
Max-plus-linear model-based predictive control for

constrained HVLV manufacturing systems

Imed Nasri, Georges Habchi, Reda Boukezzoula

To cite this version:

Imed Nasri, Georges Habchi, Reda Boukezzoula. Max-plus-linear model-based predictive con-
trol for constrained HVLV manufacturing systems. ETFA’2011, Sep 2011, Toulouse, France.
pp.1-4, 2011. <hal-00627566>

HAL Id: hal-00627566

http://hal.univ-smb.fr/hal-00627566

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

In this paper, a max-plus-linear model predictive con-

trol strategy is proposed for High-Variety, Low-Volume

(HVLV) systems. Firstly, using the (max,+) algebra, a di-

rect generation of event-timing equations for determinis-

tic and decision-free HVLV manufacturing systems is ob-

tained. Then, a linear optimization method is presented.

It is based on canonical forms for Max-Min-Plus-Scaling

(MMPS) functions with linear constraints on the inputs.

The approach aims at solving several linear programming

problems and its validity is illustrated by a simulation ex-

ample. Finally, a discussion of results, conclusions and

perspectives are given.

1. Introduction

High-Variety, Low-Volume (HVLV) manufacturing systems

are a class of dynamical systems where the behavior is similar to

Discrete Event Dynamic Systems (DEDS). They are character-

ized by a wide variety of products using shared machines, a weak

and personalized demand, relatively long processing times and

frequent change over and set-up times. Consequently, a contin-

uous approximation of the production flow by continuous flow

systems [3, 8, 9] is not appropriate. In this framework, it seems

very interesting to handle this kind of systems as a Multi-Input,

Multi-Output (MIMO) DEDS systems.

Production systems can be modeled from two different points

of view, qualitative or quantitative. The work presented in this

paper is a part of quantitative modeling. The main goal is to pro-

pose an analytical model and develop an approach able to gen-

erate the event-timing equations without the using of Petri Nets.

These equations are elaborated from the system configuration

for a repetitive decision-free HVLV system. A system where ev-

ery machine repeats its operations in the same order during each

of its cycles [7] with predetermined and fixed sequences of op-

erations [2]. Thereafter, a Model Predictive Control (MPC) is

applied to our system with the objective of meeting due dates

just-in-time (JIT) production criteria.

MPC is applicable to multi-input multi-output systems, it can

handle constraints, states and outputs in a systematic way and it

is capable of tracking pre-scheduled reference signals.

In this paper a Max-Plus-Linear (MPL)-MPC technique asso-

ciated to an optimization algorithm is applied to compute a MPC

controller for a simple HVLV system. The MPL-MPC controller

takes into account the objective of meeting the due dates and a

Just-In-Time (JIT) production. It is based on canonical forms for

MMPS functions in the case of linear input constraints [6]. It is

not the case for [5] where we have to solve a nonlinear, noncon-

vex optimization.

The remainder of this paper is organized as follows. Sec-

tion 2 describes a state-space HVLV systems modeling. In sec-

tion 3, the MPL-MPC problem is detailed and then applied on

HVLV systems. Next, discussion and practical implementation

are shown. Concluding remarks and future research directions

are presented in section 5.

2. HVLV systems modeling

The focus of this section is to develop an approach for gener-

ating event-timing equations from the machine interconnections

for a generalized deterministic and free-decision HVLV flow-

shop system.

2.1. Approach principle

Algebraic models provide many attractive features: they aim

to capture the description of the trajectories of manufacturing

systems in terms of a set of operations on functions of state

and/or events. This representation is similar to the one employed

in Continuous Variable Dynamic Systems (CVDS) by differen-

tial equations and algebraic operations [8].

Max-plus algebra is applied to represent HVLV systems

where relationships between the starting times of the operations

(states of the system) require maximum and addition operators.

The control variables used are the instants at them raw materials

are fed as late as possible to the system.

Some assumptions concerning the scheduling policy, the

loading sequences and the operation of the HVLV system are

posed:

• The system is deterministic and decision-free.

• The number of jobs to be processed over the planning hori-

zon is defined in advance.

• Each machine can perform one operation at a time.

• Routing decisions are already made and each operation is

assigned to a particular machine.

• Job finishing times have to meet the given due dates.

• The time at which raw material is fed to the system must

be as late as possible to satisfy a JIT production.



Max-plus algebra is used in development of algebraic models

of DEDS [1]. For all a, b ∈ R ∪−∞ the max-plus operators ⊕
and ⊗ are defined according to the following equations:

a⊕ b = max(a, b) (1)

a⊗ b = a+ b (2)

For the sake of simplicity, we consider a small scale test

problem of an HVLV system (i.e., a 2-machine generalized flow

shop).

2.2. Illustrative example

A generalized flow shop system is a flow shop system in

which a job does not have to visit all the machines in the sys-

tem. Certain jobs may skip certain machines.

Throughout this section, it is assumed that the scheduling

policy and loading sequences are repetitive and the master pro-

duction schedule concerns one product P1 and one product P2
by batch (MPS=(1P1,1P2)) [7]. For this purpose, a generalized

2-machine flow shop system is considered.

Figure 1. A 2-machine generalized flow

shop.

Figure 1 shows a 2-machine HVLV flow shop. The manu-

facturing routing of the product P1 includes two operations: the

first one is processed on machine M1 and the second one on ma-

chine M2. The product P2 is performed through a single opera-

tion on machine M2. The objective is to derive timing equations

according to the following form:

X(k) = A⊗X(k − 1)⊕B ⊗ U(k) (3)

Y (k) = C⊗X(k) (4)

Let define the following:

• ui(k): time at which the raw material of the kth product

of type i belonging to the kth MPS, i = 1, 2, is fed to the

system.

• yi(k): time at which the kth product of type i belonging to

the kth MPS, i = 1, 2, is completed.

• Slm: processing time required by the machine Mm, m =
1, 2 to process the operation l, l = 1, 2, 3.

• xlm(k): start time of the operation l, l = 1, 2, 3 on the ma-

chine Mm, m = 1, 2 of the kth product of type i belonging

to the kth MPS, i = 1, 2.

• U(k): kth input time vector defined as

U(k) = [u1(k)u2(k)]
T .

• X(k): kth start time vector or state vector defined as

X(k) = [x11(k)x22(k)x32(k)]
T .

• Y (k): kth completion time vector or output vector defined

as Y (k) = [y1(k)y2(k)]
T .

• A, B and C are adequate (max,+) constant matrices de-

scribing the relationships among different variables of the

system.

Table 1. Production data

Products Operation Machine Processing time

Product 1 1 1 1

— 2 2 2

Product 2 3 2 1

Within this context, we can then proceed to develop a dioid

algebraic state-space model. Let M denote the set of all avail-

able machines in the system, N the set of all jobs introduced to

the system, and P the set of all the operations to be produced on

the jobs over the next planning horizon.

Let xlm(k) be the start time of machine m for operation l

and for the kth MPS, then the completion time of operation l on

machine m is equal to its processing time Slm plus its start time

xlm(k). Two situations may arise.

If operation l is the first operation on the job, then its process-

ing start time xlm(k) is determined by the maximum of either:

• the completion time of all operation, p ∈ P , on machine

m ∈ M for the (k − 1)th batch (MPS),

• its control variable ui(k).

In the second situation, if operation l is not the starting oper-

ation for the job, then its processing start time xlm(k) is deter-

mined by the maximum of either:

• the completion time of all operation, p ∈ P , on machine

m ∈ M for the (k − 1)th batch (MPS),

• the completion times of all its predecessors, say

n ∈ P , being processed on their respective machines, say

t ∈ M , for the kth MPS.

Referring to the above assumptions, the dynamics of the ma-

chines for the example considered can be now derived according

to the following equations:

x11(k) = max(S11 + x11(k − 1), u1(k)) (5)

x22(k) =max(S22 + x22(k − 1), S32 + x32(k − 1),

S11 + x11(k)) (6)

x32(k) =max(S22 + x22(k − 1), S32 + x32(k − 1),

S22 + x22(k), u2(k)) (7)

y1(k) = S22 + x22(k) (8)

y2(k) = S32 + x32(k) (9)

3. HVLV systems control

The main contribution of this section is the application of a

MPC framework based on linear optimization problem for the

HVLV systems. The goal is to determine the greatest input in

terms of time for the raw material to be fed in the system over

the planning horizon such that the given sequences of due dates

are met and JIT objectives are achieved.
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3.1. Approach principle

In this section, we introduce the Model Predictive Control

(Figure 2) used to solve a JIT tracking problem. The funda-

mental principles of general MPC are: Prediction, performance

evolution, optimization and control action.

Figure 2. The full MPC scheme.

MPC [4] is a model-based control approach allowing to han-

dle constraints on the inputs and outputs. It uses a receding finite

horizon approach.

At the kth step event the future control sequence u(k), ...,

u(k + Nc − 1), where Nc is the control horizon, is deter-

mined such that the cost criterion is minimized subject to the

constraints. At step event k the first element of the optimal se-

quence (u(k)) is applied to the process. When the next event

of the horizon is shifted, the model is updated with new infor-

mation, and a new optimization at the event of step k + 1 is

performed.

The cost criterion J(k) = Jout(k) + λJin(k) used in MPL-

MPC reflects the reference tracking error (Jout) and the control

effort (Jin), where λ is a nonnegative weight parameter. Let r

denote and define the reference signal, and define the vectors [6]

ỹ(k) = [ŷT (k|k)...ŷT (k +Np− 1|k)]T (10)

where Np is the prediction horizon.

ũ(k) = [uT (k)...uT (k +Nc− 1)]T , (11)

and the vector of references (dues dates of products)

r̃(k) = [rT (k)...rT (k +Np− 1)]T . (12)

Then we have [5]:

Jout(k) = ⊕Np−1
j=0 ⊕l

i=1 |ŷi(k + j|k)− ri(k + j)| (13)

where l is the number of outputs.

Jin(k) = −

Nc−1∑

j=0

m∑

i=1

ui(k + j) (14)

where m is the number of inputs.

In this paper, we consider only linear constraints on the inputs

of the HVLV system

ũ(k) > 0 (15)

Since the u(k) corresponds to consecutive event occurence

times, we have the additional condition

∆u(k + j) = u(k + j)− u(k + j − 1) > 0 (16)

for j = 1, ..., Nc.

Note that the constraint r(k + j) > ŷ(k + j|k) for j =
0...Np− 1 leads to a linear constraint on the inputs.

Theorem A scalar-valued MMPS function can be rewritten

into the min-max canonical form

f = mini=1,...,Kmaxj=1,...,ni
(αT

(i,j)x+ β(i,j)) (17)

for some integers, K, n1 ,...,nK , vector α(i,j), and real number

β(i,j).

The objective function of the MPL-MPC problem J(k) can

be written in min-max canonical form for MMPS function (17).

3.2. Illustrative example

We consider, the HVLV flow shop system presented in the

section 2. This system produces two types of products P1 and

P2. In developing the control model, a MPS=(1P1, 1P2) is

given. This model aims to meet the due dates of products subject

to JIT production. This would correspond to a scheme in which

raw materials are fed to the system as late as possible. Referring

to the table 1 and the model proposed in section 2, we have the

following equations that describe the dynamic of the system:

x11(k) = max(1 + x11(k − 1), u1(k)) (18)

x22(k) =max(2 + x11(k − 1), 2 + x22(k − 1),

1 + x32(k − 1), 1 + u1(k)) (19)

x32(k) =max(4 + x11(k − 1), 4 + x22(k − 1),

3 + x32(k − 1), 3 + u1(k), u2(k)) (20)

y1(k) = 2 + x22(k) (21)

y2(k) = 1 + x32(k) (22)

The MPC approach presented in section 3 is applied to the

system and the optimization problem shown in this example is

subject to the following constraints:

1 ≤ ∆u1(k) ≤ 20, 1 ≤ ∆u2(k) ≤ 20, U(k) > 0

Let Np = Nc = 2, λ = 1, X(0) = (0; 5; 10)

Note that Y (k) and Y (k + 1) can be expressed as functions

of the current state X(k − 1) and the future inputs U(k)
and U(k + 1). Then the MMPS form of the cost criterion

is J(k) = min(max(m1,m2, ...,m13, t1);max(m1,m2

, ...,m13, t2); ...;max(m1,m2, ...,m13, t22))

The optimal MPC strategy for MPL-HVLV system can be

computed by solving 22 linear optimization problems and by se-

lecting the overall optimum.

Compute the closed-loop MPC inputs signals over a simula-

tion period [1,10] with references signals r1(k) and r2(k) (see

table 2).
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Table 2. Results of simulation

k 1 2 3 4 5 6 7 8 9 10

r1 40 44 54 66 75 85 90 100 108 116

r2 43 50 56 70 80 88 97 106 112 120

u1 37 41 51 63 72 82 87 97 105 113

y1 40 44 54 66 75 85 90 100 108 116

u2 41 49 55 69 79 87 96 105 111 119

y2 42 50 56 70 80 88 97 106 112 120

Figure 3. The closed-loop HVLV-MPC output

y1(k) and the reference r1(k)

Figure 4. The closed-loop HVLV-MPC output

y2(k) and the reference r2(k)

4. Discussion and practical Implementation

It can be shown that the proposed linear optimization algo-

rithm based on MMPS functions is efficient from tracking ref-

erence trajectories point of view. Then, (Table 2),(Figure 3)

and (Figure 4) shows clearly that the output signals are less

than or equal to the reference signals. Moreover, (Table 2)

shows that the input signals respect the different linear con-

straints mentioned in the above section and they satisfy the JIT

production criteria. Then, we can easily see in (Table 2) that

1 ≤ ∆u1(k) = u1(k) − u1(k − 1) ≤ 20, 1 ≤ ∆u2(k) =
u2(k)− u2(k − 1) ≤ 20 and U(k) > 0.

Moreover, for all 1 ≤ k ≤ 10, and referring to the above

equations for the dynamic of the system, we have: x11(k) =
u1(k) and x32(k) = u2(k). This means that the first operation

of each product begins as late as possible to meet the due dates.

Using a linear optimization based on MMPS functions don’t

require a long computation time unlike the nonlinear optimiza-

tion such as the ELCP approach proposed in [5] that can become

very cumbersome.

5. Conclusion

In this work a systematic approach is proposed for direct gen-

eration of event-timings for a class of deterministic and decision-

free DEDS systems called HVLV systems. Then, a linear MPC

framework is extended from linear discrete-time systems to the

HVLV systems to solve a tracking references (due dates) prob-

lem.

The popular MPC framework is extended from linear

discrete-time systems to the HVLV systems. MPL-MPC based

on MMPS functions leads to linear convex optimization prob-

lems.

In real-world applications, various uncertainty aspects of the

system will perturb its behavior (machines breakdowns, set-up

times, urgent orders, etc). In this context, next research work will

be done to improve the (max,+) model such that it can deal with

a dynamic and real time HVLV manufacturing systems schedul-

ing.
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