
Software System Understanding via Architectural Views

Extraction According to Multiple Viewpoints

Azadeh Razavizadeh, Sorana Cimpan, Hervé Verjus, Stéphane Ducasse

To cite this version:

Azadeh Razavizadeh, Sorana Cimpan, Hervé Verjus, Stéphane Ducasse. Software System Un-
derstanding via Architectural Views Extraction According to Multiple Viewpoints. Meers-
man, Robert and Herrero, Pilar and Dillon, Tharam. 8th International Workshop on Sys-
tem/Software Architectures, Nov 2009, Algarve, Portugal. Springer Berlin / Heidelberg, 5872,
pp.433-442, 2009, Lecture Notes in Computer Science. <10.1007/978-3-642-05290-3 55>. <hal-
00561183>

HAL Id: hal-00561183

http://hal.univ-smb.fr/hal-00561183

Submitted on 31 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47292648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.univ-smb.fr/hal-00561183


Software System Understanding via
Architectural Views Extraction According to

Multiple Viewpoints

Azadeh Razavizadeh1, Sorana Ĉımpan1, Hervé Verjus1, and Stéphane Ducasse2

1 University of Savoie, LISTIC Lab, France
2 INRIA Lille-Nord Europe, RMoD Team, France
{razavizadeh;verjus;cimpan}@univ-savoie.fr

Abstract. Changes and evolution of software systems constantly gener-
ate new challenges for the recovery of software systems architectures. A
system’s architecture, together with its elements and the way they inter-
act, constitute valuable assets for understanding the system. We believe
that offering multiple architectural views of a given system, using domain
and pattern knowledge enhance understanding of the software system as
a whole. To correlate different sources of information and existing soft-
ware system, different viewpoints are considered. Viewpoints enable one
to model such information and guide the extraction algorithms to extract
multiple architectural views. We propose a recursive framework, an ap-
proach that expresses different kinds of information as viewpoints to
guide the extraction process. These multiple viewpoints models improve
the consideration of architectural, conceptual, and structural aspects of
the system.

1 Introduction

Software systems need to evolve over time [15]. They get modified to improve
their performance or change their functionality in response to new requirements,
detected bugs, etc. Some changes are part of the system maintenance; others
evolve the system, generally by adding new functionalities, modifying its archi-
tecture, etc. Thus, there are several evolution phases for which different processes
may be employed. The evolution process ideally begins with the system compre-
hension and continues with finding a suitable set of system modifications. It has
been measured that in maintenance and evolution phases, at least half of the
engineers’ time is spent on the system comprehension [7]. Thus, to successfully
evolve a complex system, it is essential to understand it. The understanding
phase is time and effort consuming, due to several reasons, among which: the
system size (large systems consist of millions lines of code), lack of overall views
of the system, its previous evolutions (not necessarily documented), etc. This
motivates us on supporting the software system understanding phases.

Architectures serve thus as education means [1] and guide software evolution,
by providing a high-level abstract model of existing software systems. Software



architecture reconstruction is a reverse engineering approach that aims at recon-
structing viable architectural views of software applications [7].

We focus on extracting architectural views of existing software systems. It
is widely accepted that multiple architectural views are useful when describing
the software architecture [13][5][1]. Many approaches focused on providing high
abstraction level views in order to facilitate program understanding [11][8] [19].
Architecture relevant information can be found at different granularity levels
of given systems and needs to be studied from different viewpoints. A view-
point is a collection of patterns and conventions for constructing one type of
view. It reflects stakeholders concerns and guides the construction of views [10].
We consider different viewpoints according to such concerns: business-based,
pattern-based, cohesion-based, activity-based, etc.

The main contributions of the proposal presented in this paper are a recur-
sive framework for extracting architectural views and an enhanced definition or
architectural viewpoints allowing their modularity and reuse.
Structure of the paper: In the next section, we propose a recursive framework
and its extraction process. Section 3 presents architectural viewpoints composed
of viewpoint model and viewpoint extraction algorithm. Section 4 presents the
architectural view. In Section 5, we use an example to illustrate our approach.
Section 6 presents related work and the paper closes in section 7 with a conclu-
sion.

2 A Recursive Framework

We adopt a generic and recursive framework (Figure 1) for extracting archi-
tectural views: at each recursion of the framework, a specific view is extracted
(also results) from another view, using a guiding viewpoint. Our framework is
reproductible by chaining horizontal and/or vertical recursions of the framework.
– horizontal recursion: starting from a given architectural view (often the im-

plementation view but other views can be considered) other architectural
views can be elaborated, each based on a specific viewpoint;

– vertical recursion: architectural views are organized in a pipe-line style, such
that the output (view) of an extraction recursion is used as an input (view)
for another one.

Each horizontal or vertical recursion corresponds to an instance of the generic
framework and thus extracts a new architectural view using a specific viewpoint.

An extraction process corresponds to the recursive framework application:
an architectural view that is extracted from a view given as input of an extrac-
tion process is considered as the view generated by the framework. Several views
may be extracted from a given view, using different viewpoints. The recursive
framework application always begins with the generation of an implementation
view. This recursion re-engineers (using the Moose [6] re-engineering environ-
ment) the software system from its source code and produces a Famix model as
an implementation view : it consists in generating an (architectural) implementa-
tion view of the source code (i.e., flat files containing the source code expressed



Fig. 1. The recursive framework principle

in a OO Programming Language). This implementation view is composed of
architectural elements such as classes, methods, and packages. Using this view
as input, architectural views can be generated by horizontal recursions. Further
on, generated architectural views can be used as input for vertical cascading of
the framework (Figure 3). Thus, for obtaining an architectural view, at least
two recursions of the framework are needed. The following section will present
architectural viewpoints.

3 Architectural Viewpoints

The IEEE standard definition of viewpoints (previously presented) is the funda-
mental concerns of stakeholders and the convention for constructing the related
views [10]. Our framework formalizes this by separating the concerns reflected
in the viewpoint in a viewpoint model (VptM) and, the convention to extract
these concerns in viewpoint extraction algorithms (VptEA). By this separation,
the definition of a viewpoint model makes abstraction of the extraction mech-
anisms (see 3.1). Moreover, this separation enables us to generalize as much as
possible the convention for constructing the views and to reuse the knowledge on
view construction in the form of reusable generic extraction algorithms (see 3.2).
Starting from an implementation view of the software system, we provide several
architectural views according to different viewpoints. We propose two viewpoint
classes: matching and discovering. Matching viewpoints are used when stakehold-
ers can represent their expectations as models representing the main concepts
present in the system. The extraction algorithm constructs then the architec-
tural view by ”matching” the system’s elements to the expected representation.
This allows us to have generic extraction algorithms that are (re)used in the
definition of several viewpoints. It is clear that matching viewpoints put their
force on the modeling side. Examples of such viewpoints are business domain-
based viewpoints which consider the principal business domain concepts and
their relationships, and software pattern-based viewpoints [9][23] which identify
architectural elements conform to a given pattern. Discovering viewpoints focus
on the algorithm side of the viewpoint (more than the modeling side). The speci-
ficity of such viewpoints is entailed in the extraction algorithm, which specify
how the elements of the input view are to be grouped leading to architectural



elements discovery. In this case, the model part of the viewpoint definition is less
important. Examples of such viewpoints are the activity-based viewpoint which
identifies the architectural elements according to their level of interaction with
their environment, and the cohesion-based viewpoint [17][14] which identifies a
set of related architectural elements according the strength of their dependencies.
The framework can easily integrate other viewpoints.

3.1 Viewpoint models

For defining a viewpoint model, several sources of information can be used: rough
understanding of the system’s functionality, documentation skimming, demo in-
terviewing, or even the available experts’s opinions [4]. Viewpoint models are
mainly represented using concepts and relationships among them. As such mod-
els represent an expected architecture representation, they are represented simi-
larly to architectural views. Thus, a subset of the Architectural Meta Model pre-
sented in section 4 is used, concepts being represented as architectural elements.
Each viewpoint reveals certain aspects of the software system. For example, the
extracted architectural view of the business domain-based viewpoint presents
the system architectural elements organization in accordance with the business
domain concepts. Such a view mainly provides an overall view of the system in
terms of the business concepts and helps different stakeholders in their system
understanding. Let us consider a Banking software application example. The
business domain concepts of such an application can be Bank, Client, Account,
Credit card. The corresponding VptM of the business domain-based viewpoint
comprises these concepts as architectural elements and their relationships (i.e.,
a Bank may have more than one Client; a Client may have more than one ac-
count; a Credit card concerns a specific Account, etc.). This VptM supports and
guides the architectural view extraction process.

3.2 Extraction Algorithms

Let us recall that we focus on extracting architectural views; and we start from
an implementation view of the system. In the case of matching viewpoints, the
extraction algorithm attempts to identify elements from the input view related
to each viewpoint model concept. Then, it makes a group of these elements and
links them to the architectural element of the viewpoint. The input view’s ar-
chitectural elements that do not correspond to any concept of the VptM are
grouped in another group labeled Outside domain. This first extraction result
allows one to identify concepts which are not reflected in the code. Moreover,
further analysis of the Outside domain’s elements may lead to the discovery of
new concepts. In the case of discovery viewpoints, the algorithms mainly fo-
cus on the relationships among architectural elements of the input view but
differ in the metrics they consider (i.e. number of intra/inter invocations, num-
ber of methods, etc). The process can also be considered at a finer grain level if
needed: the extraction algorithm can target different architectural elements (i.e.,



classes, methods, packages) of the implementation view. Thus, different architec-
tural views can be generated accordingly. Moreover, at the implementation view
level, the extraction algorithm can identify subsets of classes according to the
VptM concepts. A subset of a class is a group of related attributes and methods
and can be considered as traits [16]. As a consequence, an architectural element
(i.e., a class) can be seen as a set of (potentially and partially) overlapping traits.
The same trait can be found in different architectural elements. In the Bank-
ing software application example, we use a business domain-based viewpoint
and thus, the matching algorithm presented before. This algorithm searches all
classes (considered as architectural elements) of the implementation view which
contain the VptM’s concepts in their name (i.e., Bank, Account, Credit card,
etc.); when found, the classes are put in a group labeled with the corresponding
concept and linked to the related architectural element. The classes that do not
correspond to any concept of the VptM are grouped as Outside domain.
The matching extraction algorithm is also used in software pattern-based view-
points; in this latter, the viewpoint model is a Software Design Pattern Model.
For instance the MVC pattern model contains Model, View, Controller as con-
cepts of the MVC’s domain with their relationships. In this case, the extraction
algorithm groups architectural elements according to MVC’s concepts and their
relationships.

4 Architectural Views

Our definition of a view is based on the IEEE standard. An architectural view
is a way to present the system using the elements that are relevant to stakehold-
ers concerns [10]. The multiple views of a system allow one to give support to
understanding the system to different classes of stakeholders.

We propose a simple Architectural Meta Model for representing architectural
views: a system architectural view is represented as a set of interconnected ar-
chitectural elements (Figure 2). An architectural element is mapped to a group
of system’s elements (or a group of architectural elements) of the architectural
view (of the framework) given as input.

The Architectural Meta Model deals also with relationships among architec-
tural elements. When extracting an architectural view, using the framework, the
relationships among architectural elements of an architectural view are deduced
from relationships among architectural elements of the architectural view given
as input to the framework. Thus, the extraction process takes into account both
the identification of the architectural elements and their relationships.
Cascading Architectural Views: Our recursive approach enables one to use a
previously extracted architectural view as an input for a new extraction pro-
cess with a new (or even the same) architectural viewpoint. Therefore, each
extracted architectural element (that is a group of elements of the architectural
view given as input) may be also considered as an input of the recursive frame-
work. Applying the framework recursively consists in defining and organizing
architectural elements of the generated view according to the viewpoint model



Fig. 2. Architectural Meta Model

and extraction algorithms. As consequence, each architectural element of this
generated view may be refined according to a new viewpoint model, and so on.
Considering again the Banking software application example, we are cascad-
ing extraction processes (i.e., several framework recursions): starting from the
source code of the software application, the first extraction process produces
the implementation view which serves as the input view for another extraction
process; this latter considers a business domain-based viewpoint and generates a
business domain-based architectural view. This business domain-based architec-
tural view is itself employed as input of a third extraction process using a MVC
pattern viewpoint. This third extraction process identifies MVC viewpoint archi-
tectural elements (i.e., Model, View, Controller) of each architectural element
of the business domain-based architectural view (given as input) and generates
new architectural views accordingly. For cascading views, one places the different
viewpoints in an ordered collection and recursively applies the generate views
algorithms (See Figure 3b). As a result of such architectural viewpoints cascade,
we obtain an abstract architectural view for which the architectural elements
reveal business domain concepts (second viewpoint used) and are composed of
those of Model, View and Controller elements (third viewpoint used).

5 Illustration Example

Let us go back to the Banking software application and illustrate the application
of the matching viewpoint extraction algorithm with the business VptM. The
Banking software system source code entails 88 classes. The stakeholder begins
first by defining a business viewpoint model that contains three concepts: Ac-
count, Client, Card. This proposed model is a very abstract and basic model.



a) b)

Fig. 3. a) Cascading multiple-viewpoint in a multiple-view perspective
b)Extraction (recursive) algorithm

It reflects a non-expert user’s intuitive system understanding. Starting from the
implementation view, using this VptM (architectural concepts and relationships)
and the matching extraction algorithm, an architectural view is generated. This
view contains thus 3 architectural elements (3 concepts) plus the Outside domain
architectural element (Figure 4b). Further investigations can be done focusing
on the Outside domain group/architectural element: the classes associated to
the group Outside domain can be deeply analyzed for similarities identification.
Several classes may share a concept that might correspond to a concept in the
domain, which was not formalized (or that has been forgotten) in the view-
point model. This later can thus be updated. The extracted architectural view
is equally updated in order to include the new architectural element. The re-
maining elements of the Outside domain group generally can be now subject to
another extraction process using a given VptM. The extraction process entails,
for example, ”software design know-how” that is formalized in another viewpoint
model. The new detected concepts presented in Figure 4c are thus extracted from
the Outside domain architectural element. The results obtained include the de-
tection of 7 new architectural concepts that are part of the business domain.
Considering the number of classes (implementation view ’s elements), detecting
10 concepts is a good sign. We should remark that the detection of concepts
which are not parts of domain is a false positive. It entails for example ”soft-
ware design know-how” that is formalized in another viewpoint model. Figure
4a shows also the links established between the implementation view and the
business view. These links facilitate maintaining the consistency between the
abstract and the concrete representations of the system.

6 Related Work

This section addresses those works that deal with software architecture recon-
struction. Various works are proposed in order to extract architectures of an



Fig. 4. a)Bank application view extraction; b)Extraction result with the initial VptM;
c)Extraction result after exploration of the Outside domain architectural element

object-oriented systems. We distinguish these works according to two criteria:
the extraction process input and the technique of this process.

The inputs used by extraction approaches are various. Most often the source
code is used, but some researchers have highlighted the importance of consid-
ering alternative sources of information during the architecture extraction such
as: developer knowledge [20][12]; bug reports and external documentation [2]; or
considering an ontology of the software system’s domain [3]. In our approach we
propose to infer a viewpoint as input in order to guide the extraction from the
source code of a system. The use of viewpoints to generate views is a key aspect
of our approach. The viewpoint is not limited to be developer knowledge, bugs or
documentation, thus it can be one or all of them. This viewpoint may be: a soft-
ware pattern, a business model or even an interesting concept requested by user;
therefore it is generic compared with other approaches. The main difference is
the separation of two existing concepts of viewpoint definition according to IEEE
standard: concerns (as a viewpoint models) and conventions (as an extraction
algorithms). This separation increases the generic aspect of our approach.

The techniques used to reconstruct architecture of an existing system are
various. Approaches like [18] and [21] consider external constraints (represented
as queries) to be checked against the reality of source code or recovered architec-
tural elements. [20],[12] and [22] propose an automatic reconstruction technique
based on reflexion models, starting with a structural high-level model. In Mur-
phy et al. proposition, users iteratively refine a structural high level view model
to gain information about the source code. The technique is based on the defini-
tion of a set of mappings between this high level model and the source code. Our



technique is a reflexion model; the main difference is that we propose a recursive
framework to apply this reflexivity. This recursion leads in define multiple views
from any generated (or existing) view. At each recursion a view extracts from
another view using a viewpoint.

7 Conclusion

The presented approach for architecture reconstruction allows us to extract infor-
mation for the stakeholders who are interested in high level architectural views of
a software system. We propose a generic and recursive framework that considers
various viewpoints (from different sources of information) and generates multiple
views of an existing system. The first instantiation of the framework uses a view
of the source code as input. This process of instantiation considers horizontal
and vertical recursions to extract cascading architectural views. The approach
stresses on separating the defined notion of architectural viewpoint into: view-
point model and viewpoint extraction algorithm. This enables us to propose two
classes of viewpoints: matching viewpoints emphasizing the model side (e.g.,
business-domain based and pattern-based viewpoints) and the discovering view-
points emphasizing the extraction algorithm side (e.g., activity-based viewpoint,
cohesion viewpoint). Each architectural element in an extracted view entails a
link towards the group of elements it represents (from the input view). This link
is a valuable asset for system maintenance and allows maintaining the consis-
tency among different views of the system during its evolution. The approach
presented in this paper can be used at any object-oriented source code granu-
larity level. The straightforward approach uses classes as the first architectural
element kind, but any other slicing like method-based and/or package-based can
be used.

Acknowledgements: This work has been partially funded by the french ANR
JC05 42872 COOK Project.

References

1. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2002.

2. D. Cubranic and G. Murphy. Hipikat: Recommending pertinent software devel-
opment artifacts. In Proceedings 25th International Conference on Software Engi-
neering (ICSE 2003), pages 408–418, New York NY, 2003. ACM Press.

3. F. Deissenboeck and D. Ratiu. A unified meta-model for concept-based reverse
engineering. In Proceedings of the 3rd International Workshop on Metamodels,
Schemas, Grammars and Ontologies (ATEM’06), 2006.

4. S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Pat-
terns. Square Bracket Associates, 2008.

5. A. Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva. Symphony: View-
driven software architecture reconstruction. In Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA), pages 122–134, 2004.



6. S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an Extensible Language-
Independent Environment for Reengineering Object-Oriented Systems. In Pro-
ceedings of CoSET ’00 (2nd International Symposium on Constructing Software
Engineering Tools), June 2000.

7. S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented
taxonomy. IEEE Transactions on Software Engineering, 2009.

8. P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos,
S. Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM Systems
Journal, 36(4):564–593, Nov. 1997.

9. Y. Guo, Atlee, and Kazman. A software architecture reconstruction method. In
Working Conference on Software Architecture (WICSA), pages 15–34, 1999.

10. IEEE Architecture Working Group. IEEE P1471/D5.0 Information Technology —
Draft Recommended Practice for Architecural Description, Aug. 1999.

11. M. Jazayeri. On architectural stability and evolution. In Reliable Software
Technologies-Ada-Europe 2002, pages 13–23, Berlin, 2002. Springer Verlag.

12. R. Koschke and D. Simon. Hierarchical reflexion models. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE 2003), page 36. IEEE
Computer Society, 2003.

13. P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,
Nov. 1995.

14. A. Lakhotia. Rule-based approach to computing module cohesion. In Proceedings
15th ICSE, pages 35–44, 1993.

15. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE, 68(9):1060–1076, Sept. 1980.

16. A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept
analysis. In Proceedings of 20th Conference on Automated Software Engineering
(ASE’05), pages 66–75. IEEE Computer Society, Nov. 2005.

17. S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A Clustering
Tool for the Recovery and Maintenance of Software System Structures. In Proceed-
ings of ICSM ’99 (International Conference on Software Maintenance), Oxford,
England, 1999. IEEE Computer Society Press.

18. K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving code and design with
intensional views — a case study. Journal of Computer Languages, Systems and
Structures, 32(2):140–156, 2006.

19. H. A. Müller. Rigi — A Model for Software System Construction, Integration, and
Evaluation based on Module Interface Specifications. PhD thesis, Rice University,
1986.

20. G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the
gap between source and high-level models. In Proceedings of SIGSOFT ’95, Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
18–28. ACM Press, 1995.

21. M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Revealer: A lexical pattern
matcher for architecture recovery. In Proceedings of the 9th Working Conference
on Reverse Engineering (WCRE 2002), pages 170–178, 2002.

22. M. P. Robillard and G. C. Murphy. Concern graphs: finding and describing con-
cerns using structural program dependencies. In ICSE’02: Proceedings of the 24th
International Conference on Software Engineering, pages 406–416, New York, NY,
USA, 2002. ACM Press.

23. P. Tonella and G. Antoniol. Object oriented design pattern inference. In Pro-
ceedings of ICSM ’99 (International Conference on Software Maintenance), pages
230–238. IEEE Computer Society Press, Oct. 1999.


