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Abstract
Background: The majority of ovarian cancer biomarker discovery efforts focus on the
identification of proteins that can improve the predictive power of presently available diagnostic
tests. We here show that metabolomics, the study of metabolic changes in biological systems, can
also provide characteristic small molecule fingerprints related to this disease.

Results: In this work, new approaches to automatic classification of metabolomic data produced
from sera of ovarian cancer patients and benign controls are investigated. The performance of
support vector machines (SVM) for the classification of liquid chromatography/time-of-flight mass
spectrometry (LC/TOF MS) metabolomic data focusing on recognizing combinations or "panels" of
potential metabolic diagnostic biomarkers was evaluated. Utilizing LC/TOF MS, sera from 37
ovarian cancer patients and 35 benign controls were studied. Optimum panels of spectral features
observed in positive or/and negative ion mode electrospray (ESI) MS with the ability to distinguish
between control and ovarian cancer samples were selected using state-of-the-art feature selection
methods such as recursive feature elimination and L1-norm SVM.

Conclusion: Three evaluation processes (leave-one-out-cross-validation, 12-fold-cross-validation,
52-20-split-validation) were used to examine the SVM models based on the selected panels in terms
of their ability for differentiating control vs. disease serum samples. The statistical significance for
these feature selection results were comprehensively investigated. Classification of the serum
sample test set was over 90% accurate indicating promise that the above approach may lead to the
development of an accurate and reliable metabolomic-based approach for detecting ovarian cancer.
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Background
Despite decades of research and an annual investment in
the U.S. of more than $2 billion on treatment, ovarian
cancer remains the leading cause of deaths from gyneco-
logical malignancies [1]. It is estimated that 21,650 new
cases of ovarian cancer were diagnosed in 2008 and
15,520 women died from the disease [2]. Due to the
asymptomatic nature of the disease, women are fre-
quently undiagnosed until the disease is late in its pro-
gression (stage III/IV) when the 5-year survival rate is only
15–20% [3]. The assay for CA125 is currently the only
FDA-approved test for ovarian cancer detection but the
overall predictive value of CA125 has been reported to be
less than 10% [4].

Although screening for specific biomarkers that are diag-
nostic of ovarian cancer has been an active area of research
since the early 1970's [5], no effective diagnostic tests are
yet available. Most ovarian cancer biomarker discovery
studies are based on the univariate or multivariate com-
parison of high throughput data focusing on qualitative
or quantitative changes (e.g. methylation, glycosylation)
of large biopolymers (e.g. DNA, RNA, glycans and pro-
teins) [6]. In contrast, metabolic biomarker discovery
approaches that focus on small molecules (below 1 kDa)
have received significantly less attention, despite the fact
that metabolic profiling of human serum has long been
touted as a promising technology for the early detection of
many diseases, including cancer [3]. In this trend, a few
studies have reported individual metabolites potentially
useful for ovarian cancer detection, the most studied
being lysophosphatidic acid [7-9] and lipid associated
sialic acid [10-14].

Since metabolites have vastly-differing chemical proper-
ties and occur in a wide range of concentrations, mass
spectrometry (MS) is a preferred method for broadband
metabolic profiling [15]. Although MS has been success-
fully applied in the development of proteomic biomarker
panels using surface-enhanced laser/desorption ioniza-
tion (SELDI) MS [4,16-18] and matrix-assisted laser des-
orption/ionization (MALDI) MS [19,20], technologies
such as LC MS for the effective analysis of the metabolome
are still evolving [21] as are bioinformatic techniques for
the analysis of the resulting data [22].

In machine learning, SVMs [23] are widely considered to
represent the state of the art in classification accuracy.
Recently, SVMs have been applied to the supervised clas-
sification of cancer versus control sample sets from data
obtained using SELDI MS [24-27], MALDI MS [28,29], gas
chromatography (GC) MS [30], LC/Quadrupole Linear
Ion Trap MS [31], and LC/Ion Trap MS [32]. Other meth-
ods that have been used in supervised classification in
chemometrics for cancer detection include partial least

squares-discriminant analysis (PLSDA) [33,34], soft inde-
pendent modeling of class analogy (SIMCA) [35], artifi-
cial neural networks (ANNs) [36], and classification and
regression trees (CART) [37]. During classification, it is
beneficial to perform feature selection (reduce the
number of predictor variables) in order to make the diag-
nostic process cheaper and targeted, and to narrow down
the number of biomarkers to better understand their bio-
logical significance. Feature selection allows the identifi-
cation of robust spectral features that may otherwise be
obscured by biological variability not related to disease. It
has been shown that reducing the number of variables
used for supervised multivariate model building is also
beneficial for eliminating non-informative data, reducing
prediction errors, and simplifying the interpretability of
the data analysis results. For example, SVMs have been
successfully combined with Information Gain and ReliefF
[31] and Oscillating Search Algorithm for feature selec-
tion [32] to select out metabolic markers in prostate can-
cer, and to improve prediction performance of breast
cancer datasets, respectively.

In this paper we present, to the best of our knowledge, the
first application of SVMs and SVM-related feature selec-
tion methods (recursive feature elimination (RFE) with
linear and nonlinear kernel [38], L1SVM [39], and Wes-
ton's method [40]) for classifying LC/TOF MS data of
serum samples from ovarian cancer patients and controls.
The statistical confidence of the prediction performance
results was further assessed through hypothesis testing,
and the general performance of the feature selection
methods was extensively tested. The results demonstrate
the utility of this approach to derive panels of metabolic
spectral features that are potentially useful for the diagno-
sis of ovarian cancer.

Methods
Cohort Description
Serum samples were obtained from 37 patients with pap-
illary serous ovarian cancer (mean age 60 years, range 43–
79, stages I–IV) and 35 controls (mean age 54 years, range
32–84). The control population consisted of patients with
histology considered within normal limits (WNL) and
women with non-cancerous ovarian conditions. The
patients' information is detailed in Table 1. All serum
samples were obtained from the Ovarian Cancer Institute
(OCI, Atlanta, GA) after approval by the Institutional
Review Board (IRB). All donors were required to fast and
to avoid medicine and alcohol for 12 hours prior to sam-
pling, except for certain allowable medications, for
instance, diabetics were allowed insulin. Following
informed consent by donors, 5 mL of whole blood were
collected at Northside Hospital (Atlanta, GA) by veni-
puncture from each donor into evacuated blood collec-
tion tubes that contained no anticoagulant. Serum was
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obtained by centrifugation at 5000 rpm for 5 minutes at
4°C. Immediately after centrifugation, 250 μL aliquots of
serum were frozen and stored at -80°C for further use. The
sample collection and storage procedures for both ovarian
cancer patients and control individuals were identical.

Serum Sample Pretreatment and LC/TOF MS Analysis
A stock sample of human serum purchased from Sigma
(S7023, St. Louis, MO) was used during the development
of the serum sample pretreatment and LC/TOF MS analy-
sis protocols. Upon arrival, the frozen sample was thawed
and separated into 250 μL aliquots which were stored at -
80°C for further use.

Serum samples were thawed, and proteins precipitated by
addition of acetonitrile to the serum sample in a 5:1 ratio.
The mixture was incubated at room temperature for 40
minutes and after centrifugation, the supernatant was
retained and vacuum evaporated. The residue was recon-
stituted in 80% acetonitrile/0.1% TFA and 15 μL was
injected onto a reverse phase analytical C18 column
(Symmetry®, 3.5 μm, 2.1 × 150 mm, pore size 100Å,
Waters, Milford, MA) installed in an Agilent 1100 Series
LC system (Santa Clara, CA) coupled to a JEOL AccuTOF
(Tokyo, Japan) mass spectrometer via an ESI source. Pos-
itive and negative ion mode ESI spectra were collected in
the range of 100–1750 m/z. Every cancer sample was ran-
domly paired with a control sample and run on the same
day to ensure that no temporal bias was introduced. Sam-
ple pairs were run in random order and in duplicate. To
ensure maximum reproducibility in metabolomic experi-
ments, all serum specimens were run consecutively within
a 2.5 month period. After LC/TOF MS analysis, the spectra
were centroided, mass drift corrected, and exported in
NetCDF format for further analysis. Method S-1 provides
more detail about sample preparation and analysis,
including the LC program used (Table S-1) [see Addi-
tional file 1].

LC/TOF MS Data Preprocessing
All data were preprocessed identically and simultane-
ously. Preprocessing was performed by loading NetCDF
files into mzMine (v0.60) [41]. Data were smoothed by
chromatographic median filtering with a tolerance in m/z
of 0.1, and one-sided scan window length of 3 s. Peaks

were picked with a m/z bin size of 0.15, chromatographic
threshold level of 0%, absolute noise level of 200, abso-
lute minimum peak height of 250, minimum peak dura-
tion of 5 s, tolerance for m/z variation of 0.06, and
tolerance for intensity variation of 50%. The method for
de-isotoping was to assume +1 charge states, and monot-
onic isotopic patterns. The retention time tolerance (RT)
for de-isotoping was 65 s and the m/z tolerance 0.07. The
chromatographic peak alignment m/z tolerance was 0.2,
and the RT tolerance was 12%, with a balance coefficient
between m/z and RT of 30. The minimum number of
detections for rare peak filtering in the alignment results
was set to 41. Spectral features not initially detected by the
peak detection algorithm were subsequently added by a
gap filling method using an intensity tolerance of 30%, m/
z tolerance size of 0.2, and RT tolerance size of 12%. Cor-
rection for systematic drift in intensity levels between dif-
ferent data files was performed by using linear intensity
normalization of the total raw signal. After the normal-
ized alignment file containing all peak intensities was cre-
ated, peak areas were exported to Excel and peaks of
contaminants, dimers, redundant adducts, and isotopes
not adequately detected were removed. Approximately
37% of the peaks from positive mode and 18% of the
peaks from negative mode were eliminated after this filter-
ing step. Peak areas from duplicate runs were then aver-
aged, and positive and negative mode ESI data were
exported as ASCII files into Matlab for subsequent
machine learning analysis. These data are available as a
Matlab file, or as a set of text files [see Additional file 2].

SVMs and Related Feature Selection Methods

SVMs [23] have been successfully applied to various scien-
tific problems as they generally achieve classification per-
formance superior to that of many older methods,
particularly in high-dimensional settings [24-29]. Though
computationally intensive, SVMs are efficient enough to
handle problems of the size we consider here. Given a

dataset  (xj ∈ RN is the feature vector of jth

instance and yj is the corresponding label), for a two-class

classification problem, SVM finds the optimal separating
hyperplane w·x + b through the following quadratic opti-
mization:

S x yj j j
M= ={ , } 1

Table 1: Characteristics of Ovarian Cancer Patients and Controls

Characteristics Stages I/II Stages III/IV Controls Total

Age (y), mean (range) 60(43–74) 61(46–79) 54(32–84) 58(32–84)

Papillary Serous Carcinoma 9 28 0 37

Control 0 0 35 35
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where function Φ(·): Rn → U maps the feature vector into
high dimensional Euclidean subspace. Kernel function
K(xi, xj) is defined as Φ(xi)·Φ(xj), for example, the linear
kernel is xi·xj, a polynomial kernel is (gxi·xj + r)d with
parameters g, r, d. The above problem is usually solved
through its dual formation [42].

Bagging strategies [43] are often used to boost the predic-
tion performance of a classifier [44]. This approach
involves generating multiple versions of a classifier and
using these to obtain an aggregated predictor. A bagging
process repeats the following procedure T times: i) boot-
strap (sample from the dataset with replacement) from
the training data to build a classifier and ii) obtain the pre-
dictions on the test data. The process then uses the major-
ity voting results as the final predictions.

t2-statistics [45] is a widely used filter-based feature selec-

tion method in bioinformatics, calculated as 

with degree of freedom , where

μ+, μ- are the means and δ+, δ- are the standard deviations

of the feature values, and n+, n- are the number of cancer

patients and controls, respectively. Though computation-
ally efficient, filter-based feature selection methods gener-
ally achieve inferior prediction performance compared to
wrapper-based methods. Therefore, several SVM-based
methods, such as the commonly used recursive feature
elimination (RFE) method [38], were applied.

In RFE, the feature whose removal leads to a smaller
increase to the cost function, dJ(k), is ranked as less impor-

tant. , where α ∈ RM is the

dual variable vector of (1), Hij = yiyjK(xi, xj) and

 with x(-k) representing the fea-

ture vector with the kth feature removed. In the case of lin-

ear SVM, . At each RFE iteration, first, an SVM

is trained with the currently selected feature set; next, the
importance of the features is measured; then, the least
important features are discarded successively from the

remaining feature set. This procedure is repeated itera-
tively to study the prediction accuracy as a function of the
number of remaining features and the smallest feature set
that achieved the highest training accuracy is selected as
the final output.

Bradley et al. [39] proposed L1SVM, which minimizes the

L1-norm of the weight vector  rather than the

L2-norm . Since the L1-norm is used, the opti-

mal weight vector w is often very sparse, thus L1SVM can
simultaneously perform classification as well as feature
selection. However, this is only applicable in the case of
the linear kernel. Previous literature suggest applying the
standard L2-norm SVM on the feature selection results of
L1SVM to improve the classification performance [46].
Fast algorithms for solving L1SVM were proposed by Fung
& Mangasarian in 2004 [47] and Mangasarian in 2007
[48].

Weston et al. [40] introduced the idea of scaling variables,
a feature is removed if the corresponding scaling variable
δk ∈ {0, 1} becomes zero during the optimization. The
scaling variables and the SVM are learned through mini-
mizing a generalization error bound, R2W2, where R2(β,
δ) is the radius of the smallest sphere, centered at the ori-
gin, that contains all the Φ(xi); W2(α, δ) is the L2 norm of
the weight vector, and δ = (δ1,..., δN)T is the vector of the
scaling variables. The problem is approximated with an
iterative method. At each iteration t, the algorithm firstly
optimizes R2(β, δ(t-1)) and W2(α, δ(t-1)) separately (denot-
ing the optimal solution as αt and βt, respectively); next, it
minimizes R2(β(t), δ)W2(δ(t), δ) using gradient descent;
then, it sets the smallest δk to zero, i.e. removes the corre-
sponding kth feature from the feature set. The above pro-
cedure repeats until only d nonzero scaling variable left.

Statistical Significance Estimation
In addition to estimating the classification/feature selec-
tion performance using various cross-validation
approaches, the statistical significance of these observa-
tions was further assessed through hypothesis testing.
One possible non-parametric approach to hypothesis test-
ing is permutation test, where no assumptions are made
regarding the data distribution, and the p-value is com-
puted as the cumulative sum using the empirical distribu-
tion. The permutation test works by comparing the
statistic of interest with the distribution of the statistic
obtained under the null (random) condition, and can be
defined as follows [49]:

1. Repeat T times (where t is an index from 1, �, T):
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• Randomly permute the labels of the input data
vectors.

• Compute the statistic of interest

 for this permutation of

labels, where  is the assigned label to xi at tth

label randomization.

2. Compute the statistic of interest for the actual
labels, s0.

3. Obtain the p-value : the cumulative

probability of st being greater than or equal to the

observed statistics s0.

4. If the p-value <α (usually α = 0.05), reject the null
hypothesis H0; otherwise, the observed result is not
statistically significant.

Metabolite Identification Procedure
Compound identification was attempted only for those
spectral features remaining after the feature selection
processes. Due to the biological complexity of serum sam-
ples, adduct ion analysis was first performed to ensure the
unambiguous assignment of the signal of interest in each
mass spectrum. Adducts formed in positive ion mode ESI
usually include [M + H]+, [M + NH4]+, [M + Na]+, [M + K]+,
[M - H2O + H]+ and [2M + H]+ species; in negative ion
mode ESI [M - H]-, [M + CH3COO]-, [M + Cl]-, [M +
HCOO]- and [2M - H]- are generally observed. Adducts in
centroided mass spectra corresponding to SVM-selected
variables were identified by manually calculating the dif-
ferences between the exact m/z values of peaks within the
spectrum and comparing these differences to those
between the common adduct species mentioned above.
For spectra in which multiple adducts were not present,
the accurate mass of the candidate neutral molecule was
calculated based on the assumption that the peak of inter-
est corresponded to either [M + H]+, [M + Na]+, or [M +
NH4]+ in positive ion mode and [M - H]-, [M + CH3COO]-

, [M + HCOO]-, or [M - CH3]- (for glycerophospho-
cholines) in negative ion mode, yielding multiple candi-
date masses for each m/z value.

Elemental formulae were estimated from the accurate
mass spectra using a freely distributed system of macros
[50] that relies on a series of heuristic rules based on the
mass accuracy of the peak of interest and the correspond-
ing isotopic ratios. The mass of the neutral molecule and
relative isotopic abundances were imported directly into
the "seven golden rules" Excel spreadsheet [50]. The mass
accuracy was set to 15 ppm, and the threshold for error in

the relative isotopic abundances was set to 10%. The list
of elements to include in the search was constrained to
include C, H, N, O, P, S, Cl, and Br. The probability of a
given formulae being the "correct" one is provided as a
score calculated from the error rates in satisfying the afore-
mentioned rules. The top hits in the list of filtered elemen-
tal formulae and all accurate mass values obtained were
searched against the following databases: Metlin [51],
KEGG [52], HMDB [53], MMCD [54] and Lipid Maps
(LM) [55] in order to determine the greatest possible
number of candidate molecules. The criteria used for the
assignment of a tentative chemical structure were: a mass
difference with the simulated formula lower than 15 ppm,
isotope abundance errors less than 10%, and that the can-
didate found in the database corresponds to an endog-
enous metabolite.

Results and discussion
LC/TOF MS-based Metabolomic Analysis of Human Serum 
Samples
Metabolomic investigation of sera from patients with
ovarian cancer and controls using LC/TOF MS revealed a
total of 576 features extracted by mzMine in positive ion
mode, and 280 in negative ion mode. The data were
found to be highly complex, with numerous features
across both analytical dimensions. Decreasing the abso-
lute noise level and minimum peak height from 400 and
500 to 200 and 250 increased the number of detected fea-
tures to 4439 and 329 for positive and negative ion
modes, respectively. While this allowed us to "dig deeper"
into the serum metabolome, the number of features con-
sistently detected across samples decreased by 3.6% and
15%, respectively, suggesting that use of the previous set-
tings provided a broad range of more stable features on
which to base our feature selection methods. Detailed
manual analysis of the entire dataset revealed the presence
of additional redundant species (dimers, adducts, iso-
topes) that were removed, thus reducing the final number
of features used to 360 positive ion mode and 232 nega-
tive ion mode features. We refer to the dataset with only
positive ion mode features as "pos-ion-mode", the dataset
with only negative ion mode features as "neg-ion-mode",
and the dataset combining positive and negative ion
mode features as "multimode", respectively.

A 3D serum metabolic profile for a typical stage III ovarian
cancer serum sample is shown in Figure 1(a) demonstrat-
ing the capability of LC/TOF MS to resolve hundreds of
compounds in a wide mass range within 180 minutes.
Despite the shallow solvent gradient chosen for the LC
run, there is still evidence of co-elution as observed in the
projection of Figure 1(a) onto the chromatographic axis
(Figure 1(b)). However, in most cases, the high resolving
power of the TOF mass analyzer allowed the resolution of
these signals by their selected ion chromatograms, as

s TS x y x yt t M t M
= ( , , , , )1 1

yt i

I s stt

T
( )≥=∑ 01
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LC/TOF MS-based Metabolic Analysis of Human Serum SamplesFigure 1
LC/TOF MS-based Metabolic Analysis of Human Serum Samples. Sample data obtained by negative ion mode LC/
TOF MS analysis of a stage III ovarian cancer serum sample: (A) 3D intensity matrix, (B) total ion chromatogram, (C) selected 
im/zon chromatogram for the feature at m/z 443.26, and (D) mass spectrum at a retention time of 91 minutes.
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shown in Figure 1(c) for an ion with m/z = 443.26 at a
window width of 0.05 Da. The corresponding centroided
negative ion mode spectrum obtained at 91 minutes is
shown in Figure 1(d). Due to the obvious complexity of
these samples, the reproducibility of the LC/TOF MS
approach was tested in early experiments to rule out col-
umn memory effects. Lipids, fatty acids and other hydro-
phobic components in sera that are easily adsorbed onto
the reverse phase column can act as a new stationary
phase, causing a change in selectivity, memory effects, and
shifting retention times.

Prediction Performance and Statistical Significance 
Analysis
SVMs and state-of-the-art feature selection methods were
used to analyze the data. In the following sections, the lin-
ear SVM classifier is denoted as SVM, nonlinear SVM clas-
sifier with degree 2 polynomial kernel as SVM_NL; RFE
feature selection with linear SVM as SVMRFE, RFE with
nonlinear SVM as SVMRFE_NL, and Weston's feature
selection method with nonlinear SVM as SVMRW. Three
evaluation procedures were considered: i) leave-one-out-
cross-validation (LOOCV); ii) 12-fold cross validation
(12-fold CV) averaged over 10 trials (for each trial, the
data were randomly ordered and split into 12 different
folds and a 12-fold CV was performed); and iii) 52-20-
split-validation averaged over 50 trials (for each trial, the
data were randomly ordered and split into a training set of
size 52 and a test set of size 20). All the three evaluation
schemes were investigated for thoroughness, of these,
LOOCV is expected to be the most reliable given the small
sample size, therefore, we give the most detailed discus-
sion regarding this scheme.

Prediction and Feature Selection Performance
The prediction performance for each dataset was first eval-
uated without feature selection. As apparent in Table 2,
the nonlinear SVM classifier generally outperformed the
linear SVM classifier, and the best prediction performance
(83.3%) was obtained using the nonlinear SVM classifier
in LOOCV evaluation. Although the neg-ion-mode data-
set had a similar prediction performance as the multi-
mode dataset, the analysis of sensitivity (how well cancer
patients can be detected) and specificity (how well con-
trols can be detected), somewhat favored usage of the lat-

ter, in that, the results showed that this dataset achieved a
better balance between sensitivity and specificity (Tables
2). Therefore, only the results of multimode dataset are
analyzed here, the results of the pos-ion-mode and neg-
ion-mode datasets are shown in Table S-2 through S-5
[see Additional file 1].

Next, the prediction performance was evaluated following
feature selection. As discussed in the previous section,
except for L1SVM, the other three feature selection meth-
ods are iterative methods with optimal feature sets deter-
mined according to criteria such as training accuracy (for
SVMRFE, SVMRFE_NL), or generalization error bound
(for SVMRW). In our experiments, a LOOCV average clas-
sification accuracy over the input dataset (for feature
selection) containing only the selected feature subset was
used as the criterion. The reasons are: i) the SVM training
accuracy was almost always 100% until the feature set
became unreasonably small and ii) the minimal generali-
zation error was usually achieved when the feature set was
quite large. The size of the feature set was further restricted
to be less than 50 to allow for fair comparison of the per-
formance with the L1SVM feature selection results.

In this second set of experiments (Figure 2(a)), each fea-
ture selection method was applied to the whole dataset,
then the prediction performance of the dataset containing
only the selected feature subset (panel) was measured
using the three evaluation processes described above. The
estimated predictive performance was surprisingly high
(greater than 90%) under LOOCV (Tables 3 and 4), which
is perhaps the most accurate evaluation technique in this
low-sample setting. The feature selection results of
SVMRFE_NL had the best discriminative power according
to both LOOCV and 12-fold CV evaluation, while the fea-
ture subset selected by SVMRFE archived the best test accu-
racy in 52-20 split validation evaluation and the second
best test accuracy in LOOCV and 12-fold CV evaluation.

The aforementioned experiments can be regarded as
measuring the SVM predictive performance of certain fea-
ture subsets, regardless of how the subsets were obtained.
However, Furlanello et al, 2003 [56] indicated that apply-
ing feature selection over the whole dataset might intro-
duce selection bias into the evaluation of the feature

Table 2: Prediction Performance (%) without Feature Selection (The last column lists the mean and standard deviation of the 
prediction performance (measured by the LOOCV average accuracy) over the permutation test (T = 1000))

Classifier 52-20-split Validation
(50 trials)

12-fold CV
(10 trials)

LOOCV

Accuracy Sensitivity Specificity Permutation Test Results

SVM 75.8 80.3 81.9 81.8 81.6 49.5 ± 7.3

SVM_NL 76.3 81.7 83.3 86.5 80 49.5 ± 7.3
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selection results even if the prediction performance is
obtained through cross-validation. Therefore, a third set
of experiments to compare the generalization perform-
ance of the feature selection methods themselves in com-
bination with SVM was performed under more
conservative settings as illustrated in Figure 2(b). For each
feature selection method, at each evaluation, the method
was first applied only to the training dataset and then the
prediction performance of the selected feature subset on
the validation (test) dataset was measured. As shown in
Table 5, the best prediction performance in this setting
was 80.6%, which is comparable to the prediction per-
formance without feature selection, while the feature size
is reduced, on average, from 592 to 38 (with SVMRFE_NL,
Table 6). LOOCV evaluation leads to a higher test accu-
racy than the other two evaluation procedures demon-
strating the effect of the training set size on the test
accuracy. LOOCV evaluation results indicate that feature
selection using SVMRFE_NL achieved the best prediction
performance, L1SVM was the second best feature selection
method, while SVMRFE was the worst. Both 52-20-split
validation and 12-fold CV evaluation results indicate that
L1SVM performed the best, SVMRFE_NL performed the
second best, and SVMRW resulted in the worst prediction
accuracy. Overall, a clear winner was not easily identifia-
ble among the tested methods.

Experiments designed to test the effect of the bagging
strategy on the prediction performance were also per-
formed (bootstrap sampling was repeated 101 times, i.e.
T = 101). The LOOCV evaluation results (Table S-6) indi-
cate that bagging did not boost the best prediction per-

formance (80.6%). Although it did improve the
classification accuracy for the data with certain feature
selection methods, it also reduced the classification accu-
racy for other cases. Due to these observations and its high
computational cost, the bagging process was not evalu-
ated in further tests.

Statistical Significance of Prediction and Feature Selection
The statistical confidence of the prediction performance
of SVM classifiers on the multimode dataset with LOOCV
evaluation was investigated using a permutation test. The
statistic of interest was the observed difference in classifi-
cation accuracy. Permutation test results (T = 1000)
showed that the classification accuracy differences
between linear SVM and a random classifier, as well as
that between a polynomial kernel SVM (degree 2) and a
random classifier, were statistically significant (p-value =
0), while the difference between linear SVM and polyno-
mial kernel SVM was not (p-value = 0.32).

The statistical significance of the observed classification
accuracy (Table 2, column 4) was also evaluated. This is
captured by the null hypothesis (H0) where the perform-
ance statistics of a classifier on the true data are consistent
with its performance statistics on the data with randomly
assigned labels. The statistic of interest is the classification
performance. The permutation test (T = 1000, results sum-
marized in Table 2, column 7) showed that the results with
SVM classifiers are statistically significant (p-value = 0).

Further assessment of the statistical significance of predic-
tion performance subsequent to feature selection (with

Table 3: Prediction Performance (%): Feature Selection Methods Applied to the Whole Dataset (The last column lists the mean and 
standard deviation of the prediction performance over the permutation test (T = 100))

Classifier Feature Selection 52-20-split Validation
(50 trials)

12-fold CV
(10 trials)

LOOCV

Accuracy Permutation Test Results

SVM SVMRFE 91.1 94.2 95.8 97.7 ± 1.8

SVM L1SVM 84.8 92.1 93.1 81.5 ± 7.1

SVM_NL SVMRFE_NL 88.7 94.3 97.2 92.4 ± 3.5

SVM_NL SVMRW 79.4 86.8 91.7 78.3 ± 6.8

Table 4: Statistics on the Number of Important Features from Models Described in Table 3 (The last row lists the mean and standard 
deviation of the size of the feature selection results, i.e. the number of the selected features, over the permutation test (T = 100))

# Features SVMRFE L1SVM SVMRFE_NL SVMRW

33 42 45 41

Permutation Test Results 39 ± 10 52 ± 4 42 ± 8 32 ± 11
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Prediction Performance Evaluation FrameworksFigure 2
Prediction Performance Evaluation Frameworks. Evaluation frameworks for prediction performance subsequent to (A) 
feature selection applied to the whole dataset, and (B) feature selection applied to the training subsampling during each cross-
validation.
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feature selection applied on the whole dataset, Table 3,
column 5) was performed. The permutation test was
designed as follows: at the tth test, i) a dataset Dt was gen-

erated by random label permutation on the original data-
set D0, ii) each feature selection method A was applied to

the dataset Dt to select an optimal feature subset FA, t, and

iii) the prediction performance  on the dataset Dt

with features in FA, t was measured using LOOCV evalua-

tion. The comparison plot of the trend of the prediction
performance to the number of remaining features during
iterative feature selection method (Figure 3) showed that,
i) the averaged prediction performance of the datasets
generated over the permutation test (T = 100, starts with
around 50% accuracy) gradually catches up with the pre-
diction performance of the multimode dataset (starts with
over 80% accuracy) as the number of remaining features
decreases; ii) for SVMRFE, the maximal value of the aver-
aged prediction performance of the datasets generated
over the permutation test (93.4% ± 4.5% when the feature
size decreases to 55 on average) is close to the best predic-
tion performance of the multimode dataset (95.8% when
feature size decreases to 33); iii) for SVMRFE_NL, the best
average prediction performance of the datasets with ran-
dom label permutations (88.5% ± 4.9%) is comparable to
the best prediction performance of the multimode dataset

(97.2%); iv) for SVMRW, the best prediction performance
of the multimode dataset (91.7%) is much better than
that of the random datasets (70.5% ± 9.0%). As quanti-
fied in Table 3, column 6, the permutation results indicate
a p-value of 0.94 for SVMRFE (i.e. for 94% of the dataset
with random label permutation, the method was able to
find a feature subset that achieves at least as good a classi-
fication accuracy as it did on the original dataset); while
SVMRFE_NL had a p-value of 0.11. These results demon-
strated the effect of selection bias in feature selection as
indicated by Furlanello et al, 2003 [56]. Therefore, these
feature selection methods were further evaluated through
validation. L1SVM (p-value = 0.04) and SVMRW (p-value
= 0.02) appeared to be less affected by selection bias.

A statistical comparison between the tested feature selec-
tion methods was performed to determine if SVMRFE_NL
> SVMRFE > L1SVM > SVMRW, as observed in previous
experiments. (A > B denotes that the feature selection
results of method A generally outperform that of method
B in prediction accuracy.) The descriptor used in this per-

mutation test was , the difference between the

prediction performance on the dataset with the feature
subset output by methods A and B, respectively. The pre-
diction performance difference between the SVMRFE_NL

PFA t,

P PF FA B
−

Table 5: Prediction Performance (%): Feature Selection Methods Applied to Training Subsampling of Dataset during Each Validation 
(The last column lists the mean and standard deviation of the prediction performance over the permutation test (T = 100))

Classifier Feature Selection 52-20-split Validation
(50 trials)

12-fold CV
(10 trials)

LOOCV

Accuracy Sensitivity Specificity Permutation Test Results

SVM SVMRFE 67.7 71.4 69.4 70.3 68.6 -

SVM L1SVM 72.9 76.8 76.4 78.4 74.3 49.8 ± 7.4

SVM_NL SVMRFE_NL 71.6 74 80.6 83.8 77.1 -

SVM_NL SVMRW 61.9 68.2 70.8 67.6 74.3 -

Table 6: Statistics on the Average Number of Important Features of the Models Described in Table 5

Classifier Feature Selection 52-20-split Validation
(50 trials)

12-fold CV
(10 trials)

LOOCV

SVM SVMRFE 22 ± 9 27 ± 9 28 ± 7

SVM L1SVM 34 ± 2 41 ± 2 43 ± 1

SVM_NL SVMRFE_NL 26 ± 8 31 ± 8 38 ± 9

SVM_NL SVMRW 29 ± 9 36 ± 8 40 ± 5
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and SVMRFE methods was statistically significant (p-value
= 0.01, T = 100) while the other observed prediction per-
formance differences were not. These results were proba-
bly affected by selection bias due performing feature
selection on the whole dataset, therefore, a statistical com-
parison between feature selection methods was also con-
ducted in a more conservative way, i.e. through
validation, as described below.

The statistical significance of prediction performance sub-
sequent to feature selection in the more conservative set-
ting (with feature selection applied only to the training
subsampling of each cross-validation, Table 5, column 5)
was also assessed. First, the feature selection methods
were applied to the training subsampling of the dataset to
determine the optimal feature subset. Next, the prediction
accuracy on the test subsampling of the dataset (nonover-
lapping with the training subsampling) was obtained
using the SVM model built on the training subsampling
with only the selected features. The statistic of interest is
the average prediction accuracy over the LOOCV proce-
dure. The permutation test (T = 100) showed that the fea-
ture selection results of L1SVM were statistically
significant (p-value = 0, see Table 5, column 8). Due to the
heavy workload of the involved computations for the iter-
ative methods SVMRFE, SVMRFE_NL and SVMRW over
LOOCV evaluation, permutation tests to analyze the sta-
tistical significance of these methods were not conducted.
Instead, L1SVM was compared with t2-statistics. In this
statistical comparison, for each validation of LOOCV eval-
uation process, L1SVM was applied to the training set to
select out k features and the prediction accuracy on the test
set with these k features was obtained. Next, another set of
k features using t2-statistics computed on the training set
was selected and the prediction accuracy of the test set

with the selected features was measured. The results (T =
100) showed that the prediction performance differences
between the feature selection results of L1SVM (76.4%)
and t2 statistics (59.7%) could be considered statistically
significant (p-value = 0.08, empirical distribution of the
statistic of interest is described in Figure 4(a)).

For completeness, the stability of the feature selection
results over the LOOCV folds was evaluated. At each cross-
validation, a feature subset was obtained; hence the fre-
quency of occurrence of features in these feature subsets
was collected. Utilizing this frequency required the con-
cepts of stable features, features with an occurrence fre-
quency over a certain threshold (80% was used here), and
stability, the ratio of stable features in the union of the
selected feature subsets during cross-validations. The dis-
tribution of feature occurrence frequency over the LOOCV
feature selection results are described in Figure 5, out of
the 73 features selected by L1SVM during LOOCV evalua-
tion, 39 were found to be stable (53.4% stability), SVM-
RFE had 16 stable features out of 90 (stability of 17.8%),
SVMRFE_NL had 26 stable features out of 82 (stability of
31.7%) and SVMRW had 33 stable features out of 77 (sta-
bility 42.9%). The prediction performance of these stable
features (measured by LOOCV averaged accuracy) was
93.1% for L1SVM, 84.7% for SVMRFE_NL, 83.3% for
SVMRFE and 81.9% for SVMRW. The statistical signifi-
cance of the features' stability [57] was further evaluated
using the stability statistics of feature selection results on
the data with random label permutation over the LOOCV
evaluation process as the statistic of interest. The results of
the permutation tests (T = 100) show that the stability of
the L1SVM method was statistically significant with a p-
value of 0.01 (empirical distribution see Figure 4(b)).
Because of the intensive computations involved, statistical

Trends of Prediction Performance over Multimode Dataset and Random Datasets Generated over Permutation Test during Iterative Feature Selection MethodsFigure 3
Trends of Prediction Performance over Multimode Dataset and Random Datasets Generated over Permuta-
tion Test during Iterative Feature Selection Methods. Comparison between the trend of the prediction performance 
of the multimode dataset (in blue square) and that of the averaged prediction performance of the datasets with random label 
permutations (in red square) to the number of remaining features during iterative feature selection methods (A) SVMRFE, (B) 
SVMRFE_NL, and (C) SVMRW. The x-axis is the number of remaining features, and the y-axis is prediction performance 
(measured by the LOOCV average accuracy).
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analyses of stability for the SVMRFE, SVMRFE_NL and
SVMRW methods were not performed.

Metabolite Identification on Selected Features
The calculated neutral masses, species investigated, and
retention times of the positive and negative ion mode ESI
variables used by the multimode SVMRFE_NL and L1SVM

models are reported in Table S-7 [see Additional file 1].
These models consist of the stable features (threshold
80%) obtained over the LOOCV evaulation as described
above. Adduct analysis of the 26 stable SVMRFE_NL fea-
tures provided 19 unique features to search against the
databases while a similar analysis of the 39 stable L1SVM
features provided 25 unique features. Comparison of the
stable, unique SVMRFE_NL and L1SVM features revealed
a total of 19 overlapping features. As identification of
mass spectral features obtained using single-stage mass
analyses is extremely difficult due to the presence of iso-
baric species, only tentative identifications based on com-
parison of the accurate mass and isotopic ratios of the
selected features are provided. Therefore, validation of the
chemical formulae, mass differences (Δm), matching
scores, and identifications listed in Table S-7 for each of
the stable, unique features is outside the scope of these
experiments.

Twelve of the SVMRFE_NL-selected features from the mul-
timode dataset were tentatively identified as endogeneous
carboxylic acids, peptides, glycerophospholipids and hor-
mones. The chemical formulae corresponding to these
twelve features yielded a total of 168 possible compounds
with the total number of isomers attributed to each fea-
ture ranging from 1–32, mass accuracies between 0.1–
15.0 ppm and matching scores between 42.6–99.3%. Two
of the identified features could not be assigned to a single
chemical formulae due to the absence of additional sup-
porting adduct ions in their respective mass spectra. One
of these features was attributed to either lithocholic acid
glycine conjugate or any of eight glycerophosphocholine
isomers while the other was attributed to either any of
eighteen glycerophosphocholine lipids containing a sin-
gle double bond or to any of thirty-two lipids containing
four double bonds. Examples of some of the other com-
pounds that could be tentatively matched to the elemen-
tal formulae obtained in this investigation include 12-
hydroxy-8E,10E-heptadecadienoic acid, palmitic acid,
stearic acid, GlnHisAla, DHEA sulfate, PC(P-16:0/0:0),
PC(10:0/4:0), PE(9:0/10:0), LysoPC(18:2(9Z,12Z)), PE-
NMe(18:1(19E)/18:1(9E)). PC(14:0/20:1(11Z)),
PC(14:0/22:4 (7Z,10Z,13Z,16Z)), and PC(14:0/
22:1(13Z)).

Of the thirteen L1SVM-selected features that could be ten-
tatively identified, twelve were also selected by the
SVMRFE_NL model. The final unique feature, which had
an accuracy of 14.8 ppm and a matching score of 98.8,
was attributed to any of eleven bile acid isomers, such as
5β-chol-9(11)-en-24-oic acid. Although metabolites such
as lysophosphatidic acid and lipid associated sialic acid,
that have been investigated as metabolic biomarkers for
ovarian cancer in literature [7-14], were not pinpointed in
the study, the presence of several endogenous lipids as

Empirical Distribution over Permutation Test on Perform-ance of Feature Selection MethodFigure 4
Empirical Distribution over Permutation Test on 
Performance of Feature Selection Method. Plots 
showing the (A) prediction performance difference between 
the feature selection results of L1SVM and that of t2-statis-
tics (same number of selected features), and (B) stability of 
L1SVM. The x-axis is the statistic of interest of the corre-
sponding permutation test. The y-axis is the frequency of the 
given value of the statistic of interest. The red dotted line 
indicates the observed statistic of interest and a blue bar 
describes the frequency at a given value of the statistic of 
interest from the permutation test.
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well as other endogenous metabolites in the set of selected
features suggests that this approach has merit and should
be further explored. Confirmation of the annotation of
the metabolites and identification of remaining features
selected by the SVMRFE_NL and L1SVM models will
require additional accurate mass MS/MS and 1H-NMR
experiments, and exceeds the scope of this study.

Conclusion
The results presented here demonstrate for the first time
that LC/TOF MS-based serum metabolomic experiments,
in combination with state-of-the-art machine learning
methods, have the potential to generate metabolic finger-
prints of ovarian cancer with diagnostic applications.
LOOCV generally led to a higher test accuracy than the 12-
fold CV evaluation and 52-20 split validation processes,

illustrating the effect of training set size on the test accu-
racy under this low sample number setting. Under
LOOCV, classification of this serum sample test set over
the selected set of features was over 90% accurate and the
feature selection result of SVMRFE_NL had the best pre-
diction accuracy (97.2%). Furthermore, prediction results
obtained under the conservative settings indicated that
feature selection results of SVMRFE_NL method had the
best generalization performance (80.6% with feature size
reduced from 592 to 38 on average). It is worth noting
that L1SVM method led to good generalization perform-
ance under all three evaluation processes.

The statistical confidence of the prediction performance
results by these methods was evaluated and the general
performance of the feature selection methods was exten-

Distribution of Feature Occurrence Frequency over the LOOCV EvaluationFigure 5
Distribution of Feature Occurrence Frequency over the LOOCV Evaluation. Distribution of the frequency of the 
features that occur in the feature selection results over the LOOCV evaluation for (A) SVMRFE, (B) SVMRFE_NL, (C) L1SVM, 
and (D) SVMRW methods. The bar indicates the number of features at a given feature occurrence frequency (red when fre-
quency = 0.8 otherwise blue).
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sively tested. The statistical tests showed that prediction
performance of the SVM/SVM_NL classifiers are signifi-
cantly better than a random classifier, however, the
observed prediction performance difference between the
SVM_NL classifier and the SVM classifier is not statistically
significant. The statistical tests on feature selection meth-
ods showed that selection bias could be introduced if fea-
ture selection methods are applied to the whole dataset
(especially for SVMRFE/SVMRFE_NL methods). This
might affect the prediction performance comparison
between feature selection methods under this setting,
because, according to the statistical tests, the observed pre-
diction performance between any ordered pair of the four
feature selection methods are not statistically significant
except for that between the SVMRFE_NL and the SVMRFE
method. If the feature selection methods are evaluated
under the conservative settings (with method applied on
the training subsampling, and feature selection results
evaluated on the test/validation subsampling), the statis-
tical test results showed that i) the prediction performance
of L1SVM feature selection results was statistically signifi-
cant, ii) the observed prediction performance difference
between L1SVM and t2-statistics was statistically signifi-
cant, and iii) the observed stability of the feature selection
results of L1SVM was statistically significant. Due to the
expensive computational costs of SVMRFE, SVMRFE_NL
and SVMRW methods, statistical analyses of their general-
ization performance were not conducted.

Future studies with larger sample sets will allow the test-
ing of more sophisticated machine learning methods with
various object classes, including objects grouped by can-
cer stages. In addition, utilizing electrospray ion sources
with rapid switching polarity and ultrahigh pressure
(UPLC) separations would optimize throughput and
increase the utility of our approach for diagnostic pur-
poses. The use of higher mass accuracy and resolving
power instruments, coupled to accurate mass MS/MS
experiments to identify all metabolites in diagnostic pan-
els and aid in distinguishing between isomers, are addi-
tional future directions that necessitate more advanced
machine learning methods.
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