
A short proof that adding some permutation rules to

beta preserves SN

René David

To cite this version:

René David. A short proof that adding some permutation rules to beta preserves SN. 2009.
<hal-00533565>

HAL Id: hal-00533565

https://hal.archives-ouvertes.fr/hal-00533565

Submitted on 7 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47294291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00533565

A short proof that adding some permutation rules

to β preserves SN

René David
LAMA - Equipe LIMD - Université de Chambéry

e-mail : rene.david@univ-savoie.fr

August 20, 2010

Abstract

I show that, if a term is SN for β, it remains SN when some permutation
rules are added.

1 Introduction

Strong normalization (abbreviated as SN) is a property of rewriting systems that is
often desired. Since about 10 years many researchers have considered the following
question : If a λ-term is SN for the β-reduction, does it remain SN if some other
reduction rules are added ? They are mainly interested with permutation rules
they introduce to be able to delay some β-reductions in, for example, let x = ...
in ... constructions or in calculi with explicit substitutions. Here are some papers
considering such permutations rules: L. Regnier [7], F. Kamareddine [3], E. Moggi
[5], R. Dyckhoff and S. Lengrand [2], A. J. Kfoury and J. B. Wells [4], Y. Ohta and
M. Hasegawa [6], J. Esṕırito Santo [8], [9], and [10].

Some of these papers show that SN is preserved by the addition of the permu-
tation rules they introduce but, most often, authors do not consider the whole set
of rules or add restrictions to some rules. For example the rule (M (λx.N P)) .
(λx.(M N) P) is often restricted to the case when M is an abstraction (in this case
it is usually called assoc).

I give here a simple and short proof that the permutations rules preserve SN
when they are added all together and with no restriction. It is done as follows. I
show that every term which is typable in the system (often called system D) of types
built with→ and ∧ is strongly normalizing for all the rules (β and the permutation
rules). Since it is well known that a term is SN for the β-rule iff it is typable in
this system, the result follows. The proof is an extension of my proof of SN for
the simply typed λ-calculus where the main result is a substitution theorem (here
Theorem 3.3): if t and a are in SN , then so is t[x := a].

To my knowledge, only one other paper ([9] and its recent version [10]) considers
all the rules with no restriction. The technic used there is completely different from
the one used in this paper.

2 Definitions and notations

Definition 2.1 • The set of λ-terms is defined by the following grammar

M := x | λx.M | (MM)

1

• The set T of types is defined (simultaneously with the set S of simple types)
by the following grammars where A is a set of atomic constants

S ::= A | T → S

T ::= S | S ∧ T

• The typing rules are the following where Γ is a set of declarations as x : A
where x is a variable and the mentioned types (A,B) are in T :

Γ, x : A ` x : A

Γ `M : A→ B Γ ` N : A
Γ ` (M N) : B

Γ, x : A `M : B
Γ ` λx.M : A→ B

Γ `M : A ∧B
Γ `M : A

Γ `M : A ∧B
Γ `M : B

Γ `M : A Γ `M : B
Γ `M : A ∧B

Remarks and Notation

1. To avoid too many brackets in the lambda terms I will adopt the following
conventions. An application (or a sequence of applications) is always sur-
rounded by brackets (i.e. the application of M to N is written (M N) with a
blank between M and N) and, as usual, application associates to the left i.e.
(M N P) means ((M N) P). An abstraction is always written as λx.M (i.e.
there is a dot after the variable but no blank between the dot and M) where
either M is a letter or an application (and thus between brackets) or another
abstraction.

For example λy.(MN) represents an abstraction and (λy.MN) a redex.

2. Note that in the usual definition of the types with intersection → and ∧ can
be used with no restriction. Here we forbid to have an ∧ at the right of
an →. For example A → (B ∧ C) is forbidden and must be replaced by
(A→ B) ∧ (A→ C). It is well known that both systems are equivalent since
it is easily proved that any type derivation in the unrestricted system can
be transformed into a type derivation in the restricted one. Actually note
that, in fact, the type derivation given by Theorem 3.2 already satisfies this
restriction.

We have used this restricted version to make simpler the analysis of type
derivations in the proof of Theorem 3.3

3. Also note (this is well known and easy to prove) that any type derivation
can be transformed into a normal derivation i.e. a derivation in which the
introduction of an ∧ is never immediately followed by its elimination.

4. The lemmas and theorems using types will be indicated by the mention
“typed”. If a type derivation is given to M , type(M) will denote the size
(i.e the number of symbols) of the type of M .

Definition 2.2 The reduction rules are the following.

2

• β : (λx.M N) . M [x := N]

• δ : (λy.λx.M N) . λx.(λy.M N)

• γ : (λx.M N P) . (λx.(M P) N)

• assoc : (M (λx.N P)) . (λx.(M N) P)

Using Barendregt’s convention for the names of variables, we assume that, in γ
(resp. δ, assoc), x is not free in P (resp. in N , in M).

The rules δ and γ have been introduced by Regnier in [7] and are called there
the σ-reduction. It seems that the first formulation of assoc appears in Moggi [5] in
the restricted case where M is an abstraction and in a “let ... in ...” formulation.

Note that γ (resp. δ, assoc) are called θ1 (resp. γ, θ3) in [4] and π1 or σ1 (resp.
σ2, π2) in [10].

Notation 2.1 • If t is a term, size(t) denotes its size.

• If t ∈ SN (i.e. every sequence of reductions starting from t is finite), η(t)
denotes the length of the longest reduction of t. Since various notions of
reductions are considered in this paper, by default these concepts are relative
to the union of all four reduction rules. When this is not the case (e.g. SN
wrt to β), then the reduction rule intended is indicated explicitly.

• Let σ be a substitution. We say that σ is fair if the σ(x) for x ∈ dom(σ) all
have the same type (that will be denoted as type(σ)). We say that σ ∈ SN if,
for each x ∈ dom(σ), σ(x) ∈ SN .

• Let σ ∈ SN be a substitution and t be a term. We denote by size(σ, t) (resp.
η(σ, t)) the sum, over x ∈ dom(σ), of nb(t, x).size(σ(x)) (resp. nb(t, x).η(σ(x)))
where nb(t, x) is the number of free occurrences of x in t.

• If
−→
M is a sequence of terms, lg(

−→
M) denotes its length, M(i) denotes the i-th

element of the sequence and tail(
−→
M) denotes

−→
M from which the first element

has been deleted.

• Assume t = (H
−→
M) where H is an abstraction or a variable and lg(

−→
M) ≥ 1.

– If H is an abstraction (in this case we say that t is β-head reducible),
then M(1) will be denoted as Arg[t] and (R′ tail(

−→
M)) will be denoted by

B[t] where R′ is the reduct of the β-redex (H Arg[t]).

– If H = λx.N and lg(
−→
M) ≥ 2 (in this case we say that t is γ-head

reducible), then (λx.(N M(2)) M(1) M(3) ... M(lg(
−→
M))) will be denoted

by C[t].
– If H = λx.λy.N (in this case we say that t is δ-head reducible), then

(λy.(λx.N M(1)) M(2) ... M(lg(
−→
M))) will be denoted by D[t].

– If M(i) = (λx.N P), then the term (λx.(H M(1) ... M(i−1) N) P M(i+
1) ... M(lg(

−→
M))) will be denoted by A[t, i] and we say that M(i) is the

β-redex put in head position.

• Finally, in a proof by induction, IH will denote the induction hypothesis.

3 The theorem

Theorem 3.1 Let t be a term. Assume t is strongly normalizing for β. Then t is
strongly normalizing for β, δ, γ and assoc.
Proof This follows immediately from Theorem 3.2 and corollary 3.1 below. �

3

Theorem 3.2 A term is SN for the β-rule iff it is typable in system D.
Proof This is a classical result. For the sake of completeness I recall here the
proof of the only if direction given in [1]. Note that it is the only direction that is
used in this paper and that corollary 3.1 below actually gives the other direction.
The proof is by induction on 〈η(t), size(t)〉.

- If t = λx u. This follows immediately from the IH.
- If t = (x v1 ... vn). By the IH, for every j, let x : Aj ,Γj ` vj : Bj . Then

x :
∧
Aj ∧ (B1, ..., Bn → C),

∧
Γj ` t : C where C is any type, for example any

atomic type.
- If t = (λx.a b −→c). By the IH, (a[x := b] −→c) is typable. If x occurs in a, let

A1 ... An be the types of the occurrences of b in the typing of (a[x := b] −→c). Then t
is typable by giving to x and b the type A1 ∧ ... ∧An. Otherwise, by the induction
hypothesis b is typable of type B and then t is typable by giving to x the type B. �

From now on, . denotes the reduction by one of the rules β, δ, γ and assoc.

Lemma 3.1 1. The system satisfies subject reduction i.e. if Γ ` t : A and t . t′

then Γ ` t′ : A.

2. If t . t′ then t[x := u] . t′[x := u].

3. If t′ = t[x := u] ∈ SN then t ∈ SN and η(t) ≤ η(t′).
Proof Immediate. �

Lemma 3.2 Let t = (H
−→
M) be such that H is an abstraction or a variable and

lg(
−→
M) ≥ 1. Assume H,

−→
M ∈ SN and that

1. If t is δ-head reducible (resp. γ-head reducible, β-head reducible), then D[t] ∈
SN (resp. C[t] ∈ SN , Arg[t], B[t] ∈ SN).

2. For each i such that M(i) is a β-redex, A[t, i] ∈ SN ,

Then t ∈ SN .
Proof By induction on η(H) +

∑
η(M(i)). Show that each reduct of t is in SN .

Note that the assumption H,
−→
M ∈ SN is implied by the others if at least one of

them is not “empty” i.e. if t is head reducible for at least one rule. �

Lemma 3.3 (typed) If (t −→u) ∈ SN then (λx.t x −→u) ∈ SN .
Proof Note that, if (λx.t x −→u) has a head redex for the δ-rule, its reduct has
not the desirable shape and an induction hypothesis will not be applicable. We
thus generalize a bit the statement with the notion of left context, i.e. a context
with exactly one hole on the left branch. More precisely the set L of left contexts
is defined by the following grammar: L := [] | λx.L | (L M). The result is thus a
special case of the following claim.
Claim : Let L be a left context and t be a term. If L[t] is in SN then so is
w = L[(λx.t x)].
Proof : By induction on 〈type(t), η(L[t])〉. We show that every reduct of w is in
SN . There are 4 possibilities for the reduced redex. If it is in L or in t, the result
follows immediately from the IH. If it is the (λx.t x) substituted in the hole of L the
result is clear. The last situation is when the redex is created by the substitution
in the hole of L. These cases are given below. Note that the assoc and β rules can
only be used either in t or in L.

- t = λy.t1 and w .δ L[λy.(λx.t1 x)] = L′[(λx.t1 x)] where L′ = L[λy.[]]. The
result follows from the IH applied to L′ and t1 (since t1 can be given a type less
than the one of t).

- L = L′[([] v)] and w .γ L′[(λx.(t v) x)]. The result follows from the IH applied
to L′ and t1 = (t v) (since t1 can be given a type less than the one of t). �

4

Theorem 3.3 (typed) Let t ∈ SN and σ ∈ SN be a fair substitution. Then
σ(t) ∈ SN .
Proof Formally, what we prove is the following. Let U = {(t, σ, A) | t ∈ SN ,
σ ∈ SN and A is assignable to each σ(x)}. Then, for all (t, σ, A) ∈ U , σ(t) ∈ SN .
Theorem follows since, if σ is fair, (t, σ, A) ∈ U for some A .

We assume all the derivations are normal (see the remark after definition 2.1).
The proof is by induction on 〈size(A), η(t), size(t), η(σ, t), size(σ, t)〉. We will have
to use the induction hypothesis to some (t′, σ′, A′) for which we have to give type
derivations and to show that the 5-uplet has decreased. For the types (since the
verification is fastidious but easy) we give some details only for one example (the
first time in case 1.c below) and, for the others, we simply say “type(t1) < type(t2)”
(resp. “type(t1) = type(t2)”) instead of saying something as “t1 can be given a type
less than (resp. equal to) type(t2)”.

Note that this theorem will be only used with unary substitutions but its proof
needs the general case because, starting with a unary substitution, it may happen
that we have to use the induction hypothesis with a non unary substitution. It will
be the case, for example, in 1.c below.

Let (t, σ, A) ∈ U . If t is an abstraction or a variable the result is trivial. Thus
assume t = (H

−→
M) where H is an abstraction or a variable and n = lg(

−→
M) ≥ 1.

Let
−→
N = σ(

−→
M).

Claim : Let
−→
P be a (strict) initial or a final sub-sequence of

−→
N . Then (z

−→
P) ∈ SN .

Proof : Let
−→
Q be the sub-sequence of

−→
M corresponding to

−→
P . Then (z

−→
P) = τ(t′)

where t′ = (z
−→
Q) and τ is the same as σ for the variables in

−→
Q and z 6∈ dom(τ).

The result follows from the IH since size(t′) < size(t). �

We use Lemma 3.2 to show that σ(t) ∈ SN .

1. Assume σ(t) is δ-head reducible. We have to show that D[σ(t)] ∈ SN . There
are 3 cases to consider.

(a) If t was already δ-head reducible, then D[σ(t)] = σ(D[t]) and the result
follows from the IH.

(b) IfH is a variable and σ(H) = λx.λy.a, thenD[σ(t)] = t′[z := λy.(λx.a N(1))]
where t′ = (z tail(

−→
N)). By the claim, t′ ∈ SN and since type(z) <

size(A) it is enough, by the IH, to check that λy.(λx.a N(1)) ∈ SN .
But this is λy.(z′ N(1))[z′ := λx.a]. But, by the claim, (z′ N(1)) ∈ SN
and we conclude by the IH since type(z′) < size(A).

(c) IfH = λx.z and σ(z) = λy.a, thenD[σ(t)] = (λy.(λx.a N(1)) tail(
−→
N)) =

τ(t′) where t′ = (z′ tail(
−→
M)) and τ is the same as σ on the variables of

tail(
−→
M) and τ(z′) = λy.(λx.a N(1)). Note that, by Lemma 3.1, t′ is in

SN and η(t′) ≤ η(t). Since size(t′) < size(t) to get the result by the IH
we have to show that (1) (t′, τ, A) ∈ U and (2) that (λx.a N(1)) ∈ SN .
To prove (1) it is enough to show that we can give to Q = λy.(λx.a M(1))
the same type as P = (λx.λy.a M(1)). In the typing of P , λx.λy.a has
type (A1 → B1 → C1) ∧ ... ∧ (Ak → Bk → Ck) and M(1) has type
A1∧ ...∧Ak and thus P has type (B1 → C1)∧ ...∧ (Bk → Ck). It follows
that we can type Q by typing (λx.a M(1)) with type C1 ∧ ... ∧ Ck and
thus Q with type (B1 → C1) ∧ ... ∧ (Bk → Ck).
To prove (2) we remark that (λx.a N(1)) = (λx.z′′ N(1))[z′′ := a]
and, since type(a) < size(A) it is enough, by the IH, to show that
u = (λx.z′′ N(1)) ∈ SN . This is done as follows: u = σ′(t′′) where
t′′ = (λx.z′′ M(1)) (which is, up to the renaming of z into z′′ a sub-term

5

of t) and σ′ is as σ but where z′′ is not in the domain of σ′ whereas the oc-
currence of z in H was in the domain of σ. Thus, size(σ′, t′′) < size(σ, t)
and the result follows from the IH.

2. Assume σ(t) is γ-head reducible. We have to show that L[σ(t)] ∈ SN . There
are 4 cases to consider.

(a) If H is an abstraction, then C[σ(t)] = σ(C[t]) and the result follows
immediately from the IH.

(b) H is a variable and σ(H) = λy.a, then C[σ(t)] = (λy.(a N(2)) N(1) N(3)
... N(n)) = (λy.(a N(2)) y N(3) ... N(n))[y := N(1)]. Since type(N(1)) <
size(A), it is enough, by the IH, to show (λy.(a N(2)) y N(3) ... N(n)) ∈
SN and so, by Lemma 3.3, that u = (a N(2) N(3) ... N(n)) ∈ SN . By
the claim, (z tail(

−→
N)) ∈ SN and the result follows from the IH since

u = (z tail(
−→
N))[z := a] and type(a) < size(A).

(c) H is a variable and σ(H) = (λy.a b), then C[σ(t)] = (λy.(a N(1)) b
N(2) ... N(n)) = (z tail(

−→
N))[z := (λy.(a N(1)) b)]. Since type(z) <

size(A), by the IH it is enough to show that u = (λy.(a N(1)) b) ∈ SN .
We use Lemma 3.2.
- We first have to show that B[u] ∈ SN . But this is (a[y := b] N(1))
which is in SN since u1 = (a[y := b]

−→
N) ∈ SN since u1 = τ(t1) where t1

is the same as t but where we have given to the variable H the fresh name
z, τ is the same as σ for the variables in dom(σ) and τ(z) = a[y := b]
and thus we may conclude by the IH since η(τ, t) < η(σ, t).
- We then have to show that, if b is a β-redex say (λz.b1 b2), then A[u, 1] =
(λz.(λy.a N(1) b1) b2) ∈ SN . Let u2 = τ(t2) where t2 is the same as
t but where we have given to the variable H the fresh name z, τ is the
same as σ for the variables in dom(σ) and τ(z) = A[σ(H), 1]. By the
IH, u2 ∈ SN . Note that that t2 ∈ SN , η(t2) ≤ η(t) by Lemma 3.1
and that η(τ, t2) < η(σ, t). But u2 = (λz.(λy.a b1) b2

−→
N) and thus

u3 = (λz.(λy.a b1) b2 N(1)) ∈ SN . Since u3 reduces to A[u, 1] by using
twice by the γ rule, it follows that A[u, 1] ∈ SN .

(d) If H is a variable and σ(H) is γ-head reducible, then C[σ(t)] = τ(t′)
where t′ is the same as t but where we have given to the variable H the
fresh name z and τ is the same as σ for the variables in dom(σ) and
τ(z) = C[σ(H)]. The result follows then from the IH since η(τ, t′) <
η(σ, t).

3. Assume that σ(t) is β-head reducible. We have to show that Arg[σ(t)] ∈ SN
and that B[σ(t)] ∈ SN . There are 3 cases to consider.

(a) If H is an abstraction, the result follows immediately from the IH since
then Arg[σ(t)] = σ(Arg[t]) and B[σ(t)] = σ(B[t]).

(b) If H is a variable and σ(H) = λy.v for some v. Then Arg[σ(t)] = N(1) ∈
SN by the IH and B[σ(t)] = (v[y := N(1)] tail(

−→
N)) = (z tail(

−→
N))[z :=

v[y := N(1)]]. By the claim, (z tail(
−→
N)) ∈ SN . By the IH, v[y :=

N(1)] ∈ SN since type(N(1)) < size(A). Finally the IH implies that
B[σ(t)] ∈ SN since type(v) < size(A).

(c) H is a variable and σ(H) = (R
−→
M ′) where R is a β-redex. Then

Arg[σ(t)] = Arg[σ(H)] ∈ SN and B[σ(t)] = (R′ −→M ′ −→N) where R′ is
the reduct of R. But then B[σ(t)] = τ(t′) and t′ is the same as t but

6

where we have given to the variable H the fresh name z and τ is the
same as σ for the variables in dom(σ) and τ(z) = (R′ −→M ′). Note that
that t′ ∈ SN and η(t′) ≤ η(t), by Lemma 3.1. We conclude by the IH
since η(τ, t′) < η(σ, t).

4. We, finally, have to show that, for each i, A[σ(t), i] ∈ SN . There are again 3
cases to consider.

(a) If the β-redex put in head position is some N(j) and M(j) was already
a redex. Then A[σ(t), j] = σ(A[t, j]) and the result follows from the IH.

(b) If the β-redex put in head position is some N(j) and M(j) = (x a) and
σ(x) = λy.b then A[σ(t), i] = λy.(σ(H) N(1) ... N(j − 1) b) σ(a) N(j +
1) ... N(n)). Since type(σ(a)) < size(A) it is enough, by the IH, to
show that λy.(σ(H) N(1) ... N(j − 1) b) y N(j + 1) ... N(n)) and so,
by Lemma 3.3, that (σ(H) N(1) ... N(j − 1) b N(j + 1) ... N(n)) ∈
SN . Since type(b) < size(A) it is enough, by the IH, to show u =
(σ(H) N(1) ... N(j − 1) z N(j + 1) ... N(n)) ∈ SN . Let t′ = (H

−→
M ′)

where
−→
M ′ is defined by M ′(k) = M(k), for k 6= j, M ′(j) = z. Since

t = t′[z := (x a)] and u = σ(t′) the result follows from Lemma 3.1 and
the IH.

(c) If, finally, H is a variable, σ(H) = (H ′ −→M ′) and the β-redex put in head
position is some M ′(j). Then, A[σ(t), j] = τ(A[t′, j]) where t′ is the same
as t but where we have given to the variable H the fresh variable z and
τ is the same as σ for the variables in dom(σ) and τ(z) = A[σ(H), j].
Note that that t′ ∈ SN and η(t′) ≤ η(t), by Lemma 3.1. We conclude
by the IH since η(τ, t′) < η(σ, t).

�

Corollary 3.1 Let t be a typable term. Then t is strongly normalizing.
Proof By induction on size(t). If t is an abstraction or a variable the result is
trivial. Otherwise t = (u v) and, by the IH, u, v ∈ SN . Thus, by Theorem 3.3,
(u y) = (x y)[x := u] ∈ SN and, by applying again Theorem 3.3, (u v) = (u y)[y :=
v] ∈ SN . �

References

[1] R. David. Normalization without reducibility. APAL 107 (2001) p 121-130.

[2] R. Dyckhoff and S. Lengrand. Call-by-value λ-calculus and LJQ. Journal of
Logic and Computation, 17:1109-1134, 2007.

[3] F. Kamareddine. Postponement, Conservation and Preservation of Strong Nor-
malisation for Generalised Reduction . Journal of Logic and Computation, vol-
ume 10 (5), pages 721-738, 2000

[4] A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs
of beta -strong normalization in typed lambda -calculi. In Proc. 10th Ann. IEEE
Symp. Logic in Comput. Sci., pages 311-321, 1995.

[5] E. Moggi. Computational lambda-calculus and monads. LICS 1989.

[6] Y. Ohta and M. Hasegawa. A terminating and confluent linear lambda cal-
culus. In Proc. 17th International Conference on Rewriting Techniques and
Applications (RTA’06). Springer LNCS 4098, pages 166-180, 2006.

7

[7] L Regnier. Une équivalence sur les lambda-termes, in TCS 126(2) pp 281-292,
(1994).

[8] J. Esṕırito Santo. Delayed substitutions, in Proceedings of RTA 2007, Lecture
Notes in Computer Science, volume 4533, pp. 169-183, Springer, 2007,

[9] J. Esṕırito Santo. Addenda to Delayed Substitutions, Manuscript (available in
his web page), July 2008.

[10] J. Esṕırito Santo. A note on the preservation of strong normalisation in the
λ-calculus, Manuscript, September 2009.

8

