
Inertial tolerancing and capability indices in an assembly

production

Pierre-Antoine Adragna, Maurice Pillet, Fabien Formosa, Serge Samper

To cite this version:

Pierre-Antoine Adragna, Maurice Pillet, Fabien Formosa, Serge Samper. Inertial tolerancing
and capability indices in an assembly production. Revue Internationale d Ingenierie Numerique,
Editions Hermes, 2006, 2 (1-2), pp.71-88. <hal-00452137>

HAL Id: hal-00452137

https://hal.archives-ouvertes.fr/hal-00452137

Submitted on 1 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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RÉSUMÉ. Le tolérancement traditionnel considère la conformité d’un lot lorsque le lot de 
production satisfait les spécifications. La caractéristique est considérée pour elle-même mais 
pas en fonction de son incidence dans l’assemblage dont elle fait partie. Le tolérancement 
inertiel propose une autre alternative de tolérancement afin de garantir l’assemblage final. 
L’inertie I= δ2 + σ2 n’est pas tolérancée par un intervalle de tolérance mais par un scalaire 
représentant l’inertie maximale que la caractéristique ne doit pas dépasser. Nous détaillerons 
comment calculer ces tolérances inertielles selon deux cas de figures, si on vise à respecter 
une inertie ou un indice de capabilité Cpk sur la caractéristique résultante dans le cas 
particulier de tolérances uniformes et le cas général de tolérances non uniformes. Un 
exemple servira à comparer les différentes méthodes de tolérancement. 

ABSTRACT. Traditional tolerancing considers the conformity of a batch when the batch 
satisfies the specifications. The characteristic is considered for itself and not according to its 
incidence in the assembly. Inertial tolerancing proposes another alternative of tolerancing in 
order to guarantee the final assembly characteristic. The inertia I = σ2 + δ2  is not 
toleranced by a tolerance interval but by a scalar representing the maximum inertia that the 
characteristic should not exceed. We detail how to calculate the inertial tolerances according 
to two cases, one aims to guarantee an inertia of the assembly characteristic the other a 
tolerance interval on the assembly characteristic by a Cpk capability index, in the particular 
but common case of uniform tolerances or more general with non uniform tolerances. An 
example will be detailed to show the results of the different tolerancing methods. 

 MOTS-CLÉS : assemblage, tolérancement, inertiel, indice, capabilité.  

KEYWORDS: assembly, inertial, tolerancing, capability, index. 

 



1. Introduction 

The traditional tolerancing considers the conformity of a batch when the batch 
satisfies the specifications. The characteristic is considered for itself and not 
regarding its incidence on the final assembly resultant. It has been showed that 
inertial tolerancing (I = σ2 + δ2 which is no more based on a [Min Max] interval 
but on the Taguchi loss function) proposes another tolerancing method to guarantee 
the final assembly while allowing larger variability in the case of centered 
production.  

This paper proposes a method to calculate the inertial tolerances of the 
components of a 1D mechanical assembly chain in two cases: 

- we want to guarantee an inertial tolerance on the final assembly, 

- we want to guarantee a minimum of the Cpk index on the tolerance interval 
[Min; Max] of the assembly characteristic. 

Different cases are considered, even the general case where the components 
tolerances are not uniformly distributed. A comparison with the traditional 
tolerancing will show the difference on the allowed variability of components. The 
two considered cases have different hypothesis of application. We will discuss on 
the choice of using the first or the second approach. 

An industrial case of application will be treated as an example. 

2. Inertial tolerancing, capability indices and conformity 

The aim of tolerancing is to determine an acceptation criterion on the 
components characteristics xi  to guarantee the quality of the assembly resultant Y. In 
the case of a good design, when the x characteristic is produced on the target, the 
quality is optimal. As x gets an offset from the target, the function of the assembly 
will be more sensitive to the conditions of use and the environment, and can lead to 
a non-satisfaction of the customer. Taguchi demonstrated that the financial loss 
associated to an offset from the target is proportional to the square of this off-
centering L = K(T-X)² . (Pillet et al, 2001) shows that in the case of a batch, the 
financial loss associated is L = K(σ² + δ²). Then he defines  

 

Ix =  

 ∑
i=1

n
( )x - Target 2

 n  =  σx
2 + δx

2  [1] 
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This function is called Inertia by analogy to the mechanical inertia. Here Ix 
represents the inertia of the x characteristic, σx is the standard deviation of the batch 
distribution and δx is the offset of the mean to the target.  

To qualify the capability of a process with the inertial tolerancing, two capability 
indices have been defined:  

 

Cp =  IMax 
 σBatch

  [2] 

 

which indicates the capability of a centered process. 

 

Cpi = IMax 
 IBatch

  [3] 

 

which indicates the capability considering the process off-centering.  

Compared to the traditional tolerancing, the proposed approach of the inertial 
tolerancing is quite different. The aim is no more to guarantee a rate of parts out of 
tolerance, but to guarantee the centering of components around the target in order to 
guarantee the quality of the assembly. The reflection is no more based on the 
proportions out of tolerances but on the inertias of the components, the normality of 
the batch distribution is no more a necessary criterion. 

3. Tolerancing of an assembly 

For the tolerancing of assembly systems, the problem consists of finding the 
elementary characteristics xi  of the components in order to obtain a final 
characteristic Y satisfying the functional condition of the assembled product for the 
customers needs. As a general rule, it is possible to approximate the system behavior 
around the target by a linearization at the first order. The final characteristic 
behavior can be expressed by the following relation:  

 

 Y = α0 + ∑
i=1

n
αi.xi  [4] 

 

Where αi  is the influence coefficient of the component i on the assembly 
resultant Y, α0 is the target value of Y and n is the number of components in the 



assembly. For the computation of the components tolerances, the general case will 
be considered where tolerances are not uniformly distributed with the use a 
difficulty coefficient βi ≥ 1, also called feasibility coefficient. The simplified but 
common case will also be presented, where the tolerances are uniformly distributed 
βi = 1, and the incidence coefficients are all equal αi = 1 . 

3.1. Review of the traditional tolerancing methods 

Before the presentation of the inertial tolerancing, here is a brief reminds of the 
traditional tolerancing methods of assembly systems. Three commonly used 
traditional methods are presented.  

3.1.1. Worst of cases tolerancing 

 

In this case, one considers that the final characteristic of the assembly will be 
respected in any cases of assembly. In the general case where tolerances are non-
uniformly distributed, the βi coefficients will be used for the components. The 
tolerance expression of a components is  Rxi = βi . Rx , the assembly resultant is then: 

 

RY = ∑
i=1

n
( )| |αi  . βi . Rx    [5] 

 

Rxi = βi . 
 RY

∑
i=1

n
( )| |αi  . βi 

 [6] 

 

Where RY represents the tolerance interval of the functional condition of the 
assembly, and Rxi is the tolerance interval of the components. Tolerances can be 
distributed regarding different methods by changing the βi coefficients 
(Graves, 2001): 

- Uniform distribution of the tolerance, 

- Considering the tolerances of standard components, or conception rules,   

- Proportional to the square of the nominal length, 

- Considering the process capabilities, 
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In the case of uniform distribution of the tolerance βi = 1 , and same incidences 
of the components αi = 1 , the relation [5] becomes then: 

 

RY = ∑
i=1

n
 Rxi = n . Rxi    [7] 

 

Rxi = RY
n   [8] 

 

The well known inconvenient of this method is the high price of production due 
to the tightened tolerances of the components.   

3.1.2. Statistical tolerancing  

The statistical tolerancing has been developed to consider the low probability of 
having several characteristics in limit of their tolerances simultaneously (Shewhart, 
1931) (Evans, 1975). Under the hypothesis that the xi variables are independent with 
a standard deviation Rxi, the equation [4] gives the following relation:  

 

σY =  ∑
i=1

n
( )αi

2 . σxi
2   [9] 

 

In the general case of non uniform distribution, one consider Rxi = βi . σxi , then: 

 

RY = ∑
i=1

n
( ) αi

2 . βi
2 . σxi

2   [10] 

 

Rxi = βi . 
 RY

∑
i=1

n
( )αi

2 . βi
2 

  [11] 



With tolerances proportional to the standard deviation (Chase et al., 1991), in the 
case of a uniform repartition, and same incidence of the components αi = 1 , the 
relation [10] becomes then: 

 

RY = ∑
i=1

n
 Rxi

2 = n . Rxi
2  [12] 

 

Rxi = RY

n
  [13] 

 

In this tolerancing method, the basic hypothesis is to consider the centering of all 
characteristics on their target values. The inconvenient of this method is that it does 
not guarantee the conformity of the assembly characteristic in all configurations of 
the components. It can be possible that the components respect their tolerance 
intervals, but their off-centering from the target lead to non-conformity on the final 
condition in its tolerance interval.  

3.1.3. Inflated statistical tolerancing: 

Several methods are proposed in order to reduce the negative aspect of the 
statistical tolerancing. A proposed method is the inflated statistical tolerancing 
(Graves, 1997) (Graves, 2001). This method consists of using the inflated 
coefficient  in the tolerancing of the components based on the statistical method.  

 

RY = f . ∑
i=1

n
( )αi

2 . βi
2 . Rxi

2   [14] 

 

Rxi = βi . 
 RY

f . ∑
i=1

n
( )αi

2 . βi
2 

 [15] 

 

Where f represents the inflated coefficient generally chosen around f = 1,5 to 1,6. 
In the case of a uniform distribution of the tolerances and same incidences of the 
components, one has the following relation:  
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RY = f . ∑
i=1

n
 Rxi

2   [16] 

 

Rxi =  RY

f . n
 [17] 

 

In the case where f = 1, one finds the statistical tolerancing method. In the case 
where f = n , one finds the worst of cases tolerancing method. A discussion 
(Graves et al, 2000) on different situations leads to choose different f values. Graves 
proposes an interesting approach to optimize the f coefficient following different 
capability indices. Although this is an improved method, it is possible to find a 
situation where the final assembly characteristic will not well be respected.  

3.2. Inertial tolerancing of an assembly guarantying an inertia on the resultant  

The following results come from (Pillet, 2002). These results are reminded in 
order to be used further. The calculations are done under the hypothesis of a uniform 
distribution of the components tolerances.  

 

σY  = ∑
i=1

n
αi

2 . σxi
2   [18] 

 

δY = ∑
i=1

n
αi . δxi [19] 

 

The inertia of the resultant characteristic Y is defined by the relation [1]. 
Replacing relations [18] and [19], one have the inertia of the resultant in function of 
the components inertias and off-centering: 

 



IY =  ∑
i=1

n
 αi

2 . Ixi
2  + 2 . ∑

i=1

n
 αi . αj . δxi . δxj   [20] 

 

The first part of the equation corresponds to the addition of the squared inertias.  
The double product corresponds to the case where all off-centering of the 
components are on the same side. A discussion is necessary to treat different 
hypothesis.  

 

3.2.1. Hypothesis 1: Worst of cases 

 

This hypothesis of components in their worst of cases considers that the 
component inertia is only due to its off-centering from the target, Ixi = δxi

2 = | |δxi , 
the relation [20] becomes then: 

 

IY =  ∑
i=1

n
αi

2 . δxi
2 + 2 . ∑

i=1

n
αi . αj . δxi . δxj   [21] 

 

In the case where all the αi = 1, and the tolerances are uniformly distributed 
Ixi = δxi , one have the following relations: 

 

IY = n2 . Ix
2 = n . Ix  [22] 

 

Ix = IY
n   [23] 

 

In the general case where the αi coefficients are non-equal and the tolerances are 
not uniformly distributed Ixi = βi . δx , one has the following relation: 
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Ixi = βi . 
IY

 ∑
i=1

n
 | |αi . βi

  [24] 

3.2.2. Hypothesis 2: random distribution of the averages   

 

This hypothesis is close to the consideration made for the traditional statistical 

tolerancing. In this case, the double product ∑
i=1

n
αi . αj . δxi . δxj  is null, the relation 

[20] becomes then: 

 

IY =  ∑
i=1

n
αi

2 . Ixi
2  [25] 

 

In the case where αi = 1, one thus have: 

 

IY = n . Ix
2   [26] 

 

Ix = IY

n
   [27] 

 

In the general case of non-uniform distribution of tolerances, one considers 
Ixi = βi .σxi . From relation [25] one obtains: 

 

IY = ∑
i=1

n
( ) αi

2 . βi
2 . σxi

2     [28] 

 

thus the components inertia can be  



Ixi = βi . 
IY

∑
i=1

n
( )αi

2 . βi
2 

 [29] 

 

3.2.3. Hypothesis 3: off-centering of  δ  = k . σ    of all components.  

 

This hypothesis considers that all components have systematic off-centering 
equals to δ = k . σ . In this case the component inertia is: 

 

Ix = σx
2 + (k . σx)2 = σx .  1 + k2  [30] 

 

then 

 

σx = Ix

 1 + k2   [31] 

 

and 

 

δx = Ix .  1 - 1
1 + k2  [32] 

 

Equation [20] becomes then: 

 

IY =  ∑
i=1

n
αi

2 . Ixi
2 + 2 . ∑

i=1

n

αi . αj . ⎝
⎛

⎠
⎞ 1 - 1

1 + k2  . Ixi . Ixj  [33] 

 

In the case where all αi = 1, one obtains then: 
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IY = n.Ix
2 + n.( n - 1 ).⎝

⎛
⎠
⎞1 - 1

1 + k2 .Ix
2  [34] 

 

thus 

 

Ix = IY

 n.⎝
⎛

⎠
⎞ n.k2 + 1

1 + k2

  [35] 

 

3.2.4. Hypothesis 4: off-centering of m components out of n 

 

In this hypothesis, the designer determines the number of characteristics that can 
have a systematic off-centering. Under these conditions, the double product is 
reduced. In the case where all αi = 1 and tolerances are uniformly distributed, one 
have: 

 

IY = n.Ix
2 + m.(m - 1).⎝

⎛
⎠
⎞1 - 1

1 + k2 .Ix
2    [36] 

 

thus 

 

Ix = 
IY.( )1 + k2

 n.( )1 + k2  + m.k2.(m - 1)   [37] 

4. Inertial tolerancing guarantying a Cpk index on the assembly resultant: the 
corrected inertial tolerancing 

In the case where the aim is to guarantee a Cpk index on the assembly resultant, 
the conformity of this final characteristic is considered regarding a tolerance 
interval. In the most common case where the target is centered in the tolerance 

interval Target = LT + UT
2   where LT is the lower tolerance and UT is the upper 



tolerance and RY = UT - LT
2   is the length of the tolerance interval. The capability 

index Cpk is defined by: 

 

Cpk = Min ⎝
⎜
⎛

⎠
⎟
⎞RY

2  - ( )Target - x

3.σY
, 

RY
2  - ( )x  -  Target

3.σY
  [38] 

 

Which is equivalent to  

 

Cpk = 

RY
2  - δY

3.σY
   [39] 

 

Replacing with the equations [18] and [19], one has the following relation: 

 

Cpk = 

RY
2  - ∑

i=1

n
αi . δxi

3 . ∑
i=1

n
αi

2 . σxi
2

  [40] 

 

In order to define the components inertia in function of the tolerance interval to 
guarantee on the assembly resultant, one considers that the components are centered. 
In this case, the components inertia is only due to their standard deviation: 
Ixi = σxi

2 + 0  = σxi . The resultant is also centered, from where IY = σY , one have 
then: 

 

Cp = RY

6 . σY
  [41] 

 

σY = IY = RY
6 . Cp   [42] 
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In the general case of non-uniform distribution, one considers Ixi = βi . σxi . In 
order to differentiate the Cp index to a prediction index, it will be renamed as the 
ICC coefficient (Inertial Corrected Coefficient). As the hypothesis of centered 
production is considered, one has IY = σY . From the relation [29] one obtains the 
following tolerancing relation: 

 

Ixi = βi . 
 RY

6 . ICC . ∑
i=1

n
( )αi

2 . βi
2 

 [43] 

 

In the case of a uniform repartition of the tolerances and all αi = 1, one obtains 

then: 

Ixi = RY

6 . ICC . n
  [44] 

4. 1. Variations of the Cpk index in function of the components off-centering  

Now it is possible to define the components inertia in function of the tolerance 
interval of the assembly resultant, let us interest in the variations of the Cpk index 
while components are in limit of their inertial tolerances. This hypothesis allows 
expressing the standard deviation in function of the off-centering, one has the 
expression of the batch inertia given by [1], Ixi =  σxi

2 + δxi
2  thus the components 

deviation can be expressed as follows: 

 

σxi =  Ixi
2 - δxi

2 [45] 

 

Which is replaced in [39]. Let us also consider that all δxi = δ , one obtains then: 

 

Cpk = 

RY
2  - n.| |δ

3 . n.( )Ixi
2 - δ2  

   [46] 



 

The component inertias are defined by [44], then: 

 

Cpk = 

RY
2  - n.| |δ

3 . RY
2 

 36 . ICC2 - n.δ2 
  [47] 

 

The Cpk function is pair, the domain of study can then be reduced to δ > 0 , this 
allows to suppress the absolute value function on δ. The derivate function of Cpk at 
δ  is: 

 

∂Cpk
 ∂δ  = 

⎝
⎛

⎠
⎞RY

2  - n. δ .n.δ

3 .⎝
⎛

⎠
⎞RY

2 
 36 . ICC2 - n.δ2

3/2 - 
n

3 . RY
2 

 36 . ICC2 - n.δ2 
 [48] 

 

The variations of the Cpk function are studied thanks to the sign of its derivate 
function continuously defined on [0; Ixi[. One obtains the following table of 
variations. 

 
δ 

 

0 

  δ = RY
18.ICC2   

Ixi = RY

6.ICC. n
 

Cpk 

 

ICC 

 

 

 ICC2-n9 
 

 

+ Infinity 

 

∂Cpk
 ∂δ   -2.n.ICC2

RY
  

_ 

 

0 

 

+ 

 

+ Infinity 

 

Table 1. Variations of the assembly Cpk function depending on the component off-
centering δ for a given number of components toleranced by the corrected inertial 
tolerancing. 

 

The function has a minimum for:  
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δ Min = RY
18.ICC2   [49] 

 

And the value of Cpk is: 

 

Cpk Min = ICC2 -  n9  [50] 

 

These results are interesting because they allow to find the minimum of the ICC 
coefficient value to guarantee a minimum of the Cpk index in function of the 
number of components in the assembly. Thus it is also possible to know how many 
components can compose the assembly in order to guarantee a minimum of the 
resultant Cpk index with a given value of the ICC coefficient: 

 

ICC = Cpk2  +  n9   [51] 

 

n = 9.( )ICC2 - Cpk2    [52] 

 

NOTE. — The results found considering the hypothesis that all component off-
centering are equal δxi = δ  correspond to those found with the gradient method. It 
consists of calculating the Δf  gradient of the Cpk function depending on n variable 
δxi and its Hf  Hessian matrix, and then to find the point for which the gradient is 
null and the eigen values of the Hessian matrix are all strictly positive in order to 
have a local minimum.  In our case, the local minimum of the Cpk is found for all 

δxi = RY
18.ICC2 . A demonstration by recurrence on n and i proves it but will not be 

exposed in this paper.  

4. 2. Variations of the Cpk function regarding the number of components and 
their off-centering   

We will see the influence of the off-centering and the number of components on 
the Cpk index value. Figure 1 confirms the previous results on the Cpk variations. 
An assembly system which components tolerancing has been done with ICC = 1 or 
1,5 has a Cpk which is minimum when all δxi = 0,056 or δxi = 0,025 respectively. 



Cpk  in function of the off-centring 
and the number of components 

0

0.5

1

1.5

2

2.5

3

0 0.02 0.04 0.06 0.08 0.1

Components off-centring

Cpk

n = 3, Pp = 1

n = 6, Pp = 1

n = 9, Pp = 1

n = 12, Pp = 1

n = 3, Pp = 1,5

n = 6, Pp = 1,5

n = 9, Pp = 1,5

n = 12, Pp = 1,5

Figure1. Variations of Cpk indices with different configurations of the number of 
components and ICC coefficient values in function of the components off-centering 
in limit of their inertial tolerances.  

 

The Cpk minimum can be calculated for n < 9.ICC2, from relation [50]. This 
remark can also be observed on the following table where ICC = 1 and 1,5, and n = 
1 to 12. For an ICC index chosen to ICC = 1, the minimum value of the Cpk index 
can be calculated up to n = 9, for n = 12 it is not possible to evaluate the Cpk 
minimum. With a limit study, it can be showed that this minimum tends toward - 
infinity.  

 

Cpk, RY = 1 n = 3 n = 6 n = 9 n = 12 

ICC = 1 0,816 0,577 0,000 - infinity 

ICC = 1,5 1,384 1,258 1,118 0,957 

Table 2. Different values of the minimum of the Cpk index for different number of 
components n and different ICC coefficient values. 

 

A link can be observed between the evolution of the minimum of the Cpk index 
and the ICC coefficient value. With an ICC coefficient ICC = 1, it is impossible to 
guarantee a Cpk index, Cpk > 1 due to this worst configuration of all δxi , even for n 
= 1 when δ ≠ 0. For an ICC coefficient ICC = 1,5, it is possible to guarantee a Cpk 
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index Cpk > 1,1 up to n = 9  components in the assembly. It is nearly possible to 
guarantee Cpk = 1 for 12 components. 

Let us see the variations of the ICC coefficient value for the calculation of the 
inertial tolerances in function of the Cpk index value to guarantee, and the number 
of components in the assembly.  

4. 3. ICC values to guarantee a minimum of the Cpk index in function of the 
number of components.  

From relation [51], one can choose the ICC coefficient value in order to 
guarantee a minimum of the Cpk index of the assembly in its tolerance interval.  

Pp  index garantying a given Cpk  in function  of the number of 
components in the assembly

0

0.5

1

1.5

2

2.5

2 7 12 17

Number of components in the assembly

Pp

Cpk = 1

Cpk = 1,25

Cpk = 1,5

Cpk = 1,75

Cpk = 2

 
Figure 2. Value of the ICC coefficient to take into account in order to guarantee 
different values of the Cpk index in function of the number of tolerance.   

 

Figure 2 is an abacus of the inertial tolerancing guarantying a Cpk index on the 
assembly resultant in the case of a uniform distribution of the tolerances and same 
incidences of the components αi = 1 . Two relations have to be considered while 
dealing with the particular but common case of a uniform distribution of the 
tolerances for an assembly where the components have the same incidences, the 

relations [44], Ixi = RY

6 . ICC . n
 , and [51], ICC = Cpk2  +  n9 . 



4. 4. Validation of the abacus in the case of the generalized tolerancing   

Previous results are obtained in the case of a particular inertial tolerancing with 
uniform distribution of the tolerances and all αi = 1. What are the results in the 
general case of a non-uniformly distributed tolerancing and all incidences are not 
equal? In the general case of non-uniform repartition of the tolerances, the inertia is 
defined by the relation [43] 

Replacing [43] and [45] in the equation of the Cpk defined by [40], we obtain the 
following expression of the Cpk: 

 

Cpk = 

RY
2  - ∑

i=1

n
αi . | |δxi

3 .  RY
2

36 . ICC2 - ∑
i=1

n
αi

2 . δxi
2 

 [53] 

 

One can feel that with a variable change δ = αi . δxi , the minimum of the Cpk 

can be found for the general case for δxi = RY

18 . ICC2. αi
 , in this case 

Cpk = ICC2 - n9  as in the particular case. One can conclude that the abacus 

presented in figure 2 is also applicable in the case of generalized inertial tolerancing.  



Inertial tolerancing guarantying an assembly     19 

5. An application case 

The example will be used to compare the results of the different tolerancing 
methods.  

 

 

 

 

 

 

 

 

 

The target value of the gap is 1mm with a tolerance interval of 1mm, thus +/- 
0,5mm. The tolerance distribution is uniform. The following relation defines the 
assembly relation:  

 

Y = X1 - X2 - X3 - X4 - X5  [54] 

5.1. Application of the different tolerancing methods 

The inertial tolerancing of the two-presented cases (guarantying an inertia or an 
interval) will be compared to the traditional tolerancing methods. In the case of 
application, the tolerance interval RY = 1, the number of components is n = 5. In the 
case of an inertial tolerancing guarantying a capability index Cpk = 1 on the 
assembly resultant, the ICC coefficient to take into account for the inertial tolerances 
calculation is: 

 

ICC = Cpk2 + n9 = 1,25 [55] 

X1 

X2    X3   X4X5 
 
 
 

 

Mini on the condition (LT): 0.5 
Maxi on the condition (UT) : 1.5 



 
Traditional tolerancing Inertial tolerancing 

Worst of case: 

Rxi = RY
n   

Rxi = 0,200 

thus 

σxiMax = 0,033 

Guarantying an inertia by 
worst of case: 

Ixi = RY
6.n  

Ixi = 0,033 

 

Statistical: 

Rxi = RY

 n
  

Rxi = 0,447 

thus 

σxiMax = 0,075 

Guarantying an inertia by 
statistical: 

Ixi = RY

6. n
  

Ixi = 0,075 

 

Inflated statistical,  
f = 1,5: 

Rxi = RY

1,5. n
  

Rxi = 0,298 

thus 

σxiMax = 0,050 

Guarantying a Cpk ≥ 1  
with ICC = 1,25: 

Ixi = RY

6.1,25. n
  

Ixi = 0,060 

 

Table 2. Comparison of different traditional and inertial tolerancing methods. For 
the traditional tolerancing, the tolerance interval of the components is Rxi, and in 

the case of a centered batch, the maximum batch dispersion is σxiMax = Rxi
6  . For the 

inertial tolerancing, the components inertias are expressed by σxiMax =  Ixi . 

The maximum batch dispersion in the case of the traditional tolerancing is useful 
to compare the allowed dispersion on the components with the two methods. For 
inertial tolerancing, when the batch is centered, the maximum batch dispersion 
equals to the inertial tolerance Ixi. It is then possible to compare the maximum 
dispersion allowed for centered components with the different tolerancing methods.  

5.2. Discussion on the case of application 

One can see that the maximum authorized dispersions for the traditional 
tolerancing by worst of cases or statistical are similar to those of the inertial 
tolerancing guarantying an inertia by worst of cases σxiMax = Ixi = 0,033, or statistical 
σxiMax = Ixi = 0,075  respectively. But the maximum allowed dispersion by the 
inflated statistical tolerancing is σxiMax = 0,05, which is lower than the maximum 
authorized dispersion by the corrected inertial tolerancing guarantying a minimum 
of the Cpk index Cpk = 1 which is Ixi = 0,06.  

Before concluding that this last method guarantying a Cpk index gives larger 
dispersion than the inflated statistical tolerancing, let us compare the influence of the 
number of components on this dispersion difference. First, the inflated coefficient 
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f = 1,5 can be compared to the ICC coefficient ICC = 1,25 that is lower. Choosing a 
ICC coefficient ICC = 1,5 is the same as guarantying a Cpk index Cpk = 1,30  for 
an assembly of 5 components, from relation [52], but this also guarantee a Cpk 
index Cpk = 1  for an assembly composed of up to 11 components from relation 
[50], 11,25 = n =9.( )ICC2 - Cpk2  . It is possible to conclude that for an assembly of 
less than 12 components, the inertial tolerancing guarantying a Cpk index Cpk = 1 is 
larger than the inflated statistical tolerancing. Over 12 components, the inflated 
statistical tolerancing gives larger dispersions than the inertial tolerancing 
guarantying a Cpk index, but the inertial tolerancing allows to guarantee a Cpk index 
on the final assembly characteristic, that cannot do the inflated statistical 
tolerancing.  

The comparison between traditional statistical tolerancing and inertial 
tolerancing thanks to the authorized dispersion is dangerous; this comparison can be 
done only for centered batches.  

6. Conclusion 

In this paper has been proposed a corrected inertial tolerancing method, which 
aims to guarantee the conformity of the assembly resultant in a tolerance interval 
thanks to a Cpk index. The ICC coefficient value to take into account for the 
tolerances calculation is found regarding the number of components in the assembly, 
and the minimum value of the Cpk index to guarantee on the assembly resultant.  

The application of this tolerancing method allows to apply the inertial 
tolerancing method but with a link to the traditional tolerancing. That is to say that 
this method allows to guarantee a Cpk index on the assembly resultant while 
applying the inertial tolerancing based on a statistical approach.  
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