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The aim of this brief report is to summarize the work which has been done on the final focus
stabilization. This study is based on the development made by D. Schulte [1] and the report written
by J. Pfingstner [2]. The first part is dedicated to the analysis of the first method that has been
developed and the second part attempts to compare this method with standard controllers that use a
parametric optimization.

1. Analysis of the previous development :

The context :

For instance, we consider a very basic process:

• The displacement of the beam (∆y) which needs to be controlled can be obtained using the
beam position monitor located after the interaction point.

• The  disturbance (X) is the mechanical excitation of the QD0 magnet
• The transfer function between the mechanical displacement of this QD0 magnet and the

beam can be modelled by a constant matrix. 
• The noise of the sensor  (W) is added to the displacement beam..
• The action (kb) meant to reduce the motion of the beam (or the offset between the two beams

at the interaction point) is done by a kicker which is located just next the QD0 quadrupole.
The obtained displacement of the beam is proportional to the injected current of the kicker.

• The dynamic of the system is due to the frequency of the beam train, so the process can be
treated as a first approach as a delay with a gain at a sampling period Te  equal to  0,02 s.

Next, the process is represented in the figure 01 with these different components.

Fig 01 : Feedback  scheme of the considered system
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The closed loop transfer functions taken into account are:

1 – The transfer function between the beam displacement and disturbance:

Y
X

=
G

1GH
=F z−1

2 – The transfer function between the beam displacement and sensor noise:

Y
W

=
1

1GH

It is important to note that, asG  is a pure delay, the effect of the closed loop is the same, in term
of amplitude, for the disturbance input or for the sensor noise input.

The analysis:

The first corrector developed by D. Schulte is:
 

kbn=gi kb n−1gp

 yn
a

gd

 yn− yn−1
a

gd2kbn−1−kb yn−2

Note that we have removed in the original equation the delay introduced in the recursive equation
(we use  yn instead of  yn−1 )

Using the back shift operator z
−1

: 

 z−1 yn= yn−1     

And the notations below:

 yn= y ,kbn=kb

the following transfer function of the corrector can then be considered:

 kb

 y
=H  z=

g pgd−gd z−1

1−gi z
−1−gd2z

−1−z−2
=1

1−2 z−1

1−1 z−11−2z−1

Which can be seen as a lead (or lag) compensator (H1(z)) plus a first order filter(H2(z)):

kb

 y
=1H 1zH 2 z

 With   H 1z=
1−2 z−1

1−1z−1
,H 2 z=

1
1−2 z−1

Using the given set of parameters:  gi=1.0, gp=1.0, gd=0.5, gd2=1.0, we impose the denominator =

1−z−12  which leads to a double integrator in the controller and a great attenuation at low
frequency.
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2. Optimization with classical controller neglecting sensor noise:

In the previous analysis, one or two integrators were imposed into the corrector. In the following,
we do no more imposed an integrator but we only impose to reduce RMS at 0 frequency. The
parameters of the corrector are only deduced from this only consideration, neglecting influence of
sensor noise. 
In order to obtain a more realistic simulation, a real measurement of the ground motion was used,
thanks to Guralp geophone [3]. 
The only things we have to choose is the structure of the controller. Due to previous analysis the
controller structure is the following:

H z=
b0b1 z−1b2z−2

1a1 z−1a2z−2
(1)

Tuning the controller parameters:

The goal is to reduce the RMS(0) (at 0 frequency) of  yz−1
In order to find the best controller that minimize RMS(0), we have used the following steps :

– estimation of the PSD of the measured ground motion signal X z−1=Z xt 
– scanning the parameter space of the controller
– computation of the PSD of the obtained output using:

– PSDY  j =∣F  j ∣2PSD X  j 

– we keep the parameter set of the controller that gives the minimum RMS(0)

The optimized parameters are :

a1=−0,125 , a2=−0,875 , b0=0,375 , b1=1,1625 , b2=0.1875

These parameters  injected in (1) let appear a single integration at the denominator, as 1 is root of it,
but it wasn't imposed, it is only a result of the optimization.

It  is important to note that these parameters depend on the PSD of the input disturbance. (The
previous set of parameters has been computed for  the PSD of ground motion coming from the
L.A.P.P. site). If  this signal is changed in term of PSD (other site, or thanks to a passive/active
isolation), then the optimization will produce another set of parameters.

The transfer function F , also called the sensitivity transfer function, has an important property :

∫
e/2

0
log∣F  j ∣d=0  with eTe=2

It  follows  that  lowering  effects  of  disturbances  at low  frequencies  will  increase  effects  of
disturbances at high frequencies. And, if we use the above optimization procedure for a pure white
noise disturbance, the result is a controller with a transfer function equal to 0.
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Results:

The figures 03  and 04 represent  the  PSD and the integrated  RMS displacements  which  were
obtained with the initial algorithm and the developed one.

Fig 03 : PSD displacement of the beam with a real disturbance

Fig 04 : Integrated RMS displacement of the beam with a real disturbance

One can notice that the optimization technique has allowed the decrease of the RMS (0). Note that
the observed displacement at very low frequencies is lowered regarding to the real displacement due
to the fact that the used sensor has the following transfer function :
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Cs=
s3−159s2

s350,05s22,36s0,06

The figure 05a represents the bode diagram of this sensor and one can notice the attenuation at low
frequencies.

The  next  stage  was  to  compare  these  2  methods  by  using  as  disturbance  a  displacement
measurement on an industrial active table [4] instead of the displacement of the ground motion. The
figure 05b represents the Guralp sensor placed on the TMC table. The aim is to simulate the fact
that the QD0 magnet will be placed on an active table. 

Fig 05a: Bode diagram of the Guralp's transfer function
Fig 05b: Measurement set-up with a Guralp sensor placed on the active table

As the PSD of the disturbance signal has changed, we have to optimized the controller. If we keep
the previous parameter set, the RMS is not minimized.

The new parameter set is then :

a1=−2 , a2=1 , b0=−0,1 , b1=0.8 , b2=−0,6

We can see that the optimization technique leads to a double integrator in the controller. The figures
06 and 07 represent the PSD and the integrated RMS displacements which were obtained with a
perturbation which is a real displacement measurement on an active table.
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Fig 06 : PSD displacement of the beam excited by the measured displacement on an active table

Fig 07: Integrated RMS displacement of the beam excited by the measured displacement on an active table

It is important to note that the values obtained in the above illustration depend on the PSD of the
ground motion which depend on the measurement site as well.

3. Optimization with classical controller and sensor noise considerations:

As explained above, the magnitude of the transfer function between sensor noise and the output is
the  same.  The  following  plot  is  a  zoom for  the  above  optimized  controller  (optimized  for  a
disturbance without TMC table).
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Fig 08: effect of the closed loop on the sensor noise

It is clear that the sensor noise is amplified by a factor 3.5 (or 9.5 dB) around 11 Hz. In order to
lower this amplification, we use the same procedure as above for the optimization but we keep the
controller that produces a maximum amplification of 1.2 (or 1.5 dB).

In that case, we obtain the following parameters set :

a1=−1.8 , a2=0.8 , b0=0,3 , b1=−0.2 , b2=0

that gives a RMS at 0 equal to 2.25.10-8, greater than  previous optimized controller.
Note that the optimization technique scans the parameters with a step equal to 0.1, this could be
refined. The following figure compares the amplification of the noise in the two cases.

Fig 09: noise amplification : comparison of two controllers 
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As expected, the sensor noise is less amplified with the last controller around 11 Hz. But without
other considerations, we are not able to say that this last controller is better than the previous one.
On the other side, it is shown that we can have some action on the amplification of the noise.

4. Conclusions

The proposed method to tune the controller is able to obtain the minimum of the RMS at 0 with a
given input disturbance. It is important to note that it is not possible to lower more RMS(0) by the
mean of a feedback with a Linear Time Invariant controller after the proposed optimization. Thus,
in order to lower RSM at 0 of the output, there are two possibilities :

– minimizing  the  input  disturbance  by  adding  more  mechanical  filters  :  statically  or
dynamically

– adding a feed-forward controller with an estimation of the input disturbance

It  is  also important  to note that  the attenuation of the input disturbance has to be done in the
frequency range were the feedback is not efficient (i.e. were there is no disturbance attenuation and
more obvious were there is an amplification) clearly above 10 Hz.

We also have investigated the effect of the loop on the amplification of the sensor noise. It is shown
that there is always an amplification at high frequency, this amplification can be minimized but the
counterpart is a raise of the RMS at 0.
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