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ABSTRACT 

Dyslexia is a deficit of the identification of words, which is thought to be a 
consequence of different possible cognitive impairments. Recent data suggest that 
one of these might be a specific deficit of the visual attention span (VAS). We are 
developing a remediation software for dyslexic children that focuses on the VAS 
and its training. A central component of this software is the estimation of the 
performance of a given participant for all possible exercises.  

We describe a preliminary probabilistic model of participant performance, based 
on Bayesian modeling and inference. We mathematically define the model, making 
explicit underlying generalization hypotheses. The model yields a computation of 
the most probable predicted performance space, and, as a direct extension, an 
exercise selection strategy.  

Keywords: Bayesian modeling, dyslexia, user modeling, human performance.  



 

 

INTRODUCTION 

Developmental dyslexia is a specific learning disability characterized by a deficit in 
word identification. A dyslexic child is unable to acquire basic reading skills 
despite adequate intelligence, education, and sensory abilities. Developmental 
dyslexia is considered to be a cognitive disorder, this cognitive disorder being a 
consequence of an underlying neurobiological dysfunction.  

For many years, the only recognized theory explaining developmental dyslexia 
was the phonological theory. It states that dyslexic children have a specific 
impairment of phonological skills: because of such a deficit, dyslexic children are 
unable to appropriately segment a word into single sounds and to link these sounds 
to the appropriate letters (Vellutino et al. 2004). However, some cases of 
developmental dyslexia are clearly not phonological and there is emerging evidence 
that visual attention might play a critical role in this disorder (Boden & Giaschi, 
2007; Vidyasagar & Pammer, in press). 

A key cognitive skill to fluent reading is the ability to recognize and process 
several letters in the same fixation. Data has shown that a sub-group of dyslexic 
children has significant difficulties in identifying a sufficient amount of letters in 
the short time frame of a fixation. This finding, together with the Multi-Trace 
Memory (MTM) reading model (Ans et al., 1998), has led to the visual attention 
span deficit theory of dyslexia (Bosse et al., 2007; Valdois et al., 2004). The visual 
attention span (VAS) is defined as the number of visual elements that can be 
processed simultaneously. It is measured using a global report task. In this task, a 5-
letter consonant string is displayed during 200 ms. Subjects need to verbally report 
all the letters they have identified. Performance in this task is both reliably 
correlated with reading performance across all primary grades (Bosse et al., 2009) 
and significantly lower for a sub-group of dyslexic children than for age-matched 
controls (Bosse et al., 2007). Based on Bundesen (1990)’s theory of visual 
attention, a recent case study (Dubois et al., in press) of two dyslexic children has 
linked two potential cognitive sources to this VAS deficit: a reduced visual 
information processing rate or a limited number of items that can be stored in visual 
short term memory.  

This insight on the specific cognitive components that are linked to the VAS is 
central in order to develop a targeted training regimen. We are developing 
evidence-based software that aims to train the deficit in visual information 
processing rate. The goal is to improve the reading performance of dyslexic 
children.  

In this paper, we describe a preliminary probabilistic model of participant 
performance using Bayesian modeling and Bayesian model comparison. We 
provide the mathematical definition of the model that makes explicit all the 
underlying generalization hypotheses, contrary to previous approaches. We show 
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that the model, for a given set of experimental observations, yields a computation of 
the most probable predicted performance space. It also yields, as a direct extension, 
a computation of the probability distribution over exercises to propose to 
participants. In other words, it naturally provides an exercise selection strategy that 
is optimal with respect to current observations.  

VISUAL ATTENTION PROCESSING TRAINING 

SOFTWARE 

The training software is designed to be used daily on a home computer. The typical 
training regimen calls for six training sessions per week, each session lasting 
20 min. During these sessions, the subject has to perform visual processing tasks on 
multi-element arrays. Up to 150 “trials” will thus be performed in each training 
session. The two main characteristics of this software are the specificity of its tasks 
and the adaptability of the presented exercises. The tasks were designed to tap 
specifically visual processing of multi-element arrays. Three different exercise 
parameters are used to modulate the difficulty of each trial presented to the subject. 
For the purpose of this paper, we do not delve in depth on task specificity but 
concentrate on the topic of trial adaptability. 

 
Figure 1. Left: families of characters used in the software. Right: succession of screens 
presented in any given trial, from the instruction screen to the feedback screen.  

The training tasks all involve the visual categorization of both alphanumeric and 
non-alphanumeric character arrays. Five different character categories or “families” 
are thus defined: letters, digits, hiragana characters, polygons and pseudo-letters 
(see Fig. 1, left). All tasks involve the identification of the visual category of one or 
more characters. We now describe the sequence of events of a single trial.  

The following screens are successively displayed during a single trial: 



 

 

instruction screen, fixation screen, stimulus screen, answer screen and feedback 
screen (see Fig. 1, right). The instruction screen displays the specific categorization 
task to be carried out in the current trial. On the stimulus screen an array of 2 to 7 
characters belonging to one or two visual categories is displayed during 120 to 420 
ms.  

Three difficulty parameters characterize exercises, each of which can take 6 
values. The character array can hold 2, 3, 4, 5, 6 or 7 elements. The display duration 
can be of 420, 360, 300, 240, 180 or 120 ms. The 6 different tasks are: 1- Is there an 
element of this family in the display? 2- How many families are there in the 
display? 3- How many elements of this family are there in the display? 4- Which 
two families are present in this display? 5- How many elements of these two 
families are present in the display? 6- Which two families are present in the display 
and how many elements of each are there? These difficulty parameters are ordered 
by increasing difficulty, i.e. task number 3 is easier than task number 6 but harder 
than task number 1.  

These three difficulty parameters, numbered from 1 to 6, are the three 
dimensions of a matrix (number of elements, display duration, task), which we call 
the performance space. We call “exercise” a particular triplet in this space: for 
example, the coordinates (2, 2, 3) denote an exercise in which the subject will be 
asked how many elements of a given category are displayed (task = 3) and 3 
characters will be displayed (number of elements = 2) during 360 ms (duration = 2). 
Exercises with small coordinates are easy whilst exercises with large coordinates 
are harder. 

BAYESIAN MODELING OF HUMAN PERFORMANCE 

A central component of the remediation software is the estimation of the 
performance of a given participant for all possible exercises. Its use is two-fold. 
Firstly, it allows us to define the exercise selection strategy, that is to say, the 
strategy used to automatically select the next exercise to propose to the participant. 
An exercise with a predicted success rate of 75% is assumed to be optimal. Indeed, 
it is both easy enough to maintain motivation and hard enough to drive learning 
effectively. Secondly, a correct estimation of the performance of a subject allows us 
to track, over time, the overall increase of performance and thus to assess the 
quality of the remediation process. 

A previous approach, in the context of dyscalculia (Wilson et al., 2006), was 
based on heuristic estimation of human performance. In other words, an algorithmic 
solution was developed that tracked the subjects’ performance. This solution was 
unable to correctly converge to the assumed representation: in simulation, the actual 
performance space was a cuboid but the estimation would not converge to a cuboid. 
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We now present a probabilistic model, based on Bayesian Programming 
(Lebeltel et al., 2004; Bessière et al., 2008), that solves this issue. More precisely, 
the model includes an explicit hypothesis about the performance space of 
participants. This hypothesis constrains the recognition algorithm: if the model 
computes the most probable cuboid, the output is guaranteed to be a cuboid.  

BAYESIAN MODEL DEFINITION 

The model relates the performance space of a participant at a point in time with 
his/her successes or failures for presented exercises.  

 

Figure 2. The performance space of a participant is a cuboid inscribed in the cube of all 
possible exercises, described by the point K = (xk, yk, zk). 

We firstly assume that performance spaces are represented by a single point of 
the performance matrix M (see Fig. 2). At this point K = (xk, yk, zk), the success rate 
is midway between 100% and chance level (denoted c). We further assume that 
exercises that are easier than K (inside the cuboid) have higher success rates, and 
exercises harder than K have lower success rates: more precisely, we assume that 
success rates vary continuously, following 3 sigmoid functions of (unique) 
parameter α that are successively applied to each dimension (following Wilson et 
al. (2006)):  

 

In probabilistic terms, this translates into the πP model. Let (x0:T, y0:T, z0:T) be the 
trials from time 0 to time T, and S0:T be a set of boolean variables that describe 
whether these trials resulted in successes or failures. Assuming that trials are 
independent and identically distributed over time, the resulting decomposition of 
the joint probability distribution is:  



 

 

 

In this decomposition, P(xk yk zk | πP) and P(xi yi zi | πP) are assumed to follow 
uniform probability distributions. The last term, P(Si | xi yi zi xk yk zk πP) is the 
prediction term, in the sense that given a supposed performance space and an 
exercise, it predicts the corresponding success rate. It is computed by applying the 
3-dimensional sigmoid function of parameter α, according to the distance between 
K = (xk yk zk) and the presented exercise xi yi zi. 

HUMAN PERFORMANCE EVALUATION 

The model being defined, it can now be used to recognize the performance space of 
a participant given observations of trial results. This is done by computing: 

 

In other words, maximizing the probability over performance spaces K is 
reduced to maximizing the likelihood of the observed data S0:T. In order to avoid 
that the product of probabilities degenerates to numerical zeroes, the log of the 
likelihood is evaluated and maximized. This transforms the product of probabilities 
into a sum of log probabilities. 

EXPERIMENTAL RESULTS 

We evaluate our recognition algorithm in simulation: we define a “true” 
performance space K and use it to simulate the results S0:T of T trials. We then use 
these observations first to compute the probability distribution over K, as described 
above, and afterwards to maximize this probability in order to output an estimate  
of K. To measure the quality of our algorithm, we compute the recognition error as 
the Manhattan distance between  and K. Fig. 3 (left) shows an example of 
recognition errors as the number of simulated trials T increases: obviously, adding 
observations reduces the recognition error. Using the actual software and dyslexic 
children, in a typical twenty-minute remediation session, around 100 exercises can 
be presented. This would yield, on average, and assuming that πP is an adequate 
model, an error around 1. This is fairly acceptable, as it amounts to correct 
recognition along two dimensions and an error of 1 in the last dimension. 
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Figure 3. Left: error in the performance space recognition as a function of the number of 
trials (with sigmoid slope α = 5.0; mean and standard‐deviations over 100 simulations). 
Right: errors for different values of the sigmoid slope α. 

However, Fig. 3 (right) shows the impact of the α parameter on the difficulty of 
the problem: when α is high, predicted success rates vary quickly. The problem is 
easy and the recognition algorithm’s error is low with few trials. On the other hand, 
when α is low, predicted success rates vary slowly, which makes the problem 
harder and limits the convergence of the algorithm.  

USING PERFORMANCE SPACE RECOGNITION FOR EXERCISE SELECTION 

 
Figure 4. Left: error in the participant recognition as a function of the number of trials 
(sigmoid slope α = 1.0; 100 simulations), with exercises chosen at random. Right: Same 
configuration,  but  exercises  are  chosen,  at  each  time  step,  to  be  at  the  current most 
probable (xk, yk, zk). 

Another major aspect of the simulation has an impact on the quality of the 
recognition algorithm. It is the strategy for selecting exercises. Indeed, whereas 



 

 

previous simulations used purely random selection, the goal is to use the 
recognition algorithm in order to present exercises with a predicted success rate 
around the one at K (easy enough to maintain motivation and hard enough to drive 
learning effectively). However, it can be experimentally observed that such an 
exercise selection makes the recognition more difficult (see Fig. 4). Indeed, a 
random selection strategy “explores” the space of possible exercises, whereas using 
exercises around the estimated K concentrates the trials in a narrow portion of the 
space, possibly slowing convergence in case of erroneous initial estimates.  

This effect is most obvious for α parameter values that correspond to difficult 
configurations. Indeed, in easy cases (α = 5.0 for instance), the difference in 
convergence rate is only marginal. 

There is a Bayesian answer to this issue. The exercise selection strategy can be 
added to the probabilistic model, in the form of a P(xi yi zi | xk yk zk πP) term. Then, 
instead of explicitly having to compute an estimated K value, the uncertainties of 
P(xk yk zk | x0:T y0:T z0:T S0:T πP) could be propagated by summing over K:  

 

Initially, after few trials (T small), the recognition over K would still yield high 
uncertainties in P(xk yk zk | x0:T y0:T z0:T S0:T πP); the position of K would be uncertain 
and therefore the selected trial would be as if drawn at random. After more 
observations are gathered (T large), the recognition error would be low and P(xk yk 
zk | x0:T y0:T z0:T S0:T πP) would be fairly peaked, leading to selecting exercises in the 
close neighborhood of this peak. As a consequence, this model would gradually 
shift from a random exploration of possible exercises to a selection of exercises as 
described by the P(xi yi zi | xk yk zk πP) term. In other words, it would automatically 
shift from initial calibration to an adequate training and remediation program. 

MODEL EXTENSIONS 

The model we have presented is a basis for possible extensions. For instance, we 
have so far considered the α parameter as an internal parameter to the model but it 
could be explicitly handled in a probabilistic manner. We could estimate its value, 
or, in a more Bayesian fashion, propagate the uncertainties about it in the 
computations in a principled manner (as shown previously for the exercise selection 
strategy).  

We detail a similar idea in another context. Instead of the α parameter, consider 
the shape of the performance space we have assumed. The founding hypothesis of 
the πP model is a cuboid shape describing the way trials are correctly or incorrectly 
answered. In order to experimentally assess the validity of this assumption, a 
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hierarchical Bayesian model can be defined. 

   
Figure 5. Alternative models of human performance that can be formally studied using 
Bayesian model comparison. 

The first step is to define alternative models, based on different assumptions. 
For instance, instead of a cuboid, assume a tetrahedron or spherical section shape in 
the space of exercises (see Fig. 5). This is easily translated into corresponding πT 
and πS models, with different prediction terms P(Si | xi yi zi xk yk zk πT) and P(Si | xi yi 
zi xk yk zk πS) and joint probability distributions. Next, create a meta-variable, that 
considers all possible models: M = {πP , πT , πS}, and encapsulate the three models 
in:  

 

The term P(M) is a prior over models, which can be assumed uniform. Then, 
this model can be used to compute a probability distribution over models given 
experimental observations P(M | x0:T y0:T z0:T S0:T) in order to select the most 
probable model. This model would select the hypothesis that best describes the 
performance space of a given participant. Alternatively, as previously, uncertainties 
over the unknown variable M could be propagated with computations that would 
involve a summation over M.  

CONCLUSION 

We have presented a dyslexia remediation software and the component that tracks 
participants’ performance and selects exercises. It is based on Bayesian 
Programming and inference. We have presented and discussed the design of the 
exercise selection strategy: Bayesian inference and summation over unknown 
variables theoretically yields a gradual shift from initial random exploration to 
exploitation of the optimal exercise to practice. We have outlined the extension of 
our model to hierarchical model comparison, in order to assess the quality of 
underlying assumptions.  



 

 

Another natural extension would be to expand the model so as to track, over 
time, the displacement of the point K that describes participant performance. 
Technically, it would involve transforming the current model into a dynamic 
Bayesian filter. Instead of K, the algorithm would need to estimate the time series 
K0:T. As the number of data sample is inherently limited, regularization assumptions 
would be required to overcome this computational challenge.  
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