
Binding bigraphs as symmetric monoidal closed theories

Tom Hirschowitz, Aurélien Pardon

To cite this version:

Tom Hirschowitz, Aurélien Pardon. Binding bigraphs as symmetric monoidal closed theories.
17 pages, uses Paul Taylor’s diagrams. 2008. <hal-00333753v2>

HAL Id: hal-00333753

https://hal.archives-ouvertes.fr/hal-00333753v2

Submitted on 8 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47302344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00333753v2

Binding bigraphs

as symmetric monoidal closed theories

Tom Hirschowitz1 and Aurélien Pardon2

1 CNRS, Université de Savoie tom.hirschowitz@univ-savoie.fr
2 ENS Lyon aurelien.pardon@ens-lyon.fr

Abstract. We reconstruct Milner’s [1] category of abstract binding bi-
graphs Bbg(K) over a signature K as the free (or initial) symmetric

monoidal closed (smc) category S(TK) generated by a derived theory
TK. The morphisms of S(TK) are essentially proof nets from the Intu-
itionistic Multiplicative fragment (imll) of Linear Logic [2].
Formally, we construct a faithful, essentially injective on objects functor
Bbg(K) → S(TK), which is surjective on closed bigraphs (i.e., bigraphs
without free names or sites). The functor is not full, which we view
as a gain in modularity: we maintain the scoping discipline for whole
programs (bound names never escape their scope) but allow more pro-
gram fragments, including a large class of binding contexts, thanks to
richer interfaces. Possible applications include bigraphical programming
languages [3] and Rathke and Sobociński’s derived labelled transition
systems [4].

1 Overview

Milner’s (binding) bigraphs [1] are a general framework for reasoning about dis-
tributed and concurrent programming languages, designed to encompass both
the π-calculus [5] and the Ambient calculus [6]. We are here only concerned
with bigraphical syntax: given what we call a bigraphical signature K, Milner
constructs a pre-category, and then a category Bbg(K), whose objects are bi-
graphical interfaces, and whose morphisms are bigraphs.

Its main features are (1) the presence of relative pushouts (RPOs) in the
pre-category, which makes it well-behaved w.r.t. bisimulations, and that (2) in
both the pre-category and the category, the so-called structural equations be-
come equalities. Examples of the latter are, e.g., in π and Ambients, renaming
of bound variables, associativity and commutativity of parallel composition, or
scope extrusion for restricted names. Also, bigraphs follow a scoping discipline
ensuring that, roughly, bound variables never escape their scope.

In this paper, we reconstruct bigraphs using standard algebraic tools. To
explain this, let us quickly review the notion of a many-sorted algebraic theory,
which is central in universal algebra. It is specified by first giving a signature—a
set of sorts X and a set Σ of operations with arities—together with a set of
equations over that signature. For example, the theory for monoids is specified
by taking only one sort x, and operations m : x× x → x and e : 1 → x, together

with the usual associativity and unitality equations. We may equally well view
this signature as given by a graph

(x × x)
m

- x �
e

1 (1)

with vertices being the objects of the free category with (strict) finite products
generated by X .

In this paper, we use the same kind of theories, but replacing from the start
finite products with smc structure. smc structure is the categorical counterpart
of imll [2,7]: through the Curry-Howard-Lambek correspondence, an smc sig-
nature amounts to a set of imll axioms, and the free smc category S(Σ) over
a signature Σ has as morphisms imll proofs under the corresponding axioms,
modulo cut elimination. We use an isomorphic presentation of S(Σ), essentially
due to Trimble [7], in which morphisms are very much like imll proof nets [2]:
they are kind of graphs, whose correctness is checked by (a mild generalisation
of) the well-known Danos-Regnier criterion [8].

Here, we translate any bigraphical signature K into an smc theory TK, and
consider the free smc category S(TK) generated by TK as an alternative category
of bigraphs over K. To compare S(TK) with Milner’s Bbg(K), we construct a
faithful functor T : Bbg(K) → S(TK). This functor is moreover essentially
injective on objects (i.e., two objects with the same image are isomorphic), so
that it is essentially an embedding.

However, our functor T is not full: even between bigraphical interfaces, S(TK)
contains morphisms which would be ill-scoped according to Milner’s scope rule.
Neither is T surjective on objects: S(TK) has many more objects beyond bi-
graphical interfaces. This could be perceived as negative at first sight, but it
actually represents a gain in modularity. Informally, even though our category
is much more versatile, it still prevents bound variables to escape their scope.
More formally, our functor is full on whole programs, i.e., bigraphs with no sites
nor open names. Namely, it induces an isomorphism on closed terms, i.e., of
hom-sets

S(TK)(I, t) ∼= Bbg(K)(I, t),

where I is the unit of tensor product, and t is a particular object representing
terms3. So, our additional interfaces and morphisms allow just as many whole
programs as Milner’s, but more program fragments. Notably, it contains both
the equivalent of terms and a kind of multi-hole, higher-order, binding contexts,
all cohabiting happily.

In passing, our functor fully elucidates the status of so-called edges in bi-
graphs: we translate differently free edges (used for name restriction, much like
ν in the π-calculus) and bound edges (used for linking so-called binding ports
to their peers). In the former case, we translate the edge into a ν node (which
may also be understood as representing the private name in question); in the
latter case, we simply remove the edge, and rely on our use of directed graphs
to represent the flow from the binding port to its peers.

3 We cheat a little here, see the actual result Lemma 4.

Finally, our algebraic approach directly extends to what Debois [9] calls dis-
crete sortings, which amount to a many-sorted variant of bigraphs. Given a set
X of sorts, instead of only two sorts t and v for terms and variables (or names),
one starts with sorts tx and vx for each x ∈ X , which directly allows to specify
a typed signature.

Future work A possible application of our work is as an alternative representa-
tion for bigraphical programming languages [3]. For example, on the graphical
side, the extensive litterature on efficient correctness criteria for proof nets ap-
plies directly. On the syntactic side, imll proofs provide an essentially algebraic
representation, i.e., one avoiding the use of variable binding and the associated
trickery [10,11,12].

Another possible application is as a handy foundation for Rathke and
Sobociński’s [4] work on deconstructing labelled transition systems, which in-
volves second-order (binding) contexts.

As to future research directions, we here only handle abstract bigraphs, which
do not have RPOs. We thus should generalise our approach to deal with concrete
bigraphs, be it in the form of Milner’s original pre-category or in Sassone and
Sobociński’s G-categories [13], and then try to construct the needed RPOs (or
GRPOs).

Another natural research direction from this paper concerns the dynamics of
bigraphs. Our hope is that Bruni et al.’s [14] very modular approach to dynamics
may be revived, and work better with smc structure than with cartesian closed
structure. Specifically, with smc structure, there is no duplication at the static
level, which might simplify matters.

Related work The construction of the free smc category generated by an smc

theory is essentially due to Trimble [7], followed by others [15,16,17]. The con-
struction we use is a variant of Hughes’ [16] construction, defined in our joint
work with Richard Garner [18]. It was known that smc (or cartesian closed)
structure precisely represents various kinds of variable binding (see, e.g., Bar-
ber [19]). So we do not claim originality for the use of smc structure to recover
bigraphs.

Sassone and Sobociński [20] share our goal of categorically reconstructing
bigraphs. They obtain very satisfactory results for pure bigraphs as a bicategory
of cospans over a particular category of graphs. But their approach still has to
scale up to deal with binding.

Damgaard and Birkedal [21] axiomatise the category of bigraphs as an equa-
tional theory over a term language with variable binding. Our work may be seen
as an essentially algebraic counterpart of theirs (which relies on variable bind-
ing and the trickery evoked above). Moreover, they do not recognise the special
status of bound edges, so our construction is not a mere reformulation of theirs
in categorical terms.

Milner [22] and Debois [9] propose other extensions of Milner’s original scope
condition, the latter subsuming the former [9, Section 6.4]. Debois sees binding
as a sorting over the category of pure bigraphs generated by U(K), where U

forgets the binding information. His construction, starting from a ‘no bound
name escapes its scope’ predicate, is reminiscent from Hyland and Tan’s double
glueing construction [15]. However, his construction is not known to satisfy any
universal property, and an efficient (e.g., algebraic) representation of it still has
to be found.

Finally, Grohmann and Miculan propose directed bigraphs [23] as a more
flexible framework for bigraphs. Hildebrandt [24] proposes an algebraic approach
to them, using compact closed categories instead of smc categories. This line of
work does not handle scope directly: one has to resort to a sorting in the above
sense, with the same inconveniences.

Summary of contributions In view of the above, our contribution thus mainly
lies in working out the details of the encoding of bigraphs as smc theories,
plus unraveling and simplifying the status of edges. Our task is made easier by
Hughes’ economic presentation of the free smc category.

Furthermore, previous work using smc structure as a representation for bind-
ing mostly lead to conservative extensions, i.e., full and faithful functors. Our
work emphasises that Milner’s ad hoc condition leaves room for generalisation,
and provides a new, canonical condition, which benefits from efficient criteria
from linear logical literature.

Structure of the paper Section 2 recalls the construction of the free smc category
generated by an smc theory, including a specialisation to the case where a sort
is equipped with a commutative monoid object structure. Section 3 reviews
bigraphs, defining along the way our translation of bigraphical signatures. In
Section 4, we construct our functor from bigraphs to the corresponding free smc

category, and show that it is an isomorphism on closed terms.

2 Symmetric monoidal closed theories

This section reviews smc theories and their free models; see our note [18] for
details. The constructions are essentially due to Trimble [7], but reworked using
our extensions to Hughes’ [16] presentation.

2.1 Signatures

We should start our overview with the definition of smc categories: these are
symmetric monoidal categories, i.e., categories with a tensor product ⊗ on ob-
jects and morphisms, symmetric in the sense that A ⊗ B ∼= B ⊗ A, such that
(−⊗A) has a right adjoint (A ⊸ −), for each A. We do not give further details,
since we are interested in describing the free such category, which happens to be
easier. Knowing that there is a category SMCCat of smc categories and strictly
structure-preserving functors should be enough to grasp the following.

As sketched in the introduction, a signature Σ is given by a set X of sorts,
equipped with a graph whose vertices are imll formulae over X , as defined by
the grammar:

A, B, . . . ∈ F(X) ::= x | I | A ⊗ B | A ⊸ B (where x ∈ X).

We think of each edge A → B of the graph as specifying an operation of type

A → B. A morphism of signatures (X, Σ) → (Y, Σ′) is a function X
f
- Y ,

equipped with a morphism of graphs, whose vertex component is “F(f)”, i.e., it
sends any formula A(x1, . . . , xn) to A(f(x1), . . . , f(xn)). This defines a category
SMCSig of signatures.

There is then a forgetful functor SMCCat
U
- SMCSig sending each smc

category C to the graph with

vertices: formulae in F(ob(C)), and
edges A → B: morphisms JAK → JBK in C, where JAK is defined inductively to

send each syntactic connective to the corresponding function on ob(C).

Trimble [7] constructs an smc category S(Σ) from any signature Σ, which

extends to a functor SMCSig
S
- SMCCat, left adjoint to U : for any smc

category C and natural transformation Σ
f
- U(C), there is a unique smc

functor S(X)
f∗

- C such that f decomposes as X
η

- US(X)
U(f∗)

- U(C).

2.2 The free smc category

How does S(Σ) look like? Its objects are imll formulae in F(X) and morphisms
are kind of proof-nets with some cells representing operations. A morphism from
A to B in S(Σ) thus consists of

– a finite set C = {c, . . .} of cells labelled by operations αc → βc in Σ,
– and wires connecting the ports together.

For example in the π-calculus, the operations get and send correspond to cells:

⊸

t

⊗

(

v

v

) get t t

⊗

v

v

send t

⊗

We always use the flat edge (or base) of the polygon to denote the domain. The
orientation of a port corresponds to its sign, see below.

A port is a leaf occurrence (atomic or I) in A, B, or in some αc, βc. Equiva-
lently, a port is a leaf occurrence in the formula

(A ⊗
⊗

c∈C

(αc ⊸ βc)) ⊸ B (2)

(or A ⊸ B when C is empty). In a formula, a port is positive when it lies to the
left of an even number of ⊸’s, and negative otherwise4. The sign of a port in a
morphism is its sign in the formula (2).

Wires are oriented, with sources the negative ports of the morphism, and
targets in its positive ports. For each sort x ∈ X , the wires must induce a
bijection between ports labelled x (which we call x ports). A negative I port can
be wired to any positive port.

An example of morphism is presented in Fig. 1, where Σ has sorts {t, v} and

operations get , send , v
c
- v ⊗ v, I

ν
- v and t ⊗ t

p
- t.

⊸

t

(

v

)

t

⊗

⊗
t

⊸

t

(

v)

v
⊗
v

cvν vI
⊸

t
⊗

(

v

v
) get t

t
⊗

v

v

send
⊗

t

pt
⊗

t
t

pt
⊗

t
t

⊗
vI vw

Fig. 1. A morphism of S(Σ).

Correctness But, crucially, not all such graphs qualify as morphisms of S(Σ):
they have to satisfy a correctness criterion essentially due to Danos-Regnier [8],
which goes as follows. The formula (2) may be written using the connectives of
classical linear logic, defined by the grammar:

A, B, . . . ::= x | 1 | A ⊗ B

| x⊥ | ⊥ | A� B.

We have removed A ⊸ B, now encoded as A⊥ �B; some classical formulae are
not expressible in imll, such as ⊥, or x � x. The de Morgan dual A⊥ of A is
defined as usual.

A switching of a classical formula is its abstract syntax tree, where exactly
one argument edge of each � has been removed. A switching of a candidate
morphism f is a graph obtained by gluing along ports the wires of f with a
switching of the formula (2). The candidate is then correct iff all its switchings
are acyclic and connected.

Equivalently, since (2) is ultimately a �, one may separately glue f with
switchings of A⊥, B, and each αc ⊗ β⊥

c . Notably, a cell of type A → x for some
sort x is switched by connecting x to a switching of A.

4 The sign of a port in A is directly apparent viewing A is a classical LL formula, see
the next paragraph.

In Fig. 2 is pictured one switching (among 64) of the graph underlying the
morphism in Fig. 1. The displayed connectives are those of the formula (2)
translated into classical linear logic.

vI ν

t
⊗

t
tp

t ⊗

v

v

⊗
ts

t
⊗

t
tp

⊥ vw
⊗

t

v

t

`

`
t

`
t

v

v

g t⊗

v
`

v
cv `

t

v
`

v

Fig. 2. A connected and acyclic switching of the morphism in Fig. 1.

Rewiring Finally, morphisms are quotiented by Trimble rewiring: a morphism
rewires to another by changing the target of an edge from some negative I

port, as soon as this preserves correctness. Rewiring is the smallest equivalence
relation generated by this relation. In Fig. 1, the dotted wire starting from the
negative I port can be rewired to any positive port because all switchings would
remain trees.

2.3 Theories

That gives the construction for signatures. We now extend it to smc theories:
define a theory T to be given by a signature Σ, together with a set EA,B of
equations between morphisms in S(Σ)(A, B), for each imll formulae A, B. The
free smc category S(T) generated by such a theory is defined in our note [18] to
be the quotient of S(Σ) by the equations. Constructing S(T) graphically is more
direct than could have been feared: we first define the binary predicate f1 ∼ f2

relating two morphisms C
f1,f2

-
- D in S(Σ) as soon as each fi decomposes as

C
∼=

- I ⊗ C
pgiq ⊗ C

- (A ⊸ B) ⊗ C
f

- D

with a common f , with (g1, g2) ∈ EA,B, and where pgq is the currying of g.
Then, we take the smallest generated equivalence relation, prove it stable under
composition, and quotient S(Σ) accordingly, which yields the free smc category
S(T) generated by the theory T = (Σ, E).

Commutative monoid objects We finally slightly extend the results of our note [18]
to better handle the special case of commutative monoids objects. This will be
useful in our translation of bigraphs, where the sort t of terms has a commutative
monoid structure given by parallel composition and 0. Assume a theory (Σ, E)

where a sort t is equipped with two operations m and e as in (1), with equations
making it into a commutative monoid object (m is associative and commutative,
e is its unit). Further assume that m and e do not occur in other equations.

Let Σ′ be the result of removing the operations m and e in Σ. We define
a relaxed version of our morphisms where each negative t port is connected to
a positive one, but not necessarily bijectively. This defines a category isomor-
phic to S(Σ), in which the operations m and e are built into the linking. The
isomorphism is pictured in Fig. 3.

 m e
t

t
t I t⊗

Fig. 3. Contracting m cells and deleting e cells.

3 Binding bigraphs and the translation of signatures

We now proceed to recall some definitions from Milner [1], along which we give
our translation of bigraphical signatures K into smc theories TK. We then turn
to our translation from the corresponding category of bigraphs to the free model
S(TK).

3.1 Signatures

Definition 1. A bigraphical (binding) signature is a 4-uple (K, B, F,A) where
K is a set of controls, B, F : K → N are maps providing a binding and a free
arity for each control and A ⊆ K is a set of atomic controls.

We fix such a bigraphical signature K for the rest of the paper. This signature
can be translated into a smc signature ΣK over two sorts {t, v}, standing for
terms and variables (or names). It consists of the following structural operations,
accounting for the built-in structure of bigraphs:

t ⊗ t
|

- t �
0

I

I
ν

- v

v ⊗ v �
c

v
w

- I

plus, for all controls k, a logical operation

(v⊗B(k)
⊸ x) ⊗ v⊗F (k) Kk

- t

where x = I if k is atomic and x = t otherwise.
We call TK the theory consisting of the operations in ΣK, with the equations

making

– (t, |,0) into a commutative monoid object,
– (v, c, w) into a cocommutative comonoid object (c is coassociative, cocom-

mutative, and w is its unit), and
– ν and w annihilate each other, as in

wν =

·

We now proceed to describe the category Bbg(K) of abstract binding bigraphs
over K, which we relate in Section 4 to the free model S(TK) of TK.

3.2 Interfaces

We assume an infinite and totally ordered set X of names.

Definition 2. A bigraphical (binding) interface is a triple (n, X, loc) where n

is a finite ordinal, X a finite set of names and loc : X → n + {⊥} a function
called locality map.

A name x is said global if loc(x) = ⊥ and local or located at i when loc(x) = i ∈ n.
Bigraphical interfaces are the objects of the category Bbg(K). We define a

function T from these objects to imll formulas, i.e., objects of S(TK), by:

T : (n, X, loc) 7→ v⊗ng ⊸

⊗

i∈n

(v⊗ni ⊸ t) (3)

where ng = |loc−1(⊥)| and for all i ∈ n, ni = |loc−1(i)|. The ordering on X
induces a bijection between X and v leaves in the formula.

In [22], Milner presents a slight generalisation of binding bigraphs, where
names have multiple locality. Some interfaces cannot be simply translated into
imll formulas as before, e.g., if x is located in 0 and 1 and y in 1 and 2, this
dependency cannot be expressed directly in an imll formula.

3.3 Place graph

Let n and m be two finite ordinals.

Definition 3. A place graph (V, ctrl , prnt) : n → m is a pair where:

– V is a finite set of nodes,
– ctrl : V → K is a function called control map and
– prnt : n+V → V +m is an acyclic function called parent map whose image

does not contain any atomic node.

The ordinals n and m index respectively the sites and roots. A node is said barren
if it has no preimage under the parent map (atomic nodes are thus barren).

The relation ≺ over sites, roots and nodes defined by:

x ≺ y ⇐⇒ ∃k > 0 , prntk(x) = y

is a (strict) partial order. The maximal elements of ≺ are the roots; the minimal
elements are the barren nodes (including atomic nodes) and the sites.

3.4 Link graph

Let X and Y be two finite sets of names.

Definition 4. A link graph (V, E, ctrl , link) : X → Y is a tuple where:

– V is a finite set of nodes,
– E is a finite set of edges,
– ctrl : V → K is a control map and
– link : P + X → E + Y is a function called the link map

with P being the set of ports, i.e., the coproduct of binding ports defined by
PB =

∐
v∈V B(ctrl(v)) and free ports PF =

∐
v∈V F (ctrl(v)). Moreover, link

must satisfy the binding rule:

For all binding ports p ∈ PB, link (p) 6∈ Y .

This binding rule is not mentionned in the original paper [1] about bigraphs
whereas it is mandatory for the scoping discipline to be stable under composition
(it is added in [22]). Alternatively, we can only require link (p) to not be a global
name of Y ; the scope rule (defined below) handles the case of local names of Y .

We define the binders of our link graph to be the local names of Y (located
at a root) and the binding ports (located at a node) PB. Two distinct points
(i.e., two elements of P +X) x and y are peers when link(x) = link(y). An edge
is idle when it has no preimage under the link map.

3.5 Abstract binding bigraphs

Let U = (n, X, loc) and W = (m, Y, loc′) be two bigraphical interfaces.

Definition 5. A bigraph G = (V, E, ctrl , prnt , link) : U → W is a tuple where:

– (V, ctrl , prnt) : n → m is a place graph,
– (V, E, ctrl , link) : X → Y is a link graph,
– G satisfies the scope rule:

If p is a binder located at w, then each of its peers is located at some
w′ ≺ w.

Example 1. An example of bigraph, roughly corresponding to the π-calculus
context

νx(x̄y.(�2 | �3) | x(z).�1)

where a global variable t is not used, is given in Fig. 4 using a representation
from [1] and another from [24]. Binding (resp. free) names and ports are pictured
by • (resp. ◦).

The binding rule ensures that no binding port p is peer of a name in Y ,
hence link (p) has to be an edge. Moreover, by acyclicity of prnt, no two binding
ports may be peers, hence edges are linked to at most one binding port. The set
of edges may thus be decomposed into a set of free edges EF (without binding

get
send

x

z

y

2

1

2

3

get

send

x

z
y

1

1
3

t

t

Fig. 4. Two bigraphical representations of the same π-term.

port) and a set of bound edges EB in one-to-one correspondence with PB by the
link map: E = EF ⊎ EB

∼= EF + PB.
Finally, two bigraphs are lean-support equivalent when after discarding their

idle edges, there is an isomorphism between their sets of nodes and edges pre-
serving the structure.

Definition 6. The category Bbg(K) of abstract binding bigraphs over K has
bigraphical interfaces as objects and lean-support equivalence classes of bigraphs
as morphisms.

The composition of two bigraphs U1
G
- U2

G′

- U3 is defined by taking
the coproduct of their nodes, edges and control maps and the composition of
parent and link maps (modulo some bijections on sets), forgetting the roots/sites
from U2. Acyclicity of the parent map, and the binding and scope rules are
preserved by composition.

4 Translation

We now want to show how a binding bigraph G = (V, E, ctrl , prnt , link) : U → W

over K can be translated into a morphism T(G) : T(U) → T(W) in the free model
S(TK) of the smc theory TK. We have already defined T on objects in (3). Now,
let U = (n, X, loc) and W = (m, Y, loc′). We will define the support C of T(G)
as the disjoint union of:

– a logical support C containing a Kk cell for every node whose control is k

and a ν cell for every free edge in EF , and
– a structural support C′ consisting of c and w cells, which we define below.

We then specify the graph T(G) for each sort in {t, v} separately, and for I. For
example, the image by T of the bigraph in Fig. 4 is the morphism in Fig. 1.

4.1 Places

First, since (t, |,0) has a commutative monoid object structure, the represen-
tation of Section 2.3 applies: we just have to define a function from negative t

ports to positive ones. Now, for any set X labeled in formulae, denote by X+
t

its set of positive t ports, and similarly for X
+,−
t,v,I . Now, considering each cell c

to be labelled by the formula αc ⊸ βc, we have:

– C+
t

∼= V , because each type of cell Kk has one positive t port,
– C−

t
∼= Vna →֒ V , where Vna is the set of non-atomic nodes, because there is

one negative t port for each non-atomic cell,
– T(U)+t

∼= n, because for each i ∈ n there is a positive t port in T(U),
– similarly, T(W)+t

∼= m, and finally
– T(W)−t

∼= T(U)+t
∼= ∅.

Our morphism T(G) is thus defined on the sort t by the function ft:

T(U)+t + C+
t + T(W)−t

∼=
- T(U)+t + C+

t

∼=
- n + V

T(U)−t + C−
t + T(W)+t

ft

?

�

∼=
T(V)+t + C−

t
�

∼=
m + Vna .

prnt
?

4.2 Links

The function fv for v requires more work, and involves defining the structural
support C′. Recall that the data is the function link : P ⊎ X → E ⊎ Y .

We start with an informal description of fv based on Fig. 5, in which bold
arrows come from binders. First, we deal with points sent to edges. There are
two kinds of edges.

First, we understand each free edge e as the creation of a fresh name, and each
free point p in PF ⊎X sent to e as an occurrence of this free name. Accordingly,
e is replaced by its ν cell in C, and each p becomes a v port in T(U)− +C−. We
hence link the v port of the ν cell to each corresponding p, through a tree of c

and w cells, as depicted in the bottom row.
Second, we understand each bound edge e as an indirection to its binding

port p0 ∈ PB, itself understood as a bound name. We further understand each
free peer p ∈ PF ⊎X of p0 as an occurrence of the bound name. Accordingly, we
completely forget about e, p0 becomes a v port in C+, and each p becomes a v

port in C− + T(U)−, hence we link p0 to each corresponding p, again through a
tree of c and w cells.

Finally, points p not sent to an edge are sent to some name y ∈ Y . But each
such p becomes a v port in T(U)− + C− and each such y becomes a v port in
T(W)−, hence we link y to each p, again using c and w cells. This determines
the structural support C′, as well as fv. Finally, for the I part fI , each negative
I port arises from a structural w cell. But in the above each cell is generated
by one v port (the fresh name or the binder). In the former case, we may safely
link our I port to any valid t port. In the latter, the binder occurs to the left of
a ⊸, whose right-hand side is a t port, to which we safely link our I port.

More formally, observe from our translation of signatures and interfaces, plus
the logical support C defined above, that:

e4

e2

⇒

⇒
⇒

⇒

e1

e3 c ν

v
c

v
w

⊸

t

I

νw

I

Fig. 5. Translation of link .

– each free edge in EF corresponds to one ν cell, hence to one port in C+
v ,

– each binding port in PB corresponds to one negative occurrence of v in the
domain of some cell in C, hence to one port in C+

v ,
– each local name in Y corresponds one port in T(W)−v .

Thus, we have an isomorphism EF + PB + Y ∼= C+
v + T(W)−v . Similarly, free

points in PF +X correspond to ports in C−
v +T(U)−v , i.e., PF +X ∼= C−

v +T(U)−v .
We may thus define a first function link ′ by:

C−
v + T(U)−v

∼=
- PF + X ⊂ - PB + PF + X

C+
v + T(W)−v

link′

?

�

∼=
EF + PB + Y �

∼=
E + Y .

link
?

We then encode this function by a forest of c and w cells C′ (as pictured in

Fig. 6), to obtain a function C+
v +C′+

v +T(W)−v
fv
- C−

v +C′−
v +T(U)−v , which

qualifies as the v part of our morphism. The rest follows similarly.

+

c

w

c

v

v

v

v

v

v

v

+

+

+

−

−

−

Fig. 6. Translation of a function using w and c cells.

This defines a function from bigraphs to candidate morphisms (respecting
domain and codomain). We now show that it extends to a functor.

4.3 The functor

First, we prove that the image of a bigraph is correct, i.e., is a proper morphism.

Lemma 1. All switchings of T(G) are connected.

Proof. Essentially an induction over the place ordering ≺.

The following seems known [25]:

Lemma 2. Any switching of a morphism in S(TK) is acyclic iff it is connected.

Proof (sketch). One proves by induction on the domain and codomain formulae
that the graph induced by the switching has one more vertex than it has edges.

Lemma 3. The map T : Bbg(K) → S(TK) is a functor.

Proof (sketch). The equations of TK defined in Section 3.1 ensure that T behaves
well w.r.t. composition and lean-support equivalence.

One sees at once that T is not full. For example, the morphism in Fig. 7 has
no preimage – any such preimage would violate the scope rule for bigraphs. This

⊸

⊗
⊸

⊗

v

t

v

⊸

⊗

⊸

⊗

I

t

v

v

Fig. 7. A correct morphism violating the scope rule.

example reflects that it is not necessary to distinguish global and local variables
in a bigraph with only one site. Nevertheless, the notion of scope is preserved
by T because closed morphisms can actually be translated into bigraphs. In

Bbg(K), define the interfaces I = (0, ∅, ∅̂) and t = (1, ∅, ∅̂).

Lemma 4. The functor T induces an isomorphism S(TK)(I, t) ∼= Bbg(K)(I, t).

Proof (sketch). For any morphism I
f
- t, we construct a candidate bigraph,

and observe that it vacuously satisfies the binding rule. Then, we proceed by
contrapositive: assuming either that its parent map is cyclic or that it breaks
the scope rule, we show that f was incorrect.

All in all, we have

Theorem 1. The functor T : Bbg(K) → S(TK) is faithful, essentially injective
on objects, and surjective on S(TK)(I, t).

It is however not full and far from surjective on objects.

References

1. Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical
Report TR580, University of Cambridge (2004)

2. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102

3. Damgaard, T.C., Glenstrup, A.J., Birkedal, L., Milner, R.: An inductive charac-
terization of matching in binding bigraphs. To appear (2008)

4. Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In:
Fifth IFIP International Conference On Theoretical Computer Science - TCS ’08,
Springer (2008)

5. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information
and Computation 100(1) (1992) 1–40

6. Cardelli, L., Gordon, A.: Mobile ambients. In Nivat, M., ed.: Foundations of
Software Science and Computational Structures. Volume 1378 of Lecture Notes in
Computer Science., Springer (1998) 140–155

7. Trimble, T.: Linear logic, bimodules, and full coherence for autonomous categories.
PhD thesis, Rutgers University (1994)

8. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28 (1989) 181–203

9. Debois, S.: Sortings & bigraphs. PhD thesis, IT University of Copenhagen (2008)

10. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: ACM SIGPLAN ’88
Symposium on Language Design and Implementation, ACM (1988) 199–208

11. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: 14th Annual Symposium on Logic in Computer Science, IEEE Computer So-
ciety Press, Washington (1999) 214–224

12. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: LICS ’99:
Proc. 14th Annual IEEE Symposium on Logic in Computer Science, IEEE Com-
puter Society (1999)

13. Sassone, V., Sobociński, P.: Deriving bisimulation congruences using 2-categories.
Nordic Journal of Computing 10(2) (2003) 163–183

14. Bruni, R., Montanari, U.: Cartesian closed double categories, their lambda-
notation, and the pi-calculus. In: LICS ’99: Proc. 14th Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society (1999) 246

15. Tan, A.: Full Completeness for Models of Linear Logic. PhD thesis, University of
Cambridge (1997)

16. Hughes, D.J.D.: Simple free star-autonomous categories and full coherence. ArXiv
Mathematics e-prints, math/0506521 (June 2005)

17. Lamarche, F., Strassburger, L.: From proof nets to the free *-autonomous category.
Logical Methods in Computer Science 2(4) (2006)

18. Garner, R.H.G., Hirschowitz, T., Pardon, A.: Graphical presentations of symmetric
monoidal closed theories. CoRR abs/0810.4420 (2008)

19. Barber, A., Gardner, P., Hasegawa, M., Plotkin, G.: From action calculi to linear
logic. In: Annual Conference of the European Association for Computer Science
Logic (CSL’97), Aarhus, August 1997, Selected Papers. Volume 1414 of Lecture
Notes in Computer Science., Springer (1998) 78–97

20. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Logic in Computer
Science, LiCS ’05, IEEE Press (2005) 311–320

21. Damgaard, T., Birkedal, L.: Axiomatizing binding bigraphs. Nordic Journal of
Computing 13(1–2) (2006) 58–77

22. Milner, R.: Bigraphs whose names have multiple locality. Technical Report TR603,
University of Cambridge (2004)

23. Grohmann, D., Miculan, M.: Directed bigraphs. Electr. Notes Theor. Comput.
Sci. 173 (2007) 121–137

24. Hildebrandt, T.: Polarized and higher-order bigraphs from geometry of interac-
tion. Talk at the Choco seminar, see http://choco.pps.jussieu.fr/events, Lyon
(June 2008)

25. Soloviev, S.: Connectedness and acyclicity in IMLL proof nets (June 2008) Message
to the TYPES forum.

A Proof of Lemma 1

Consider a switching of T(G).
Given a site or a node p, we denote by T(p) the negative t port corresponding

to it in the switching. If p is a root, then T(p) denotes the positive t port of its
image.

Free ports of a node p (resp. local names of a site p′) have their image (a
positive v port) connected to T(p) (resp. T(p′)) as shown in Fig. 8. Moreover,
either one negative v port (corresponding to a binding port) or the positive t

port of the cell p is connected to T(p) by the switched formula.

⊗

⊸

⊗

v

v

t

. . .

. . .
+

+

+

−

−

−

v+

v+

Kk

t −

T(U) v

⊗

⊸

⊗

⊸

⊗

⊸

⊗

v

v

v

v

t

v

v

. . .

. . .

t

. . .

. . .

+

+

+

+

−

−

−

−

+

+

+

+

+

+

−

−

T(W)v

⊗

⊸

⊗

⊸

⊗

⊸

⊗

v

v

v

v

t

v

v

. . .

. . .

t

. . .

. . .

+

−

+

+

+

+

+

−

−

−

−

−

−

−

−

−

Fig. 8. Domain, codomain and a node of a switching.

We now prove by induction that all binding ports (located at a node or a
root p) have their image connected to T(p). Let b be a binding port, and T(b)
its image by T (a negative v port).

If b has no peers (this is necessarily the case if p is a barren node), then T(b)
is connected to a w cell whose I port is connected to T(p).

If b has peers, then T(b) is connected, in the morphism, to their translations
through a tree of c cells. But this tree is heavily switched and only connects T(b)

http://choco.pps.jussieu.fr/events

to one positive v port f (whose preimage is) located, thanks to the scope rule,
to a site or a node p′ ≺ p.

By induction f is connected to T(p′) and T(p′) is connected to T(p) through
the (unswitched) parent map. Indeed, the parent map connects the t ports of
cells between p′ and p, and these cells have their t ports connected thanks to the
induction hypothesis. The port T(b) and T(p) are thus connected.

Finally, we remark that:

– roots are connected to each other in the codomain’s formula (by their t or v

ports, see Fig. 8),
– global variables of the domain are connected to a site (by the domain’s

formula, see Fig. 8) and
– remaining negative v ports (global variable of the codomain and ν cells) are

connected to the other positive ports by a switched tree of c cells or a w cell.

We conclude that all ports of our switching are connected.

B Proof of Lemma 4

Consider any f : I → t. We have T(I) = (I ⊸ I) ∼= I and T(t) = I ⊸ (I ⊸ t) ∼=
t, which justifies our “induces” above. We now define G = (V, E, ctrl , prnt , link) :
I → t such that T(G) = f .

Let the set of nodes V be the set of logical cells in f ; the control map ctrl
sends each Kk cell to k ∈ K.

The set of edges is the coproduct of binding v ports in the support of f and
of ν cells (where a v port is binding when it occurs to the left of a ⊸, e.g., a
cell of type ((v ⊗ v) ⊸ t) ⊗ v → t has two binding ports).

The parent map prnt : 0 + V → 1 + V is exactly the restriction of f to t

ports. The link map link : PB +PF + ∅ → E + ∅ is obtained from the restriction
of f to v ports as follows. From any v port p, following the tree of contractions
towards its root leads to a maximal positive v port in the support, which may
be either a port from a ν cell, or a binding port of a logical cell. In each case,
there is a corresponding edge ep. Our link map sends each port p to ep. Since in
each tree there is only one root, the binding rule is respected.

We then prove that G is correct. Suppose that the parent map contains a
cycle, then any switching where, for all cells of the cycle, the two t ports are
connected contains this cycle. Suppose that the scope rule is not satisfied for a
binder p and one of its peers p′. Then, in f , p is the root of a contraction tree
with p′ as a leaf: among the switchings connecting them, choose again one that
connects both t ports of each logical cell: every logical cell then has a path to the
root r (the t port in the codomain), which forms a cycle involving p, p′, and r,
hence contradicting correctness of f . The binding rule is automatically satisfied
because the codomain has no name. An atomic node has no antecedent in the
parent map because the corresponding cell in f has no positive t port.

