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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47291467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.univ-smb.fr/hal-00586426


8
e
 Conférence Internationale  de MOdélisation et SIMulation � MOSIM’10 � 10 au 12 mai 2010 � Hammamet � Tunisie 

« Evaluation et optimisation des systèmes innovants de production de biens et de services » 

�����������	�
	�	����������	���
�������	
����	�������	��	
�	�����
�
	���
������	�
	����
��������	����
��	

	

�

��	�������	��	����
������	

 

LISTIC / Polytech’Savoie 

Domaine Universitaire – BP 80439 

74944 Annecy le Vieux Cedex ' France 

{karim.tamani, reda.boukezzoula}@univ'savoie.fr 

��	������	

 

SYMME / Polytech’Savoie 

Domaine Universitaire – BP 80439 

74944 Annecy le Vieux Cedex ' France 

georges.habchi@univ'savoie.fr 

���������	 This paper considers the modelling and simulation of a hierarchical production�flow control system. 

Particularly, the system capacity allocation has been addressed by a set of distributed and supervised fuzzy controllers. 

The objective is to adjust the machine’s production rates in such a way that satisfies the demand while maintaining the 

overall performances within acceptable limits. Given the adjusted production rates, the problem of scheduling of jobs is 

considered at the shop�floor level. In this case, the actual dispatching times are determined from the continuous 

production rates through a sampling procedure. To deal with conflicts between jobs at a shared machine, a decision for 

the actual part to be processed is taken using some criteria which represent a measure of the job’s priority. A case 

study demonstrates the efficiency of the proposed control approach 

 

�
��������Manufacturing Systems, Distributed Fuzzy Control, Supervisory Control, Fuzzy intervals, Scheduling.�
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Production'flow control of manufacturing systems in'

volves decision making such as part release, routing, 

production orders scheduling and set'up times, etc. with 

the objective of producing the customer demands in 

needed times and with minimum costs. Particularly, in 

scheduling problems, the objective is to find a way to 

assign and sequence the use of shared resources such that 

production constraints are satisfied. However, the com'

plexity and the importance of scheduling problems have 

concentrated the efforts of different research communi'

ties, concerned with artificial intelligence (Grabot, 

2001), dynamic programming, system simulation (Hab'

chi and Berchet, 2003) and control theory (Cho and 

Prabhu, 2000; Gershwin, 2000; Wiendahl and 

Breithaupt, 2000). 

 

More precisely, the scheduling of job'shop manu'

facturing systems with flexible machines and producing 

multiple part types has been studied by many ap'

proaches. The most developed ones have been enumera'

tive algorithms that provide exact solutions either by 

means of elaborate and sophisticated mathematical con'

structs, such as linear and constraint programming 

(Pinedo, 2002; Sanghoon and Mooyoung, 2003), or by 

means of the branch and bound enumerative strategy, 

which involves search of a dynamically constructed tree 

that represents the solution space (Brucker et al., 1994). 

However, the limitations of the enumerative techniques 

have led to suboptimal approximation methods using 

simulation with priority dispatching rules (Chan et al., 

2003). Furthermore, in the case of incomplete or impre'

cise data knowledge such as task durations and due 

dates, some solutions for scheduling problems have been 

provided according to artificial intelligence techniques, 

including neural networks, fuzzy logic, evolutionary 

algorithm and agent'based systems (Akyol and Bayhan, 

2007; Dang and Frankovic, 2002; Dubois et al., 2003). 

The research reported in this paper is based on this last 

idea where a fuzzy logic is used in a distributed and su'

pervised control strategy for discrete scheduling prob'

lems. Indeed, given a job'shop manufacturing system, 

this research attempts to address, at the shop'floor level, 

the discrete dispatching of the machine production rates 

(production capacity) allocated at the flow control level. 

In this case, the proposed approach uses continuous con'

trol theory and artificial intelligence techniques for pro'

duction flow regulation of realistic (in terms of model'

ling assumptions) manufacturing systems (Rovithakis et 

al., 1999; Tamani et al., 2009; Tsourveloudis et al., 

2007). 

In our previous work, a supervised control strategy 

with a set of distributed fuzzy controllers has been de'

veloped for production'flow regulation. The originality 

of the proposed methodology resides in the supervisory 

based fuzzy arithmetic interval which significantly im'

proves the overall system performances. Indeed, the su'

pervisor combines multiple and possibly conflicting ob'

jectives such that a best compromise can be achieved 

between them. In this case, the overall objectives are 

quantified by fuzzy intervals since they are specified as 

imprecise and uncertain information. The provided su'

pervisory control actions aim to compensate the myopic 

of the distributed local control when the overall system 

performances deviate from their objectives. 

 

When a flow control methodology is assumed, the 

objective is to perform a scheduling problem in order to 

manage the transient from the flow control (continuous) 

to the shop'floor level (discrete). For this purpose, the 
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developed scheduler is based on sampling procedure 

which translates the continuous'time production rates, 

computed at the flow control level, to a series of loading 

times at the shop'floor level. Moreover, in the context of 

multiple product systems, the selection of the actual part 

type to be processed at each machine may conflict due to 

its limited capacity and the multicriteria nature of the 

scheduling decisions. In this case, the actual loading part 

is taken according to the route priority. This latter is 

measured using some criterion based on the computed 

production rate values, the surplus performances and the 

order of operations for re'entrant flow. 

 

The rest of the paper is organized as follows. Sec'

tion 2 describes the continuous'flow approximation to 

model the discrete flow of parts in manufacturing sys'

tems. The continuous'flow control methodology is pre'

sented in section 3. Section 4 introduces the sampling 

and dispatching procedure for discrete real'time schedul'

ing of part types at shop'floor level. Section 5 illustrates 

the scenario and the experimental results for re'entrant 

and multi'product real manufacturing system. Finally, 

concluding remarks are given in section 6. 

�� �����������
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Many industrial production systems, such as semicon'

ductor manufacturing, generate typical processes of 

large'scale, time'varying and stochastic systems. They 

involve different kinds of operation (transformation, 

assembly or disassembly), operate in an uncertain and 

unpredictable environment and manufacture a high'

volume and medium'variety of products. For such manu'

facturing systems, continuous'flow models offer an in'

teresting way to reduce the complexity inherent to dis'

crete flow modelling by approximating the discrete ma'

terial flows with continuous model (Brandimarte et al., 

1996). 

 

Furthermore, the manufacturing system can be viewed at 

the shop'floor level as a network of a finite number of 

machines and buffers. Thus, when considering a system 

composed of N machines Mi (i = 1,…, N) and according 

to the operation type (transformation, assembly and dis'

assembly), it may be decomposed into N basic produc'

tion modules PM(i). Each one is composed of a machine 

Mi and its sets of upstream and downstream buffers de'

noted B+(i) and B�(i) respectively. The cardinalities of 

these sets distinguish the different operation types. For 

instance, in the case of a transformation line (Figure 1), 

the cardinality of the sets B+(i) and B�(i) is respectively: 

card{B+(i)} = card{B�(i)} = 1 with B+(i) = {Bi�1} and B�

(i) = {Bi}. Thus, the production module can be defined 

as PM(i) = {Bi�1, Mi, Bi}. The assembly and disassembly 

operations are distinguished respectively when the cardi'

nality of the sets B+(i) and B�(i) are greater than one. 

 
Figure 1: Production line 

 

For the sake of simplicity, the developments are 

given for a single'part'type system depicted in Figure 1. 

The level of buffer Bi is given by the variable xi, collect'

ing continuously the products coming from machine Mi 

and feeding machine Mi+1. The machines are supposed 

unreliable. Let βi(t) be a state of the machine Mi at time t 

with βi(t) = 1 if Mi is up and βi(t) = 0 otherwise. The up'

times and downtimes are assumed to be exponentially 

distributed with rates λi and 9i respectively. The produc'

tion rate of machine Mi at time t is denoted by ui(t) and 

the required processing time, noted τi, is supposed 

known and deterministic. When machine is up, i.e.; βi(t) 

= 1, it produces continuously at some rate; which can be 

adjusted to any value between zero and its maximum rate 

ui
max

 = 1/τi, i.e., 0 ≤ ui(t) ≤ ui
max

. When the machine is 

down, i.e., βi(t) = 0, the production rate is zero. Thus, the 

increasing rate of buffer Bi is a function of the produc'

tion rate ui of the feeding machine Mi. The decreasing of 

buffer level xi is in relation with the processing rate ui+1 

of the downstream machine Mi+1. Therefore, by aggre'

gating the increasing and decreasing rates, the dynamic 

model of the evolution of buffer level (production'flow) 

xi is given by: 

max
1 )(0with,)()()( iiiii xtxtututx ≤≤−= +�  (1) 

This dynamic equation represents the basis of the con'

tinuous'flow model used in simulation. The restriction in 

(1) concerns the inability of buffer xi to increase its con'

tent while the capacity bound xi
max

 is reached. When 

considering a manufacturing composed of N production 

modules, its dynamic is governed by N differential equa'

tions according to (1). 

To ensure a stable system, and thus, the existence of 

feasible control policies, the average system capacity is 

assumed to be larger than the demand rate d, i.e., [ui�
max×λi/(λi+9i)] > d (Perkins and Kumar, 1989). In this 

case, let us defines the fraction of the capacity of Mi de'

voted for processing at time t as follow: 

]1,0[)(with,
)(

)(
max

∈= tr
u

tu
tr i

i

i
i  (2) 

In this paper, ri(t) represents the control variable, to be 

defined, that adjusts the production rate between zero 

and its maximum. Further, in order to track the demand 

(requirement) at each production means, the production 

surplus si (tracking error), defining the difference be'

tween the cumulative production (performance measure) 

at this means (denoted yi), and the demand, is taken into 

account in the design of the closed loop control system. 

PM(i) 

xi'1
max

 

PM(i+1) PM(i�1) 

xi
max

 

Mi Bi'1 Mi'1 Bi'2 Mi+1 Bi+1 Bi 
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Given a manufacturing system represented by the pro'

duction'flow dynamic model (1), the control objective is 

to adjust the production rates, through an appropriate 

capacity allocation policy, in such a way to reach a pre'

defined required production while keeping all overall 

performance measures within their acceptable values 

(Tamani et al., 2009). For this purpose, in our previous 

work, the continuous'flow control methodology of two 

levels has been developed with a set of distributed fuzzy 

controllers at the lower level and a supervisory controller 

at the higher level. This section recalls the flow control 

methodology principles with focuses on the supervisory 

control strategy. 

���� � !"# $%"&'	(%))*	+,-"#,.	(,#	/0+1 -&2!	+030+ "*	

0..,+0" ,-	

To make clear how the distributed fuzzy control strategy 

is designed, the basic idea is first illustrated through the 

elementary transformation module PM(i). In our case, 

the control law is determined on the basis of the expert 

knowledge, where a fuzzy system, constituting a control'

ler FC(i), has been used. The control objective is to track 

the demand while keeping the upstream and downstream 

buffers of Mi neither full nor empty. This is achieved by 

allocating an optimised machine capacity to production 

at each instant according the following rules: 

 

•� If the surplus level is satisfying (normal), then try to 

prevent starving or blocking by increasing or de'

creasing the production rate of the machine. 

•� If the surplus level indicates backlog or excess in'

ventory, then produce respectively with the maxi'

mum or zero rate. 

 

Thus, the input variables of the levels of upstream 

and downstream buffers xi�1(t), xi(t) and the production 

surplus si(t) of PM(i) have been considered. The output 

variable of the controller represents a weighting factor 

ri(t) to range the production rate of PM(i) between zero 

and its maximum ui
max

. Figure 2 illustrates the fuzzy 

control structure FC(i) for a transformation operation. 

 
Figure 2: The fuzzy control structure 

 

The fuzzy controller FC(i) has been formalized by 

using a Takagi'Sugeno system (Sugeno, 1999) given by 

a collection of rules in the following form: 

 

),,(
11

),,(

321

321321

Then

,isandisandisIF:
iii

ii

i
ii

i
ii

i
ii

iii
i

r

SsXxXxR

φ=
−−  (3) 

where: 

•� 321 and,1
i
i

i
i

i
i SXX −  correspond to the ik

th
 linguistic 

term of the input variables xi'1, xi and si, taken re'

spectively from the sets Xi�1 = Xi = {Empty, Almost 

Empty, Normal, Almost Full, Full} and Si = {Back'

log, Normal, Inventory}. 

•� ),,( 321 iii
iφ  is the real value involved in the rule con'

clusion indexed by (i1, i2, i3) that gives the fraction 

of capacity devoted to processing. 

 

Figure 3 shows the response surfaces of the fuzzy 

controller where the effect of the buffer levels on the 

processing rate for some values of the surplus is investi'

gated. The universe of discourse of the buffer levels xi�1 

and xi are normalized with regard to the buffer sizes xi�

1
max

 and xi
max

 respectively in order to take values within 

[0, 1] (Figure 3). 

 

The complete rulebase for a fuzzy controller of a 

transformation module is given in (Tamani et al., 2009). 

In the case of assembly and disassembly modules, the 

fuzzy controller is designed similarly by tacking into 

account more than one upstream buffer level and more 

than one downstream buffer level respectively as input 

variables in premises of rules of the form (3). The rule 

bases are then built in such a way to synchronize the 

operations with the objective of balancing the system 

load. 
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Figure 3: Response surfaces of the fuzzy controller
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Finally, when considering a general manufacturing 

system composed of N modules, the fuzzy control design 

detailed above has been deployed for each ones, which 

leads to a distributed fuzzy control (DFC) structure. The 

major advantage of this control architecture resides in its 

modularity and distributivity that enhance the flexibility 

of the system and make easily the implementation phases 

in complex manufacturing systems. 

���� �%3&#6 !,#*	$0!&'	(%))*	0# "1/&" +	 -"&#60.	

In fully distributed control systems, global optimization 

is hard to obtain due to the difficulty of proving that a 

sufficient level of performance can be attained. This dif'

ficulty is mainly due to the “myopic behaviour” of dis'

tributed control systems. In order to maintain a certain 

performance level, it is frequently necessary to deal with 

myopic behaviour by defining a kind of “global optimiz'

ing mechanism” (GOM) (Trentesaux, 2009). 

There are several ways to integrate GOM into dis'

tributed control systems. Common solutions are to en'

sure that local decisions are made in consideration of 

global criteria, or to impose global specifications within 

which global performance level must be maintained. The 

last idea has been considered in order to integrate GOM 

through a supervisory controller. Indeed, given a set of 

performance indicators P = {P1,…, PL} with associated 

objectives P
obj

 = {P1
obj

,…, PL
obj

}, the supervisory con'

troller aims at reinforcing the local control action 

through an additive component in order to compensate 

the deviations of performance measures from their objec'

tives. The key idea of the supervision function resides in: 

(i) the fuzzy intervals representation of the objectives 

and (ii) the combination mechanism based on the fuzzy 

interval arithmetic. 

For the first point, a trapezoidal fuzzy interval, de'

noted by Pl
obj

, has been used to represent the objective 

associated to the performance indicator Pl as illustrated 

in Figure 4. The shape of the fuzzy interval is specified 

by two functions that link the support and the kernel val'

ues according to the vertical dimension. These functions, 

denoted by (Pl
obj

)
'
 (the increasing part in Figure 4) and 

(Pl
obj

)
+
 (the decreasing part in Figure 4), are respectively 

called the left and right profiles (Klir, 1997). In the case 

of trapezoidal shape, they are defined by: 







⋅+⋅−=

⋅+⋅−=
+

−

objobjobj

objobjobj

)1()()(

)1()()(

lll

lll

cdP

baP

ααα

ααα
 (4) 

 
Figure 4: Trapezoidal fuzzy interval representation 

According to the trapezoidal representation of the 

objective, the satisfaction may be total when the per'

formance indicator evolves within the kernel (normal 

mode), not satisfactory at all if it is outside the support 

(fully degraded mode), and not satisfactory with differ'

ent degrees when it is limited by the left or right profiles 

(switching mode) (Figure 4). These different situations 

distinguish the operating modes of the production sys'

tem. 

For the second point, given the fuzzy intervals of 

the objectives, the principle of the supervision mecha'

nism is summarized on the following three steps: 

 

•� �"&3	 �� Combine the objectives P
obj

 = {P1
obj

,…, 

PL
obj

} through an uncertain operator Ψ, since they 

are defined by fuzzy intervals. The combined objec'

tive is a fuzzy interval denoted obj
TP . 

•� �"&3	 �� Combine the performance indicator meas'

ures P = {P1,…, PL} using the precise version of the 

operator Ψ, denoted ψ. The combined measure is 

denoted PT. 

•� �"&3	 �� Evaluate the resulted precise measure PT 

with regard to the combined fuzzy objective obj
TP . 

The result represents the satisfaction degree of the 

combined objective (the α'cut) which indicates the 

current operating mode. 

 

At the first step, the arithmetic operations on fuzzy 

intervals are used according to the profiles representation 

(4). In this case, the uncertain operator can be imple'

mented (Boukezzoula et al., 2007). For instance, when 

using the weighted mean operator, the resulted fuzzy 

interval is expressed as follows: 

[ ] ∑⊕

=
⋅=Ψ=

Ll llL PwPP
,,1

objobjobj
1

obj
T )()(,),(P

�
� ααα  (5) 

where ∑⊕
 is the fuzzy addition between fuzzy intervals 

such that: (Pl
obj

 ⊕ Pk
obj

)(α) = [(Pl
obj

)
'
(α) + (Pk

obj
)

'
(α), 

(Pl
obj

)
+
(α) + (Pk

obj
)

+
(α)]. 

The second step is performed in the same way by 

considering the precise performance indicator measures 

according to the precise operator (Dubois et al., 2004). 

Finally, at the third step, the resulted satisfaction degree 

(the α'cut) is used to determine the additive component 

(supervisory control action), denoted 
isr , under the con'

straint of the local control 
icr . Figure 5 illustrates the 

synopsis of the supervision principle  

 
Figure 5: Synopsis of the supervision principle 
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The different values of 
isr  are encapsulated within 

a triangular fuzzy interval 
isR  with the support 

]1,[)0(
iii ccs rrR −−=  and the kernel 0)1( =

isR . As 

shown in Figure 6 when the combined objective is still 

trapezoidal, it can be observed that the switching be'

tween the operating modes is gradual, which reduces the 

chattering phenomenon that may occur around the limits 

of conventional interval, and thus involves more stable 

performances. The limit values of the supervisory con'

trol action consist to allocate the maximum remaining 

capacity )1(
icr−  or to stop the production )(

icr−  of the 

module PM(i). The intermediate values allow weighting 

the support bounds of 
isR  according to the satisfaction 

degree (the α'cut) of the combined overall objective obj
TP  

(Figure 6). 

Figure 6: The evolution of the supervisory control 

 

For practical implementation, the supervisory con'

trol is determined according to the following statements: 

•� If PT evolves within the kernel of PT
obj

, the system 

behaviour is in normal mode. This means that the 

satisfaction degree of the objective is total (α = 1). 

In this case, the supervisor does not provide additive 

component ( 0)( =tr
is ). 

•� If PT evolves outside the support of PT
obj

, a fully 

degraded operating mode is detected. The objective 

in this case is totally unsatisfied (α = 0), and the su'

pervisory action is given by: 

)()( trtr
ii cs −�=  with 







≥

≤
=�

obj
T

obj
T

P if,0

P if,1

T

T

d

a
 (6) 

It consists in either allocate the maximum remaining 

capacity (� = 1) or stop the productivity of the mod'

ule (� = 0). 

•� If PT evolves in the switching modes, the corre'

sponding α�cut of the fuzzy interval PT
obj

 is used to 

determine the supervisory control. Indeed, whether 

PT evolves on the left or right profile, the α�cut level 

is given by the reverse of the corresponding profile 

function. That is, in one hand, when PT evolves on 

the left profile, the supervisory control is given as: 

( ))(1)1()( trtr
ii cs −⋅−= α  with ( ) 1

T
obj
T )P()P(

−−=α  (7) 

In this case, the action attempts to allocate a frac'

tion of the remaining capacity. On the other hand, 

when Pl evolves on the right profile, the supervi'

sory action attempts to reduce the productivity of 

the controlled module as follows: 

( ))()1()( trtr
ii cs −⋅−= α  with ( ) 1

T
obj
T )P()P(

−+=α  (8) 

The functions (7) and (8) represent respectively the 

right and left profiles of a triangular fuzzy interval 

isR  of the supervisory control domain (Figure 6). 

 

Finally, according to the local control given by the 

fuzzy controller and the supervisory control, the produc'

tion rate is adjusted as follow: 

( ) maxmax
)()()()( iiisci utrutrtrtu

ii
⋅=⋅+=  (9) 

 

The proposed distributed'supervised control structure is 

illustrated in Figure 7 for the case of transfer line com'

posed by N transformation modules. 

 

 
Figure 7: The continuous'flow control architecture 
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Conventional formulation of the scheduling problem 

consists in the optimisation of some criterion, such as the 

makespan and total production cost, under time and re'

source constraints. In the previous section, the produc'

tion rates (9) are approximated by a continuous expres'

sion while the production operations are of discrete na'

ture. Therefore, considering the criterion of makespan 

and production cost minimisation, the scheduling prob'

lem involves two types of decisions at this level: 

•� to determine the loading times of actual parts and 

•� to resolve the conflicts in the case of multiple'part'

type systems. 

 

For the first decision, a dispatching policy has to be 

used in order to determine the loading times of actual 

parts. More precisely, the obtained continuous'time con'

trol variables have to be translated into a dispatching 

time series through a sampling procedure. Indeed, since 

the machine operation frequency is equivalent to the 

time between two successive machine loads, at a certain 

time, the sampled value is held constant during a time 

interval equal to its reverse. The holding period includes 

the operation and the idle times. Thus, the continuous 

time production rate is translated to a piece'wise con'

stant function as shown in Figure 8. 

 
Figure 8: Continuous production rate discretisation 

 

Using this definition, as the production rate evolves 

between 0 and ui
max

, the lower bound correspond to an 

infinite idling time (no production) while the upper 

bound corresponds to the operation time (no idle time). 

For practical use, in order to limit the idle period when 

the production rate is too low, the lower bound is chosen 

equal to 50% of its maximum. 

 

For the case of a multiple'part'type system, a ma'

chine Mi may operates on different part types j such that 

j∈Q(i), where Q(i) is the set of part types to be processed 

on Mi and its cardinality is equal to J(i). Each of them 

may involves Kij (k = 1,…, Kij) different operations (case 

of re'entrant flow if Kij > 1). In this case, the original 

machine Mi is virtually divided into N(i) = ∑{j|j∈Q(i)}Kij 

single'part'type sub'machines mijk . Set'up times are 

assumed to be insignificant. Only one submachine is 

allowed to work at a time. Thus, for the second decision, 

in order to deal with conflicts in the scheduling problem, 

the actual parts to be processed at each machine are de'

termined according to a decision function based on some 

criterion representing the route priority measurement. 

The derivation of the criterion value is based on the con'

trol input values; the surplus performances (local and 

final) and the order of the operation in the case of re'

entrant flow. The part to be loaded is the one with the 

largest criterion value. The proposed criterion value for 

each submachine mijk of a certain multiple'part'type ma'

chine Mi is given by the following weighting sum: 

( )∑ =
⋅=

4

1l

l
ijklijk cgJ π  (10) 

where: 

•� 1
ijkc  is the sampled value of the computed produc'

tion rate ijkû  of the submachine mijk, 

•� 2
ijkc  is its corresponding local surplus such that c

2
ijk 

= max{0, –sijk }, 

•� 3
ijkc  is the finished surplus level sO(j) of the part'type 

j, with O(j) is the last submachine of its route, 

•� 4
ijkc  is the order k in which the part of type j visits 

the machine Mi. 

 

In the criterion definition above, g(.) is a positive 

monotonically increasing non'linear function, with g(0) 

= 0 and g(c
l
ijk) = 1 for c

l
ijk → ∞. This function can be 

closely approximated by sigmoidals of the form: g(c
l
ijk) = 

1/(1 + exp(–c
l
ijk)) (Rovithakis et al., 1999). According to 

the measures of c
l
ijk (l = 1,…,4), this function gives the 

maximum value for the route (submachine) which pre'

sents the highest calculated production rate, the larger 

backlog (negative local and final surpluses) and the latest 

operation in the case of re'entrant flow. The values of 

c
1

ijk, c
2

ijk and c
4

ijk lead to a criterion with a local scope, 

while c
3

ijk introduces global insight of the state of the 

actual route. The parameters πl are the weighting factors 

to be chosen according to the importance of each ele'

ment c
l
ijk. The following algorithm summarizes a practi'

cal implementation of the discrete dispatching proce'

dure: 

 

�-3%"!	

ui∈�
N(i)

, si∈�
N(i)

, 
iOs ∈�J(i)

 with Oi = {O(j) | j = 1,..., 

J(i)}. 

�%"3%"!	

The selected submachine mijk with its discrete produc'

tion rate ijkû , loading time 
*

nst  and holding time inter'

val 
1ˆ−

ijku . 

�&9 -	

(1)� 
,# all not idle submachines 

Calculate Jijk according to (10). 

Select the submachine mijk having the highest Jijk. 

ui(t) 

t 

1st  

)(
1si tu

:	

τi 

Calculated production rate 

Applied production rate 

Working time 

Idling time 

Loading times (sampling instants) 

)(
2si tu  

2st

)(
1

1
si tu−  
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(2)� The production rate uijk of the selected submachine 

is sampled at a time 
*

nst  (n = 1, 2…) corresponding 

to the loading instant. A time interval equal to the 

inverse of the sample is computed (
1ˆ−

ijku  according to 

)(ˆ *

nsijkijk tuu = ). The values of the production rates 

evolving during the holding time are ignored. 

(3)� As soon as the time interval is competed, a new 

sample of the production rate is considered and the 

process is repeated (go to step 1). 


-'	

 

Figure 9 summarises the production'flow schedul'

ing methodology in which the flow control level inter'

acts with the shop'floor one over the discretisation pro'

cedure of the production rates and the continuous ap'

proximation of the discrete flow of parts. 

Figure 9: The production'flow scheduling methodology 

;� ���
������	�
���������	
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In this section, the developed scheduling methodology is 

illustrated through a simulation study performed on a 

realistic example of a manufacturing cell taken from 

(Rovithakis et al., 1999). Comparisons with the results 

reported herein of the existing scheduling policies and 

those obtained with the first in first out (FIFO) policy are 

performed. Specifically, clear a fraction (CAF), clear 

largest buffer (CLB) (Perkins and Kumar, 1989), and the 

dynamic neural network scheduler (DNN) developed in 

(Rovithakis et al., 1999), have been employed. 

 

The proposed scheduling methodology is imple'

mented by means of Matlab/Simulink and Floulib tool'

box (Foulloy et al., 2006) (available at 

http://www.listic.univ'savoie.org), while the FIFO policy 

is tested through discrete event simulator with the help 

of the Apollo platform (Habchi and Berchet, 2003). 

;��� �0-%(0+"%# -9	+&..	'&!+# 3" ,-	0-'	! /%.0" ,-	

#&!%."!	

The considered system consists of five machines and 

produces five different part types. Due to one assembly 

process, six routes are defined (Table 1). The routes 2, 3, 

4 and 5 lead to finished products. The routes 1 and 6 lead 

to the part types to be assembled on machine 5. The table 

elements show the order in which every product visits 

the machines. A production demand of 20 parts for each 

of the 5 part types has to be achieved. For simplicity, the 

operation times for all products on the same machine are 

assumed to be equal. The machine operation times are 

taken equal to 5, 6, 5, 4 and 3 time units respectively. 

 

The number of operations for the second machine is 

equal to 7 instead 6, since it serves part type 1 twice (re'

entrant flow). The same holds for machine M3, where 

part type 4 is also served twice. Furthermore, raw mate'

rials arrive in the cell at a rate of 0.03 part per time unit, 

implying that for each route a raw material arrives every 

34 time units, and is stored in the buffer of raw materi'

als. All buffers in the cell are considered to have a capac'

ity of 15 parts. Raw materials arrive to the system at the 

specified rate, for so long as the production of the re'

spective product is not complete, and the buffer storing 

raw materials has not reached its capacity. 

 

	 Machine 

Route M1 M2 M3 M4 M5 

1  2, 4 3 1 5 

2 1 2    

3  1 2  3 

4 2 5 1, 4 3  

5 3 2  1  

6  2 1 3 4 

Table 1: Part types routes 

 

Based on the workload of the cell bottleneck ma'

chine, i.e. machine M2; the authors in (Rovithakis et al., 

1999) define a lower bound for the achievement of the 

production demand (makespan) which serves as the ref'

erence for comparison purposes. Specifically, the ma'

chine M2 (7 submachines) must process 20 parts requir'

ing 7×20×6=840 time units. As the first raw material 

arrives in the cell at time 34, a lower bound of <=8 time 

units has been derived. 

 

In order to evaluate the effect of the supervision, the 

proposed methodology is simulated in both cases: with'

out supervision (distributed fuzzy control – DFC) and 

with supervisory control (supervisory fuzzy control – 

SFC). When integrating the supervisory control, the 

overall performance indicators of the average and the 

instantaneous finished surplus, and the total production 

cost are used. This latter is given by: 

LTcBCKcINVcWIPc ltbckinvwip ⋅+⋅+⋅+⋅=Cost Total  (11) 

The first two terms of (11) represent the cost measures of 

storing parts in buffers. Specifically, measures for the 

rc(t) 
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work'in'process and inventory costs are provided by 

means of the average integral of the intermediate and 

output buffers respectively. That is: 

=WIP 1/(T×Nin) { }∑ ∫≠ )(,, 0
)(

jOmkji

T

ijk
ijk

dttx  and 

=INV 1/(T×Nout)∑ ∫=

outN

j

T

jO dttx
1 0

)( )(  with Nin = 16, Nout 

= 5 are the number of the intermediate and output buffers 

in the cell and T is the production makespan (i.e., the 

time period elapsing until the production goal is 

achieved for all products types). 

 

The two last terms of (11) are concerned with the 

average backlogging costs (i.e., the cost resulting from 

the delay in achieving production targets) and the aver'

age lead time costs (i.e., the average of the time elapsing 

between the input of a raw material in the cell and the 

output of the respective finished product). Specifically, 

the employed average backlog is defined as fol'

lows: =BCK 1/(T×Nout)∑ ∫=
−outN

j

T

jj dttOuttIn
1 0

))()((  

with Inj(t), Outj(t) the number of parts of type j that have 

entered and exit the cell until time t. 

 

The cost units cwip, cinv, cbck, clt for all the perform'

ance measures in (11) are taken equal to 1 for simplicity. 

The measure of the total cost in the supervisor is chosen 

as the reverse of (11). The associated objectives, ex'

pressed by fuzzy intervals through the profile functions 

(4), are fixed, for the surplus performances, as: 

]23,23[obj
2

obj
1 αα −+−== PP , and for the total produc'

tion cost performance as: 

]1.01.1,09.001.0[obj
3 αα −+=P . When using the arith'

metic mean operator (5), the resulted combined interval 

is: ]366.1366.2,363.1996.1[P
obj
T αα −+−= . The pa'

rameters πl of the criterion (10) are taken respectively 

equal to 0.4, 0.25, 0.25, 0.1. 

 

The obtained results are compared to the conven'

tional FIFO strategy and those provided in (Rovithakis et 

al., 1999), and are summarized in Table 2 for the case of 

reliable machines. In this case, the machine utilisation 

rates are given in Table 3, while Figure 10 presents the 

comparison of the evolution of the finished cumulative 

production for each part type obtained by the schedulers 

FSC, DFC and FIFO. 

 

Table 4 shows, in terms of average of ten simula'

tion runs, the results for the case where the machines are 

unreliable. In this case, the repair rates are all equal to 9i 

= 0.5 and the failure rates are λi = 0.1. 

 

	 Machine utilisation rates (%) 

Methodology M1 M2 M3 M4 M5 

SFC 40.05 >?���	 65.22 43.02 13.73 

DFC 34.76 83.42 56.11 38.13 11.92 

FIFO 34.21 >;�=<	 57.01 36.49 13.68 

Table 3: Machine utilisation rates without failures 

 

 

Methodology Makespan Avg. WIP Avg. inventory Avg. backlog Avg. lead time Total cost 

SFC <=8	 0.894 9.393 2.978 65.46 =<�=�	

DFC 1007 1.636 8.516 5.807 188.1 204.06 

FIFO 877 1.016 10.045 5.604 74.68 91.345 

DNN 963 0.506 8.17 0.00466 215.96 224.64 

CAF 1044 1.347 10.848 0.00262 142.763 154.96 

CLB 1083 1.149 11.468 0.00214 125.72 138.34 

Table 2: Simulation results without machine failures 

 

Methodology Makespan Avg. WIP Avg. inventory Avg. backlog Avg. lead time Total cost 

SFC 

Mean >?;�=	 1.239 9.545 4.17 91.583 106.54 

Std 16.3 0.067 0.113 0.238 6.676 6.901 

Max 998 1.321 9.721 4.463 101.9 116.9 

DFC 

Mean 1076.6 1.795 8.649 6.74 217.56 234.75 

Std 11.157 0.039 0.058 0.156 7.056 7.253 

Max 1107 1.878 8.728 7.11 231.9 249.6 

FIFO 

Mean 1004.1 1.455 10.018 6.1807 120 137.64 

Std 14.216 0.068 0.0063 0.1856 6.975 7.219 

Max 1030 1.565 10.026 6.475 131.92 149.95 

Std: standard deviation 

Table 4: Simulation results with machine failures 
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Figure 10: The evolution of finished production of each part type 
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Based on the obtained results, both the SFC and the 

FIFO emerge as schedulers guaranteeing accurate 

achievement of production. Indeed, the SFC methodol'

ogy achieves the demand with the exact calculated lower 

bound in the case of reliable machines (Table 2, in bold), 

and with a deviation of 10.49% from the lower bound 

when unreliable machines are considered (Table 4). The 

conventional FIFO scheduler achieves the production 

goal in 877 time units for reliable manufacturing cell 

thus obtaining very short deviation from the lower bound 

(0.34%, Table 2). In presence of machine failures, the 

deviation observed by FIFO scheduler is equal to 

14.88% (Table 4). The utilisation rate of the bottleneck 

machine (M2) in the case of SFC and FIFO methodolo'

gies, which is approximately 96%, is improved in com'

parison to the rate reached with a DFC methodology 

(Table 3). This behaviour was expected since the super'

visory goals are to maintain the overall production objec'

tives within their specified domain limits by allocating 

the remaining production capacity when backlogs are 

detected. 

The four last columns of Tables 2 and 4 represent 

average cost measures of storing parts, backlogging and 

lead times for the reliable and unreliable manufacturing 

cell respectively. The last column provides the total pro'

duction cost in both cases. It can be observed that the 

SFC methodology achieves acceptable WIP, inventory 

and lead time costs due to the overall faster fulfilment of 

the demand. Conversely, the backlog cost is relatively 

worse than the values obtained by the conventional 

(CLB, CAF) and DNN schedulers, while it is better 

when compared to FIFO and DFC. These results are due 

to the fact that the buffers storage performances (positive 

surplus – WIP and inventory) and the backlog (negative 

surplus) are conflicting and the proposed supervisory 

control attempts to achieve the best compromise which is 

obtained in term of total production cost (Table 2, in 

bold). 

Finally, the derived results are very promising, 

since the decision method is flexible when considered in 

conjunction with the real'time property and the multiple 

production objectives. This may help to cope with the 

conflicting control objectives and make the scheduling 

process more efficient in the real'time control of manu'

facturing systems. 

?� ����������	

In this paper, the potential application of the production'

flow control for discrete scheduling of a manufacturing 

cell is investigated. The production'flow control meth'

odology, initially developed in (Tamani et al., 2009), 

consists of distributed fuzzy controllers which are super'

vised by a higher level of decision'making. The objec'

tive is to allocate the limited production capacity by ad'

justing the machine processing rates such that the speci'

fied global performances are guaranteed. The supervi'

sory mechanism, which is based on arithmetic fuzzy 

interval, provides additive components to the local con'

trollers when degraded operating modes are detected. 

The supervisor is built according to the satisfaction de'

gree of the different and possible conflicting objectives 

quantified by fuzzy intervals. 

At the shop'floor level, the scheduling problem is 

addressed in two steps. The first step performs the transi'

tion from a computed continuous control to a discrete 

dispatching control through a sampling procedure. The 

principle consists to transform the calculated production 

rates to time intervals by taking their inverse. The second 
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step deals with the conflicts of multiple routes by using 

some criterion representing a measure of the priority. 

The proposed criterion is based on the production rates, 

the surplus performances and the order in which the 

products visit the machine. Comparisons through simula'

tions show that the proposed methodology achieves the 

production in the shortest time with regard to conven'

tional schedulers. 

The only uncertainties considered in this paper are 

the overall objectives quantification and the machine 

failures. An important open issue is the robustness of the 

methodology when other forms of uncertainty are pre'

sent, such as random arrival, service, setup times etc. 

Another interesting extension would be the integration of 

the diagnosis function in the control level in order to 

schedule the maintenance activities in the shop'floor 

level. 
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