a pattern is linked to a specificM-Trace and possibly contains
references to observed elements of that trace may seem strange since we intro-
duced patterns in order to represent queries, which should be usable on several
M-Traces. Indeed, the definition of a pattern above is more general that what
we need for describing queries, but we will require it in the following to define
the semantics of patterns and queries. The specific kind of patterns that will be
used in queries is defined below.

Definition 6 (Model Pattern). An M-Trace pattern is a model pattern if and
only if it contains no symbol from O, the set ot observed elements, and has at
least one free variable4.

It is important to note that a model pattern does not depend anymore on
a particular trace Tr, but only on its model MTr , since it is defined over the
vocabulary

ΣMTr = (ϑ ∪ C ∪ R ∪ A ∪ V ∪ N ∪ K)

We are now ready to define a query.

Definition 7 (M-Trace Query). A Query on anM-Trace-modelMTr is defined
as a tuple

Q = (n, ϑQ, PM)

where

• n is the name of the query,

• PM is a model pattern on MTr ,

• ϑQ ⊆ fϑ(PM) is an ordered set of distinguished variables of Q,

It is assumed that every query will have a distinct name n, so that this name
can be later used in pattern production rule < Q > to identify the query. It is
possible for the pattern of a query to reference the name of that same query.

Example 2. We can define an M-Trace Q1 using the pattern P1.
P1=((X: Application),(Y: Action),(X ref Y),(Y.Title="Save As"))
Q1 =(SavingActions, Y, P1)
The result of evaluation of query Q1 is {Y = O71}.

4A trivial pattern, such as (1 = 1) or (1 6= 1), is not a model pattern.
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6.2 Semantics

In this section, we will need to distinguish two kinds of patterns, based on the
production rules they use: basic patterns, and general patterns. Intuitively, a
query is basic if its pattern does not use the or and opt operators.

Definition 8 (Basic and General Pattern). A pattern P is basic if and only if
it does not use production rule < GP >. A pattern which is not basic is called
a general pattern.

We will first describe how the results of a query are represented. Then, we
will define the semantics of querying a basic pattern. Finally we will define the
semantics of querying a general pattern. Note that, since basic patterns may
embed general patterns, the two semantics will be recursively interdependent.

6.2.1 Substitution and result sets

To formally define pattern and query semantics, we need the notion of substi-
tution. We call a substitution function, or simply substitution, any function
(partial or total) ψ : ϑ → O, where O is the set of observed element of an
M-Trace. Substitutions will be useful to define the semantics of patterns. For
convenience, we will sometimes apply a substitution function directly to a pat-
tern P : ψ(P ) will then denote a copy of P where each symbol v ∈ fϑ(P ) has
been replaced by ψ(v) if defined.

Substitutions will also be useful to represent results of a query: indeed, a
substitution defines a mapping or affectation of a set of variables to a set of
observed elements. The domain of that function (i.e. the set of variables on
which it is defined) is noted dom(ψ).

The result of querying anM-Trace Tr with a pattern P is therefore a set of
substitutions of the form ψ : fϑ(P ) → O, and will be noted JP KTr . The formal
semantics of this notation will be described in the two following section, first
for basic patterns (definition 10), then for general patterns (definition 13).

The result of applying a query Q = (n, ϑQ, PM) to an M-Trace Tr is ob-
tained by restricting5 every result for PM to the set of distinguished variables
of Q. We will therefore use the following shortcut notation

JQKTr =̇{ψ|ϑQ | ψ ∈ JPMKTr}

6.2.2 Querying a basic pattern

We are now ready to define the semantics of a basic pattern, through the notion
of entailment.

Definition 9 (Basic Pattern Entailment). Considering an M-Trace pattern P
for a trace Tr = (MTr , ET , O, λC , λR, λA, λT ) and its modelMTr = (T , C,R,A,
domR, rangeR,domA, rangeA), we will say that the trace Tr entails P , noted
|=Tr P if and only if either:

5 The restriction of a function f : A→ B to a subset X of A is the function f|X : X → B
such that f|X(x) = f(x) for all x ∈ A.
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• P is ungrounded, and there exist a substitution ψ such that |=Tr ψ(P )

• P is grounded, and either

– P has the form o : c and λC(o) ≤C c

– P has the form o1 r o2 and ∃r′ ∈ λR(o1, o2) ∧ r′ ≤R r
– P has the form AE(< AT >) and the expression evaluates to True,

with the following semantics for terms:
∗ v itself for terms of the form (v) (literal values)
∗ λA(o, a) for terms of the form (o.a)
∗ inf(λT (o)) for terms of the form (o.begin)
∗ sup(λT (o)) for terms of the form (o.end)
∗ id(o) for terms of the form (o.id)

Should one of the terms be undefined (e.g. λA(o, a)), the expression
is assumed to evaluate to False.

– P has the form q(o1, ..., on) and there is a query Q = (q, ϑQ, P ′) such
that ϑQ = {v1, ..., vn} and ∃ψ ∈ JQKTr , ∀i ≤ n, ψ(vi) = oi

– P has the form P ′, P ′′ and |=Tr P
′ ∧ |=Tr P

′′

– P has the form P ′ without {P ′′} and |=Tr P
′ ∧ /|=Tr P

′′}
– P has the form (P ′) and |=Tr P

′

We are now ready to define the result set of querying a basic pattern.

Definition 10 (Result Set of Querying a Basic Pattern). Let P be a basic
pattern on M-Trace model MTr , Tr an M-Trace consistent with MTr and O
its set of observed elements. The result set of querying Tr with P is defined as
follow:

JP KTr = {ψ : fϑ(P )→ O | |=Tr ψ(P )}

Note that the results for a basic pattern will always match all of its free
variables. This will not be the case with general pattern.

6.2.3 Querying a general pattern

Unlike basic patterns, the semantics of querying a general pattern can not easily
be defined with the notion of entailment. To properly define it, we need to
extend the semantics of basic pattern querying by formalizing operations among
result sets (which contain substitution functions).

Definition 11 (Compatible Substitutions). Two substitutions ψ1 and ψ2 are
compatible if and only if they substitute the same values to their common vari-
ables, i.e. ∀x ∈ dom(ψ1) ∩ dom(ψ2), ψ1(x) = ψ2(x). We note comp(ψ1, ψ2).

Note that two substitutions with disjoint domains are always compatible,
and that the empty substitution (i.e. the substitution with empty domain) ψ∅ =
∅ is compatible with any other substitution. Note also that if ψ1 and ψ2 are
compatible, then ψ1 ∪ ψ2 is also a substitution.
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Definition 12 (Result Set Operators). Let ϕ1 and ϕ2 be two result sets. We
define the three operator inner join (noted on), compatible difference (noted 	)
and left outer join (noted o) as:

• ϕ1 on ϕ2 = {ψ1 ∪ ψ2 | ψ1 ∈ ϕ1 ∧ ψ2 ∈ ϕ2 ∧ comp(ψ1, ψ2)},

• ϕ1 	 ϕ2 = {ψ1 ∈ ϕ1 | ∀ψ2 ∈ ϕ2, ¬comp(ψ1, ψ2)}.

• ϕ1 o ϕ2 = (ϕ1 on ϕ2) ∪ (ϕ1 	 ϕ2)

Finally, we can now define the semantics of general pattern querying.

Definition 13 (Result Set of Querying a General Pattern). Let P be a general
pattern on M-Trace model MTr , Tr an M-Traceconsistent with MTr and O
its set of observed elements. The result set of querying Tr with P is defined as
follow:

• if P has the form of basic pattern, JP KTr as defined in definition 10;

• if P has the form P ′, P ′′, JP KTr = JP ′KTr on JP ′′KTr ;

• if P has the form P ′ without {P ′′}, JP KTr = JP ′KTr 	 JP ′′KTr ;

• if P has the form P ′ or P ′′, JP KTr = JP ′KTr ∪ JP ′′KTr ;

• if P has the form P ′ opt P ′′, JP KTr = JP ′KTr o JP ′′KTr ;

• if P has the form (P ′), JP KTr = JP ′KTr

Example 3. Take for instance the M-Trace examplified in figure 4 noted Tr1
and following general patterns
P2=((X: Action),(X concerns Y),(Y: File))
P3=((X.Title=’Open’),(Z ref X),(Z.Path=’firefox.exe’))
P4=((X: Action) without { (Y.Title=’Open’),(Y.end < X.begin) })
P5=(((X.Title=’Open’),(Z ref X)) OPT (Z.Path=’Explorer.exe’))
P6=(P2 OR P4)

Then, when viewing each solution set as a table with variables denoting
attribute names, we can write:

JP2KTr1=

X
O11

O24

O36

O59

O71

O85

on

X Y
O11 O17

O24 O26

O36 O37

O59 O63

O71 O72

on
Y

O37

O72

=
X Y

O36 O37

O71 O72

JP3KTr1=

X
O11

O24

O59

on

Z X
O5 O11

O21 O24

O33 O36

O56 O59

O70 O71

O81 O85

on
Z

O5

O56

=

X Z
O11 O5

O59 O56

O71 O70
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JP4KTr1=

X
O11

O24

O36

O59

O71

O85

	

Y X
O11 O24

O11 O59

O24 O59

=

X
O11

O36

O71

O85

JP5KTr1=

X Z
O11 O5

O24 O21

O59 O56

o
Z

O21

O81

=

X Z
O24 O21

O11 O5

O59 O56

(→ Resulting from on )
(→ Resulting from 	 )
(→ Resulting from 	 )

JP6KTr1=

X Y
O11 O17

O59 O63

∪

X
O11

O36

O71

O85

=

X Y
O11 O17

O59 O63

O36 -
O71 -
O85 -

It is interesting to note that the substitutions in the result set of querying
a general pattern, unlike those of a basic pattern, may not be total on the set
of free variables of P. Consider for example pattern (x : C1 or y : C2), where
the set of free variables is {x, y}. Its result set will contain substitutions defined
either on {x} or {y}, since it is constructed as the union of the result sets of
the sub-patterns. Now consider the pattern (x : C opt x R y), where the set of
free variables is {x, y}. Its results will be defined either on {x} (for those where
no match where found for the optional sub-pattern) or {x, y} (for those where
there was a match).

Such partial results correspond to the case, in other query languages, where
some variables are assigned a null values.

7 M-Trace Transformations

In this section, we introduce the concept of transformation. A transformation
defines a means to produce a newM-Trace from one or several others, or trans-
form the original set into a new one. Note that the original traces are not
actually modified. Applying a transformation τ to a sequence of traces (Tri )
associated to trace models Mi

Tr will produce a new transformed trace Trτ with
a target trace model Mτ

Tr , and will be noted:

(Tr1, ...,Trn)→τ Trτ
We will define three particular kinds of transformation, that are expected to

cover the main uses in trace based systems.

• an elementary transformation applies to a single sourceM-Trace. Such a
transformation is constrained by two trace models (source and target) and
any trace consistent with the source trace modelMTr may be transformed
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to a novel trace that will be consistent with the target trace model Mτ
Tr

(see definition 4 for description of M-Trace consistence).

• a composite transformation is a graph of elementary or fusion/concatenation
transformations, having an arbitrary number of sources and exactly one
pit.

– a fusion transformation applies to a set of M-Traces all consistent
with a unique trace model. It produces a transformed M-Trace
with the same model; its temporal extension is the smallest tem-
poral extension containing all the temporal extensions of the source
M-Traces; it contains a copy of all observed elements and relations
from the source traces.

– a concatenation transformation applies to a sequence ofM-Traces all
consistent with a unique trace model, and with a sequential temporal
extension. It produces a transformedM-Trace with the same model,
and containing a copy of all observed elements and relations from the
source traces.

In this paper, we focus our formalisation on elementary transformations.
However, we plan to extend our formalisation to composite transformation in a
future work taking into account the presented complexity evaluation of elemen-
tary transformation.

7.1 Elementary Transformation Rule Syntax

Informally, an elementary transformation must describe two parts to build the
new transformed M-Trace.

• a set of transformation rules to fill the new M-Trace. Informally, the
tranformation rules are specified by means of patterns and template where
pattern describes a set of observed elements which will be transformed and
used by template to construct the M-Trace.

• optionnaly one final rule to calculate the temporal extension (i.e. a com-
putation from the input-trace’s temporal extension). If such rule is not
defined then the trace temporal extension must be (min, max) of time of
created observed elements

We first define formally a transformation rule.

Definition 14 (Transformation Rule). LetMTr ,M′Tr be twoM-Trace models.
We define an M-Trace transformation rule from MTr to M′Tr as a tuple of the
form (PM, G), where

• PM is an model pattern on MTr ,

• G is an model pattern on M′Tr , named the template of the rule.
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The variables occuring in PM are called the pattern variables, while those oc-
curing only in G are called template variables. Furthermore, G must satisfy the
following constraints:

• production rule < PX > is not used.

• every variable w not appearing in P must at least appear in sub-patterns
of each following form:

– w : c with c ∈ C ′

– w.begin = AE(< AT >)

– w.end = AE(< AT >)

– w.id = AE(< AT >)

where the arithmetic expressions must only contain pattern variables.

7.2 Elementary Transformations Semantics

Intuitively, a transformation rule associates a template (i.e. how we construct)
to a specific model pattern (i.e. from what we construct). In fact, the pattern
part is used to extract from source trace the observed elements which will be
transformed, whereas the template part serves to produce a fragments of the
target trace. Thus, to define the semantics of transformation rule, we need to
define :

• the result set of pattern model (defined in 13),

• the result set of a template (i.e. how the template substitutes the result
set of model pattern),

• the trace fragment produced by a transformation rule from template re-
sults.

The template can be evaluated on the result set of pattern model where
all substitutions are defined (i.e. not null). The template can not be evalu-
ated if it references undefined variables in the result sets of pattern. To define
the semantic of template, we must specify the template substitution semantics.
Unlike pattern substitution which replace every variable by observed elements
according to definedM-Trace, template substitution must remove, in addition,
templates which references an undefined variables or attribute values.

Definition 15 (Template Substitution Semantics). Given a model pattern PM
associated to a template G defined over trace model M′Tr . We define the result
of applying a substitution ψ ∈ JPMKTr according to Tr, noted φψ(G) as a set of
ungrounded pattern obtained as follow:

1. replacing in each template every variable x ∈ dom(ψ) by ψ(w), and re-
moving every templates using irreplaceable variables not defined for ψ i.e.
/∈ dom(ψ);
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2. replacing in each remaining templates every expression of the form of
o.begin (respectively o.end) by inf(λT (o)) (respectively sup(λT (o));

3. replacing in each template every expression of the form of o.a where o ∈
range(ψ) by λA(o, a) if defined, and removing every template using im-
proper expression of the form o.a ( i.e. in which λA(o, a) is not defined);

4. removing all remaining templates implying a variable w for which the tem-
plate of the (w : c) has been remove.

Then, the substitution of a template G over PM applied on Tr, noted φPM(G)
is defined as follow:

φPM(G) =
⋃

ψ∈JPMKTr

φψ(G)

Definition 16 (Transformation Rule Semantics). Let Tr = (MTr , ET , O, λC , λR,
λA, λT ), Tr ′ = (M′Tr , E ′T , O′, λ′C , λ′R, λ′A, λ′T ) be two M-Traces. Let (PM, G) be
a transformation rule where PM is a pattern model expressed on a trace model
MTr and G is a template using M′Tr . Then, the result of applying transforma-
tion rule (PM, G) from MTr to M′Tr over an M-Trace Tr, noted JPM, GKTr ,
is defined as follow:

JPM, GKTr =
⋂

Tri where |=Tr ′ φPM(G)}

and ⋂
Tri

.= Tr,∀x ∈ πk(Tr)⇒ x =
⋂
πk(Tri ) for each2 ≤ k ≤ |Tr|

.

The evaluation of transformation rule may produces an infinity ofM-Traces:
all of them entail the substituted ungrouded patterns. Our interest is in one of
them, the M-Trace which represents exactly all observed elements, relations,
attributs and values subsuming the ungrounded patterns without additionnal
tuples. We can obtain such M-Trace by intersection of entailed M-Trace w.r.t
of all its components.

Now that the rule transformation semantics has been specified, we can define
an elementary transformation and its semantics.

Definition 17 (Elementary Transformation). A elementary transformation
from an M-Trace-model MTr to an M-Trace-model M′Tr is defined as a tu-
ple

τ = (n,SE ,Sτ )

where

• n is the name of the transformation,

• Sτ is a not empty set of transformation rule.
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• SE = (AEb,AEe) is a couple of arithmetic expression on Tr computing the
bounds of temporal extension. Note that the SE may be empty.

Definition 18 (Elementary Transformation Semantics). Let Tr = (MTr , ET ,
O, λC , λR, λA, λT ), Tr ′ = (M′Tr , E ′T , O′, λ′C , λ′R, λ′A, λ′T ) be two M-Traces. Let
τ = (n,SE ,Sτ ) be a elementary transformation. The M-Trace resulting from
evaluation of transformation τ according to M′Tr over Tr noted KτJTr=

⋃
Tr ′,

where :

• M′Tr =M′Tr

• πk(Tr ′) =
⋃

si∈Sτ
πk(JsiK) for each 3 ≤ k ≤ |Tr ′|

• if SE = ∅ then ET = [min(b),max(e)],∀(o, [b, e]) ∈ λT i.e. ET is the
smallest temporal extension referencing all observed elements. Else if
SE = (AEb,AEe) then ET = (α(AEb), α(AEe)) where α is a the classi-
cal semantics function applied for arithmetic expressions.

8 Queries and Transformations over an Online
M-Traces

The former formal model has fulfilled the needs of applications for complex
off-line queries and transformations such as user-interactions analysis and ex-
traction of users stored experiences. However, the requirements of most of ap-
plications do not fit the above description. One particularly interesting change
is thatM-Trace may be exploited in real time, taking the form of an unbounded
sequence of observed elements.

A defining characteristic of queries and transformations over on-line M-
Traces, is the potentially infinite and time-evolving nature of their inputs and
outputs. New observed elements continually arrive on the input M-Trace and
new results are continually produced.

In this section, we summarize the following characteristics for the online
M-Traces and their processing requirements:

• An Online M-Trace contains a potentially unbounded sequence of ob-
served elements traced by an application.

• Observed elements arrive continuously at the system, pushed by the active
tracing source. The Trace-based system neither has control over the order
in which observed elements arrive nor over their arrival rates. Online
observed elements rates and ordering could be unpredictable and vary
over time.

• A collecting service transmits every observed element only once. As ob-
served elements are accessed sequentially, an observed element that arrived
in the past can be retrieved unless it is explicitly not stored.
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• Queries and transformations over online M-Traces are expected to run
continuously and return new results as new observed elements arrive.

8.1 Online M-Trace

Informally, we defineM-Trace as an append-only sequence of elements (at least
timestamped and having an id) that arrive in some order. Since onlineM-Trace
elements may be tracked in bursts, observed elements may instead be modeled
as a sequence with no order among elements that have arrived at the same time.
We consider that each online observed item added toM-Trace must have all its
associated informations (timestamps and attribute values, identifier), that have
arrived during the same unit of time. As Important consequence, the added
observed element toM-Trace at time t cannot be updated by adding values for
its attributes in time t′ > t. The only exception is when an observed element
must be put in relation (one or plus) with others (one or plus) added before.

Definition 19 (Online M-Trace). An Online M-Trace is the tuple

Ts = (MTs , ÊT , O, λC , λR, λA, λT , λv)

consisting of:

• a trace modelMTr = (T , C,R,A,domR, rangeR,domA, rangeA) as defined
above (definition 3),

• a right-unbounded6 temporal extension ÊT ,

• a potentially unbounded set O of observed elements,

• the functions id, λC , λA and a relation λR as specified in definition 4

• a total function λT : O → I(ÊT ) called generating time labeling .

• A total function λv : ÊT → 2O called arrival time labeling. At each instant
t ∈ ÊT , λv returns a finite subset from the set O of observed elements.

As specified in definition 3, an online M-Trace must be consistent to its model.

Note that two ordering of observed elements can be identified:

• Observed elements are ordered explicitly by their starting timestamps.
This Order is provided by an application timestamp indicating their gen-
eration time (orders corresponding to ≤T ).

• However, observed elements can arrive at a TBS out of order ≤T . Thus,
the ordering of observed elements can also be defined implicitly by the
arrival time at the trace-based system (order defined by ≤v according to
λv).

6A time domain T is right-unbounded if it do not contains upper bound with respect to its
order relationship. Formally, time domain T is right-unbounded if @ t′ ∈ T such that t ≤ t′

for all t ∈ T .
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In this paper, we do not make distinction between these two orders and we
consider that ≤T ,≤v are order isomorphic7. If observed elements arrive at a
TBS out of order and uncoordinated with each other, e.g. due to latencies intro-
duced by a network, techniques from streaming research like the ones presented
in [28] can be applied. Then we materialize this fundamental assumption by
this constraint:

∀o, o′ ∈ O : o ≤v o′ ⇔ λv(o) ≤T λv(o′)⇔ inf(λT (o)) ≤T inf(λT (o′))

Note that the onlineM-Trace may be regarded asM-Trace evolving in time,
so its current contents are all observed elements accumulated so far.

Definition 20 (Current online M-Trace). Let Ts = (MTs , ÊT , O, λC , λR, λA,
λT , λv) be an online M-Trace. An online M-Trace at time instant t ∈ ÊT ,
noted Ts(t) is define as follow: Ts(t) = Ts with Ot = {o ∈ O | λv(o) ≤ t}.

Also, we can define the resulting no-online M-Trace Tr at any time instant
t ∈ ÊT as follow: Tr have a temporal extension ET bounded by t, with the same
elements O, λC , λR, λA and λT than Tst and without λv.

According to this definition, an evaluation of query Q at time t noted JQKtTs
must be equal to the result of a corresponding classical query evaluated on the
current states of the online M-Trace Ts(t) (equivalent to an M-Trace Tr).

We can define also the current observed elements of online M-Trace at any
distinct time instant t as a finite of observed elements with that specific arrival
timestamp value.

Definition 21 (Current Observed Elements of online M-Trace). Let Ts =
(MTs , ÊT , O, λC , λR, λA, λT , λv) be an online M-Trace. The current observed
elements of online M-Trace, noted TsO(t) = {o ∈ O | λv(o) = t}

8.2 Continuous Patterns and Queries over M-Traces

Continuous queries are similar to conventional off-line queries, except that they
are issued once and henceforth run continually over the onlineM-Trace. As ad-
ditions to theM-Trace result in new query matches, the new results are returned
to the user or application that issued the query. This section concentrates on
the semantics of continuous queries.

Intuitively, the results of a continuous query on an online M-Trace may be
considered as a union of the result sets returned from successive query evalu-
ations over the current online M-Trace at every distinct time instant. Based
on [33], we may formally define:

Definition 22 (Continuous Query over Online M-Trace). Let Q = (n, ϑQ,
PM) a continuous query submitted at time instant t0 ∈ T on online M-Trace
Ts. The results JQKtiTs that would be obtained at ti ∈ T are the union of the

7Two ordered sets (A,≤) and (B,≤) are order isomorphic iff there is a bijection f from A
to B such that for all a1,a2 in A, a1 ≤ a2 iff f(a1) ≤ f(a2).
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subsets JQKtTs of substitutions from a series of queries Q on successive online
M-Traces Ts(t):

∀ti ∈ T , ti ≥ t0, JQKtiTs =
⋃

t0≤t≤ti

JQKtTs

The problem with this evaluation method is that it may not be practically
feasible each time to compute query results by taking into account all online
traces due to the overwhelming bulk of data that keep accumulating continu-
ously.

That is, a solution suffices to re-evaluate the query over just the newly arrived
elements and append qualifying substitutions to the result. Consequently, the
answer of a query is a continuous append-only of results. Assuming that the
extension temporal domain have an unit u, we define the incremental evaluation
at time t ∈ Tu of continuous query Q over online M-Trace Ts as follow:

Definition 23 (Incremental Evaluation of Continuous Query over OnlineM-Trace).
Let Q = (n, ϑQ, PM) a continuous query submitted at time instant t0 ∈ Tu on
online M-Trace Ts. The incremental evaluation JQKtiTs that would be obtained
at ti ∈ Tu is defined as follow:

JQKtiTs =
ti⋃

t=t0+u

(JQKtTs − JQKt−uTs ) ∪ JQKt0Ts

This incremental evaluation is no better: If only intermediate stream con-
tents are considered in each evaluation, it may happen that newer results may
cancel observed elements (substitutions) included in formerly given answers.

A conservative approach is to accept queries with append-only results, thus
not allowing any deletions or modifications at answers already produced. This
class of continuous queries is called monotonic [33, 19]:

Definition 24 (Monotonic Continuous Query over Online M-Trace). A con-
tinuous query Q applied over online M-Trace Ts is characterized monotonic
when

∀ t1, t2 ∈ T , t1 ≤ t2,Ts(t1) v Ts(t2)⇒ JQKt1Ts ⊆ JQKt2Ts

where Ts1 v Ts2 means that Ts1 and Ts2 share the same trace model and ∀x ∈
πi(Ts1)⇒ x ∈ πi(Ts2) for each 2 ≤ i ≤ |Ts1|.

It is important to note that monotonicity refers to query results and not
to incoming observed items. As long as elements may only be added to, but
never discarded from results, incremental evaluation of basic queries involving
selections patterns may be carried out as simple filters without particular com-
plications. For example, querying a basic pattern8 are monotonic over an online
M-Trace.

8simple conjunction of selection predicates on timestamps, id, attributes or relations of
observed elements
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Proposition 1. Continuous querying of basic pattern over an online M-Trace
is monotonic.

To see this, note that when a new observed element arrives, it either satisfies
the basic pattern (Ts entails the grounded pattern P ) or it does not and the
satisfaction condition does not change over time. Consequently, the answer of
a basic query is a continuous, append-only of results.

[33] was the first that defined a semantics for continuous queries over an
append-only database. The semantics of monotonic queries was specified in
term of incremental evaluation. In fact, [33] describes the class of continuous
queries that can be rewritten and converted into incremental queries, i.e. can be
evaluated periodically. Due to the problem of blocking operators as difference,
the language is restricted to a subset of SQL. Law and al. identified in their
later work [19] that the class of queries expressible by nonblocking operators
corresponds to the class of monotonic queries.

Thus, in the context of general pattern, queries involving without-opt pattern
are not monotonic since they use the difference operator in results. Intuitevely,
querying genral pattern may produce results that cease to be valid as new
observed element are added (difference may cancel previously results). In fact,
it is well known that the negation is non-monotonic [19], even if issued over
an append-only M-Trace (e.g., ”match from a M-Trace of e-mail messages all
those messages that have not yet received a reply”).

It is obvious that continuous transformation of M-Traces must deals with
monotonic queries. Transforming non-monotonic queries over online M-Traces
are not possible if previously reported results can be removed if they cease to
satisfy the pattern. In this case, we need to remove also observed elements gen-
erated by transformation rules referencing this pattern. Under the assumption
of add-only observed elements in online M-Traces, we can not transform and
produce results that are valid at a given time and possibly invalidate them later.
An example is shown in Figure ??, where a observed elements O2 was appended
to the result because there did not exist any matching of (X concerne Y ) at
that time. However, the query results is empty after arrival of O3 and thus, the
transformation must delete a former generated element, violating the add-only
assumption.

To define continuous transformation in incremental way, we need to considere
only the case of monotonic pattern i.e. patterns .....

8.3 Continuous Transformations over M-Traces

Incremental evaluation of transformation in our framework depends of incre-
mental evaluation of its pattern. Let an elementary transformation τ = (n,Sτ )
where Sτ is a not empty set of transformation rule referencing continuous pat-
terns. Let us consider the evaluation of τ over online M-Trace Ts at time t as
evaluation ofM-Trace Tr = Ts(t) noted KτJtTs= Ts′(t) where for each generated
o in transformed online M-Trace, the time arrival9 λv(o) is order isomorphic

9assigned by TBS
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to starting time inf(λT (o)). Under assumption of an extension temporal do-
main having an unit u, we define the incremental evaluation at time t ∈ Tu of
continuous transformation τ over online M-Trace Ts as follow:

Definition 25 (Incremental Evaluation of Continuous Transformation over On-
line M-Trace). The incremental evaluation KτJtiTs at time ti ∈ Tu is defined as
follow:

KτJtiTs=
ti⋃

t=t0+u

(KτJtTs− KτJt−uTs ) ∪ KτJt0Ts

where Ts(t1)− Ts(t2) produce an online M-Trace with O = O(t1)−O(t2)

9 Implementation ofM-Trace Queries and Trans-
formations

We define a translation fromM-Trace Queries and Transformations to Datalog
which can serve straightforwardly to implement TBS core within existing rules
engines. This translation allows us also to study expressivity and complexity
of our language. We start by a brief description of datalog, then we define a
translation for the M-Trace patterns, which we will extend thereafter towards
transformation.

9.1 Datalog

The implementation of a M-Trace query and transformation is then defined
using a translation to corresponding datalog program. Our mapping function is
called m and defined in the following10. We use the following syntax for datalog:

• A datalog program is a set of normal clauses.

• A normal clause has the form L : −Li. L is called the head and Li the
body of the clause. L is an atom and Li is a conjunction of literals.

• ”,” in the body of a clause stands for conjunction. ¬ and ∨ are used for
negation and disjunction.

In this report we will use a very general form of Datalog commonly referred
to as Answer Set Programming (ASP), i.e. function-free logic programming
(LP) under the answer set semantics [11]. ASP is widely proposed as a useful
tool for various problem solving tasks in e.g. Knowledge Representation and
Deductive databases. ASP extends Datalog with useful features such as negation
as failure, disjunction in rule heads, etc.(For Datalog details see Appendix I).
In the following, we will assume that constants are quoted ’“’ conversely to
variables which are not. Thus, the constant v1 is denoted by ‘v1‘ and variable
x1 is denoted only by x1.

10We will use functional and relational syntax interchangeably where userful, i.e. for f(x) =
y we will write (x, y) ∈ f and analogous for the inverse: f−1(y) = x and (y, x) ∈ f−1
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9.2 Expressive Power of Languages

By the expressive power of a query language, we understand the set of all queries
expressible in that language [1]. In order to determine the expressive power of
a query language L, usually one chooses a well-studied query language L′ and
compares L and L′ in their expressive power. Two query languages have the
same expressive power if they express exactly the same set of queries.

A given query language is defined by a triple (Q,D,S, J.K), where Q is a set
of queries, D is a set of databases, S is a set of solutions, and J.K : Q×D→ S is
the evaluation function. The evaluation of a query Q ∈ Q on a database D ∈ D
is denoted JQKD.

Considering a language L = (Q,D,S, J.K), two queries Q1,Q2 of L are equiv-
alent, denoted Q1 ≡ Q2, if they return the same answer for all input databases,
i.e., JQ1KD = JQ2KD for every D ∈ D. Let L1, L2 be two fragments of L. We say
that L1 is contained in L2 , if and only if for every query Q1 in L1 there exists a
query Q2 in L2 such that Q1 ≡ Q2. To compare two query languages with dif-
ferent syntax and semantics require having a common data and language setting
to do the comparison. Let L1 = (Q1,D1,S1, J.K1) and L2 = (Q2,D2,S2, J.K2)be
two query languages. We now say that L1 is contained in L2 if and only if
there are bijective translations mD : D1 → D2 , and mS : S1 → S2 and query
translation mQ : Q1 → Q2, such that for all Q1 ∈ Q1 and D1 ∈ D1 it holds

mS(JQ1K1D) = JmQ(Q1)K2mD(D1)
.

9.3 From M-Trace Queries to Datalog

Informally, Datalog facts correspond to observed elements associated with thier
timestamps, relations and attribut values. Datalog rules correspond toM-Trace
patterns, goal queries correspond to query variable, and the set of substitutions
returned by a Datalog query corresponds to the set of substitutions returned by
a M-Trace query.

Note that because M-Trace Queries and Datalog programs have different
type of input and output formats, we have to normalize them to be able to do
the translation. The general idea of the translations is the following.

• A fact observed(‘Tr1‘, ‘o1‘) models an observed element o1 occuring in
the M-Trace named Tr1.

• A fact observedType(‘Tr1‘, ‘o1‘ , ‘c1‘) models an observed element o1 of
type c1 which occurs in the M-Trace named Tr1.

• A fact observedRelation(‘Tr1‘, ‘r1‘, ‘o1‘ , ‘o2‘) models a relation r1
between two observed elements o1, o2 which occurs in theM-Trace named
Tr1.

• A fact observedAttribute(‘Tr1‘, ‘o1‘ , ‘a1‘, ‘v1‘) models an observed
element o1 having an attribute a1 with the value v1 which occurs in theM-
Trace named Tr1. The same fact can will be used to define both observed
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element time attributes (.begin, .end and .arrival) and observed elements
.id attribute.

• The unary predicate null encodes the ‘null‘ value.

With respect to solutions, note that naturally sets of substitutions in M-
Trace queries correspond bijectively to sets of substitutions in Datalog.

Let LTr = (QTr ,DTr ,STr , J.KTr ) and Ld = (Qd,Dd,Sd, ansd) be theM-Trace
language and the Datalog language respectively. To map LTr to Ld, we define
translations mQ : QTr → Qd, mD : DTr → Dd , and mS : STr → Sd. That is,
mQ translates aM-Trace query into a Datalog query, mD translates aM-Trace
dataset into a set of Datalog facts, and mS translates a set ofM-Trace solution
mappings into a set of Datalog substitutions.

However, we can distinguish two approaches of converting ontology-like mod-
els into logic programs: the direct mapping approach described in [15] and meta
mapping approach [35]. The former have some significant scalability deficits as
well as representational drawbacks (see [35] for more details). Therefore, we
have chosen a meta mapping approach for the main reason that this translation
is especially suitable for storing and processing a largeM-Traces within logical
databases. The following part presents algorithms defining our mapping.

9.3.1 M-Trace as Datalog Knowledge Base

Let Tr be an M-Trace associated to model MTr . We denote by mMTr (MTr )
the function which translates a trace modelMTr into a set of Datalog facts and
rules. The function mMTr is defined by the following algorithm:
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Algorithm 1: Translation function definition mMTr fromMTr to Datalog
Input : an trace model MTr identified by ′M′Tr
Output: a set of Datalog facts F and rules R

begin
F ← ∅
R← ∅
Add the Datalog fact null(‘null‘)
foreach c ∈ C in MTr do

Add the fact type(‘MTr ‘,′ c‘) to F

foreach r ∈ R in MTr do
Add the fact relationType(‘MTr ‘, ‘r‘, ‘ci‘, ‘cj ‘)

foreach (ci, cj) ∈ ≤C in MTr do
Add the fact subType(‘MTr ‘, ‘ci‘, ‘cj ‘) to F

foreach (ri, rj) ∈ ≤R in MTr do
Add the fact subRelationType(‘MTr ‘, ‘ri‘, ‘rj ‘) to F

foreach (ri, ci) ∈ domR in MTr do
Add the fact domain(‘MTr ‘, ‘ri‘, ‘ci‘) to F

foreach (ri, ci) ∈ rangeR in MTr do
Add the fact range(‘MTr ‘, ‘ri‘, ‘ci‘) to F

foreach (ai, ci) ∈ domA in MTr do
Add the fact domain(‘MTr ‘, ‘ai‘, ‘ci‘) to F

foreach (ai, di) ∈ rangeA in MTr do
Add the fact range(‘MTr ‘, ‘ai‘, ‘di‘) to F

if T is Tseq then
Add the fact temporalDomain(‘MTr ‘, ‘sequential‘) to F

if T is Tunit then
Add the fact temporalDomain(‘MTr ‘, ‘unit‘) to F

Add the following rules to R
(1) subType(MTr , c, c

′) :- subType(MTr , c, c
′′) , subType(MTr , c

′′, c′)
(2) subRelationType(MTr , r, r

′) :- subRelationType(MTr , r, r
′′) ,

subRelationType(MTr , r
′′, r′)

end
return F,R

Basically, The algorithm 1 convert the trace model from M-Trace into a
set of facts reflecting the content of the ontology describing the M-Trace. In
order to reflect the underlying semantic of the introduced trace model, we will
have to add some rules, which work on the given facts. As the rule can be used
with any combination of bound and free variables, every kind of type-instance
query is possible. Additionally the transitivity of the subrelation and subtype
relationship is covered by the rules (1,2).

The following algorithm 2 gives the complete definition of the required rules
and facts to translate an M-Trace.
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Algorithm 2: Translation function mD from M-Trace to Datalog
Input : an M-Trace Tr (or Ts) identified by ′Tr ′ (or ′Ts′)
Output: a set of Datalog facts F and rules R

begin
(F,R) = mMTr (MTr )

foreach (oi, idi) ∈ id in Tr do
Add the fact observedAttribute(‘Tr‘, ‘oi‘, ‘idi‘) to F

foreach (oi, ci) ∈ λC in Tr do
Add the fact observedType(‘Tr‘, ‘oi‘, ‘ci‘) to F

foreach (oi, oj , ri) ∈ λR in Tr do
Add the fact observedRelation(‘Tr‘, ‘ri‘, ‘oi‘, ‘oj ‘) to F

foreach (oi, aj , vi) ∈ λA in Tr do
Add the fact observedAttribute(‘Tr‘, ‘oi‘, ‘ai‘, ‘vi‘) to F

foreach (oi, [bi, ei]) ∈ λT in Tr do
Add the fact observedAttribute(‘Tr‘, ‘oi‘, ‘begin‘, ‘bi‘) to F Add the fact
observedAttribute(‘Tr‘, ‘oi‘, ‘end‘, ‘ei‘) to F

if the input is an off-line M-Trace Tr then
Add the fact temporalExtension(‘Tr‘, inf(ET ), sup(ET ) to F

if the input is an on-line M-Trace Ts then
Add the fact temporalExtension(‘Ts‘, inf(ET ),null) to F
foreach (oi, vi) ∈ λT in Ts do

Add the fact observedAttribute(‘Ts‘, ‘oi‘,′ arrival′, ‘vi‘) to F

Add the following rules to R
(1) observedType(Tr, o, c) :-observedType(Tr, o, c′) , subType(MTr , c

′, c)
(2) observedRelation(Tr, r, o, o′) :- observedRelation(Tr, r′, o, o′) ,

subRelationType(MTr , r
′, r)

(3) observed(Tr, o) :- observedType(Tr, o, c)
(5) observed(Tr, o) :- observedAttribute(Tr, o, a, v)
(6) observed(Tr, o),observed(Tr, o′) :- observedRelation(Tr, r, o, o′)

return F,R
end

The specified rule (1) defines that if an obseved o is instance of type c′ and
c′ is subtype of type c, o is also an instance of type c. As you can see the above
rules are completely independent of any entities defined in the M-Trace and
can thus be used for everyM-Trace. With the combination of theMTr specific
facts and the general rule we can now perform all M-Trace queries.

9.3.2 M-Trace patterns as Datalog rules

Let P be a M-Trace pattern to be evaluated against an M-Trace Tr. We de-
note by mP (P,Tr) the function which translates the M-Trace pattern P into a
set of Datalog facts. The complete rules work as follows. We denote by ϑ(P ),
a tuple of variables obtained from a lexicographical ordering of the variables in
the M-Trace pattern P . Then, the function mp(P,Tr) is defined recursively in
algorithm 3. A predicate comp implements the notion of compatible substitu-
tions: comp(o, o) :- observed(Tr, o); comp(o, ‘null‘) :- observed(Tr, o) and comp(‘null‘, o)

:- observed(Tr, o).
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Algorithm 3: M-Trace pattern translation function mP

Input : an M-Trace Tr pattern P
Output: a set of Datalog rules

begin
if P is (X : Ci) then

mP (P,Tr, i) = {substitutioni(‘Tr‘, ϑ(P )) :- observedType(‘Tr‘, X, ‘Ci‘)}
if P is (X ri Y ) then

mP (P,Tr, i) = {substitutioni(‘Tr‘, ϑ(P )) :-
observedRelation(‘Tr‘, ‘ri‘, X, Y )}

if P is X.ai ♦ Y.ai) then

mP (P,Tr, i) = {substitutioni(‘Tr‘, ϑ(P )) :-
observedAttribute(‘Tr‘, X, ‘ai‘, Z1),

observedAttribute(‘Tr‘, Y, ‘ai‘, Z2),
Z1 ♦ Z2 }

where ai can be a defined attribute or begin, end or id attribute;
and ♦ ∈ {=, 6=, <,≤,≥, >}

if P is (X.ai ♦ v) then

mP (P,Tr, i) = {substitutioni(‘Tr‘, ϑ(P )) :-
observedAttribute(‘Tr‘, X, ‘ ∗ ‘, Z),

Z ♦ v}
where ai can be a defined attribute or begin, end or id attribute;
and ♦ ∈ {=, 6=, <,≤,≥, >}

if P is q(x1, ..., xn)) then
mP (P,Tr, i)= mQ(q, i+ 1) ∪ {substitutioni(x1, ..., xn) :- q(x1, ..., xn)}
where mQ is M-Trace query translation (see algorithm 4)

if P is (P ′ , P ′′) then
mP (P,Tr, i)= mP (P ′,Tr, 2 ∗ i) ∪ mP (P ′′,Tr, 2 ∗ i+ 1) ∪
{substitutioni(‘Tr‘, ϑ(P )) :- substitution2∗i(‘Tr‘, ν1(ϑ(P ′))),

substitution2∗i+1(‘Tr‘, ν2(ϑ(P ′′))),
comp(ν1(x1), ν2(x1)),...,comp(ν1(xn), ν2(xn))}

where xi(i=1..n) ∈ ϑ(P ′) ∩ ϑ(P ′′)
and νi : ϑ→ ϑ a variable-renaming function

if P is (P ′ or P ′′) then
mP (P,Tr, i)= mP (P ′,Tr, 2 ∗ i) ∪ mP (P ′′,Tr, 2 ∗ i+ 1) ∪

{substitutioni(‘Tr‘, ϑ(P )) :- substitution2∗i(‘Tr‘, ϑ(P ′)),
null(x′′1 ),null(x′′2 ),...,null(x′′n)} ∪

{substitutioni(‘Tr‘, ϑ(P )) :- substitution2∗i+1(‘Tr‘, ϑ(P ′′)),
null(x′1),null(x′2),...,null(x′n)}

where x′
i(i=1..n)

∈ ϑ(P ) \ ϑ(P ′′)

and x′′
i(i=1..n)

∈ ϑ(P ) \ ϑ(P ′)

if P is (P ′ without P ′′) then
mP (P,Tr, i)= mP (P ′,Tr, 2 ∗ i) ∪ mP (P ′′,Tr, 2 ∗ i+ 1) ∪
{substitutioni(‘Tr‘, ϑ(P )) :- substitution2∗i(‘Tr‘, ϑ(P ′)),

not comp(x′1, x
′′
1 ), not comp(x′1, x

′′
2 ),..., not comp(x′1, x

′′
m)

not comp(x′2, x
′′
1 ),not comp(x′2, x

′′
2 ),..., not comp(x′2, x

′′
m)

...
not comp(x′n, x

′′
1 ),not comp(x′n, x

′′
2 ),..., not comp(x′n, x

′′
m)}

where x′
i(i=1..n)

∈ ϑ(P ′)

and x′′
j(i=1..m)

∈ ϑ(P ′′)

if P is (P ′ opt P ′′) then
mP (P,Tr, i)= mP ((P ′, P ′′),Tr, i) ∪ mP ((P ′ without P ′′),Tr, i)

end
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To define a translation for M-Trace pattern results joins involving null
values, we define νi a variable-renaming function. Obviously, since we allow
null-bindings to join with any other value, M-Trace pattern results joining
semantics is tricky to achieve. For that, we have define νi : ϑ → ϑ a variable-
renaming function, with νi satisfies that dom(ν1) = dom(ν2) = ϑ(P ′) ∩ ϑ(P ′′)
and range(ν1) ∩ range(ν2) = ∅. Our idea is to rename each variable vi ∈
ϑ(P ′) ∩ ϑ(P ′′) in the respective rule bodies to v′i or v′′i , respectively, in order to
disambiguate the occurrences originally from sub-pattern P ′ or P ′′, respectively.

9.3.3 M-Trace queries as Datalog queries

Let QTr = (nQ, ϑQ, PM) be a query and Tr ∈ DTr an M-Trace. The function
mQ(QTr , i) returns the Datalog query Qd = (Π, nQ(ϑ(Q)) where ϑ(Q) is a tuple
of variables obtained from a lexicographically ordering of the variables in ϑQ,
nQ a predicat having the same name of query and Π is the Datalog program
defined as follow:

Algorithm 4: M-Trace query translation function mQ
Input : an M-Trace Tr identified by ‘Tr‘, a query QTr named nQ and an indice i
Output: a Datalog program Π

begin
Π← ∅
if i is not defined then

Π← {nQ(‘Tr‘, ϑ(Q)) :- substitution1(‘Tr‘, ϑ(Q))} ∪mP (PM,Tr, 1)
This is the case of classic query evaluation

else

Π← {nQ(‘Tr‘, ϑ(Q)) :- substitutioni(‘Tr‘, ϑ(Q))} ∪mP (PM,Tr, i)
This is the case of nested query evaluation embeded in pattern q(xi)

end
return Π

The first rule serves to evaluate a query onM-Trace. The second rule allows
the add rules in the context of pattern involving a call of query. Naturally, the
resulting programs possibly involve recursion, and, even worse, recursion over
negation as failure. Fortunately, the general answer set semantics, which we
use, can cope with this. A more in-depth investigation of the complexity and
other semantic features of such a combination is on our agenda.

9.3.4 M-Trace queries solutions as Datalog solutions

We obtained by translating an M-Trace QTr a datalog query mQ = Qd =
(Π, nQ(ϑ(Q)). The evaluation of Qd denoted ansd(Q) = {θ | θ(L) ∈ facts∗(Π)}.
Given a set of substitutions Θ, the set of mappings obtained from Θ, denoted
mS(Θ), is defined as follows: for each substitution θ ∈ Θ there exists a mapping
ψ ∈ mS(Θ) satisfying that, if x/t ∈ θ then x ∈ dom(ψ) and ψ(x) = t11.

11Due to the similarity of the objects and to avoid complicating the notation, we will not
distinguish between substitutions and mappings. That is, will consider mS as the identity.
Formally, given a result set ϕ, the set of substitutions obtained from ϕ, denoted mS(ϕ), is
defined as follows: for each substitution ψ ∈ ϕ there exists a substitution θ ∈ mS(ϕ) satisfying
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9.4 From M-Trace Transformations to Datalog

We have covered only M-Trace queries so far. The transformation of pattern
result form, which allows to construct new observed elements could be emulated
in Datalog as well. Namely, we can allow transformations of the form τ = (n,Sτ )
where Sτ is a set of transformation rule (PM, G) consisting of model patterns
PM and template G. We can model such transformations by adding the datalog
rules defined by algorithm 5.

Algorithm 5: M-Trace Transformations translation function mτ

Input : M-Traces Tr,Tr ′ identified by ‘Tr‘, ‘Tr ′‘, a transformations τ = (n,Sτ )
Output: a Datalog program Π

begin
Π← ∅
add Tr to Π using mD
add M′Tr to Π using mMTr

foreach (PM, G) ∈ Sτ do
Π← Π ∪mP (PM)
foreach gi ∈ G do

if gi is (w : c) then
Add to Π the rule
observedType(‘Tr ′‘, w, ‘c‘) :- substitution1(‘Tr ′‘, w)

if gi is (w r w′) then
Add to Π the rule
observedRelation(‘Tr ′‘, r, w,w′) :- substitution1(‘Tr ′‘, w, w′)

if gi is (w.a = v) then
Add to Π the rule
observedAttribute(‘Tr ′‘, w, ‘a‘, ‘v‘) :- substitution1(‘Tr ′‘, w)

end
return Π

The result M-Trace is then naturally represented in the answer set of the
program extended that way in the extension of the predicate observed(‘Tr ′‘, x).

10 Related Work

In this section we provide a general discussion of past work that relates in some
way to our work.

Even if the notion of trace plays an important role in many of applica-
tions and research fields (e.g. user modeling Acquisition [26, 17, 30], web-based
logs and click streams [16, 9, 5]), to the best of our knowledge, there is neither
explicit theorisation of this notion as a specific object having interesting proper-
ties nor generic view of what is a trace. Usually, most of techniques performed
over traces in these contexts aim to exploit machine learning and statistical
tools for mining and extracting the relevant knowledge (e.g. Web Usage Mining
[22, 4, 23, 24, 20]). Even if these techniques deal efficiently with the need to
process traces consistent with simple models, extending them towards ontologies

that, for each x ∈ dom(ψ) there exists x/t ∈ θ such that t = ψ(x) when ψ(x) is bounded and
t = null otherwise.
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involving hierarchies is often non-trivial. Besides, storing and querying trace-like
sources often relies on relational database than ontological repositories. Thus,
the exploitation and processing of traces draws its formal bases on theories
related to well-studied database model and its extensions([1, 32, 27, 10, 21]).
However, exploiting the relational algebra or a temporal algebra overM-Traces
is non-trivial for a number of reasons, including the following. M-Traces in-
volve ontologies: It is not apparent how the stored and instantiated ontology
can be issued and transformed by SQL-like languages. Although, we can use a
real ontology-querying language like SPARQL [8, 6], but still to define what is
the semantics of such language in the case of online M-Traces and continuous
queries and transformations. Query and transformation formulation only makes
sense if the semantics is precisely defined. To guarantee predictable and repeat-
able query and transformation results, continuous query and transformation
semantics should be defined independent of how the system operates internally.

In fact, the fundamental differences between queries over online and offline
data is not novel and has been widely identified by Stream Management com-
munity12. The defined stream algebra is often reducible to its relational ana-
logue [18]. This important property ensures semantic compliance and allows
systems to carry over the algebraic equivalences from the extended relational
algebra to stream algebra. Despite similarities and bridges between algebra and
languages, one-time and continuous queries rely often on different semantics.
As we are motivated by queryingM-Traces both in online and offline situation
under the same semantics, most of stream languages seem to be tricky to extend
specially under ontological model.

In addition, even if querying paradigm for streaming data distinguish several
declarative languages having SQL-like syntax and stream-specific semantics,
as CQL [2], a few of them employ a model supporting type-hierarchies (see
Tribeca [31] and COUGAR [36]). Beyond this, in most of stream algebra, it
is not evident how several and heterogeneous notion of time involved in M-
Traces are supported. For instance, it is not apparent how timestamps are
assigned to the operator results. Assume we want to compute a join over two
M-Trace patterns whose elements are integer-timestamp pairs. Is a join result
tagged with the minimum or maximum timestamp of the qualifying elements,
or both? What happens in the case of cascading joins? While some approaches
in stream management prefer to choose a single timestamp, e.g.,[12], others
suggest keeping all timestamps to preserve the full information [14, 18]. To the
best of our knowledge, currently there is no exists stream framework dealing
with heterogeneous time and temporal domain descriptions.

Beyond this, the last relevant reason differentiating M-Traces from stream
is the transformation operator. If stream operator allows to transform an input
stream S1 to an output S2, this transformation keeps the same schema for
S1 and S2 (S2 ⊆ S1). Thus, a transformation in this case is the result of
patterns expressed in query and matched in the input. In our framework, the

12The assumption in this field is that a Database Management System (DBMS) handles
transient queries over persistent data, whereas a Data Stream Management System (DSMS)
processes persistent queries over transient data [13].
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transformations are not the result of query, but they operates on query results
by using rules allowing to express a complicated processing. Since the inputM-
Trace and output are modeled with different ontologies, such transformations
are difficult to express in most of stream management system.

In sum, transforming and querying M-Traces relies and combines several
theoretical model. To deal with aimed properties underlying trace exploitations,
we define a common semantics incorporating inherently the several notion of
time specific to M-Traces. Such framework allows a user or artificial agent to
exploit the maded traces during or afterwards observation of his/her activity
within unified framework. However, as it seems to be a good idea to formalize
the notion of M-Trace with the associated languages in common framework,
we will have to face to several choices and problems that we discuss in the next
section.

11 Discussion and Open Issues

Unlike traditional one-time queries, continuous queries produce output over
time. Due to fact that queries are long-running and online M-Trace can be
unbounded, a no-incremental evaluation methods are not suitable for M-Trace
processing. However, incremental evaluation involves monotonic queries which
can be re-executed over a part of trace newly observed and increment without
delete the last evaluation.

Thus, dealing with non-monotonic queries goes against the incremental eval-
uation approach. In fact, the problem of the non-monotonic queries has long
been recognized by data stream researchers, who have proposed the use of de-
vices such as punctuation [34] and windows [3] to address this problem. While
these approaches deal effectively with important aspects of the problem, they do
not solve the problem of identifying when query using non-monotonic operators
is monotonic. Indeed, one interesting approach is to allow the user or appli-
cation to use non-monotonic constructs (as negation) but exclusively to write
monotonic queries. Obviously, such approach avoids the loss of expressive power
of queries and transformation in the case of onlineM-Trace. Unfortunately, this
approach is practically attractive only if the compiler/optimizer is capable of
recognizing monotonic queries, and thus warning the user when a certain query
is non-monotonic and thus can not be used in a continuous transformation.
Unfortunately, deciding whether a query is monotonic can be computationally
intractable, because depending not only on query but also on M-Trace data,
which can be obvious to the user but not the optimizer.

A better approach is to introduce new monotonic operators to extend the
power of the query language. In this sense, we have use in our framework
the recursion constructs < Q > allowing to pattern to use and call a query.
This recursive construct is monotonic if the called query uses only monotonic
operator (all operator except {or, opt, without}) and its extends the power of
our language to enable the expression of large class of queries. However, it is not
clear whether our language with recursion are capable of expressing the class
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of all monotonic queries. Although in the practice, most of queries which are
monotonic can be easily expressed with recursion, we do not have yet a general
answer for this interesting theoretical question. We will leave this question for
later investigations, since it is not of urgent practical importance, given that, our
experience in several projects shows that complex and non monotonic queries
are often exploited over offline M-Traces (by an analyst), and non-monotonic
queries have not proven very useful for online transformations (to a programmer
or the tracked user himself). In this paper, we follow a very practical approach
allowing expressive queries for offline M-Traces and less expressive queries for
online ones (due to need to more fast and efficient online processing). This
approach allows to our M-Trace-based languages to deliver much higher levels
of expressive power, not only in theory, but also in practice, as demonstrated in
many applications implemented based on our framework.

So, there are many others questions left unanswered. The most interesting of
them is when considering the semantics of a query and transformation languages
over infinite M-Traces. Indeed, querying M-Traces may be developed with
some assumptions:

1. We can assume that the current M-Trace contains complete information
about the observation and define semantics of queries with respect to the
current (finite) M-Trace. This approach corresponds to the closed-world
assumption (WCA) semantics for queries.

2. Alternatively, we can treat the currentM-Trace as a finite prefix of infinite
M-Trace. In this setting the semantics of queries is defined with respect
to infinite extensions (completions) of the currentM-Trace and is similar
to the open-world assumption13 (OWA).

In this paper we have restricted our attention to the closed-world assump-
tion semantics only. This restriction postulates that, for the purpose of query
answering, the only data values and time instants that exist are those present in
the M-Trace. All the quering and transforming techniques are developed with
this restriction in mind. However, to bring more closer our framework to the
real semantics associated with ontologies, we should discuss the implication of
relaxing the WCA restriction.

Foremost, infinite M-Traces notion is different from online and off-line M-
Trace ones. InfiniteM-Trace can be online or off-line, i.e. having only informa-
tion to be completed (during evaluation) about observed elements and attributes
(offline case) and such incomplete information may be evolves over time (online
case). So far, we only focused on finite M-Traces in both case. However, the
alternative to this approach is that finite M-Traces can be considered to be
finite parcel among an infinityM-Traces. Queries and transformations are then
evaluated with respect to the infinite M-Traces, by using the same semantics

13The open-world assumption, howerver, is assumed only for the following M-Tracessets
extensions: observed elements, relations, attributes); the observed element that describe ob-
servations in the current M-Trace are still considered to contain complete information about
those observations (i.e. define at least its timestamps values.
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defined in section 6.2. The sole difference is that an infinite observed elements
with an infinite attributes are allowed. However, as only finite portion of the
M-Trace is available at a particular (finite) point of time, we need to define an-
swers to queries with respect to possible completions of the prefix to a infinite
M-Trace.

Let Tr be a finiteM-Trace, QTr = (n, ϑQ, PM) a query and ψ a substitution.
We say that

• ψ is a potential answer for QTr with respect to Tr if there is an infinite
completion Tri of Tr such that |=Tri ψ(PM).

• ψ is a certain answer for QTr with respect to Tr if for all infinite comple-
tions Tri of Tr we have |=Tri ψ(PM).

12 Conclusion

This paper provides a general and formal framework to exploit traces modeled
by ontology-like model describing an observation of users interacting with com-
puters. We have present a general architecture abstracting the notion of Trace-
Based Systems as KBS reasoning about such traces. Firstly, we have began to
formalise the notion of M-Trace in the context of offline exploitation. Then,
we have specified languages to query and transform such M-Traces through
patterns and template rules. The semantics described forM-Traces and associ-
ated languages has been extended to online exploitation by defining the notion
of online M-Trace and continuous queries and transformations. Finally, we
have describe an implementation of our languages by defining a translation into
a deductive database and the rule language datalog for a robust and efficient
framework realisation.
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13 APPENDIX I: Datalog

To make the report self-contained, we will briefly review notions of Datalog.
The reader can consult [7] for further details and proofs.

13.1 Syntax of Datalog

• A term is either a variable or a constant.

• A predicate formula is an expression p(xi, ..., xn) where p is a predicate
name and each xi is a variable14.

• An equality formula is an expression t1 = t2 where t1 and t2 are terms.

• An atom is either a predicate or an equality formula.

• A literal is either an atom (a positive literal L) or the negation of an atom
(a negative literal ¬L).

• A rule is an expression of the form

L : −L1, ..., Ln

where L is a predicate formula called the head of the rule and the sequence
of literals L1, ..., Ln is called the body of the clause. Note that may assume
that all heads of rules have only variables by adding the respective equality
formula to its body.

• A Datalog program is a finite set of Datalog rules.

• Let Π be a Datalog program. A rule having no variables is called a ground
rule. A ground rule with empty body is called a fact.

• The set of facts occurring in Π, denoted facts(Π).

• A predicate is extensional if it occurs only in facts; otherwise it is called
intensional.

• A variable X occurs positively in a rule r if and only if X occurs in a
positive literal L in the body of r such that:

1. L is a predicate formula;

2. if L is X = c then c is a constant;

3. if L is X = Y or Y = X then Y is a variable occurring positively in
r.

14This is our assumption in this report that a predicate formula only contains variables, but
in general case it is also possible to have constants.
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A Datalog rule r is said to be safe if all the variables occurring in the literals of
r (including the head of r) occur positively in r. A Datalog program Π is safe
if all the rules of Π are safe. The dependency graph of a Datalog program Π is
a digraph (N, E) where the set of nodes N is the set of predicates that occur in
the literals of Π, and there is an arc (p1, p2) in E if there is a rule in Π whose
body contains predicate p1 and whose head contains predicate p2.

A Datalog program is said to be recursive if its dependency graph is cyclic,
otherwise it is said to be non-recursive. A Datalog query is a pair (Π, L) where
Π is a Datalog program and L is a predicate formula p(x1, ..., xn) called the goal
literal.

13.2 Semantics of Datalog

A substitution θ is a set of assignments {x1/t1, ..., xn/tn} where each Xi is a
variable and each ti is a term. Considering a rule r, we denote by θ(r) the rule
resulting from applying the substitution θ to the literals in r, i.e., the result of
substituting the variable Xi for the term ti in each literal of r. A substitution
is ground if every term ti is a constant.

A rule r in a Datalog program Π is true with respect to a ground substitution
θ, if for each literal L in the body of r one of the following conditions is satisfied:

1. θ(L) ∈facts(Π);

2. θ(L) is an equality, c = c where c is a constant;

3. θ(L) is a literal of the form ¬p(c1, ..., cn) and p(c1, ..., cn) ∈ facts(Π);

4. θ(L) is a literal of the form ¬(c1 = c2) and c1 and c2 are distinct constants.

The meaning of a Datalog program Π, denoted facts∗(Π), is the database
resulting from adding to the initial database of Π as many new facts of the form
θ(L) as possible, where θ is a substitution that makes a rule r in Π true and L
is the head of r. Then the rules are applied repeatedly and new facts are added
to the database until this iteration stabilizes, i.e., until a fixpoint is reached [7].

Given a Datalog query Q = (Π, L) and the initial database D = facts(Π).
The answer to Q over database D, denoted ansd(Q,D), is a set of substitutions
defined as ansd(Q,D) = {θ | θ(L) ∈ facts∗(Π)}.

14 APPENDIX II: Properties and Complexity
of Evaluating M-Trace Patterns

A fundamental issue in every query language is the complexity of query evalua-
tion and, in particular, what is the influence of each component of the language
in this complexity. In this section, we address these issues forM-Trace pattern
expressions.
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As it is customary when studying the complexity of the evaluation problem
for a query language, we consider its associated decision problem. We denote
this problem by Evaluation and we define it as follows:

• INPUT : An M-Trace Tr, a pattern P and a substitution ψ.

• QUESTION : Is ψ ∈ JP KTr ?

We start this study by considering the fragment consisting ofM-Trace pat-
tern expressions constructed by using only AND operators. This simple frag-
ment is interesting as it does not use the two most complicated operators in
M-Trace Query, namely OR and OPT . Given a M-Trace Tr, a pattern P in
this fragment and a substitution ψ, it is possible to effciently check whether
ψ ∈ JP KTr by using the following algorithm.

• First, for each pattern p in P , verify if |=Tr p i.e. Tr entails p.

• If this is not the case, then return false.

Thus, we conclude that:

Theorem 1. Evaluation JP KTr can be solved in time O(|P | · |O ∪ V |) for
M-Trace pattern expressions constructed by using only AND operator.

Theorem 2. Evaluation is NP-complete for a general pattern expressions con-
structed by using only the basic pattern with AND and OR operator.

We will continue this study by adding to the above fragment the OR operator
and then more complicated OPT operator.

Theorem 3. Evaluation is PSPACE-complete for a general pattern expressions
constructed by using only the basic pattern with OR and OPT operator.
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