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Abstract—Anomaly detection methods typically operate on schemes are perturbed by packet sampling, even with rela-
pre-processed,.e., sampled and aggregated, traffic traces. Most tively high sampling rates [2], [6]. However, no convincing

traffic capturing devices today employ random packet samplig, ey pjanations and evaluations have been provided for these
where each packet is selected with a certain probability, to observations

cope with increasing link speeds. Temporal aggregation, wdre
all packets in a measurement interval are represented by the
temporal mean, is then applied to transform the traffic trace to
the observation timescale of interest. These pre-processj steps

affect the temporal correlation structure of traffic that is used B, A Sjgnal-Processing View on Packet Sampling and
by anomaly detection methods €.g., Kalman filter, PCA), and Anomaly Detection

have thus an impact on anomaly detection performance. Prior
work has analyzed how packet sampling degrades the accuraof o . . . . .
anomaly detection methods; however, neither theoreticabelana- Statistical anomaly detection is applied on time series
tions nor solutions to the sampling problem have been providd. obtained after two consecutive operations: packet sagplin

This paper makes the following key contributions: (i) It and temporal aggregation. Fig. 1 illustrates the diffesteps
provides a thorough analysis and quatification of how packet inhat are involved in data preprocessing and anomaly detecti

sampling and temporal aggregation modify the signal propeties . L .
by introducing noise, distortion and aliasing. (i) We showthat As mentioned before, packet sampling is applied because of

aliasing introduced by the aggregation step has the largesmpact ~Fouter constraints to leverage the burden of packet capiude
on the correlation structure. (i) We further propose to replace processing on operational elements in the network. Thegtack

the aggregation step with a specifically designed low-passtér  sampling step is generally followed by a temporal aggregati
;g?a{ii‘:]”;eslfgg f"tlﬁlaeSingr%f:;C;-ng‘é)O':finaa::g’;n":f Sg‘gt"(‘e’é[i‘g:'q"“sh grl:wrs that consists of summing (or averaging) the amount of data
can be cor?spider‘ablyir?‘lproved in the presenceyof packet saﬁ‘ipg. that_ arrives during a t',me windows. _Th'_s step S applied to
achieve data compression and to obtain time series at arglev
observation granularity. Statistical anomaly detecticathods
I. INTRODUCTION are applied to the resulting time series. For anomaly detect
o an entropy reduction step is applied to the data. This entrop
A. Motivation reduction generally consits of filtering the normal behavio
Measuring network traffic is crucial for network operator§om the time series. This filtering is typically based on
for the supervision of their networks. Applications usihgse Second order statistics that relies on a correct estimafitine
measurements are, for example, network planning, acqquntitemporm correlation structure. The anomaly detecticelfiis
and more recently traffic anomaly detection. An importartone by detecting rupture in the temporal or spatial coticela
problem with network measurements is related to the burdefiucture of the time series obtained after packet samplil
of capturing, storing, transferring, and processing thgehuaggregation. These rupture will appear in the filtered gigna
amount of data generated at the measurement points. Differafter entropy reduction. A fairly large spectrum of netwiagk
methods have been proposed to cope with the increasing tra@Pplications falls into this category for example PCA, Katm
rates observed in networks. The most prominent of thefiéering, or wavelet-based anomaly detection approaches.
techniques is packet sampling. Packet sampling is inhlgrant  Thus, for analyzing the effect of packet sampling on the
lossy process, discarding potentially useful informati@me performance of statistical anomaly detectors, its impadhe
has to assess and eventually to compensate for the effectseafporal correlation structure needs to be assessed.eFouri
packet sampling, before using sampled data for networkitiseory establishes a strong duality between the frequemdy a
applications. the time domain. Any effect of sampling on the spectra has a
The effect of sampling on estimating traffic statistics is gossibly not trivial) effect on the time domain awitte versa
well investigated topic [4]. These studies have shown thBstimating the spectra of traffic can thus provide insigha in
packet sampling has indeed an effect on the precision tbe effects on anomaly detection. This is the main motivatio
estimating volume statistics that depends on the sampditeg r for taking the detour over spectrum estimation before ggtti
Literature has consistently reported that anomaly detectiinto anomaly detection.
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Fig. 1. Block diagram depicting the common-practice stepgpfe-processing and anomaly detection. Packets are sdmijth a ratep, and then transformed
into a time-series by temporal aggregation with periddAnomaly detection first reduces the time series entropydplying a model of order, and then
makes an anomaly decision applying a preset threstiolthe output of the anomaly detection systems is a seriesedfal

C. Contributions is widely used in practice and we believe the conclusion of

In section 11 we first derive a model for the packet signal 4iS Paper to be relevant to practical situations, our aiTbit

the input of the processing chain. We then carefully study 1© make this paper accessible to the largest audience of
the impact ofpacket samplingand derive the spectrum ofthe networ.klng community. We are therefore add_mg a fair
the signal at the output of the packet sampling block. V@mour!t of introductory ma_terlals in classical samplingtiye )
find that packet sampling introduces a wide-band noise ¢hatiiat Might be seen as trivial by some part of the community
proportional to the inverse of the packet sampling rate.tNeRUt not by all of it. A sign of this last point is that even if
we examine the impact ofggregationand time sampling applymg an an_t|-_allas_|ng low pass _f||ter before sgmpllngus
when applied to the packet sampled signal. We show thtﬂi"a_l step in digital signal processing, we ?hQW in the Pap
this step can be decomposed into an integration (summa’[ig??t |t.has been foreseen by the commqnlty in the relatively
and a regular temporal sampling. We derive the spectrum '8 ge literature on effect of packet sampling.

the aggregated signal, and show that aggregation and time
sampling introduce linear distortion and aliasing.

In section Il we advocate an alternative approach to ag-!n this section, we investigate the effect of packet sangplin
gregation that applies a specifically desigried-pass filter and aggregation on the spectrum of the Internet traffic. &her
to achieve the same effect as aggregatibe.'(translation fore we first introduce a model for Internet traffic that isdise
to the desired granularity of interest), but without furtheln the subsequent analysis. We show with the help of spectral
distorting and aliasing the packet sampled signal. To atgid analysis that packet sampling is essentially adding a rtoise
our approach, we compare the spectra of the signal aftBe spectrum. Then we illustrate that aggregation furtieisa
aggregation and low-pass filtering using synthetic traffid a linear distortion and aliasing to the traffic signal.
show the signal-to-noise ratio (SNR) for both variants fal+
world traffic. We find that the low-pass filter can effectivelyA. Internet Traffic Model

avoid the aliasing in the spectra and leads thus to a bett® SN From an IP layer or above perspective, traffic flowing on
estimation. a link is a sequence of packets of siZe arriving at time

In section IV we examine the impact of packet sampling ang. Packet arrivals are by nature discrete. However, from the
aggregation vs packet sampling and low-pass filtering on thgnal processing point of view, an Internet traffic procisss
normal behavior modeling assuming an auto-regressive (AR)ime-continuous process as the arrival time might take any
model is used for calibration and a Kalman filter as whiteningalue'. Modeling traffic as an evenly-spaced discrete signal of
filter. We show in particular that the noise of a low-passriélte packet sizes means to ignore the arrival time of packeis
signal does not have an important effect on the charadtvisthe analysis and results in dismissal of the temporal cthtex
of the normal behavior model. Further, we provide a disauwssi  We model the traffic process as a modulated stochastic point
on the impact of both approaches on the detection step. process defined a& (t) = 5, L;6(t — T;), whered(.) is the

In section V we validate our findings with real-world dataDirac Delta impulse. We assume that the arrival tirfiesnd
We show that, when performed correctly, packet sampled datacket sized.; are random variables. Generally, this process is
can still be used for anomaly detection. However, there isa@sumed to be stationaie., E{ X (t)} = pu, E{X (t)X*(t+
fundamental trade-off one has to be aware of: to tackle wit)} = R(r) and hence its Power Spectral Density (PSD) can
the increased noise level introduced by low sampling ratdss defined.
one has to increase the time scale (or equivalently reduee thThe processX (¢) is built using two ingredients: a con-
bandwidth) of the anomalies to be detected. tinuous point procesgT7;} defining the packet arrival and

We take care throughout the paper to relate signal proq:;essin1 o o S
parameters as Signal to Noise Ratio, sampling rete, to There is indeed a smallest possible time interval due topbedslimitation

L of the physical link, but we assume it to be very small.

parameter relevant to the network practitioner as Falsenala  2this is applicable in some contexts. See for example [1] ehibis
rate, detection rategtc. (Section IV ). As packet sampling interpretation is used for applicative flow recognition.

Il. SAMPLING AND AGGREGATION



a discrete proces§L;} describing the packet size. A closec
analytic formula for the PSD is only known for the case whet
the packet arrival time§; = T; —T;_, form a renewal process
[10]: , o
Sx(Q2) = A0(Q) — NE{L}"§(Q) (N} =
5]
where )\ is the rate of packet arrivals and E
c
()] &
—j2mQS |k S | - i
®(Q) =2Re) (E{e ™} Ri(k) ~ RL(0), (@ = |-  Speciawith 12 samping |
k>0 — Spectra with 1:5 li
- of Spectra wiin 110 sampling | 1
where R;(k) = E{ngﬁk} is the covariance func'u_on of 7?222;%::2 ﬁg;zzﬁ'{'}:ﬁg S~
packet sizes antE{e~7°} is the characteristic function of o ‘ ‘ ‘ ‘
the distribution ofS. 0 100 200 300 400 500

L . . . Frequency in Hz
Whenever one knows the distribution of the inter-arrivea

times S as well as the autocorrelation of the packet sizesy. 2. Power Sprectral Density (PSD) and theoretical sadot a synthetic
RL(k), one may insert these values into the above formuqzackeF trace th_at is sampled with decrgasing packet sagnr_xﬁtes. Packet
. . ] sampling effectively decreases the amplitude of the spemid increases the

and derive the PSD analytically. However, as explainedrieefo ..o \ooel

the formula is only valid for renewal arrivals and no closed

formula is known today for more general arrival processes.

Unfortunately, empirical observations on Internet traffe in - white noise with variancaVar{ Z }. The signal-to-noise Ratio

contradiction with this hypothesis [8]. We have therefdee, (SNR) after sampling is equal to:

resort to a direct estimation of the PSD to rely on as few

assumptions as possible. IE]{Z}2
It is important to note thalimg_... = AR (0) so that the SNR = WV{Z}

bandwidth of the traffic process becomes infinite. Indeegl, th

infinite bandwidth is an artifact of the modeling assumptioRor a uniform packet selection with probabilitythe SNR

that traffic is a modulated point stochastic process. In, fattecomes proportional te2—; for small values of the SNR

at the physical layer a packet is not a Dirac Delta impuld®comes approximatively proportional to the sampling fate

but rather a flat pulse with a duration proportional to the Let's see if we can reproduce these theoretical results in

packet length. For example, on a 1 Ghit/s link with a minimairactice. We first build a suitable synthetic trace using imvo

packet size of 60 bytes (40 bytes of TCP/IP header plus gfedients: (i) a packet size distribution and (ii) a packetal

bytes of Ethernet header), one would see pulses lasting fsbcess. Packet sizes are generateb,as: L+100x(,, where

480 nanoseconds, occupying a bandwidth of around 6 MHE s a fixed value set td. = 500 andI,, is an Auto-Regressive

This means that physically speaking the real bandwidth is N®&R) process of order 3 defined &s= 22:1 apln_1 + €n,

infinite, but rather in the order of several megahertz. Oudeho with (a;,as2,a3) = (0.5,0.6,—0.8). The autocorrelation of

estimates the spectra correctly up to a bandwidth of sevetiaé packet size can be easily derived numerically using the

hundred kilohertz. For higher bandwidth, however, one ghouwviener-Khinchin theorem as

resort to a precise modeling of the physical layer process. A

the bandwidth of interest for anomaly detection is in theeord Ri(k) = L* + F! < 1 ) (5)

/ _B Sx (Q)dS. @)

of Hertz, we are save to use the defined model. 11+ 500_ apeike|?

where F~1(.) is the inverse discrete Fourier Transform. The
packet arrival is modeled by a renewal process with an
When packet sampling is applied to a trace, we selecteaponential distribution of meag. We used an arrival rate

sample of packets to obsenig. the traffic is only observed at of A = 10000 pkts/sec. The characteristic function of an
the time of arrival of the selected packets. The PSD of a gaclexponential distribution is given by:

sampled proces¥ (¢) can be related to the PSD of the initial N\

processX (t). Let's assume that packet sampling is applied E{eiﬂs} = ]—
to Internet traffic with intensity by keeping each sample JA+ 4
with probability Z. The spectrum of the resulting process is
obtained as [3]:

B. Impact of Packet Sampling

(6)

Using the two functions?;, (k) andE{e/®} and Equation

1, one is able to derive numerically the theoretical form of

Se(Q) = IEJ{Z}2SX(Q) +AVar{Z} (3) the PSD for the unsampled signal. The theoretical formula
predicting the packet sampled spectra is given in Eq. 3.

This equation shows the effect of packet sampling on PSDTo compare the estimated spectra with the theoretically

estimation. The PSD of the sampled trace consists of (i) theedicted, we applied to the synthetic trace a random packet

PSD of the initial signalX (¢) attenuated by a factd]E{Z}Q, sampling with different packet sampling rates and derived t

and (ii) a noise termkWar{Z} that translates to a wide-bandPSD with the Capon estimator described in the appendix.



Fig. 2 shows the estimated PSD for the synthetic trace latv-pass filter with a 3db cut-off frequency gkt = %.
different sampling rates and compares them with the theorefonsequently, by applying aggregation all frequenciegelar
cal spectré. It can be seen that with decreasing sampling ratean f= become highly attenuated. Aliasing happens whgn
p, the amplitude of the spectra is reduced and the base lekat frequency components Iargert%n Aliasing occurs here
of the spectra changes. For low sampling rates=(0.01), with attenuated copies of the spectra. However, as the side
the spectra totally disappears as it is drowned in the sagpliobes are still significant the aliasing effect will be stgorn

noise. particular, when high frequencies with large amplitudeistex
As packet sampling adds a white noise component (see Eq.
C. Impact of Aggregation 3) to the traffic signal, aliasing is very likely to occur when

Aggregation consists of adding up all packets arriving i%ggregatlng packet sampled traffic; and this aliasing warse

an interval k of length = and deriving a temporal mean.Wlth lower sampling rates generating higher noise levels.
This translates a packet trace (sampled or not) into a descr
time series{Z[k]}. The motivation for aggregation is two-
fold: on one hand practical constraints (as computing po
or needed bandwidth to gather the measuremett$,require
data compression; on the other hand the signal gets tradsl|
to the desired granularity of interest. For example, in t
context of anomaly detection short time scale variatioass(l

than a second) are not really of interest as they could btetkla
to changes in the number of flows sharing a link or to the time IIl. SOLUTION: L OW-PASSFILTERING

dynamic of applications; but variabilities in larger timeates ~ We propose to replace the aggregation block with a specif-
are interesting as they can be related to durable changhs ggally designed low-pass filter in order to obtain a better

The resulting aggregated process will have propertiesatet

gompletely different from the initial process, in additiom

the dramatic increase of the noise level and a sharp decrease

W8f the SNR. Moreover, if the unsampled signal has frequency

components larger thagig aliasing will occur even without
acket sampling. We will illustrate the effect of aggregati

fi comparison to our solution in the next section.

as attacks or failures in equipment. spectrum estimation. The purpose of this filter is to reduce
Aggregation is equivalent to applying to the Internet teaffithe bandwidth of the signal, such that (i) the bandwidth of
process an integral operatioe. interest is still retained and (ii) aliasing is avoided.
= 1 [
X=(t) = 5/ X(s)ds. (7)  A. Impact of Low-pass Filtering
= Jt-=

. . . . If we assume that the packet sampled sighdl) has a
followed by a regular temporal time sampling with a penoﬂnite bandwidth. one cal; ceo that i?s _ %91’(5 %B e

= resulting a discrete signaik]. : . . ; . ;
. shifted replicas resulting from time sampling will not ohagr
The PSD of a regularly time sampled procéss(2) can be and the resulting discrete PSD will be an exact copy of the

expressed using the following well known sampling formu"fj}hitial PSD. This is indeed a re-expression of the Shannon-

1 koo Nyquist theorem, that states that any band-limited sidghg
Sy() =% D Sx(Q - k) (8) with bandwidth less tharB, can be perfectly reconstructed
k=—co from a sampled sequenc& (kA), k = —oo,...,+00,

whereQ, = 2 is the time sampling frequency in rad/sec. Theinder the condition thak > 2B. However, if the sampling
resulting spectra consists therefore of periodically atpe frequency is too small fix < 2B), the replicas get mixed
copies of the Fourier transform of the unsampled sighiél) and analiasing effect occurs. Aliasing is a major concern
that are shifted by integer multiples of the time samplingith temporal sampling of signals as it means that the PSD at
frequency. frequency) gets garbled with components from frequencies
Following the formula for the spectra of regularly time samk{ls — 2. The classical approach to avoid aliasing is to elimi-
pled data presented above, and accounting for the rectangdiite high-frequency components that lie outsidefthé: , £ ]
window applied to obtain the aggregation, the PSD of tHgequency band by applying a low-pass anti-aliasing filtehw
signal X =(t) resulting from aggregation applied over a procesk@ndWidth'%S before time sampling.
X(t) is given by: And this is exactly what we are proposing. The packet
. @ - koo)E sialmplt(ajd sfignal isdfilterecli wit_h a Iow—sts fiIt_err] with bar:FiWid
. — k=)= s=, and afterwards regular time sampling with a sampling rate
Sx=() = Z sinc’ < 2 ) Sx (= k=) J%g > % is applied. The filtering step has three very important
(9) functions: (i) It brings the signal to the relevant granitjaof
where sin¢.) is the sinc function an@z = 2Z. interest by filtering variations with a time scale smallearth
Eq. 9 illustrates two effects of aggregation on the specté&- (ii) It acts as an anti-aliasing filter.e., it ensures that the
of the processX (¢): (i) a linear distortion introduced by the following time sampling will not result in aliasing. (iii) &the
coefficient siné(£2); and (i) a repetition of the PSD of Signal-to-noise ratio depends on the bandwidth as pretimte
X (t) modulated by the distortion term at regular interval§d- 4. it limits the bandwidth and thus the amount of noise
. The linear distortion acts as a non-sharp and non-fi@@t will be introduced in the signal.
By applying this method we ensure that the spectra (and
3The spectra have been rescaled to the same level of energy. therefore the temporal correlation structure) obtainexatly

1]

k=—0o0

[m|=
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Fig. 3. Power Spectral Density (PSD) estimated over theeagged and

low-pass filtered synthetic trace. The theoretical speatrthe unprocessed Fig. 4. Empirical SNR vs. theoretical SNR for different sdimp rates (each

signal is added for comparison. The timescale of interest fietween zero point corresponds to a different sampling rate) for an agmpeel and a low-

and 120 Hz. The PSD of the aggregated signal clearly showsnthact of pass filtered real-world packet trace. The empirical SNFhefftitered signal

aliasing, while the PSD of the filtered signal is free of afigs is close to the theoretical SNR (reference line), while tpieical SNR of the
aggregated signal is significantly lower than the thecabBNR for sampling
rates smaller than 100%.

the same as the spectra of the initial signal for frequencies

below 5= In fact, the proposed approach replaces the’sinhe SNR after low-pass filtering and sampling. In partiqular
aggregation filter with a better designed low-pass filtert thehe proportionality of the SNR withZ- is fully validated.
generates less linear distortion in the passband and highefiowever, what is more instructive is the SNR curve for the
attenuation in the stopband. aggregated signal. The SNR calculated after aggregation is
consistently less than the one for low-pass filtering, esfigc

for low sampling rates and thus small SNR values shown on

B. Aggregation vs. Low-pass Filtering : ! W
To illustrate the effect of i d1 fitteri the left side of the graph. As the noise after packet samjiing
0 lustrate the efiect ot aggregation and low-pass g o 56 for aggregation and low-pass filtering, the soufrce o

on the Spec”"?‘ We use again _the syntheuc Frace. In pant,lcut e increased noise level for aggregation is indeed thsiafja
we have applied an aggregation window with a length of 4

usec to the synthetic trace, resulting in a cut-off frequenicy etiect.

11 kHz. To obtain the same bandwidth for the low-pass filterge Low-pass Filtering in Practice
signal, we have designed a filter with a cut-off frequency of
11 kHz, which is followed by a time sampling at 22 kHz.
We show the resulting spectra in Fig. 3. The spectra of tll(%

aggregated signal shows clearly the effect of aliasing.peak : .

outside the band of interest (at 300 Hz) generates an ar(ﬁacanaLOg _(;r(])nverter, landtthzl r_etSLIJItmg S|ginallz1as to be_;:(mi/edrt
peak at 52 Hz) inside the band of interest. The spectra of t%c with an analog lo digital converter. However, it we do
low-pass filtered signal, on the other hand, almost pey\‘ecfl]ot have access to an analog f||t_er, we can S.t'" 'mp'eme”F the
estimates the theoretical spectra in the band of interest. proposed filter in software by using digital signal procegsi

In order to compare aggregation and low-pass filtering in tl%o(r)gvee\(/iir’trfzeor%ae?dgglg;r:/e?gltuinlgltelzls tcr)?f:fe;ghnearltzl)s a\rgedr)':he
presence of packet sampling noise, we compute the signaly w-pass filter bandwidth will be very small (in the order of

noise ratio after applying each method to a real-world tra 2 - : .
from the WIDE project. In particular, we compare the SN lLtmdre.(;is of nallltlhert;t). Therefortg |m.pleme.nt|r|19 at Iovy-spast
resulting from aggregation with a 1s window (resulting in 'ler with good transition properties in a singie step 1S no

cut-off frequency of 0.44 Hz) with the SNR resulting fror‘rPOSSible' Thus, the digital filter implementation consistsa

low-pass filtering with a bandwidth of 0.44 Hz and timeascade of decimation filters reducing the bandwidth and the

sampling with a rate of 1 Hz. sampling rate in several steps.

- . The complexity involved with low-pass filtering is indeed
and the low-pase fitered tface 5. the theoretcal SNR for J0¢1 (e for agregation. However, the burden of figrn
low-pass filtered signal given by ' can be limited by using fewer cascade steps for the decimatio

filter, and thus trading off the precision of the low-pas<filt
for reduced complexity. We are pushing this discussion to

(10)  another paper that will deal with the practical implemeintat

In practice, low-pass filtering can be efficiently implenezht
hardware as an analog filter. Therefore, an analog version
traffic process has to be obtained by applying a digital to

_2EE{z}? (=
S AVar{z} ).
High sampling rates result in high SNR values and are IV. IMPACT ON ANOMALY DETECTION

therefore shown in the right part of the graph. One can seeln this section, we illustrate the impact of aggregation vs.
the very good predictive power of the theoretical formula fdow-pass filtering on anomaly detection. In particular, \wews

SNR Sx (Q)dQ
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0001 000z 0008 00 e campling pate 2 °® Fig. 5 depicts the AR model error variance for the aggre-

gated signal and the filtered signal, and the expected error
Fig. 5. Comparison of the noise variance captured by an egtessive i i i i
(AR) model for a filtered and and aggregated traffic trace asnation of variance (proporuonal to. the samphng_ ra%e). T.he flgure
the packet sampling rate. The variance of the innovatiocga® at the output shows that the error Va”a_nce of the filtered S'gnal_|s close
of the Kalman Filter (KF) is also shown. The AR model noiseiaraze for to the expected error variance at least for sampling rates
the filtered signal is almost two orders of magnitude smahlan the model Iarger than 1:10. The error variance for the aggregatedabign
noise variance of the aggregated signal. T . . - .

on the other hand overestimates the modeling noise variance

by a coefficient of 5. The most striking observation from
how the aliasing noise affects the entropy reduction step ahid: © IS, however, the huge difference of AR model noise
the anomaly decision. variance (almost 2 _ord(_ers of magnitude) for the _flltered and
the aggregated traffic signal. We also plot the variance ef th
innovation process estimated by the Kalman filter as functio
of the packet sampling rate for the filtered and aggregated

To illustrate the effect of packet sampling on anomalgignal as we will need this in the following discussion.

detection, we compare here a normal behavior model derivedhe Kalman filter state space model can be stated as

from the signal obtained after aggregatiofit], and the signal {x[kz k1] = (A= Ko CAX[E] + Kaoylk]

A. Entropy Reduction

after low-pass filtering and time samplingk]. One way to
derive a normal behavior model is to use an autoregressive e[k] = —CAx[k[k] + y[K]
(AR) model [12]. An AR model for the signaj[k] is defined where the input is the observed signgk], the output is the

as: n innovation process[k] and the state vector is the estimate of
y[k] = Z agylk — i + € (11) the state value. The matricé§ A correspond to the values in
= the state space representation of the AR model. The transfer

function of the Kalman filter can be derived from the above

whereg, is a noise term with variance?. Model calibration state space representation as

consists of choosing the order of the modelthe coefficient

«; and the noise variane. It is well known that any process W(z) = 1

can be approximated by an AR model with a high enough 1-CA(zl = A+ Koo C) 7 Koo

order. These parameters can be derived in several ways. W8Ve show in Fig. 6 the frequency response of the AR model

will use in the forthcoming the Burg estimator to estimate thcalibrated over the filtered and aggregated signal for unsam

coefficientse;; and o2 [13]. The Burg method uses the estipled and sampled traffic. One can observe that the AR model

mated autocorrelation to derive these parameters. The ofdetransfer function for the filtered signal is not very sensiti

the model is chosen by using a Minimum Description Lengtie the packet sampling noise. The transfer function obthine

criterion trading off the quality improvement resultingpfn  from the aggregated signal seems much more sensitive. Last

higher order with the increase in the number of parametdrdt not least, the graph shows that the filtered signal eaable

[11]. a rich inference of the normal behavior structure, wherbkas t
We use the WIDE traces for illustration and set the aggraggregated signal results in an almost flat spectra. We &$o p

gation window to 1s and the filtering bandwidth to 0.44 Hihe transfer function of the Kalman filter for both signalé.eT

(equivalent to the cut-off rate of the aggregation). We wbtafigure show clearly the whitening action of the Kalman filter.

an optimal model with an order 5 to 7 AR model in all cased.he transfer function of the Kalman filter approximates very

To enable easier comparison we use for all cases an AR modell the inverse of the spectra of the calibrated model,

of order 6. whenever the Kalman filter is fed with a signal following the
Let's first analyze the variance of the random term of thgpectra of the calibrated AR model, the output will exhibit a

model. Intuitively, the noise in the signal input to the miaalg  flat spectra and will be uncorrelated.

phase should be transferred to the model noise, however this

relation is not straightforward and no precise relation cdh Anomaly Decision

be obtained. Equation 3 suggests that the amount of nois@he whitening property of the Kalman filter ensures that

resulting from packet sampling will be proportional igﬂ the innovation signal at the output is an uncorrelated rando

(12)
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Fig. 6. Spectra of the autoregressive (AR) model and thesfearfunction (TF) of the Kalman Filter for two signals: Iguass filtered (left) and aggregated
(right) at two sampling rates 1:1 and 1:100. The AR modelbcated over the filtered signal is clearly less sensitiveht fiacket sampling than the model
calibrated over the aggregated signal. Further, the filtsignal AR model captures a larger part of the normal behatiwicture, while the aggregated AR
model spectra is almost flat.

signal with a known varianc&;(p). This variance is a side proportionality assumption holds from = 0.1. This gives
product of the Kalman filtering algorithm and is used t@ = 5.7 x 10~ for filtered traffic andC' = 1.9 x 102 for
determine if an observation is normal or not. Let's assunee taggregated traffic (note the coefficient of 34 between these t
anomaly signak[k] and is applied to the system at tificOne values). We can therefore write the false negative proiabil
can expect to see along with the anomal¥| some normal for an anomaly with maximal amplitude after Kalman filtering
traffic n[k] crossing the network. So that the traffic enterind/(a) as a function of the sampling rajeand the decision
the Kalman filter isa[k] + n[k]. Knowing the transfer function thresholdD:

of the Kalman filter (Eq. 12) one can determine exactly how D (M(a) — D)

the anomaly will present itself at the output of the whitenin P (p, D) < 2% Q(\/I_?T) (14)
filter. From the transfer function, by applying a Z-transfipr - ) )

one can derive the impulse response of the Kalman fil{é. Similarly a false positive occurs when the innovation pesce

The output resulting from the anomalous part of the sigifal value goes beyond the decision threshold when there is no

is thereforee, [k] = alk] * w[k] = Zi:o aln — kJwlk]. Due to anomaly. The probability of such an eveRE4(p) is given
the whitening property of the Kalman filter, the signallk] PY D
resulting from the normal part is an uncorrelated signat tha PFA(p, D) < 2% Q(\/ﬁu) (15)
can be assimilated to a white noise with a known variance. ¢

This means that when an anomaly is present in the traffie/4(p, D) does not depend on the anomaly and therefore has
we can see at the output of the anomaly detector a sigmal subscript. These two values are an upper bound that can be
e[k] = ealk] + e,[k]. An anomaly can be detected only ifused for design purposes as illustrated later. A ROC curae ca
for some value ofk, e[k] > D, where D is the anomaly be derived by plotting the points?”4(D),1 — PMP (p, D))
detection threshold. To be on conservative ground, we assufor varying values of the decision threshal?l
an anomaly signal gets detected when it attains its peak, The derivation presented is related to a single type of
M(a) + en[k] > D. anomalya[k] with maximal amplitudeM/ (a). In practice one
Under a gaussian assumption for the normal innovation praill see different types of anomalies with different maxima
cess, * the false negative probabiliti"’’” can be computed amplitudes. Let's assume that the distribution\éfa) is given

as: M D by P(a). Hence, one can expect the overall false negative
pD _ g, M) =D, (13) probability to be bounded by:
v ile) o - (M(a) = D)
where V;(p) is the variance of the innovation process at a '~ (p. D) < 702 * Q(\/ﬁT)P(a)da (16)

packet sampling ratp. The coefficient 2 accounts for situa- . )

tions where the maximal amplitude is negative. If the signgh?onerall RMODC curve consequently contains the points

is non-gaussian we have to replace the complementary ivef§ ~ (7: D), P*'Z(p, D)) for different threshold values.

error functionQ(.) with the corresponding complementaryiowever, derivingP(a) can be very difficult as we need to

inverse function of the distribution of the innovation pess. Nave a complete characterization of anomalies. This last po
We stated previously thaV;(p) < % where C is a s still a white spot in the research landscape

constant. Based on Fig. 5 we can gét= 0.1V;(0.1) as the

V. EVALUATION

4The Kalman filter as well as PCA based methods are defined icothiext Th b lvsi . . . h ff f
of a gaussian hypothesis. They can be used in non-gauskiatisis but they e above analysis gives a precise view on the effect o

will not be anymore optimal. packet sampling on anomaly detection. Next, we describe how
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Fig. 8. Comparison of the false negative (misdetectionjoghbdity for 20 Fig. 9. Comparison of the matching probability obtainedrowggregated,
injected synthetic anomalies with the theoretical uppenribfor low-pass low-pass filtered, and readjusted (decreased bandwidii)péss filtered
filtered and aggregated traffic for different sampling rafifse filtered signal traffic signal for different sampling rates. The readjustiétered signal
clearly outperforms the aggregated signal. achieves the highest matching probabilities.

to design an appropriate low-pass filter that has a guardnt&e Real Traffic Trace

anomaly detection performance at a given sampling rate (thaginally, we validate the findings of this paper by applying
is acceptable for the capturing devices) and for a give{) the steps (packet sampling, filtering or aggregatioriyita
anomalya[k]. One can use the two equations 14 (or 16 if thgitering and anomaly detection) to a real packet trace. Vée us
statistics are known) and 15 in order to choose the sampligthacket trace from an experiment that launched a distdbute
ratep and the threshold valu®. However, this choice might (from 5 different sources) Denial of Service attack in an
resultin a sampling rate that is not acceptable becauseit#imo gperational network. The attacks were generated using the
constraints. In this case, one has to select a lower samiteg TEN2K tool and consisted of 18 epochs of 100 secs where
and reduce the noise introduced into the signal by adaptigg attack with an increasing intensity is launched. Eacichtt
the bandwidth of the low-pass filter. This means that Wg separated by a 300 secs pause period. This experiment was
are introducing a trade-off between the bandwidth of irgerey, in the context of the MetroSec project [7] funded by the
(the low-pass filter bandwidth) and the packet sampling. ragrench government. The attack trace can be obtained upon
Anomalies at smaller timescales need higher packet sagpligquest from the authors. The nice property of these traces
rates. is that they contain known anomalies. However, the complete
ground truth cannot be known as one is never sure if there was
not an anomaly in the period were no anomaly was detected.
A. Synthetic Anomalies It is noteworthy that the goal of this paper is not to evaluate
an anomaly detection method. If this was our goal we would
Let’s first validate the formula for the false negative probhave needed indeed to know as precisely as possible the
ability. For this purpose we assume an anomaly that consigi®und truth. However, the goal of this paper is to evaluage t
of a pulse with duration 5s with an amplitude equal teffect of packet sampling on anomaly detectibe,, the main
0.1m, wherem is the mean traffic value. According to theperformance criteria is the matching probability definedhas
frequency response of the Kalman filter given above, we nbtaikelihood that an anomaly detected on the non-sampledabign
M (a) = 0.13m for the low-pass filter and/(a) = 0.1/ for s also detected in the sampled signal with the same threéshol
aggregation. We injected 20 such anomalies in the nornfal tra We plot in Fig. 9 the matching probability as a function
fic. Further, let's choose a threshold equalte= 2.3%/Vi(p) of the sampling rate for the filtered and aggregated traffic.
as this value gives #4(D) = 0.01. The plot shows that the anomaly detection performance is
We plot in Fig. 8 the false negative (misdetection) prodess sensitive to packet sampling for the filtered signahtha
ability obtained from the trace for aggregation and lowspa$or aggregated signal as the matching probability consilste
filtering, as well as the theoretical upper bound obtainechfr reaches a larger value for the filtered signal. This obskenvat
Eq. 14. A particularly important observation is that theséal fully validates (at least on this trace) the proposition luift
negative probability is much larger for the aggregated aignpaper to replace aggregation by low-pass filtering.
than for the filtered one: all injected anomalies where detec  To validate the design methodology given above, we have
over the filtered traffic up to a sampling rate of 1:20, whereadso plotted the matching probability for the readjusteeridd
no more than 60% of the anomalies are detected even oversignal. This signal is obtained by decreasing the bandwidth
unsampled aggregated traffic. This was expected as we ha¥e¢he low-pass filter by the same coefficient as the packet
shown that the noise introduced by aggregation is muchdargampling rate. The basic bandwidth used for the unsampled
than the noise introduced by filtering. case is 1 Hz, then if the sampling rate is chosen to be



1:100, we set the bandwidth of the low-pass filter to 0.01 VII. CONCLUSION

Hz and so on. By doing this we ensure that the increase\we have presented an exhaustive discussion on the impact
in input noise resulting from Iower packet sa_lmpling rates s data pre-processing, namely packet sampling and terhpora
compensated by a smaller bandwidth. The figure shows thgfyregation, on the performance of anomaly detectionmiste
with this readjustment, one can detect the same anomaées the have shown that packet sampling introduces a noise into
with the unsampled signal up to a sampling rate of 1:50. Th§e anomaly detection signal. We have further shown that
performance begins to worsen for larger sampling rate as tﬁ@pular aggregation techniques add aliasing to the signal.
decreasing bandwidth of the low-pass filter begins to elat@n =\, proposed to replace the aggregation function with a
some anomalies that have a time scale smaller than 100s. -ll—m-pass filter to prevent the devastating aliasing effedts

last observation shows that by using low-pass filtering, & Ceyalyated, both theoretically and practically, the eftéatignal
attain _good anomaly detec_n_on performance even _W|th higfstortion through packet sampling and aggregation/iiiter
sampllng rates on the condition that the bandwidth is reducgp the two anomaly detection steps, entropy reduction with a
accordingly. normal behavior model and the subsequent anomaly decision.
We evaluated our approach with synthetic anomalies and real
traffic traces, and have shown that our filtering solutiomadie
outperforms temporal aggregation in terms of false passtiv
(misdetection rate) and true positives (detection rate).
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today’s networks for a variety of applications such as antou REFERENCES

Ing, an(?majy detection, or_network pIan_mng. To cope with th (1 L. Bernaille, R. Teixeira, and K. Salamatian. Early dpation identifi-

increasing packet rates, different sampling methods haea b cation. InCoNEXT'06 December 2006. _

proposed. The two main methods used are systematic samplilfy P- Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. ktana.
. . Impact of packet sampling on anomaly detection metricsIM@ '06,

where one out ofV packets is taken, and random sampling  pages 159-164, New York, NY, USA, 2006. ACM.

where each packet is taken with a probabilitylgfV.

VI. RELATED WORK

[3] D. J. Daley and D. Vere-Jonedn introduction to the theory of point

One line of previous work has concentrated on measuring] processes (2nd ed.Probability and its Applications. Springer, 2003.
and quantifying the impact of packet sampling on anomaly
detection results. In [2], the authors empirically studiselim-
pact of random packet sampling on volume and distributiona?’
anomaly detection metrics. Mai et al. [6] applied a similare]
methodology for showing the impact of packet sampling on
a wavelet-based volume anomaly detection system, and twa
port scan detection algorithms. Both studies concluded thgs]
in general anomaly detection results degrade whénis
increased. [9]

A second line of research concerns the question of recon-
structing first and second order statistics of interest feam- 10]
pled traffic views. Duffield et al. [4] have shown how to infer[
certain first order flow statistics from sampled traffic. Irsien  [11]
of the flow length distribution from sampled data, which i
desirable for monitoring changes in the traffic compositio
has also been studied in this context [4], [9], [5]. [13]

The only previous work on spectrum estimation from
sampled data is that of Hohn and \eitch [5]. The authors
provide methods that rely on the theory of point processes fo
recovering the spectral density of thggregatedpacket count
process when random packet and random flow sampling is
applied. They conclude that for large¥ (e.g., N = 1000)
random flow sampling gives still accurate estimates while
estimation from packet sampled data is highly inaccurate.

We fill the gap between these two lines of research by
studying the impact of packet sampling on the spectral teensi
of the arrival process from a signal processing theory point
of view. This allows us to quantify the impact of packet
sampling on the spectral density of the arrival process, the
aggregated packet count process, and finally on anomaly
detection. Moreover, we propose a solution that provides a
trade-off between sampling rate and anomaly detectiorescal

12]

N. Duffield, C. Lund, and M. Thorup. Estimating flow didititions
from sampled flow statisticSLEEE/ACM Trans. Netw.13(5):933-946,
2005.

N. Hohn and D. Veitch. Inverting sampled traffic. IMC '03, pages
222-233, New York, NY, USA, 2003. ACM Press.

J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Isnpkd
data sufficient for anomaly detection? IMC '06, pages 165-176, New
York, NY, USA, 2006. ACM Press.

Metrosec. The METROSEC project. http://www.laas.fEVROSEC/.
V. Paxson and S. Floyd. Wide-area traffic: the failure afisgson
modeling. INSIGCOMM '94 pages 257-268, New York, NY, USA,
1994. ACM.

B. Ribeiro, D. Towsley, T. Ye, and J. Bolot. Fisher infoation of
sampled packets: an application to flow size estimationIM@ '06,
pages 15-26, New York, NY, USA, 2006. ACM.

A. Ridolfi. Power spectra of random spikes and related complex signals

PhD thesis, EPFL, 2004.

J. Rissanen. Information and Complexity in Statistical Modeling
Springer Publishing Company, Incorporated, 2007.

A. Soule, K. Salamatian, and N. Taft. Combining filtgriand statistical
methods for anomaly detection. IMC '05, 2005.

P. Stoica and R. L. Mosesntroduction to spectral analysis1997.



