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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. In this work we propose an efficient and original method for
ellipse detection which relies on a recent contour representation based on
arcs and line segments [1]. The first step of such a detection is to locate
ellipse candidate with a grouping process exploiting geometric properties
of adjacent arcs and lines. Then, for each ellipse candidate we extract
a compact and significant representation defined from the segment and
arc extremities together with the arc middle points. This representation
allows then a fast ellipse detection by using a simple least square tech-
nique. Finally some first comparisons with other robust approaches are
proposed.

1 Introduction

Shape identification is an important task in image analysis. Ellipse is a basic
shape that can appear naturally in images from 3D environment. Therefore,
ellipse detection is a key problem in many applications in the field of computer
vision or pattern recognition.

In general, we can group existing methods into three main approaches. The
first one relies on the Hough transform [2–6]. These methods transform image
into parametric space and then take the peaks in this space as candidate of
ellipse. Generally, it requires a parameter space that has five dimensions - con-
trariwise to two for straight line detection and three for circle detection, so it
needs more execution time and memory space than the two last approaches.
Some modifications [4–6] of Hough transform have been proposed to minimize
storage space and computation complexity. Daul et al. [4] reduce the problem
to two dimensional parametric space. Later, Chia et al. [5] introduced a method
based on Hough transform in one dimensional parametric space. Lu et al. [6]
proposed an iterative randomized Hough transform (IRHT) for ellipse detection
with strong noise.

The second one uses least square fitting technique [7–10] that minimizes the
sum of square error. There are two main types of least square fitting (see [10])
that are characterized by the definition of error distances: algebraic fitting and
geometric fitting. Concerning the first type, the error distance is defined by
considering the deviation at each point to the expected ellipse described by



implicit equation F (x, a) = 0 where a is vector of parameters. Contrariwise, for
the second type, the error distance is defined as orthogonal distance from each
point to the fitting ellipse.

The third group of approach detects ellipse candidates by using their moment
[11–15].

We propose a new method for ellipse detection based on the decomposition of
an edge image into arc and line primitives. The main contribution of this paper
is to propose a pre-processing step that allows to speed up the detection of ellipse
based on a linear scanning process on the sequence of arc and line primitives. The
rest of this paper is organized as follows. The following section recalls a method
for the representation of a digital curve by arcs and line segments. Section 3
presents the proposed method for ellipse detection before experimentation.

2 Descriptor based on arc and line primitives

In this section, we recall a linear method [1] for the decomposition of a digital
curve into circular arcs and line segments.

2.1 Tangent space representation and properties of arc in the

tangent space

Nguyen and Debled-Rennesson proposed in [16] some properties of arcs in tan-
gent space representation that are inspired from Latecki [17]. Let C = {Ci}

n
i=0

be a polygon, li - length of segment CiCi+1 and αi = ∠(
−−−−→
Ci−1Ci,

−−−−→
CiCi+1). If

Ci+1 is on the right of
−−−−→
Ci−1Ci then αi > 0, otherwise αi < 0 (see illustration of

Fig. 1(a)).
Let us consider the transformation that associates a polygon C of Z2 to a

polygon of R2 constituted by segments Ti2T(i+1)1, T(i+1)1T(i+1)2, 0 ≤ i < n (see
Fig. 1(b)) with:

T02 = (0, 0),
Ti1 = (T(i−1)2.x+ li−1, T(i−1)2.y), i from 1 to n,
Ti2 = (Ti1.x, Ti1.y + αi), i from 1 to n− 1.
Nguyen et al. also proposed in [16] some properties of a set of sequential

chords of a circle in the tangent space. They are resumed by proposition 1 (see
also Fig. 2).

α1

α2

α3

C0

C1

C2

C3

C4

(a) Input polygonal curve

0

y

x
α2

α3

T32 T41

T02 T11 T22
T31

T12 T21

α1

(b) Tangent space representation

Fig. 1. Tangent space representation



Proposition 1. [16] Let C = {Ci}
n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1)

such that αi ≤ αmax ≤ π
4 . The length of CiCi+1 is li, for i ∈ {1, . . . , n}. We

consider the polygon T (C), that corresponds to its representation in the modified
tangent space, constituted by the segments Ti2T(i+1)1, T(i+1)1T(i+1)2 for i from

0 to n − 1. MpC = {Mi}
n−1
i=0 is the midpoint set of {Ti2T(i+1)1}

n−1
i=0 . So, C is

a polygon whose vertices are on a real arc only if MpC = {Mi}
n−1
i=0 is a set of

quasi collinear points.

From now on, MpC is called the midpoint curve.
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Fig. 2. The chords in tangent space.

2.2 Arc line decomposition

Proposition 1 can be used to decide if a digital curve is a circular circle by
detecting straight line segment in the tangent space. Moreover, it is also used
for the decomposition of a curve into arcs and line segments. Nguyen introduced
the definition below.

Definition 1. In the curve of midpoints in the tangent space, an isolated

point is a midpoint satisfying that the differences of ordinate values between
it and one of its 2 neighboring midpoints on this curve is higher than the thresh-
old αmax. If this condition is satisfied with all 2 neighboring midpoints, it is
called a full isolated point

Let us consider Fig. 3. In this example, there are all basic configurations among
the primitive arc and line: arc-arc, arc-line and line-line. Fig. 4 presents these
configurations in detail in the tangent space. Concerning the midpoint curve
(MpC) in the tangent space, Nguyen et al. [1] introduced several remarks below.

– An isolated point in MpC corresponds to an extremity among two adjacent
primitives in C.

– A full isolated point in MpC corresponds to an line segment in C.

– An isolated point in MpC can be co-linear with a set of co-linear points that
corresponds to an arc.
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In [1], Nguyen et al. proposed an algorithm (see3 algo. 1) to decompose a
curve C into arcs and straight line segments. First, the sequence of dominant
points (DpC) of C is computed by using an algorithm presented in [18]. DpC

is then transform in the tangent space and the MpC curve is constructed. An
incremental process is then used and each point of MpC is tested: if it is not an
isolated point (in this case, it corresponds to an arc segment in C), the blurred
segment recognition algorithm [19] permits to test if it can be added to the
current blurred segment (which corresponds to an arc in C). If it is not possible,
a new blurred segment starts with this point.

3 Ellipse detection

We present hereafter a new method for ellipse extraction from edge map of an
image. It is based on three steps:

– Construction of a representation based on arc and line primitive of the edge
map of input image.

3 Note this algorithm includes some corrections of algo. 3 of [1].



Algorithm 1: [1] Curve decomposition into arcs and lines 3.

Data: C = {C1, . . . , Cn}-a digital curve, αmax- maximal angle, ν-width of
blurred segments

Result: ARCs- set of arcs, LINEs- set of lines
begin

Use [18] to detect the set of dominant points: DpC = {D0, . . . , Dm};
BS = ∅;
Transform DpC in the tangent space as T (DpC);
Construct the midpoint curve MpC = {Mi}

m−1

i=0 of horizontal segments of
T (DpC);
for i=0 to m-1 do

{Ci}
ei
bi
- part of C wich corresponds to Mi;

if (BS ∪Mi is a blurred segment of width ν [19]) and
(|Mi.y −Mi−1.y| < αmax) then

BS = BS ∪Mi;

else

C
′

- part of C corresponding to BS;
Push C

′

to ARCs;
BS = {Mi};
if (|Mi.y −Mi+1.y| > αmax) then

Push CbiCei to LINEs;
BS = {∅} ;

end

– Grouping of arcs and lines for detection of ellipse candidate based on geo-
metric properties.

– Fitting of ellipse candidate based on least square fitting.

The first step is done by applying the decomposition of a curve into arcs
and lines presented in the above section. We construct the corresponding edge
image from input image by using Canny filter. This edge image is considered as
a list of digital curves. Thanks to above technique [1], we can obtain a compact
representation of this edge image based on arc and line primitives.
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Fig. 5. Arc and line grouping based on geometric property.



Grouping of arcs and lines based on geometric property. In this step,
ellipse candidate is detected by grouping adjacent arcs and lines based on geo-
metric property. Its main idea is to group the adjacent primitives that have a
same tangent vector at the common extremity. In practice it is done by verifying
the angle between two adjacent primitives.

Let us consider two adjacent primitives. There are three possible configura-
tions: arc-arc, arc-line and line-line. We define the angle among two primitives
that depends on its configuration as follows.

– Arc-line: Let us see Fig. 5.a. The arc has its center O1. Two primitives share
a common point T. Tz is perpendicular with TB. The angle among two
primitives is define as ∠O1Tz.

– Arc-arc: Let us see figure 5.b. Two adjacent arcs whose centers are O1 and
O2 share common point T. The angle among these arcs is define as ∠O1TO2.

– Line-line: Let us see figure 5.c. The angle between two line segments AB

and BC is π − ∠ABC.

Thanks to the notion of angle among two adjacent primitives and sequential
property of the representation based on arcs and line segments, a linear scanning
process is used for grouping adjacent primitives satisfying that the angle among
two adjacent primitives does not exceed a fixed threshold. A such group of prim-
itives that contains at least one primitive of arc is called an ellipse candidate.
To avoid false positive with small detected ellipse, we use two constraints about
the arcs in each group of primitives: the maximal radius of arc must be greater
than 5 and the total subtending angle of arcs must be greater than π

5 .

Fitting of ellipse candidate. For each ellipse candidate constructed from the
extracted arcs and lines, we try to fit it by using least square fitting. Contrariwise
to existing techniques based on least square fitting, we need a very small set of
extracted points for fitting.

This good property is given by the repre-
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Fig. 6. Ellipse fitting based on
least square fitting.

sentation of the curve by arc and line prim-
itives. The set of extracted points for ellipse
fitting is constituted from extremities of arcs
and lines. Moreover, it contains also mid-
points of arcs to reduce the approximated
error between the fitting ellipse and the curve
reconstructed by arcs and lines. Fig. 6 illus-
trates this strategy. The ellipse candidate is
composed of segments AB, BC and arcs ĈD,
D̂E. The data set contains A, B, C, D, E the
extremities of arc and line primitives, M1,
M2 the midpoints of arcs ĈD and D̂E.

Concerning least square fitting, there are two main categories: algebraic fit-
ting and geometric fitting (see [10]). Let us consider a general conic described by
this implicit function: F (A,X) = A ·X = ax2+bxy+cy2+dx+ey+f = 0 where



Algorithm 2: Ellipse detection

Data: Img- a digital image, αmax- maximal angle, ν-width of blurred segments,
βmax threshold of angle 4

Result: E - set of ellipses
begin

Use Canny to detect edgeImg as edge image;
Consider edgeImg as a list of digital curves;
Use algorithm 1 to represent edgeImg by Primitives - a sequence of arcs
and lines; i=-1; E = ∅;
while i < sizeof(Primitives) do

i++; id=i; numArc=0;
while determineAngle(Primitives[i],Primitive[i+1])< βmax do

if Primitives[i] is an arc then numArc++; id++;

if (numArc > 0) & (id > i) & (maximal radius > 5) &
(total substending angle > π

5
) then

Collect {Primitives[j]}idj=i as an ellipse candidate; ES = ∅;
for j=i to id do

Add the first point of Primitives[j] to ES;
if Primitive[i] is an arc then Add the middle point of
Primitives[j] to ES;

Add the last point of Primitives[id] to ES;
Use least square technique to fit ES by a conic curve ζ [20];
if ζ is an ellipse then Add ζ to E;

end

A = [a, b, c, d, e, f ]t, X = [x2, xy, y2, x, y]t. F (A,Xi) is defined as algebraic (resp.
geometric) distance to the conic F (A,X) = 0. The least square fitting is used

to minimize the sum of squared error distance:
m∑

i=0

F (A,Xi)
2 with none trivial

solution A 6= [0, 0, 0, 0, 0, 0]t. Many works have been proposed for minimizing
this sum of square error. In our work, the ellipse is fitted from the extracted set
of points by using the code of ellipse fitting proposed by Ohad Gal [20].

Proposed Algorithm. Algorithm 2 describes the ellipse detection based on
the representation of an edge image by arc and line primitives. The scanning
process is applied for the detection of ellipse candidates by grouping adjacent
arcs and lines which have their adjacent angles smaller than a threshold (βmax).
For each ellipse candidate, the algorithm tries to construct an approximated
conic by using least square fitting on a small set of points constructed from
extremities of arcs and lines and middle points of arcs. If the conic is an ellipse,
it is considered as a detected ellipse. In practice, the threshold of angle is set
from π

8 to π
5 .

4 By default, αmax = π
4
, ν = 1, βmax = π

5
(see algo. 2).



4 Experimentations

We have experimented the proposed method on a 2.26 GHz CPU linux com-
puter, with a 4Go of RAM. The results are illustrated in Fig. 7 and Fig. 8. From
the input image (a), the edge image (b) is computed. Then, the detected arcs
and lines from algorithm 1 are represented in (c). Afterwards, a scanning pro-
cess is applied to group arc and line primitives to detect the ellipse candidate
(d) by verifying the angle between adjacent primitives. Finally, for each ellipse
candidate, the technique of least square fitting is applied to construct the fitting
conic on the small set of extracted points (marked points in detected ellipses in
figures Fig. 7.e and Fig. 8.e). Fig. 7.f and Fig. 8.f present the results obtained by
other methods [21], [22].

Table 1 shows some information about processing of ellipse detection from
the previous experiments. Thanks to the representation based on arcs and lines,
the number of primitives for processing is reduced from 13699 (resp. 7778) to 308
(resp. 261) for image in Fig. 7 (resp. Fig. 8). In addition, the scanning process on
the sequence of primitives is done in linear time due to its sequential property.
After applying this process, the number of ellipse candidates is reduced to 27
(resp. 6) for image in Fig. 7 (resp. Fig. 8). Moreover, the average number of
extracted points for ellipse fitting of each candidate is only 11.18 and 8.17.

The proposed method has two main advantages that guarantees its fastness:

– An efficient pre-processing step for the detection of ellipse candidates. It is
based on a fast method to represent the edge image by arcs and line segments
and a linear scanning process for the detection of ellipse candidates.

– A small set of extracted points for ellipse fitting. Thanks to the representation
based on arcs and lines, we don’t need all of points corresponding to ellipse
candidate for ellipse fitting. We only use extremity points of the primitives
(arcs, lines) and midpoints of arcs for this task.

Table 1. Ellipse detection in images in figures 7, 8.

Figure Image size No of points
in edge image

No of
primitives

No of can-
didates

No of el-
lipses

No of points
per candidate

Times
(ms)

7 584x440 13699 308 27 23 11.18 880

8 508x417 7778 261 6 5 8.17 520

5 Conclusions

We have presented a promising new method for ellipse detection in images.
The scanning process for detection of ellipse candidate is efficient because the
representation based on arcs and lines allows us to work with a small number
of primitives in relation with the number of points in edge image. In addition,



(a) Input image [21] (b) Edge image (c) Arc line decomposition

(d) Arc line grouping (e) Proposed result (f) Wu’s method

Fig. 7. Comparison with Wu’s method [21].

this process is done in linear time. Moreover, for each ellipse candidate, the
least square fitting is not directly applied on all the points of the candidate. In
future work we plane to perform other comparisons with different approaches
and include a recent noise detection defined through the concept of meaningful
scale [23].
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