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COMPUTATIONAL MODELING OF SOLID TUMOR GROWTH: THE
AVASCULAR STAGE

DIDIER BRESCH ∗, THIERRY COLIN † , EMMANUEL GRENIER ‡ , BENJAMIN RIBBA §

, AND OLIVIER SAUT ¶

Abstract. In this paper, we present a mathematical model for avascular tumor growth and
its numerical study in two and three dimensions. For this purpose, we use a multiscale model
using PDEs to describe the evolution of the tumor cell densities. In our model, cell cycle regulation
depends mainly on micro-environment. The cancer growth of volume induces cells motion and tumor
expansion. According to biology, cells grow against a basal membrane which interacts mechanically
with the tumor. We use a level set method to describe this membrane and we compute its influence
on cell movement thanks to a Stokes equation. The evolution of oxygen, diffusing from blood vessel
to cancer cells and used to estimate hypoxia, is given by a stationary diffusion equation solved with
a penalty method. The model has been applied to investigate the therapeutic benefit of anti-invasive
agents and constitutes now the basis of a numerical platform for tumor growth simulations.

Key words. Avascular tumor growth. Multiscale models. Cell cycle modeling. Fluid dynamics.
Level-set methods.

AMS subject classifications. 65M06 ; 76Z99 ; 92B99.

1. Introduction. Small tumors appear when cells lack of growth control. Un-
controlled proliferation can be the result of different alterations of normal cells prop-
erties (see [31] for a review). In particular, disruption of cell cycle can lead cells to
proliferate without limitation leading to the formation of an initial tumor nodule.

To proliferate, cells need nutrients and oxygen coming from existing vascular
vessels surrounding the tissue where the tumor grows. It is well known that the process
of cancer growth can be divided into two stages [8]. The first stage is the avascular
stage where the cells receive nutrient and oxygen from existing blood vasculature.
Avascular tumors can grow until the lack of nutrient and oxygen limits the extension
of the initial nodule. An avascular tumor can not grow over 106 cells. Starving cells
have the ability to secrete vessel chemoattractants in order to induce the formation
of new blood vessels towards the tumor. This is called the process of angiogenesis [8].
When a tumor is able to induce angiogenesis, it can become vascularized. Vascular
tumors are much less limited in terms of nutrient and oxygen and can metastasize to
distant organs through cells penetration into the newly formed blood vessels. One can
found many mathematical models describing vascular growth of tumors [4, 36, 38, 42].

In this paper, we will focus on the avascular stage where the regulation of the
cell cycle is among the most important factors. It is known that the progression
in the cell cycle is conditioned by the tumor microenvironment. If the environment
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conditions are not adequate (e.g. lack of nutrient) the progression is stopped and
the division process ceases [8, 2]. Furthermore, it is quite clear that the macroscopic
aspects including mechanical constrains and tissue deformation play a significant role
in tumor growth and therefore, there should be complex interactions between the
macroscopic level (tissue level) and the cell cycle regulation (cell level).

There is a significant number of mathematical models representing tumor growth
through the regulation of cell cycle as well as the macroscopic and tissue level. How-
ever, these two factors are somehow separated. Indeed, macroscopic models of tumor
growth integrating tissue mechanical constraints generally do not integrate precisely
molecular or cellular events occurring during cell cycle regulation. For a complete
description of mathematical describing avascular tumor growth, one can see [47].

The present highly integrated framework has been initiated in [45], where more-
over, genetic level was taken into account. In [46], we showed the significant potential
of this approach to investigate recent therapeutic developments.

We use a macroscopic model as cell-based models as [1, 37] are computationally
expensive and have difficulties rendering mechanical effects. Yet, the cell-based models
are adequate to describe the smaller scales and for instance to account for genetic
regulation [5]. Macroscopic models describe the mean evolution of a large number of
cells and are probably more adapted to describe large tumors.

A large number of macroscopic models are based on mass-balance equations writ-
ten for each cellular density [14]. In these equations, one has to compute the cellular
flux representing cell movement and cell birth/death as sources terms. In several
models, the motion of cells is described using a nonlinear diffusion term [48]. These
models are well adapted to describe some interplay between cells (such as contact
inhibition) but can not really account for the influence of an elastic membrane. The
models based on diffusion equations involve few parameters to determine and have
been successfully used for evaluating the efficacy of therapy or resection in the case
of brain tumors for instance [49] or the influence of acidity [28, 29] (let us note that
adding acidity to our model is done in [13]). However, the expressions of the nonlinear
diffusion coefficients (which describe the interaction between different cellular types)
of these models can be difficult to justify. Furthermore some of these models do not
consider the influence of nutrients or mechanical effects.

One can also describe the flux as an advection term [22] where the velocity of
cells is computed assuming a potential flow [3]. The model presented in this paper
belongs to the same class of models, the so-called ”mechanical” models.

Finally, another approach can be used. The tumoral growth can also be obtained
from the evolution of its boundary [35, 21]. Some of these models can be studied
mathematically [27]. This approach is very efficient from a computational point of
view. These models have been successfully coupled to models of neovascularization
[21]. Yet, accounting for the mechanical effects and heterogeneity of the extracellular
medium is more difficult than with models based on cellular densities. Furthermore,
one has to define the tumor boundary which is not obvious in in vivo experiments.
Recently a mixture model [20] was proposed to overcome many of these limitations.

Here, we describe with more details the mathematical and computational model
which will constitute the basis for further therapeutic investigations through successive
biological components integration.

The model is a multiscale model based on a set of PDEs to describe avascular
growth. The tumor will be described by the densities of cells (or numbers of cell per
volume unit) in the quiescent and proliferating phases evolving in time and age in
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the cell cycle (the set of transformations a cell has to undergo in order to divide).
Hence, these densities are governed by equations with an advection term in space
(corresponding to the movement created by the cellular division) and an aging term
as the cells progress in the cell cycle. The transition between phases and cellular
division will be accounted for through the boundary conditions in these equations.

The transition between quiescent and proliferating phases is controlled by envi-
ronmental regulation signals. Our model takes into account two signals influencing
cancer growth. The first one, overpopulation, is activated when there is not enough
free space for cells to proliferate. The second one, hypoxia, is due to the lack of oxygen.
Both signals have been shown to play a significant role in tumor growth [8, 2].

In the model, tumor cells are surrounded by a basal membrane. This membrane
may slow the cancer growth. To describe the mechanical force of the membrane on the
tumor, we use the immersed interface boundary method [41], where the membrane is
represented by a level set function [39]. From this level set function, we compute the
elastic force adapting a method from Cottet and Mâıtre [17]. This force appears as
a source term in the Stokes equations that we use to compute the velocity and pres-
sure. In the vicinity of the membrane, cancer cells release matrix metalloproteinases
(MMP), which are enzymes able to degrade the components of the basal membrane
[46].

This paper is organized as follows. In Section 1, we present our model. In Section
2, we present the numerical schemes used to discretize this model. Finally, in Section
3, we perform various numerical experimentations.

2. Description of the model. In the following, we are interested in the exper-
imental setup described in Figure 2.1. We consider the case of a growing cluster of
cancer cells in a square domain containing a source of oxygen and a basal membrane.

Tumor

O2

O2

O2

O2

Computational domain

Extra-cellular matrix

Fig. 1. Experimental setup considered in this paper.

2.1 Cellular description

We will describe tissue by a fluid model in which the different cellular species
will be described by their densities.

Two different cell densities will be considered. The proliferating one where
cells divide and leads to the tumor growth. According to our hypothesis, if
the environmental conditions are unfavorable, cells turns to a quiescent state,
in which cellular division no longer occurs. We considered that a cell can stay
in a quiescent state forever. However, if the environment changes to be favor-
able again, cells can turn back into the proliferating state. The environmental
conditions are checked at one point in the cell cycle: the restriction point [10].

The mathematical description is done through an age-structured model of the
cell cycle. Cells evolve with respect to time t and to age a. We use a simplified
model with two proliferating phases (whose densities are denoted by P1 and
P2) and one quiescent phase (denoted by Q). Note that the variables P1 and
P2 depend on time, space and age (t, x, y, z, a) while Q only depends on time
and space (t, x, y, z) (since we assume that cells do not evolve in age in the
quiescent phase). The cycle is summarized in Figure 2. The durations of the
phases P1 and P2 are denoted by amax,P1 and amax,P2 respectively. They can be
somehow estimated from the literature [11,12].

2.2 Environmental conditions

In the model, two factors regulates cell cycle transitions. The first one is
related to the total cell density. If this density is above a particular threshold,
we consider that proliferating cells become quiescent. The second one is the
oxygen concentration. As before, if this concentration is below a particular
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Fig. 2.1. Experimental setup considered in this paper.

2.1. Cellular description. Two different cell densities will be considered as
tumor cells can be in two states. The proliferating one, where cells divide, leads to
the tumor growth. And according to our hypothesis, if the environmental conditions
are unfavorable, cells turn to a quiescent state, in which cellular division no longer
occurs. We assumed that a cell can stay in a quiescent state forever. However, if
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the environment changes to be favorable again, cells can return to the proliferating
state. The environmental conditions are checked at one point in the cell cycle: the
restriction point [12].

The mathematical description is achieved through an age-structured model of the
cell cycle [24, 23]. Cells evolve with respect to time t and to age a. We use a simplified
model with two proliferating phases (whose densities per unit volume are denoted by
P1 and P2) and one quiescent phase (denoted by Q). Note that the variables P1

and P2 depend on time, space and age (t, x, y, z, a) while Q only depends on time
and space (t, x, y, z) (since we assume that cells do not evolve in age in the quiescent
phase). The cycle is summarized in Figure 2.2. The durations of the phases P1 and
P2 are denoted by amax,P1 and amax,P2 respectively. They can be evaluated from the
literature [43, 44].

Fig. 2.2. Principle of the simplified cell cycle considered in this paper. The transition between
phases P1 and P2 is controlled by the boolean function f at the restriction point.

Fig. 2. Principle of the simplified cell cycle considered in this paper. The transition
between phases P1 and P2 is controlled by the boolean function f at the restriction
point.

Proliferating phases

P1

P2

a

Mitosis

f
Q

Quiescent phase

threshold, we consider that proliferating cells become quiescent. Therefore, at
each point of the computational domain, we compute the number of cell and
the quantity of oxygen that is available.

In order to describe these tests quantitatively we introduce the following
boolean function

f(t, x, y, z) =






1 if
∫ amax,P1
0 P1(t, x, y, z, a)da + 2

∫ amax,P2
0 P2(t, x, y, z, a)da

+Q(t, x, y, z) < τo and C(t, x, y, z) > τh,

0 otherwise,

(1)
where τo is the cancer overpopulation threshold, τh the hypoxia threshold.
Here C(t, x, y, z) denotes the concentration of oxygen at point (x, y, z) (see
the equation (7) below). The factor 2 before the population of phase P2 comes
from the fact that the cells present in the second part of the cycle will divide
and therefore contribute to the increase of volume.

The evolution of the population of cells in the cycle is described by






∂tP1 +∂aP1 +∇ · (vP1 P1) = 0,

∂tP2 +∂aP2 +∇ · (vP2 P2) = 0,

∂tQ +∇ · (vQ Q) = (1− f)P1(a = amax,P1)−
[

d
dtf

]+
Q(t−),

(2)

where vP1 , vP2 , vQ are the velocities of the three phases P1, P2 and Q re-

spectively, which we shall determine later on. We have denoted by
[

d
dtf

]+
the

positive part of
[

d
dtf

]
. According to the third equation of (2), if the environ-

ment is not favorable, i.e. f = 0, cells in the phase P1 become quiescent and
appear as a source term in the equation driving the evolution of the phase Q.
If the environment is appropriate, i.e. f = 1), these cells enter the phase P2. If
the environment has just turned to be favorable, the quiescent cells reenter a
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2.2. Environmental conditions. In the model, two factors regulate cell cycle
transitions. The first one is related to the total cell density. If this density is above
a particular threshold, we consider that proliferating cells become quiescent. The
second one is the oxygen concentration. As before, if this concentration is below a
particular threshold, we consider that proliferating cells become quiescent. Therefore,
at each point of the computational domain, we compute the number of cells and the
quantity of oxygen that is available.

In order to describe these tests quantitatively we introduce the following boolean
function

f(t, x, y, z) =


1 if

∫ amax,P1
0

P1(t, x, y, z, a)da+ 2
∫ amax,P2

0
P2(t, x, y, z, a)da

+Q(t, x, y, z) < τo and C(t, x, y, z) > τh,

0 otherwise,
(2.1)

where τo is the cancer overpopulation threshold, τh the hypoxia threshold. Here
C(t, x, y, z) denotes the concentration of oxygen at point (x, y, z) (see the equation
(2.7) below). The factor 2 before the population of phase P2 comes from the fact that
the cells present in the second part of the cycle will divide and therefore contribute
to the increase of volume.
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The evolution of the population of cells in the cycle is described by
∂tP1 +∂aP1 +∇ · (vP1 P1) = 0,
∂tP2 +∂aP2 +∇ · (vP2 P2) = 0,
∂tQ +∇ · (vQQ) = (1− f)P1(a = amax,P1)−

[
d
dtf
]+

Q(t−),
(2.2)

where vP1 , vP2 , vQ are the velocities of the three phases P1, P2 and Q respectively,
which we shall determine later on. To describe the aging process, we have added a
derivative on the age a as in [16]. We have denoted by

[
d
dtf
]+

the positive part of[
d
dtf
]
. According to the third equation of (2.2), if the environment is not favorable,

i.e. f = 0, cells in the phase P1 become quiescent and appear as a source term in
the equation driving the evolution of the phase Q. If the environment is appropriate,
i.e. f = 1, these cells enter the phase P2. If the environment has just turned to
be favorable, the quiescent cells reenter a mitotic phase (P2) and leave the quiescent
phase. This transition is captured by the Dirac mass

[
d
dtf
]+

.
To describe the transition between the cycle phases and the cell division, we write

the following boundary conditions on the age a:
P1(a = 0) = 2P2(a = amax,P2),

P2(a = 0) = f P1(a = amax,P1) +
[
d
dtf
]+

Q(t−).
(2.3)

The first equation of (2.3) corresponds to the cell division. The second one states
that:

• If the environment is appropriate, the cells in the first age of the P2 phase
are cells previously in the last age of P1.

• If the conditions change to be favorable, cells in the quiescent phase Q are
added to the phase P2 through the term

[
d
dtf
]+

Q.
As the cells do not evolve in age in the quiescent phases, the boundary conditions

on Q appear as a source term in Eq. (2.2).
We also denote by M the density of normal cells or healthy tissue. This density

evolves through an advection equation

∂tM +∇ · (vM∇M) = 0, (2.4)

where we consider that healthy cells are not dividing relatively to the proliferative cells
and that they do not die from environmental conditions (e.g. there is no apoptosis).

We will also assume that the total number of cells per unit volume is constant.
This means that we consider cells as incompressible (which is certainly not always the
case from the biological point of view, but we make this simplification here since for
the time being it is out of reach to take into account the compressibility of the cells).
Hence the following saturation assumption holds

M +Q+
∫ amax,P1

0

P1(a)da+
∫ amax,P2

0

P2(a)da = N0, (2.5)

meaning that the space is occupied by tumor cells or non-cancerous tissue where N0

denotes the (constant) total number of cell per unit volume. Due to this condition,
the density M can be directly obtained from the tumoral density and thus Eq. (2.4)
will not be explicitly solved.
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Since the system is mainly driven by the birth of new cells in the domain, we
assume that the cells undergo a passive transport (and we neglect other possible
types of cellular movement such as the diffusion of cells) and move at the velocity of
a ”surrounding” fluid v. We therefore take vP1 = vP2 = vQ = vM in (2.2) and (2.4).
In [13], haptotaxy was added to this model.

Let us now differentiate Eq. (2.5) w.r.t. time and use equations (2.2), (2.4) and
the boundary conditions (2.3). It is straightforward to see that it leads to a condition
on the velocity v namely

∇ · v =
1
N0

P2(amax,P2). (2.6)

The divergence of the velocity field is non negative. This corresponds to an
increase of the volume of the tissue and will create a movement of the cells from the
center of the domain to the boundary. The healthy cells are therefore ”pushed out”
through the boundary.

To determine the velocity v, we need an additional equation on v to close the
system (see section 2.4).

2.3. Distribution of oxygen. According to our model hypothesis, oxygen is
essential to the division of cells. We shall describe its distribution at the point (x, y, z)
and time t by its concentration C(t, x, y, z). The oxygen undergoes a diffusion process
and is consumed by tumors cells in proliferating phases, i.e. we neglect consumption
in the quiescent state. As oxygen molecules are much smaller than cells, they are not
affected by the motion created by the mitosis.

We assume that in a part O of the computational domain Ω, this concentration
is fixed. One can imagine O being a network of blood vessel for instance. As an
example, one can consider Fig. 2.1, Ω being the whole computational domain and O
the sources of oxygen in blue.

We also make the adiabatic approximation : the diffusion process occurs on much
smaller time scales that the cellular division. Therefore we suppose that the equi-
librium is reached instantaneously. Collecting these assumptions yields the following
elliptic equation on C

−∇ · (K∇C) = −α
(∑

i=1,2

∫ amax,Pi

0
Pi(a)da

)
C, on Ω \O

C = C0 on ∂Ω,

C = Cmax on O,

(2.7)

where α is the rate of consumption by the proliferating cells and K is the coefficient
of diffusion. We assumed this function K to be dependent on cells distributions and
basal membrane. This function is fully described in the appendix A. Note that Cmax

is the concentration of oxygen in the blood, while C0 is some reference value needed
for the computation on the external boundary of the computational domain.

For the sake of simplicity, we have considered that quiescent and healthy cells do
not uptake nutrient (their consumption is smaller than the one of proliferative cells).
However, if necessary it could easily be added in Eq. (2.7).

2.4. Computation of the velocity. To determine the dynamics of the motion
of the tumor, we have to compute the hydrodynamic variables namely the velocity
v and the pressure P . Classically, they are obtained through a Darcy’s law [46, 3]
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which describes porous media flows which may approximate tumor growth. (In 2D,
Darcy’s law can even be derived from the 3D Navier-Stokes equations for a shallow
flow between two plates [9] in the Hele-Shaw limit. In 3D, this is no longer the case
and Darcy’s law can not be derived from the Stokes equations.) For a complete
comparison of Stokes and Darcy models, one can see [34]. Contrary to the Darcy
model, the Stokes model includes viscous stress. In this paper we chose to use the
Stokes system to describe the hydrodynamical variables:

−∇ · (νD(v)) +∇
(
P +

2
d
νtr(D(v))

)
= F, (2.8)

where D(v)ij = (∂jvi + ∂ivj) is the deformation rate tensor, ν the viscosity (which
will depend linearly on the tumor density in the sequel, see appendix A), F the force
due to the membrane [41] and d(= 2, 3) the dimension of space. This elastic force F
is vanishing outside the membrane.

From (2.5), we know that the total number of cells is constant in the computa-
tional domain. As cells divide, they push their neighbors and other cells are leaving
the domain at its boundaries. Hence, an adequate boundary condition has to be
written for the velocity.

In particular, Eq. (2.6) leads to the compatibility condition∫
∂Ω

v · n =
∫

Ω

P2(amax), (2.9)

where n denotes the normal at the boundary of the domain Ω. Therefore Dirichlet-
type boundary conditions can not be used. We overcome this difficulty as follows.

We decompose the velocity as v = w −∇ψ, where w · n = 0 and ψ = 0 on ∂Ω.
We moreover impose ∇ ·w = 0. Then the function ψ satisfies{

∆ψ = −P2(amax),
ψ = 0 on ∂Ω.

(2.10)

On the boundaries of the domain, we have v · n = −∂ψ∂n , which is known through
Eq. (2.10). As for the tangential component of the velocity v · τ , we choose to use a
Neumann condition:

∂n (v · τ) = 0 on ∂Ω. (2.11)

2.5. Membrane. We wish to take into account the elastic force on the fluid that
a membrane may produce. This force acts as a source term in the Stokes equations
[17]. Note that the width of the membrane is neglected relatively to the tumor size.

2.5.1. Localization. Many methods are available for describing the motion of
a membrane. Among these methods, we can cite: the Volume-of-Fluid methods,
particles methods and level set methods. We choose to use a level set formulation [39]
for its accuracy and because it is easy to implement.

The interface at time t, Γt is considered as the zero level set of a function denoted
by φ(t) and moves with the velocity v. More precisely,

Γt = {x ∈ Ω, φ(t,x) = 0} . (2.12)

If the interface forms a closed curve, we assume that inside the interface, we have
φ(t, .) > 0 and φ(t, .) < 0 outside.
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The evolution of the level set function is given by the following equation

∂tφ+ v · ∇φ = 0, (2.13)

where the initial datum is the signed distance to the interface (i.e. φ(0,x) = d(x,Γ0))
at the beginning of the simulation.

2.5.2. Degradation. The membrane is also degraded by the tumor cells. At
time t, the degradation of a point (x, y, z) of the membrane will be described by
the variable η(t,x), whose values range from −∞ to 1 according to the degradation
(η ≤ 0 meaning there is no longer a membrane at the point considered). While the
degradation state η is only defined on Γt, we will extend it to the whole domain along
the normals to Γt. Later on, we will show how to do it numerically.

The variable η evolves through

∂tη + v · ∇η = −β(M),
∂tM−∇ · (KM∇M) = αM ·

∫
a

(P1 + P2)− αMM,
(2.14)

where the hyperbolic function β is described in the appendix A, KM is a coefficient
of diffusion and αM a production rate. Physically, the quantity M corresponds to
the density of metalloproteinases enzymes produced by the tumor in the vicinity of
the membrane. These enzymes attack the membrane and are also degraded by the
organism at a rate denoted by αM.

2.5.3. Elasticity. We shall now compute the elastic force from η and φ. We
consider a two-dimensional membrane in a three-dimensional flow, we mainly follows
the approach of [17]. The elastic energy of the membrane is given by

E(t) =
∫

Γt

η+(σ)E(T (σ))dσ,

where the elementary energy E is obtained from:

E′(T ) = T0(T − 1), (2.15)

and T (σ) is the stretching factor of the surface at σ, see below equation (2.18) for the
value. The elementary energy E is given by E(T ) = T0

2 (T − 1)2.
To obtain the elastic force F, one uses the relation

d

dt
E(t) = −

∫
Γt

F · v. (2.16)

Given ε > 0, let us define ∆0 = {x ∈ Ω : |φ(0,x)| ≤ ε} and ∆t = {x ∈
Ω : |φ(t,x)| ≤ ε}. Denote by X(t, ξ1, ξ2, ξ3) a parametrization of ∆t such that
X(0, ξ1, ξ2, 0) = Γ0, |∂ξi

X(0, ξ)| = 1, i = 1, 2, 3, ∂iX(0, ξ) · ∂jX(0, ξ) = 0 if i 6= j
and

∂tX(t, ξ) = v(t,X(t, ξ)). (2.17)

For the sake of simplicity, we write Xξi for ∂ξiX from now on.
We have ∂t[φ(t,X(t, ξ))] = [∂tφ](t,X) + ∇φ(t,X) · v(t,X) = 0 from Eq. (2.13)

and (2.17). Hence φ(t,X(t, ξ1, ξ2, 0)) = φ(0,X(0, ξ1, ξ2, 0)) = 0. The surface Γt is
therefore parametrized by (ξ1, ξ2) 7→ X(t, ξ1, ξ2, 0).
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The stretching of the membrane Γt at X(t, ξ) is given by

T (X) = |Xξ1 ×Xξ2 |. (2.18)

In order to compute the elastic force on the tumor due to the membrane, this
stretching has to be obtained from φ and η.

We define the jacobian J on ∆t by

J(t, ξ1, ξ2, ξ3) = det(Xξ1 ,Xξ2 ,Xξ3). (2.19)

The jacobian evolves according to the equation

∂tJ = (∇ · v(t,X(t, ξ))) J. (2.20)

We will now prove that |Xξ1×Xξ2 |(t, ξ) = J(t, ξ)|∇φ|(t,X(t, ξ)). Indeed, we have

∂t(Xξ1 ×Xξ2) = d(v(t,X(t, ξ)))Xξ1 ×Xξ2 + Xξ1 × d(v)Xξ2 , (2.21)

using equation (2.17). We have denoted the tensor [∂jvi]i,j by d(v).
The matrix d(v) can be decomposed into d(v) = tr d(v)

3 Id + S + A, where S is
symmetric with a vanishing trace and A is antisymetric (adapting the proof used in
[17]). We also know that tr d(v) = ∇ · v. Eq. (2.21) yields:

∂t(Xξ1 ×Xξ2) = −S(Xξ1 ×Xξ2) +A(Xξ1 ×Xξ2) +
2
3

tr d(v)Xξ1 ×Xξ2

= −[d(v)]t(Xξ1 ×Xξ2) + tr d(v)Xξ1 ×Xξ2 .

With (2.13) and (2.20), we can also write:

∂t(J(t, ξ)∇φ(t,X)) = ∂tJ(t, ξ)∇φ(t,X)− J(t, ξ)[d(v)]t∇φ(t,X)

= (∇ · v)J(t, ξ)∇φ(t,X)− J(t, ξ)[d(v)]t∇φ(t,X).

Initialy, we have Xξ1(0, ξ1, ξ2, 0) × Xξ2(0, ξ1, ξ2, 0) = [J(0, ξ)∇φ](X(0, ξ1, ξ2, 0))
which completes the proof.

At this stage, our expression for the elastic energy is:

E(t) =
∫

Γt

η+(t,X)E (J(t, ξ)|∇φ(t,X)|) dξ1dξ2. (2.22)

Then, we perform the change of variables x(t) = X(t, ξ1, ξ2, 0) using the La-
grangian parametrization of the surface and the expression of |Xξ1 × Xξ2 |. Let us
denote by J(t,x) the function defined by J(t,X(t, ξ1, ξ2, ξ3)) = J(t, ξ). Note that J
satisfies

∂tJ + v · ∇J = (∇ · v)J. (2.23)

The expression of the elastic energy in Eulerian variables is therefore:

E(t) =
∫

Γt

η+(t,x)E
(
J(t,x)|∇φ(t,x)|

) J−1
(t,x)

|∇φ(t,x)|
dx.

As in [17], the energy is smoothed (on a scale ε << 1), which yields the expression
Eε depending on φ, η and J :

Eε(t) =
∫

Ω

E(|∇φ(t,x)|J(t,x))
1
ε
ζ(
φ(t,x)
ε

)η+(t,x)J
−1

(t,x)dx, (2.24)
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the term 1
ε ζ(φ(t,x)

ε )|∇φ| being an approximation of the Dirac mass on Γt.
Practically, we take ε = 2δ, where δ is the typical spatial step. The smoothing

function ζ is classically defined by:

ζ(y) =
{

1
2 (1 + cosπy) if |y| < 1,
0 otherwise.

In the sequel, we use the notation ζε(φ) = 1
ε ζ(φε ).

To recover the elastic force (through Eq. (2.16)), we differentiate (2.24) w.r.t. the
time variable t and get,

d

dt
Eε(t) =

∫
Ω

(
E(|∇φ|J)

1
ε2
ζ ′(
φ

ε
)∂tφ η+J

−1
+ E(|∇φ|J)ζε(φ)∂tη+J

−1
)
dx

+
∫

Ω

(
E′(|∇φ|J)∂t(|∇φ|J)ζε(φ)η+J

−1 − E(|∇φ|J)ζε(φ)η+ ∂tJ

J
2

)
dx,

where we have

∂t(|∇φ|J) =
(
∇φ
|∇φ|

· ∇(∂tφ)
)
J + |∇φ|∂tJ.

Furthermore, we know that φ is the solution to the advection equation ∂tφ+ v ·
∇φ = 0 and that J satisfies ∂tJ + v · ∇J = (∇ · v)J .

We shall also compute the term ∂tη
+, where we remind that η is a solution of Eq.

(2.14). To perform an identification with (2.16), one has to neglect the right-hand side
of (2.14). This means that we assume that the influence of the rate of degradation
on the elastic force is small. We multiply this equation by 1{η>0} (the characteristic
function of the set {η > 0}) to get ∂tη+ = −v · ∇η+.

We replace ∂tφ, ∂tη+ and ∂tJ by their expressions in the former equations and
we obtain:

d

dt
Eε(t) =

∫
Ω

E(|∇φ|J)
1
ε2
ζ ′(
φ

ε
)(−v · ∇φ)η+J

−1
+ E(|∇φ|J)ζε(φ)(−v · ∇η+)J

−1
dx

+
∫

Ω

E′(|∇φ|J)
(
∇φ
|∇φ|

· ∇(−v · ∇φ)
)
ζε(φ)η+ dx (2.25)

+
∫

Ω

E′(|∇φ|J)|∇φ|ζε(φ)η+

(
∇ · v − ∇J

J
· v
)
dx (2.26)

+
∫

Ω

E(|∇φ|J)ζε(φ)η+

(
∇J
J

2 · v − J
−1∇ · v

)
dx. (2.27)

In [17], this expression can be further simplified since ∇ · v = 0. In our case, this
equation is no longer satisfied by v as shown in Eq. (2.6).

To simplify the equations we will note nφ = ∇φ
|∇φ| and nJ = ∇J

J
.

Here we assume that the membrane does not cross the boundary of computational
domain. From the numerical point of view, if the membrane crosses the boundary we
assume that the membrane is fixed at this point.

After integrating by parts, line (2.25) yields:∫
Ω

E′(|∇φ|J) (nφ · ∇(−v · ∇φ)) ζε(φ)η+ dx =
∫

Ω

∇ ·
(
E′(|∇φ|J)ζε(φ)η+nφ

)
∇φ · vdx.
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We compute

∇ ·
(
E′(|∇φ|J)ζε(φ)η+nφ

)
= (∇E′(|∇φ|J) · nφ)ζε(φ)η+ + E′(|∇φ|J)

1
ε2
ζ ′(
φ

ε
)η+∇φ · nφ

+ E′(|∇φ|J)ζε(φ)∇η+ · nφ + E′(|∇φ|J)ζε(φ)η+κ(φ),

where κ(φ) = ∇ · nφ denotes the curvature.
We will see in section 3.4 how to extend the variable η as a constant along the

normals to the interface. Indeed, from a biological point of view, η is only defined on
the interface and the spatial derivative in the normal direction to the interface has no
meaning. Hence, we can safely assume that ∇η+ · nφ = 0 in the former expression.

The remaining terms in ∇ · v of (2.26) and (2.27) can be written:∫
Ω

(
E′(|∇φ|J)|∇φ| − J−1

E(|∇φ|J)
)
ζε(φ)η+∇ · v dx =∫

Ω

∇
(

(−E′(|∇φ|J)|∇φ|J + E(|∇φ|J))ζε(φ)J
−1
η+
)
· vdx.

We define Ẽ(x) = E′(x)x− E(x). We can develop

∇
(
−Ẽ(|∇φ|J)ζε(φ)J

−1
η+
)

=− 1
ε2
ζ ′(
φ

ε
)Ẽ(|∇φ|J)J

−1
η+∇φ

+ ζε(φ)η+Ẽ(|∇φ|J)
∇J
J

2

− ζε(φ)Ẽ(|∇φ|J)J
−1∇η+

− ζε(φ)J
−1
η+∇Ẽ(|∇φ|J),

where ∇(|∇φ|) = (∇φ·∇)∇φ
|∇φ| = (nφ · ∇)∇φ.

Collecting the above equations, we get:

d

dt
Eε(t) =

∫
Ω

η+ζε(φ)
(
∇E′(|∇φ|J) · nφ + E′(|∇φ|J)κ(φ)

)
∇φ · v

−
∫

Ω

(
E′(|∇φ|J)|∇φ|ζε(ψ)

)
∇η+ · v

−
∫

Ω

ζε(φ)J
−1
η+∇Ẽ(|∇φ|J) · v.

The identification is straightforward, and we obtain an expression of the elastic
force F:

F =− η+ζε(φ)
(
∇E′(|∇φ|J) · nφ + E′(|∇φ|J)κ(φ)

)
∇φ

+
(
E′(|∇φ|J)|∇φ|ζε(ψ)

)
∇η+ (2.28)

+ ζε(φ)J
−1
η+∇Ẽ(|∇φ|J).

The former expression can be further developed. In particular, one has

|∇φ|κφ = ∆φ− nφ · ∇(|∇φ|). (2.29)

However, Eq. (2.28) can be used for the numerical simulations and has fewer terms
than a complete development.
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2.6. Summary of the equations to be solved. We compute the tumoral
densities in the proliferating (P1 and P2) and quiescent (Q) phases with:

∂tP1 + ∂aP1 +∇ · (vP1) = 0,
∂tP2 + ∂aP2 +∇ · (vP2) = 0,
∂tQ+∇ · (vQ) = (1− f)P1(a = amax,P1)−

[
d
dtf
]+

Q(t−),
P1(a = 0) = 2P2(a = amax,P2),
P2(a = 0) = f P1(a = amax,P1) +

[
d
dtf
]+

Q(t−).

The oxygen concentration C evolves through:
−∇ · (K∇C) = −α

(∑
i=1,2

∫ amax,Pi

0
Pi(a)da

)
C, on Ω \O,

C = C0 on ∂Ω,
C = Cmax on O.

The velocity of the motion created by the cellular division is computed (along
with the pressure P ) with the following equations:

−∇ · (νD(v)) +∇
(
P + 2

dνtr(D(v))
)

= F,
∇ · v = P2(amax,P2),
v · n = −∂ψ∂n , ∂nv · τ = 0 on ∂Ω,
F = (2.28),

where the function ψ satisfies:{
∆ψ = −P2(amax,P2),
ψ = 0, on ∂Ω.

The localization (φ) and state of degradation (η) of the membrane obey:
∂tφ+ v · ∇φ = 0,
∂tη + v · ∇η = −β(M),
∂tM−∇ · (KM∇M) = η+ ·

∑
i=1,2

∫ amax,Pi

0
Pi(a)da− αMM

3. Numerical schemes. We have used a finite-volume scheme to discretize our
equations. In this classical scheme [40], all the variables but the velocity are evaluated
at the center of the numerical cells (squares for a 2D scheme, cubes for a 3D scheme).

Let us first introduce the notations. The quantities to be computed depend on
three or four variables: the time t and the space variables x, y and z (in the three-
dimensional case).

For a function u defined on the grid, we write uni,j,k for the average value of u on
the cell centered at the grid point (tn, xi, yj , zk) where tn = n δt, xi = i δx, yj = j δy,
zk = k δz, δt being the time step, δx, δy, δz the spatial steps.

The scheme that we have used is shown in Figure 3.1. For convenience, we have
only represented the bidimensional scheme but the extension to three dimensions is
straightforward.

3.1. Diffusion equation. The evolution of the oxygen distribution obeys the
elliptic boundary-value problem (2.7). A penalty method is used to fix the oxygen
concentration on the part O of the domain. This means that one solves

−∇ · (K∇C) +
1
ε

(C − Cmax)1O = −α

∑
i=1,2

∫ amax,Pi

0

Pi(a)da

C, (3.1)
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Fig. 3.1. A cell in the MAC scheme used in the bidimensional case.

brane obey:






∂tφ + v ·∇φ = 0,

∂tJ + v ·∇J = (∇ · v)J,

∂tη + v ·∇η = −β(M),

∂tM−∇ · (KM∇M) = η+ ·∑i=1,2

∫ amax,Pi
0 Pi(a)da− αM

3 Numerical schemes

We have used a finite-volume scheme to discretize our equations. In this clas-
sical scheme [15], all the variables but the velocity are evaluated at the center
of the numerical cells (squares for a 2D scheme, cubes for a 3D scheme).

Let us first introduce the notations. The quantities to be computed depend
on three or four variables: the time t and the space variables x, y and z (in
the three-dimensional case).

For a function u defined on the grid, we write un
i,j,k for the average value of u

on the cell centered at the grid point (tn, xi, yj, zk) where tn = n δt, xi = i δx,
yj = j δy, zk = k δz, δt being the time step, δx, δy, δz the spatial steps.

The scheme, we have used is shown in Figure 3. For convenience, we have only
represented the bidimensional scheme but the extension to three dimensions
is straightforward.

Fig. 3. A cell in the MAC scheme used in the bidimensional case.

y

x

Vy

Vx

P1, P2, Q, C, η, P, ψ

15for ε small enough (in practice ε = 10−10).
We integrate Eq. (3.1) over one cell and apply Stokes theorem. This yields a

linear system (involving a five-diagonal matrix), that we have to solve at each time
step. For this purpose, we use an iterative method [6, 7].

To ensure continuity of the flux, the diffusion coefficient at the boundaries of the
cell is computed using the harmonic mean as follows.

For instance, in the bidimensional case, to obtain the equation on Cn+1
i+ 1

2 ,j+
1
2

(see

Figure 3.1), we need the values Kn+1
i,j+ 1

2
, Kn+1

i+1,j+ 1
2
, Kn+1

i+ 1
2 ,j

and Kn+1
i+ 1

2 ,j+1
.

According to Appendix A, the diffusion coefficient can be obtained in the center
of the cells by:

Kn+1
i+ 1

2 ,j+
1
2
∼ Dext

(∑
a

([P1 + P2]ni+ 1
2 ,j+

1
2
) +Qni+ 1

2 ,j+
1
2

)
− [η+]ni+ 1

2 ,j+
1
2
,

the function Dext being described in appendix A.

Then, we approximate Kn+1
i,j+ 1

2
by

2Kn+1
i+ 1

2 ,j+ 1
2
Kn+1

i− 1
2 ,j+ 1

2

Kn+1
i+ 1

2 ,j+ 1
2

+Kn+1
i− 1

2 ,j+ 1
2

and use similar approxima-

tions for the remaining values.

3.2. Advection equations and densities evolution. To compute the elastic
force, we have to compute second-order derivatives of the level set function φ as
shown in Eq. (2.28) for instance. Hence, to have a consistent approximation of these
derivatives, we need at least a second order scheme for discretizing the advection
equation on the level set function.

To discretize the various advection equations (on cell densities, level set func-
tion,. . . ), we use a fifth-order WENO discretization in space and a third-order Runge-
Kutta scheme in time [25].

In the following, we briefly recall the principle of WENO schemes. The spatial
derivatives have to be computed at the cells center (as the variable we wish to trans-
port). To avoid large numerical diffusion, we need a high-order scheme to approximate
the spatial derivative. To prevent instabilities, we also have to avoid areas where the
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advected quantity is discontinuous. In the fifth-order WENO scheme, the numerical
flux at the cell boundaries is computed as a convex combination of three 3-points
stencils where each stencil is weighted according to the regularity of the function on
this stencil.

The time step δt is computed at every iteration to ensure that the CFL conditions
holds through:

δt = cCFL min(
δx

|vx|∞
,
δy

|vy|∞
,
δz

|vz|∞
), (3.2)

where we take cCFL = 0.45 in the following.
Thanks to this accurate scheme for the advection equation, we can derive a nu-

merical scheme for the equations leading the evolution of the cellular densities.
Let us denote by χ, the density in a particular phase χ (namely P1 or P2). The

equation on χ is written as:

∂tχ+ ∂aχ+ v · ∇χ+ (∇ · v)χ = 0.

Using a splitting method, we solve this equation with three steps.
In the first step , we solve ∂tχ+ ∂aχ = 0 with an first-order upwind scheme. We

use an optimal time step (δt = δa) since the velocity in age a is constant.
Next, for the equation ∂tχ + v · ∇χ = 0, we use the numerical scheme for the

advection equations, we have just described.
Finally, we can solve ∂tχ + (∇ · v)χ = 0 explicitly. Let us recall that ∇ · v =

P2(amax,P2). We have χn+1 = exp(−Pn2 (amax,P2)δt)χn.
In equation (2.14) describing the evolution of the state of the membrane, the

right-hand is evaluated at the previous time step that is to say that at time tn+ 1
2
, we

take [β(η+ ·
∑
a (P1 + P2))]n+ 1

2 ∼ β([η+]n ·
∑
a [P1 + P2]n)).

3.3. Stokes equation. To compute the velocity and pressure of the fluid, we
have to solve the Stokes equations. The main difficulty is to ensure that the diver-
gence of the velocity satisfies Eq. (2.6). Many methods have been developed for this
problem. For instance, one can see [15, 50]. In order to ensure that we have a correct
value for this divergence, we use the augmented Lagrangian method, see Fortin and
Glowinski [26].

With this method, velocity and pressure are no longer coupled. Boundary condi-
tions are not needed for the pressure term. The principle is to add a pressure term to
Eq. (2.8), {

−∇ · (νD(v)) +∇P = F

ε0∂rP +∇ · v = σ,
(3.3)

where σ = P2(amax,P2) and r denotes the pseudo-time step of the augmented La-
grangian method.

In Eq. (3.3), we have replaced the pressure P by P + 2
dνtr(D(v)). Indeed, we

have

tr(D(v)) = ∇ · v = P2(amax). (3.4)

The stationary solution to (3.3), is the solution to the Stokes equations (2.8).
Between two time steps, we will perform L Lagrangian iterations to approximate the
stationary solution of Eq. (3.3).
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Eq. (3.3) is discretized in time, (Augmented Lagrangian steps are denoted by
fractional time steps): −∇ · (νD(vn+ `

L )) +∇Pn+ `
L = Fn, 1 ≤ ` ≤ L,

Pn+ `
L − Pn+ `−1

L = −r∇ · vn+ `
L + rσn,

(3.5)

where r = dr
ε0

. In our computations, we took r = 2. We replace Pn+ `
L in the first

equation by its expression obtained from the second one. Thus we get a new system,
where velocity and pressure are no longer coupled: −∇ · (νD(vn+ `

L ))− r∇(∇ · vn+ `
L ) = −∇Pn+ `−1

L + Fn − r∇σn, 1 ≤ ` ≤ L,

Pn+ `
L = Pn+ `−1

L − r∇ · vn+ `
L + rσn.

(3.6)
Each equation of system (3.6) is written on a different cell. The second equation

giving the pressure term Pn+ `
L is written on the cell centered on P . For the velocity

components, we use staggered grids shifted by half a spatial step in the direction of
the velocity component we wish to compute.

Thus, a linear system on the velocity is obtained. This system is solved at every
iteration [6, 7]. Once the velocity is computed, the pressure is obtained from the last
equation of (3.6).

It remains to estimate the elastic force Fn appearing as a source term in Eq.
(3.6). We know that this force is vanishing outside the interface. At a given point x
of the domain, we have to compute Fn only if |φ(tn,x)| < ε, otherwise Fn(x) = 0.

We evaluate Eq. (2.28) at time tn. We have to compute [∇φ]n, [∇η+]n, [∇J ]n, κnφ
and [∇(|∇φ|)]n. The first-order terms [∇φ]n, [∇J ]n and [∇η+]n are obtained through
a WENO scheme as in the discretization of the advection equations (2.13) and (2.14).

The curvature κ = ∇ · ∇φ|∇φ| is computed from [∇φ]n by a centered discretization.

3.3.1. Boundary conditions. In order to obtain the values of the velocity v
at the boundary of the domain, we have to compute ψ solution of Eq. (2.10).

First, we compute ψn+1 using the scheme described in section 3.1.
As the computational domain is rectangular, we have vx|n+1

0,j = −[∂xψ]n+1
0,j , vx|n+1

Nx,j
=

−[∂xψ]n+1
Nx,j

, vy|n+1
i,0 = −[∂yψ]n+1

i,0 and vy|n+1
i,Ny

= −[∂yψ]n+1
i,Ny

.
The spatial derivatives ∂xψ and ∂yψ are easily computed at the boundary of

the domain using a second order approximation and the fact that ψ vanishes at the
boundary.

3.4. Redistanciation and renormalization equations. The level set func-
tion ψ evolves through an advection equation (2.13). Initially, the function φ is the
signed distance to the interface. Of course for t > 0, φ is not the distance to the
interface anymore. However at each time step, we need to compute the elastic force,
and to compute accurately the curvature and the normal to the level sets. This is
much easier to ensure with a function that is the distance to the interface.

For this purpose, we introduce a function φd denoting the signed distance to
the interface φ = 0. To compute φd from φ we perform a redistanciation step [39]
consisting in resolving an Hamilton-Jacobi equation on the level set φd:

∂τφd + sgn(φ0) (|∇φd| − 1) = 0, (3.7)
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where φ0 denotes the function φ at the beginning of the reinitialization step and sgn
the (smoothed) sign function defined by:

sgn(φ0)ij =
(φ0)ij√

(φ0)2
ij + δx2

. (3.8)

The original level set function φ can not be reinitialized to a signed distance as
it contains information about the stretching of the membrane.

Let us note that as the sign function is vanishing for the zero level set, this
equation does not modify this level set. This is true at the continuous level not at
a discrete level. However as this redistanciation process is performed at each time
step starting from φ providing the correct zero level set, in our case the error remains
small and does not accumulate over time. The stationary solution to Eq. (3.7) is the
signed distance to Γt. The principle of the redistanciation process is to replace φd by
the stationary solution of Eq. (3.7). This approach was chosen for its simplicity, a
more accurate method can be found in [18].

The discretization scheme is based on [33]. The term ∇φd is computed using a
fifth-order WENO scheme. We then use a Godunov flux, whose expression is simple
in the case of (3.7). The time-integration is performed using a TVD third-order
Runge-Kutta scheme [30].

The pseudo time step δτ depends on the spatial step, we choose to take δτ =
min(δx,δy,δz)

10 which satisfies the CFL condition for Eq. (3.7). The reinitialization
process starts from the zero level set and progresses toward the normals. Thus, only a
few steps of (3.7) are needed to ensure that the function φ is identical to the distance
function in the vicinity of the interface. Practically, a rule of thumb is that it requires
a number of time steps of the order of the number of grid-points in the support of the
smoothing function ζ.

Once the distance is computed, we can evaluate

κφ = ∇ · ( ∇φd
|∇φd|

), nφ =
∇φd
|∇φd|

. (3.9)

We shall also note that the state of the extra-cellular matrix η is only defined on
the zero level of the function φ. To compute ∇η+, we extend the variable on a few
cells around the interface. We perform this extension along the normals of Γt, thus η
is constant along the normals. To this aim, we replace η by an approximation of the
stationary solution to the following equation [51]:

∂τη + sgn(φd)
∇φd
|∇φd|

· ∇η = 0, (3.10)

where sgn is defined in Eq. (3.8). As for the redistanciation equation, we use a WENO
scheme to compute the spatial derivatives and a TVD Runge-Kutta scheme for the
temporal discretization.

4. Numerical Experiments. To save computational time, we use a sub-cycling
method. Indeed, the typical time-scales of all the phenomena are not the same. This
is summarized in Table 4.1.

The various parameters used are listed in Table A.1 of Sec. A. We took the total
number of cells per unit volume N0 (see Eq. (2.5)) equals to 1.
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Table 4.1
Time scales of the various biological phenomena.

Scale Phenomenon Typical value
Cell Cycle Cellular division 1

Cellular scale Diffusion – Degradation 1
10

Fluid Scale Stokes – Advection 1
100

4.1. Environmental and external conditions. In the following experiments,
we use the experimental setup shown in Figure 4.1. We have plotted the interface
|φ| = 0 (while numerically it should be |φ| < ε). The level set function φ is initialized
to the signed distance to the interface. The basal membrane is initially not degraded,
hence we have η0

i+ 1
2 ,j+

1
2 ,k+ 1

2
= 1 if |φ0

i+ 1
2 ,j+

1
2 ,k+ 1

2
| < ε and η0 is vanishing elsewhere.

Fig. 4.1. Experimental setup. The membrane (plotted in white) divides the domain in two
parts. The oxygen supply (in green) can be found in the upper part of the domain, while the initial
tumor is in the lower part. The color bar describes the tumor cells density.

The inital tumoral distribution was taken from a scan image of a lung cancer
(courtesy David Sarrut, Centre Léon Bérard, Lyon, France). Initially, all the tumor
cells are uniformly distributed between proliferating phases.

4.1.1. Hypoxia. In this section, we study the effect of the lack of oxygen on the
tumor growth. We neglect the overpopulation factor (i.e. τo > N0).

The experimental setup is the following. We have taken the threshold of hypoxia
τo = 0.2. For this run, we have used a 100 × 100 grid. The spatial step is equal to
0.08 for both dimensions. We use a CFL condition of 0.45. The experiment is run
until T = 120. The initial tumor was obtained from a scan image. We have taken
Cmax = 10 in Eq. (2.7).

In Figure 4.2, we have plotted the density of total tumoral density and the pro-
liferative density at the end of the experiment.

We observe the growth of the tumor in the direction of the oxygen supply. Indeed,
at the beginning of the experiment, the cells undergo mitosis and the tumor is growing.
However, as there are more and more proliferating cells, the consumption of oxygen
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Fig. 4.2. Total and proliferative tumoral density at the end of the experiment. We have shown
in green two isolines (C = 0.2 and C = 10) of the oxygen concentration C. In this experiment,
cellular division is only controlled by the oxygen concentration.

rises thus lowering the concentration. The hypoxia threshold is overpassed and many
cells become quiescent.

We observe that far from the oxygen supply, the tumors cells are massively qui-
escent and do not participate in the tumor growth. In regions with higher oxygen
concentration, the tumor is still expanding. The mitotic cells are found in the closest
part of the tumor to the oxygen well.

Thus the distribution of the oxygen sources has a great influence on the shape
of the tumor. Simpler models using a constant logistic growth term can not render
this evolution of the shape. A realistic modeling of cellular division has to account
for nutrients and their distribution. As the oxygen distribution is really smooth (one
single circular source), the shape of the tumor is smoothed during the growth. This
may not be the case in realistic setups or experiments as shown in [19].

4.1.2. Overpopulation. We will now study the effect of overcrowding on the
tumor growth. We do not consider the hypoxia effect, so the hypoxia threshold is
vanishing (τh = 0). The overpopulation threshold is τo = 0.5N0.

Let us note that, as the hypoxia threshold is vanishing, the growth is isotropic.
We use the same numerical parameters as in the previous experiment.
The total density of tumor cells (in the quiescent and proliferative state) is shown

in Figure 4.3.
As the tumor grows, it reaches the overpopulation threshold and the cells become

quiescent. Hence, we observe that at the center of the tumor, the density appears to
be lower than at its edges. As the overcrowding effect continues, it stops the growth.

At the end of the run, all the tumor cells are in the quiescent state in the center.
The overpopulation threshold is not attained by outer cells, the cells are still dividing.

Let us also point out, that the shape of the tumor is completely different from
the one observed in the previous section where cells undergo hypoxia. The tumor has
a layered structure with a quiescent core and a proliferative rim. Contrary to other
models, this structure is neither an hypothesis [27] nor enforced by a contact-inhibition
term [48].

4.1.3. Elastic force. In this section, we study the effect of the surface tension
on the tumor growth. For this purpose, we took two different values of T0 in Eq.
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Fig. 4.3. Total and proliferative tumoral density at the end of the experiment. In this exper-
iment, cellular division is only controlled by overpopulation. In particular, tumor growth does not
depend on the distribution of nutrient.

(2.15), T0 = 0.0 and T0 = 0.1. The experimental conditions are the following. The
hypoxia and overpopulation threshold are respectively τo = 0.9N0, τh = 0.5. We let
the experiment run until T = 150. The numerical parameters are the same as in the
previous runs (though in this case the initial tumor is centered on the computational
domain). The position of the membrane is plotted with a plain white line.

Fig. 4.4. Density of the cancer cells at the end of the experiment with varying elasticity of the
membrane. From left to right, we present the results obtained for T0 = 0.0 and T0 = 0.1. The green
line represents the isoline C = 10 of the oxygen concentration.

As expected, with a higher tension of the interface, the tumor shape is different.
The elastic force limits the tumor expansion in the direction of the oxygen supply.
The tumor extends somehow horizontally.

4.2. 3D experiments.

4.2.1. Porosity of the membrane. In this experiment, we consider a tumor
separated from an oxygen supply by a membrane in three dimensions. Depending on
this membrane porosity, the concentration of oxygen will vary in the domain where
tumor cells stand. Thus, the rate of growth and the shape of the tumor will depend
on this porosity.

The porosity of the membrane is modeled by modifying the diffusion coefficient
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across the interface. In this experiment, we have considered a model with exponential
growth (i.e. we consider only one mitotic phase, no quiescent phase, no aging and a
growth rate depending on the oxygen concentration C). The initial tumor is a sphere
separated from the oxygen supply by a membrane, (i.e. the 3D extension of the setup
shown in Fig. 4.1). The results are shown on Figure 4.5.

Fig. 4.5. Density of the tumor cells at the end of the experiment for two values of the porosity
of the membrane. In the rightmost picture, we have considered a lower porosity of the membrane.

As expected, with a lower porosity, the tumor is smaller as the rate of growth
depends on the oxygen distribution.

4.2.2. A complete three-dimensional case. In this section, we study the
evolution of a tumor with a three-dimensional scheme with all biological features the
model can integrates. This initial tumor is a spheroid. The oxygen is supplied to the
tumor by a cylinder where the oxygen concentration is fixed at Cmax = 15.

We took a 74 × 74 × 74 grid, which yields δx = δy = δz = 0.0547945. The two
thresholds are respectively τh = 0.5, τo = 0.8N0. We let the experiment run until
T = 150.

We have shown the density of tumoral cells and the density of quiescent cells at
the end of the run on Figure 4.6.

Fig. 4.6. Total and quiescent density of the tumoral cells at the end of the experiment of a
tumor growing around a blood vessel. The oxygen supply is plotted in red.

At the end of the experiment, the oxygen supply is surrounded by mitotic cells,
while the outer part of the tumor is in the quiescent state: this is the formation of a
tumor cord. We have not made any assumption regarding its structure contrary to
[10] where an extensive mathematical study is performed.
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5. Conclusion. We presented a mathematical and computational model of avas-
cular tumor growth. With respect to existing work, our model describes with more
precision both cell cycle regulation and tissue constraints which allows us to investi-
gate qualitatively the feedback between macroscopic and microscopic levels.

This model uses a continuous approach through several PDEs based on fluid dy-
namics. The velocity is obtained from a Stokes equation, where the spatial expansion
is translated into a constraint on the divergence of this velocity. The influence of a
membrane surrounding the tumor is taken into account as a second hand term in the
Stokes equation following the IMB method. Finally, to describe the tumor environ-
ment, we use a penalty method in a diffusion equation on the oxygen concentration.
We are presently working on a model including tissue elasticity.

From a computational point of view, the model has been implemented with a
spirit of modularity making very easy the implementation of supplement biological
phenomena such as, for instance, the role of acidity on cell cycle regulation. In fact,
the present work constitutes a computational platform for integrating a maximum of
biological knowledge on cancer growth. The significant next step will be to implement
the angiogenesis process which will allow us to propose tumor growth models for both
avascular and vascular stages [11].
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Appendix A. Numerical parameters and functions.
Note that it is impossible to have precise values for the functions and parameters.

Most of the quantities that we consider are taken in order to obtain behavior that are
concordant to biological and medical values. A way to recover the information would
be to use image-driven simulation in the spirit of [32].

The coefficient K leading the diffusion of oxygen in Eq. (2.7) is obtained from
the tumoral density and the position and degradation of the membrane:

K(t,x) = Dext

(∑
a

(P1 + P2) +Q

)
− η+, (A.1)

where the function Dext has the following expression

Dext(z) =
D0 +D1

2
− D0 −D1

2
tanh(

z −D50

D2
), (A.2)

with D0 = 5, D1 = 2, D50 = 1
2 and D2 = 1

20 . This means that the diffusion coefficient
of oxygen is smaller in the tumor than in sane tissue and that the membrane inhibits
the diffusion of oxygen.
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The function β in (2.14) is defined as

β(z) = βmax + βmax tanh(20(z − 4)), (A.3)

where βmax = 5.
The viscosity in equation (2.8) has the following expression:

ν(t,x) =
2− 1

N0
[Q(t,x) +

∑
i=1,2

∫ amax,Pi

0
Pi(t,x)da]

2
,

this means that the presence of tumor cells decreases the viscosity. Indeed the cancer
cells are more soluble than healthy cells.

On Table A.1, we list the various numerical parameters used in our computations.

Table A.1
Numerical parameters used in our computations.

Description Parameter Value
Duration of the phase P1 amax,P1 10

Duration of the phase P2 amax,P2 6

Length of the domain Ld 8

Width of the domain Dd 8
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