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Prologue 

Mosquitoes play a major role in the transmission of human diseases. Since the last 

decade, major diseases such as dengue fever and malaria are resurging in several regions of 

the world. Due to the absence of efficient vaccines, the main way to limit these diseases is by 

controlling mosquito populations with insecticides. However, mosquitoes have developed 

resistance mechanisms to the four main chemical insecticide families used for vector control 

(organochlorides, organophosphates, carbamates and pyrethroids). In this context, there is an 

urgent need to build up new vector control strategies and investigate the use of alternative 

insecticides for vector control. In this concern, the present work aims at evaluating the 

toxicity of the neonicotinoid insecticide imidacloprid and associated metabolic resistance 

mechanisms in the dengue vector Aedes aegypti.  

This thesis entitled “Molecular basis of metabolic resistance to the neonicotinoid 

imidacloprid in Aedes aegypti” was started in October 2008 in the “Ecole Doctorale Chimie 

et Sciences du Vivant” (EDCSV) of Université de Grenoble.  

 PhD salary was funded by the Higher Education Commission (HEC) of Pakistan. 

Experimentations were funded by the “Agence National de la Recherche” (ANR) (Santé-

Environnement Santé- travail (SEST), grant MOSQUITO-ENV 07SEST014). 
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Résumé 

Les moustiques sont vecteurs de nombreuses maladies humaines et animales. Leur contrôle 
représente donc un enjeu de santé publique au niveau mondial. Dans la plupart des pays tropicaux, le 
contrôle efficace des populations de moustiques dépend de l'utilisation d’insecticides chimiques ciblant les 

adultes ou les larves. Cependant, des phénomènes de résistance aux quatre principales classes d'insecticides 
chimiques couramment utilisées, menacent aujourd’hui les programmes de lutte anti-vectorielle. Dans ce 
contexte, il est urgent de trouver des alternatives aux insecticides conventionnellement utilisés.-moustiques. 

 Durant cette thèse, j’ai étudié l’utilisation  potentielle du néonicotinoïde imidaclopride dans le 
contrôle des populations de moustiques. Je me suis plus particulièrement intéressé à l’identification des 

mécanismes de résistance métabolique, à la mise en évidence de résistances croisées avec d’autres 

insecticides ainsi qu’à l’étude de l’impact des polluants environnementaux sur la tolérance à 

l’imidaclopride. 

Pour ce travail, le moustique Aedes aegypti a été utilisé comme une espèce modèle. La tolérance 
basale d’Ae. aegypti à l'imidaclopride a d'abord été évalué chez les larves et adultes. L’effet d'une 

exposition larvaire à une dose sub-létale d'imidaclopride sur une seule génération a ensuite été étudié au 
niveau toxicologique et moléculaire à l'aide de profils transcriptomiques. Les expositions larvaires à des 
doses sub-létales ont également été utilisées pour identifier les interactions potentielles entre 
l'imidaclopride, les insecticides chimiques et des polluants environnementaux. 

A long terme, la réponse adaptative du moustique Ae. aegypti à l'imidaclopride a été étudiée sur 
plusieurs générations en sélectionnant au laboratoire une souche sensible aux insecticides (souche Bora-
Bora) avec de l'imidaclopride durant le stade larvaire pendant 14 générations. Cette sélection artificielle a 
permis d'obtenir la souche Imida-R. Cette souche présente une résistance accrue à l'imidaclopride chez les 
larves alors qu’aucune résistance significative n’a été détectée chez les adultes. Les mécanismes de 

résistance ont ensuite été étudiés en utilisant diverses approches, y compris l'utilisation d'inhibiteurs 
d'enzymes de détoxication, la mesure des activités de biotransformation et l’étude des profils 

transcriptomiques par puces à ADN et séquençage massif des ARNm. Plusieurs familles de protéines 
potentiellement impliquées dans la résistance ont été identifiées, notamment les enzymes de détoxification 
et les protéines cuticulaires. Parmi les gènes de détoxication, 8 cytochromes P450 et 1 glutathion S-
transférase apparaissent comme des candidats pouvant jouer un rôle dans le métabolisme de 
l'imidaclopride. Le rôle des cytochromes P450 dans la résistance élevée de la souche Imida-R a été 
confirmée in vitro par des études comparatives du métabolisme de l’imidaclopride par des fractions 

microsomales des souches sensibles et Imida-R. Au niveau génique, la modélisation de liaison du substrat a 
permis de restreindre le panel des cytochromes P450 candidats. De façon concomitante, l'expression 
hétérologue d'un P450 a été effectuée et sa capacité à métaboliser l'imidaclopride a été confirmée. 

Des bioessais avec d'autres insecticides ont révélé une résistance croisée aux autres 
néonicotinoïdes chez la souche Imida-R au stade larvaire, ainsi qu’à un inhibiteur de croissance des 

insectes et dans une moindre mesure au DDT confirmant le rôle probable des enzymes de détoxication. Le 
relâchement de la pression de sélection sur la souche Imida-R durant quelques générations a entraîné une 
diminution rapide de la résistance, suggérant un coût métabolique. L’étude comparative de l'inductibilité 

des gènes de détoxication par l'imidaclopride dans les souches sensible et résistante a révélé une plus 
grande induction de ces gènes dans la souche résistante, suggérant à la fois la sélection d’une expression 

constitutive élevée mais également une plus grande plasticité phénotypique de ces enzymes dans la souche 
Imida-R. Enfin, le rôle potentiel des protéines cuticulaires dans la résistance a été étudié de manière 
préliminaire en exposant les larves à un inhibiteur de synthèse de la chitine, avant d’effectuer des bioessais. 

Dans l'ensemble, bien que ce travail de recherche nécessite d'autres expériences de validation 
fonctionnelle, les données obtenues fournissent une meilleure compréhension des mécanismes de résistance 
à l’imidaclopride chez les moustiques et permettent de discuter de son utilisation potentielle comme une 
alternative aux insecticides conventionnellement utilisés en lutte anti-vectorielle. 

Mot clé : Moustiques, insecticides, imidaclopride, résistance métabolique, résistance-croisée, Aedes aegypti, 
enzymes de détoxication, transcriptomique, validation fonctionnelle.  
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Abstract 

 Mosquitoes transmit several human and animal diseases and their control represents a 
public health challenge worldwide. In most tropical countries, efficient control of mosquitoes 
relies on the use of chemical insecticides targeting adults or larvae. However, resistance to the 
four main classes of chemical insecticides has been reported worldwide and threatens vector 
control programs.  In this context, there is an urgent need to find alternatives to conventional 
insecticides used in vector control. In this thesis, I explored the potential use of the neonicotinoid 
insecticide imidacloprid for mosquito control, focusing on the identification of metabolic 
resistance mechanisms, cross-resistance with other insecticides and the impact of environmental 
pollutants on imidacloprid tolerance. 

The mosquito Aedes aegypti was used as a model species for this research work. Basal 
tolerance of Ae. aegypti to imidacloprid was first evaluated at the larval and adult stages. Effects 
of a larval exposure across a single generation to a sub-lethal dose of imidacloprid were then 
investigated at the toxicological and molecular levels using transcriptome profiling. Short sub-
lethal exposures were also used to identify potential cross-responses between imidacloprid, other 
chemical insecticides and anthropogenic pollutants. 

Long-term adaptive response of Ae. aegypti to imidacloprid was then investigated across 
several generations by selecting an insecticide-susceptible strain (Bora-Bora strain) with 
imidacloprid at the larval stage for 14 generations in the laboratory. Such artificial selection 
allowed obtaining the Imida-R strain. This strain showed an increased resistance to imidacloprid 
in larvae while no significant resistance was measured in adults. Resistance mechanisms were 
then investigated using various approaches including the use of detoxification enzyme inhibitors, 
biochemical assays and transcriptome profiling with DNA microarray and massive mRNA 
sequencing. Several protein families potentially involved in resistance were identified including 
detoxifications enzymes and cuticle proteins. Among the formers, 8 cytochrome P450s and 1 
glutathione S-transferase appears as good candidates for a role in imidacloprid metabolism. The 
role of P450s in the elevated resistance of the Imida-R strain was confirmed by comparative 
P450-dependent in vitro metabolism assays conducted on microsomal fractions of the susceptible 
and Imida-R strains. At the gene level, substrate binding modeling allowed restricting the panel of 
P450 candidates. Meantime, heterologous expression of one P450 was performed and its ability to 
metabolize imidacloprid confirmed. 

Bioassay with other insecticides revealed potential cross-resistance of the Imida-R at the 
larval stage to other neonicotinoids but also to an insect growth inhibitor and in a lesser extent to 
DDT, confirming the probable role of detoxification enzymes. Relaxing the selection pressure of 
the Imida-R strain for few generations led to a rapid decrease of resistance, suggesting a cost of 
resistance mechanisms. Comparing the inducibility of candidate detoxification genes by 
imidacloprid in susceptible and resistant strains revealed a higher induction of these genes in the 
resistant strain, suggesting the selection of both a higher constitutive expression but also a greater 
phenotypic plasticity of these enzymes in the Imida-R strain. Finally, the potential role of cuticle 
protein in resistance was preliminary investigated by exposing larvae to a chitin synthesis 
inhibitor before bioassays. 

Overall, although this research work requires additional functional validation experiments, these 
data provide a better understanding of imidacloprid resistance mechanisms in mosquitoes and its 
potential use as an alternative to conventional insecticides in vector control. 

Key-words: Mosquitoes, Insecticides, Imidacloprid, metabolic resistance, Cross-resistance, Aedes 

aegypti, Detoxification enzymes, Transcriptomics, Functional validation.  
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Chapter 1. Introduction 

 

The total number of species described in the world is estimated to be close to 1,900,000 

with 62% of them belonging to the Arthropoda phylum (jointed-feet). The Hexapoda class 

also belongs to this phylum and is mainly represented by insects (Chapman 2009). The oldest 

fossils indicate that insects originated from the Silurian period 416-443 million years ago and 

belonged to the terrestrial fauna (Engel & Grimaldi 2004). Winged insects are divided into a 

number of orders based on the nature of their wings. In one of these orders, the front pair of 

wings is well developed for flight but hind pair is vestigial and represented by small and club-

shaped appendages called halters. The insects composing this order are known as Diptera 

(two-winged). The Diptera order includes flies, midges and mosquitoes. Mosquitoes have a 

major impact on human activities because of their ability to bite and transmit severe diseases 

including malaria, filariasis, dengue fever, yellow fever and other viruses. 

1.1 Biology and ecology of mosquitoes  

1.1.1 Mosquito biology  

There are about 3,500 mosquito species and subspecies, under 42 genera worldwide 

(WRBU 2001). Mosquitoes show a holometabolous development (four distinct stages in their 

life cycle: egg, larva, pupa, and adult). Larvae and pupae require standing or slow flowing 

water for their development. Females lay their eggs either as single eggs (e.g., Aedes, 

Anopheles) or as egg clusters (e.g., Culex, Culiseta), up to several hundred at a time, on the 

surface of the water, on the upper surface of floating vegetation, along the margins of quiet 

water pools, on the walls of artificial containers or in moist habitat subject to flooding 

(Clements 1992). The eggs of some species are resistant to desiccation (e.g., Aedes and 

Ochlerotatus) while others require immediate development (e.g., Culex and Anopheles) 

(Crans 2004). In most cases, a decrease in the oxygen content of water triggers larval 

eclosion. 
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Figure 1-1: Developmental life cycle of the mosquito Aedes aegypti in tropical zone. 

Mosquito larvae undergo four molts before the pupal stage. Although larvae of particular 

species are predators, larvae usually feed with their mouth brushes on organic matter particles 

and microorganisms found in water. Anopheles larvae usually feed close to the water surface 

while Aedes larvae typically prefer to feed in the bottom and Culex larvae generally feed in 

the water column.  The larval stage can last from about 5 days for tropical species to several 

months for temperate species, depending on larval density and food availability. Larvae 

breath either through spiracles located on each abdominal segment or through a chitinous 

siphon tube located on the posterior abdominal segment (Clement 1992) . Pupae appear after 

the fourth larval molt and can last from one to several days depending on the species and 

environmental factors. Unlike larvae, pupae do not feed (resting stage) (FigureI-1). 

Adult mosquitoes are easily identified by the presence of a long proboscis projecting 

forward from the head. Male and female mosquitoes can be differentiated on the basis of 

structural differences in their antennae (bushy in male and thread like in female) and 

maxillary palps (slender in females and long and tufted in males) (Marshall et al., 1966).   

Male mosquitoes usually emerge few days before females. Both males and females feed 

primarily on flower/plant nectars. After mating, females require a blood meal to acquire 

proteins necessary for the development of their eggs by biting humans or animals. Some 
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species are anthropophagous (feed on man), while others are zoophagous (feed on other 

mammals and birds). In some species, autogenous females can also produce viable eggs, even 

without blood meal (Telang & Wells 2004). Females typically blood feed every 3–5 days, and 

in a single feeding a female usually engorges more than its own weight of body. Some species 

(e.g., Anopheles) prefer to feed at dusk, twilight or night (Muenworn et al., 2009), while 

others (e.g., Aedes) bite mostly during the day (Canyon et al., 1999). In general, male sperm is 

released from the spermatheca only when eggs pass down the oviduct so fertilization occurs 

during eggs laying (Chapman 1971). 

Female mosquitoes seeking for a blood meal are attracted by a wide range of stimuli 

emitted from their animal hosts. This phenomenon is complex and not yet fully understood. 

Like other biting arthropods, mosquitoes use visual, thermal, and olfactory stimuli to locate 

their host. Olfactory stimuli may be the most important when a mosquito nears the host but 

visual stimuli seem important for flight orientation, especially over longer ranges. More than 

100 volatile compounds can be detected from human breath. For example, carbon dioxide is 

released from the breath and the skin, and attracts mosquitoes. Carbon dioxide and octenol are 

common attractants that are used in monitoring and surveillance of mosquitoes in their 

habitats (Rueda et al., 2001). Human skin bacteria also produce volatile compounds that are 

attractive to mosquitoes (Verhulst et al., 2010).  

1.1.2 Mosquito Ecology  

Different factors like humidity or the presence of natural chemicals are important for 

oviposition (Angelon & Petranka 2002, Eitam & Blaustein 2004, Serandour et al., 2010). 

Mosquitoes can deposit their eggs on the water surface, at varying distances from the water’s 

edge amongst leaf litter, mud and debris or on the walls of man-made containers, plants and 

tree-holes (Clement 1999). According to species, larvae are found in various habitats such as 

woodland pools, salt marsh pools, snow pools, fresh floodwater, brackish water swamps and 

bogs, ponds, streams, ditches, marshes, rock holes, tree holes, crab holes, lake margins, plant 

containers, artificial containers (tires, tin cans, flower vases, bird feeders) and others (Crans 

2004, Rueda et al., 2005, Rueda et al., 2006) (Figure 1-2). 

Each mosquito species has its own habitat preference and ecological niche but different 

species can also be found in the same habitats at the same time. Particular species such as Cx. 

pipiens are frequently found in strongly polluted areas (Pires & Gleiser 2010) while others 

prefer to colonize rural or urban areas close to humans areas. Based on the overwintering 
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behavior and number of generation per year, mosquitoes are classified into different types of 

life cycles. They can be either univoltine, multivoltine, monotypic or unique (Crans 2004).  

 

 
Figure 1-2: Different habitats of immature mosquitoes. Woodland pool (A), flower vases in 
gardens (B), Old discarded tires (C), tree holes (D), wetland (E), Creek (F), Irrigation ditch (G). 

1.2 Health and economical impacts of mosquitoes 

Mosquitoes transmit numerous human and animal diseases. They are vector of several 

parasites such as plasmodium (malaria), helminthes (filariasis) and viruses such as Japanese 

encephalitis viruses (JEV), west Nile viruses (WNV), yellow fever virus (YFV), dengue virus 

(DENV) and chikungunya virus. These are important examples of emerging/resurging 

diseases over the world causing significant morbidity and mortality. For example, malaria, 

vectored by Anopheles mosquitoes causes 20,000 deaths every week (Michalakis & Renaud 

2009). In 2006, nearly 245 million persons were infected with plasmodium leading to more 

than 800,000 deaths of which 85% were children under 5 years (WHO 2008). 

After malaria, the most sever mosquito-transmitted diseases are dengue and yellow 

fevers both transmitted by Aedes albopictus (dengue fever) and Aedes aegypti (dengue and 

yellow fevers). Four serotypes of dengue virus can be distinguished (DENV-1, -4). Having its 

origin in Africa (Mousson et al., 2005), different parts of the world have been colonized by 

Aedes aegypti (Figure I-3). Similarly, Ae. albopictus, known as the “tiger mosquito”, has 

dramatically spread over the world recently. Having its origin in South-East Asia (Mousson et 
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al., 2005), it has invaded Africa (Diallo et al., 2010, Paupy et al., 2010), America (Crans et 

al., 1996, Rossi et al., 1999) and more recently Europe (Pozza & Majori 1992, Schaffner et 

al., 2004, Roiz et al., 2008). Its presence in France has been first reported in 1999 (Schaffner 

& Karch 2000) and Ae. Albopictus populations migrating from Italy are now established in 

Côte d’Azur. Different factors contribute to the spread of a pathogen and its vector such as 

bird migrations (reservoir for dengue virus) or human activities (changes in land use, housing 

habits, water impoundments and transportation) (Mackenzie et al., 2004). Fifty million people 

have been estimated to be affected by dengue fever with nearly 2.5 billion people at risk and 

25,000 deaths per year (Gubler 1998, WHO 2009, Noble et al., 2010) while 2,00,000 cases 

and 30,000 deaths are imputed to yellow fever annually (Tomori 2004). In France (Nice), two 

cases of dengue fever have been reported in September 2010 (La Ruche et al., 2010). 

Unfortunately, despite the tremendous efforts invested in anti-DENV research, no clinically 

approved vaccine or antiviral therapy for humans are available for DENV and access to 

yellow fever vaccine is not effective worldwide (Leyssen et al., 2008, Monath 2008, Griffiths 

et al., 2010, Noble et al., 2010, Trent et al., 2010). 

 

 
Figure 1-3: Current distribution of Aedes aegypti and dengue fever infestation. The blue regions 
represent areas of ongoing transmission risk as defined by the Centers for Disease Control and 
Prevention (CDC) based on data from Ministries of Health, international health organizations, 
journals, and knowledgeable experts. Recent reports of local and regional dengue virus 
transmission collected by HealthMap are shown as red markers (CDC 2011). 
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Chikungunya virus is mainly transmitted by Aedes albopictus (Pialoux et al., 2006, 

Paupy et al., 2010). A major outbreak occurred in the Indian Ocean in 2006 and nearly 33% 

of the population of the French island La Réunion was infected leading to 205 deaths. 

Lymphatic filariasis is caused by the parasite Wuchereria bancrofti. The major vectors are 

mosquitoes of the genus Culex (mainly in urban and semi-urban areas) but the disease can 

also be transmitted by Anopheles (mainly in rural areas) and Aedes (mainly in endemic islands 

of the Pacific). More than 1.3 billion people are at risk of infection while 120 million are 

infected of which 40 million show disabling clinical manifestations (WHO 2009). 

Alongwith direct health impacts, the economical impact of diseases transmitted by 

mosquitoes can’t be ignored. The cost is associated with a lot of items such as disease 

treatments, diagnostic tests, human resources, field materials, individual protection 

equipments, spraying equipments, insecticide supplies etc. The total cost for the Dengue fever 

program of Sao Paulo in 2005 was estimated to 12.4 million dollars (Taliberti & Zucchi 

2010). In 2001, the financial losses happening to Thailand due to dengue fever were estimated 

over 60 US-dollars per family which was more than the average monthly income (Clark et al., 

2005). During 2006, a substantial economic loss happened in India because of a dengue fever 

outbreak. The financial loss including factors such as hospitalization, loss of working days 

and deaths was estimated at 27.4 million US dollars (Garg et al., 2008). 

1.3 Strategies for Mosquito control 

The control of mosquito-transmitted diseases can be achieved by controlling vector 

populations, alongside with drugs and case management (Hemingway et al., 2006). In 

developing countries, mosquito control represents a true public health challenge. Mosquito 

control can target larvae and/or adults and/or be focused on avoiding the contact with 

pathogen-carrier mosquitoes. Control strategies include environmental management and 

physical, biological, genetic and chemical controls. 

 

1.3.1 Environmental management and physical control 

The importance of habitat diversity on the structuration of mosquito populations has 

been well recognized by aquatic ecologists and public health bodies. Therefore, knowledge of 

larval habitats is an important aspect of vector control strategies. Physical control method is 

one of the most practical ways to reduce local mosquito populations. It consists in modifying 

the environment in order to prevent or minimize vector propagation and human contact with 
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the vector-pathogen. Physical methods include long-lasting environment modifications such 

as elimination of permanent breeding places, temporary environment manipulations like 

flower vases cleaning, deserting room coolers, gutters and disposal of discarded containers 

and progressive changes to human habitation or behavior in order to reduce human-vector 

contacts such as installing nets on windows and bednet (WHO 2009). 

 

1.3.2 Biological control 

Biological control is based on the introduction of organisms that prey upon, parasitize 

or compete with the target species (WHO 2009). Biological control of mosquito larvae by 

predators and other bio-controlling agents can be an effective and eco-friendly approach in 

opposition to the use of synthetic chemicals which have a negative impact on environment. In 

nature, mosquito larvae have different predators including amphibian tadpoles, fishes, 

dragonfly larvae, aquatic bugs, mites, malacostracans, anostracans, cyclopoid copepods, and 

pathogens including bacteria, fungi and helminthes (Kumar & Hwang 2006, Scholte et al., 

2007). A variety of fish species have been used to eliminate mosquitoes. In Brazil, two fish 

species, Astronotus ocellatus (Cichlidae) and Macropodus opercularis (Anabatidae) were 

successfully tested for predation of immature mosquitoes in laboratory (Consoli et al., 1991).  

The western mosquito fish, Gambusia affinis, and the eastern mosquito fish, G. holbrooki are 

used widely as mosquito larvae predators. Cyclopoid copepods can also be efficient for 

mosquito control (Kumar & Hwang 2006). The predatory potential of predaceous-mosquito 

larvae, Lutzia fuscana for vector mosquito populations was studied and was found as a good 

biocontrol agent in rice fields (Pramanik & Aditya 2009). 

Another environment friendly method for mosquito control is based on using plant 

chemicals or plant extracts (usually known as green or natural insecticides). Different plants 

have shown properties as adult-repellent and larvicides and might be used as one of the potent 

controlling agent for mosquito vector control (Shaalan et al., 2005). 

Finally, the bacteria, Bacillus thuringenesis variety israeliensis (Bti) producing dietary 

toxins that destroy the larval gut are widely used for mosquito control in Africa, America, 

Europe and South-East Asia (Brown et al., 2001, WHO 2007). 

1.3.3 Genetic control 

The genetic control of mosquitoes is for now mainly accomplished by using the Sterile 

Insect Technique (SIT). This approach requires mass rearing, irradiation, transportation and 



8 
 

release of insects in the field. This technique was successfully used in the Kenya coast and 

isolated islands (Lowe et al., 1980, Benedict & Robinson 2003, Lounibos 2003, de Valdez et 

al., 2011). Another approach aims at engineering genetically modified mosquitoes unable to 

transmit diseases or carrying lethal alleles (Benedict & Robinson 2003, Horn & Wimmer 

2003, Phuc et al., 2007, de Valdez et al., 2011). Recently, three million genetically modified 

Ae. aegypti males carrying a lethal allele of (OX513A strain) have been released as part of an 

open field experiment in the Cayman Islands (Gene Watch 2010). 

 

In spite of these management strategies, vector control still relies mainly on the use of 

chemical insecticides, especially because of their high efficacy and low cost in tropical and 

developing countries where mosquito populations are important and disease prevalence is 

high.  

1.3.4 Chemical insecticides 

1.3.4.1  Insecticides used for mosquito control 

Before the introduction of synthetic chemical insecticides, plant chemicals were often 

used for the control or repellency of mosquitoes (Isman 2006). However, plant extracts were 

not efficient enough and their use often led to insufficient protection. After their discovery in 

the 1940s, synthetic insecticides have become a major tool for vector control. The insecticides 

mostly used in vector control belong to four classes according to their chemical properties: 

Organochlorines (OCs), Organophosphates (OPs), Carbamates (Carb) and Pyrethroids (Pyr). 

The quantity of active ingredient from each insecticide class used for mosquito control 

worldwide in 2009 is shown in Figure 1-4 (WHO 2009). These insecticides can be sprayed 

against adults (outdoor or indoor residual spraying), impregnated on some material such as 

bednets, or dissolved in the water to target larval stages. 
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Figure 1-4: Estimation of the quantity of active ingredient (Tones) from insecticide classes used 
for mosquito control in 2009 (WHO 2009) 

DDT (dichlorodiphenyltrichloroethane) belonging to OCs and discovered by Paul 

Hermann Muller in 1939 was the first synthetic insecticide used for mosquito control. DDT 

binds to the voltage-gated Na-channels of insect nervous system and blocks them in the open 

state leading to neuronal hyper-excitation and insect death (Figure 1-5). OCs are divided into 

3 sub-classes: DDT and its analogs, lindane and its derivates and cyclodiens (dieldrin, 

endosulfan, chlordecon). Lindane and cyclodiene both inhibit GABA-gatted channel leading 

to neuronal hyperexcitation (Figure 1-5). OCs were successfully used for the control of 

mosquitoes. However, their high lipophilicity leads to their bioaccumulation and long 

persistence in the environment. DDT toxicity to non-target organism is well known and has 

been reported on aquatic animals as well as on birds and mammals. Indeed, the use of DDT 

on agricultural crops has been banned in most countries (EPA 1975). However, due to its 

beneficial effects for vector control (low cost, high efficiency), a specific amendment 

authorizes the use of DDT for indoor residual spraying against malaria vectors in Africa 

(UNEP 2001). 

OCs (5127 T) 

OPs (285 T) 

Carb. (32 T) 
Pyr. (468 T) 
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Figure 1-5: Mode of action of chemical insecticide s acting on insect nervous system (from 
(Pennetier et al., 2005). 

Few years later, Organophosphates appeared as an alternative to OCs with a totally 

different mode of action. OPs block the acetylcholinesterase degrading the neurotransmitter 

acetylcholine in the synaptic region (Figure 1-5). Because of their relatively good 

hydrophilicity, OPs were mainly used as larvicides for vector control. In 2005, malathion was 

the most abundantly used compound for vector control followed by fenitrothion and temephos 

(WHO 2007). 

In the mid-50s, a third class of chemical insecticides, the derivatives of carbamic acid, 

called Carbamates was introduced to the market. Despite different chemical properties, their 

target is identical to OPs. Various carbamates (carbaryl, propoxur, carbosulfan, bendiocarb…) 

have been used for mosquito control worlwide as larvicides or adulticides with bendiocarb 

and propoxur being the most frequently used (WHO 2007, 2009). 

In the 70s, Pyrethroids have emerged. Their mode of action is similar to OCs as they 

bind to the voltage gated sodium channels and lock them in the open state (Vijverberg et al., 

1982) (Figure 1-5). These compounds modify the gating kinetics of voltage-sensitive sodium 
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channels by slowing both the activation and inactivation of the channel (Ishaaya 2001). They 

usually lead to a rapid “knock down” effect of insects followed by death if dose is sufficient. 

Pyrethroids are synthetic compounds similar to the natural chemical pyrethrins produced by 

the flowers Chrysanthemum cinerariaefolium and C. coccineum. Today, they constitute a 

major proportion of the synthetic insecticide market. The 1st generation of pyrethroids 

(bioallethrin, tetramethrin, resmethrin and bioresmethrin) was developed in the 1960s. These 

compounds were more active than the natural pyrethrum but unstable in sunlight. The 2nd 

generation of pyrethroids (permethrin, cypermethrin and deltamethrin) was developed in 

1974. These synthetic pyrethroids were more resistant to light degradation but displayed a 

higher mammalian toxicity. Pyrethroids such as permethrin, cypermethrin, deltamethrin, 

alpha-cypermethrin, bifenthrin, cyfluthrin, etofenprox and lambda-cyhalothrin are extensively 

used for vector control as adulticide for ITN (insecticide treated nets), IRS (indoor residual 

spraying) and SS (space spraying) (WHO 2006). 

Although marginal compared to insecticides described above other types of chemical 

insecticides have also been used for vector control. 

Insect Growth Regulators (IGRs), including chitin synthesis inhibitors (CSI) and 

juvenile hormone analogs (JHA) are used on larval stages to prevent the emergence of adults 

(Fontenille et al., 2009). Recent studies suggest that IGRs can be of value for mosquito 

control when used in combination with other insecticides (Darriet & Corbel 2006, Darriet et 

al., 2010). Today, methoprene (JHA) constitutes the major quantity of IGRs used for 

mosquito control followed by diflubenzuron (CSI) and pyriproxyfen (JHA) (WHO 2007, 

WHO 2006).  

1.3.4.2 Status of insecticide resistance in mosquitoes  

The four main classes of insecticides have been used intensively for vector control 

leading to the selection of resistant mosquito populations worldwide.  

Regarding Organochlorines (OCs), resistance has been detected in a wide range of 

mosquito species including An. funestus (Coetzee et al 1999-end), An. arabiensis (Matambo et 

al., 2007, Munhenga et al., 2008), An. gambiae (Corbel et al., 2007, Etang et al., 2007), Ae. 

aegypti (Rodriguez et al., 2005, Tikar et al., 2008, Polson et al., 2011) and Cx. 

quinquefasciatus (Corbel et al., 2007).  
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Resistance to Organophosphates (OPs) has also been detected in various species in 

several region of the world. In Africa and China, several populations of Cx. pipiens (Cheikh 

& Pasteur 1993, Weill et al., 2001), An. gambiae and Cx. quinquefasciatus (Corbel et al., 

2007) showed high resistance to OPs. In Cuba, mosquito control programs rely mainly on the 

application of temephos for larval control. Bioassays on Aedes populations from Havana City 

showed high resistance level to this insecticide (Bisset et al., 2011). In South America and 

Asia, Ae.aegypti was found resistant to temephos and chlorpyrifos (Braga et al., 2004, 

Jirakanjanakit et al., 2007).   

Because Carbamates (Carbs) have the same target protein as OPs, cross-resistance 

between these insecticides occurs frequently. Resistance to carbamates has been recorded 

worldwide. In Côte d'Ivoire, adult bioassays on An. gambiae populations revealed a high 

resistance level to carbosulfan and propoxur (Alou et al., 2010). Several other studies 

evidenced Carbs. resistance in various species including Cx. pipiens (Cheikh & Pasteur 1993, 

Weill et al., 2001), An. gambiae and Cx. quinquefasciatus (Corbel et al., 2007) and Cx. 

tritaeniorhynchus (Karunaratne & Hemingway 2000). 

Pyrethroids (Pyr) are mainly used against adults for ITN (insecticide treated nets), 

IRS (indoor residual spraying) and SS (space spraying) and considered very efficient against 

mosquitoes. Pyrethroid impregnated bed nets are a central component of the World Health 

Organization’s Global Strategy for Malaria Control (WHO 2000). However, the primary 

malaria vector, An. gambiae has developed resistance to pyrethroids in various locations 

(Chandre et al., 1999). Pyrethroid-resistance in mosquitoes has been reported in many 

countries worldwide.  An. gambiae and Cx. quinquefasciatus from West Africa (Corbel et al., 

2007) Cx. pipiens from Tunisia (Daaboub et al., 2008), Ae. aegypti from Martinique 

(Marcombe et al., 2009) and Trinidad and Tobago (Polson et al., 2011) and An. funestus in 

Mozambique (Christian et al., 2011) have been shown to display resistance to Pyr. Finally 

cross-resistance between DDT and pyrethroids occurs frequently and has been recorded in 

several locations (Fonseca-Gonzalez et al., 2009, Brengues et al., 2003). 

Overall, the resistance level of mosquitoes to OCs, OPs, carbs and Pyrs is globally 

increasing and threaten the efficacy of mosquito control programs in several locations. 

Because the development of new active ingredients is a long term process (usually more than 

ten years from research to the market), there is a clear need to investigate for alternative 
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solutions to manage resistance. In this regard, the use of existing insecticides with different 

targets and/or modes of action is of high interest.  

1.3.4.3 Alternative molecules available for vector control 

The toxicity of new chemical insecticides with different chemistry was also evaluated 

as larvicides and/or adulticides as an alternative to the already in-use insecticides to which 

mosquitoes are getting resistance. During the laboratory evaluation, chlorfenapyr (a pyrrole 

disrupting the production of ATP), indoxacarb (an oxadiazine blocking Na-channels) were 

considered as good larvicides. Diafenthiuron (a thiourea inhibiting ATPase in mitochondria) 

and chlorfenapyr appeared as efficient adulticides against Ae. aegypti (Paul et al., 2006, 

Pridgeon et al., 2008). The field evaluation of fipronil (a phenylpyrazole blocking GABA-

gated Cl channels) also demonstrated good efficiency against Ae. albopictus (Sulaiman et al., 

1997, Darriet et al., 2010). 

The biopesticide Spinosad, isolated from soil bacteria Saccaropolyspora spinosa and 

acts on acetylcholine receptor leading to nerves hyperexcitation and paralysis. Laboratory 

larval bioassays with spinosad on Ae. aegypti strains resistant to pyrethroids, carbamates and 

organophosphates revealed high toxicity of this insecticide (Darriet et al., 2005). The 

evaluation of spinosad in combination with pyriproxyfen was also positive against Ae. aegypti 

larvae (Darriet and Corbel 2006). 

Recently, new semiochemicals named beta-damascone, cyclemone-A and melafleur, 

showed remarkable toxicity against Ae. aegypti, Ae. albopictus and An. quadrimaculatus 

(Kaufman et al., 2011). 

Finally, neonicotinoids, the newest major class of insecticides, have shown good 

potency and systemic action against various insects (Tomizawa & Casida 2005), especially 

due to their specific mode of action. Neonicotinoids binds to nicotinic acetylcholine receptors 

in insect nervous system (Figure 1-5). Among them, imidacloprid has been suggested as a 

good larvicide against mosquitoes (Paul et al., 2006). The use of imidacloprid in combination 

with permethrin as adulticide on pets (dogs) also proved very effective to kill and repel Ae. 

aegypti (Tiawsirisup et al., 2007). The mode of action and potential use of neonicotinoids for 

vector control will be discussed in details in section below. 

 



14 
 

1.3.4.4 Using the neonicotinoid imidacloprid for vector control 

Because of their chemical properties, high efficiency and novel mode of action, 

neonicotinoids are often considered as the fastest-growing class of chemical insecticides in 

modern crop protection. They are structurally similar to nicotine and have an electronegative 

pharmacophore (nitroguanidine, nitromethylene, or cyanoamidine moiety) selectively 

recognized by insect nAChRs. Neonicotinoids include various insecticides molecules such as 

imidacloprid, acetamiprid, clothianidin and thiamethoxam. (Tomizawa & Casida 2003).  

1.3.4.4.1 Imidacloprid and its mode of action  

Imidacloprid (1-[(6-Chloro-3-pyridinyl)methyl]-N-

nitro-2-imidazolidinimine-2-ylideneamine) is a 

nitromethylene derivative synthesized in 1985 by 

Nihon Bayer Agrochem K.K. (Elbert et al., 1991) 

(Figure 1-6). The representative formulated products 

used for its evaluation were "Confidor", a soluble 

concentrate formulation (SL) and “Gaucho”, a 

flowable concentrate for seed treatment (FS) (EFSA 2008). 

As other neonicotinoids, Imidacloprid binds to insect postsynaptic nicotinic 

acetylcholine receptors (nAChR) (Figure 1-7) (Nauen et al., 2002, EFSA 2008). The 

negatively charged nitro- or cyano-groups of neonicotinoid compounds interact with a 

cationic subsite of nAChR (Thany 2010). As a result, imidacloprid mimics the action of the 

neurotransmitter, acetylcholine (ACh). Because acetylcholinesterase has no effect on the 

insecticide, the nerve is continually stimulated leading to the overstimulation of insect 

nervous system and ultimately to death (EFSA 2008). 

Figure 1-7: Mode of action of the neonicotinoid imidacloprid. 

Figure 1-6: The structural formula of 
imidacloprid. 

Imidacloprid blocking acetyl 
choline receptorAcetyl choline released 

into synapse
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1.3.4.4.2 Imidacloprid and vector control  

The discovery of neonicotinoids has often been considered as a milestone in pesticide 

development because of their broad spectrum against sucking and chewing pest insects.   

Because of its low toxicity to mammals and versatility in application methods, imidacloprid 

and other neonicotinoids have been proposed to be maintained for Intergrated Pest 

Management (IPM) and insect resistance management programs (Jeschke et al., 2010, 

Tomizawa and Casida 2005). However, imidacloprid can be very toxic against non target 

organisms like honey bees (Yang et al., 2008). The high toxicity of imidacloprid for 

mosquitoes has already been reported and Paul et al., (2006) have evaluated its potential for 

Ae. aegypti control. Because its mode of action is different from insecticides currently used 

for vector control (OCs, OPs, Carbs and Pyrs), the use of this insecticide may be particularly 

interesting for resistance management (Jeschke et al., 2010) and may represent a good 

alternative to insecticides currently used for vector control (Paul et al., 2006, Pridgeon et al., 

2008). Recommandations for the potential use of this insecticide for vector control will be 

further detailed in the discussion section. 
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1.4 Insecticide resistance  

Insects are well known for their capacity to rapidly adapt to their environment. With the 

abundant use of chemical insecticide for insect-pest control since the 50s, resistance has 

arisen all around the world in various species.  

The Expert Committee on Insecticides (WHO 1960) defined resistance as follow:  

“Resistance to insecticides is the development of an ability in a strain of insects to 

tolerate doses of toxicants which would prove lethal to the majority of individuals in a 

normal population of the same species.” Resistance is a heritable trait transmitted from 

parents to the next generation. Although resistance is frequently the consequence of a single 

gene/mutation, it can also be the consequence of more complex adaptive events defined as 

cross-resistance, multiple-resistance and multiplicative resistance. When one gene/mutation is 

responsible for resistance to many families of insecticides having the same mode of action, 

this phenomenon is known as cross-resistance. For example, OPs and carbamates have the 

same mode of action and target site and the resistance of insects to OPs often leads to 

resistance to carbamates and vice versa (Corbel et al., 2007, Tikar et al., 2008, Fonseca-

Gonzalez et al., 2009, Alou et al., 2010). Sometime, insecticides with different mode of action 

are metabolized by the same enzymes as also leading to cross-resistance (Feng et al., 2010). 

Multiple-resistance is the resistance conferred by many resistance mechanisms in insects 

(e.g. an insect carrying two distinct mutations causing resistance to multiple insecticides with 

different mode of action (Perera et al., 2008)). Finally, multiplicative resistance is defined as 

the resistance conferred by several resistance mechanisms in one insect, being higher than the 

sum of the resistance level caused by each resistance mechanism separately (Hardstone et al., 

2009).  

1.4.1 Insecticide resistance mechanisms  

Different types of resistance mechanisms have been described in literature. In 

mosquitoes, chemical insecticides can penetrate into the body through contact (adults or 

larvae) and/or digestive tracts (larvae) before reaching their site of action (Figure 1-8). 

Insecticide resistance is not always controlled by a single mechanism and may be the 

consequence of different but additive mechanisms. Resistance can be due to (a) changes in the 

behavior of the insect towards the insecticide or to modifications of insect physiology such as 

(b) cuticle thickening (c) insecticide sequestration, (d) mutations of the proteins targeted by 
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the insecticide (target-site resistance) and (e) increased bio-degradation of the insecticide 

(metabolic resistance) (Figure 1-8).  

 

 

Figure 1-8: Different mechanism of resistance in mosquitoes (Modified from Poupardin 2011). 

 

1.4.1.1 Behavioral resistance 

Insecticide Treated Nets (ITNs) and Indoor Residual Spraying (IRS) are used 

efficiently to avoid indoor mosquito biting and disease transmission. However, the use of such 

insecticide strategies has lead to changes in the behavior of mosquitoes enabling them to 

avoid the contact with the insecticides. Behavioral resistance to insecticide treated materials 

could be characterized by a shift in the biting time, a change of preferred feeding site (e.g. 

indoor to outdoor biting) or different blood hosts (human to stock animals). For example, in 

1995, the introduction of permethrin-impregnated bednets in Kenya shifted the mosquito 

biting from indoor to outdoor during the night (Mbogo et al., 1996, Bogh et al., 1998) and the 

mosquito blood meals from human to animals (Bogh et al., 1998). Similarly in Zambia, after 

using pyrethroid impregnated nets for several years, the malaria vector An. arabiensis 

appeared to bite more frequently outdoors (Mathenge et al., 2001, Fornadel et al., 2010). 

Although behavioral resistance is difficult to evidence and not fully understood, this 

mechanism progressively gets a better consideration in resistance management strategies. 
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1.4.1.2 Cuticular resistance  

Insects can protect themselves from insecticides by reducing the quantity of active 

molecules penetrating inside their body. Cuticle, the outermost layer of insect body, is 

composed of chitin (N-acetyl-β-D-glucosamine), proteins and other substances such as lipids, 

pigments, inorganic materials and small organic molecules (Chapman 1971). This particular 

composition confers hydrophobic and lipophilic property to this exo-skeleton.  Resistance 

conferred by a reduced cuticle penetration of insecticides has been reported in several 

arthropods. The penetration of the organophosphate fenitrothion was reduced in a resistant 

strain of the bulb mite Rhizoglyphus robini (Kuwahara et al., 1991). An imidacloprid-resistant 

strain of the maize aphid Myzus persicae has been shown to present a constitutive over-

expression of several cuticle genes concomitantly with a reduced penetration of the 

insecticide (Puinean et al., 2010b). In mosquitoes, cuticle thickening has been associated with 

pyrethroid resistance. Reduced cuticular penetration of insecticides has been proposed for 

explaining mosquito resistance in the field. Electron microscopy scanning revealed an 

increased thickness of the cuticle in pyrethroid-resistant An. funestus as compared to 

susceptible individuals (Wood et al., 2010).  Several transcriptomic approaches pointed out an 

over-transcription of cuticle genes in insecticide-resistant mosquito strains. For example, the 

over-expression of two cuticular genes was associated with pyrethroid resistance in An. 

gambiae (Awolola et al., 2009). In An. stephensi, Vontas et al., (2007) showed that genes 

putatively involved in adult cuticle thickening were over-transcribed in a resistant strain. 

Recently, by using 454 Pyrosequencing in An. funestus, Gregory et al., (2011) showed that the 

coding fragments most differentially represented in a pyrethroid-resistant strain compared to a 

susceptible strain encode cuticular proteins. 

1.4.1.3 Sequestration 

Insecticide sequestration is characterized by the binding of insecticide molecules to 

proteins. Once sequestrated; the insecticide is no longer able to reach its target site leading to 

a better tolerance. Sequestration differs from metabolic resistance by the fact that the 

insecticide molecule is not metabolized although both mechanisms can act concomitantly. 

Indeed, several detoxification enzymes families including Glutathione-S-transferases (GSTs) 

and esterases have been described to metabolize or sequestrate insecticides. In mosquitoes, 

sequestration has mainly been involved in resistance to OPs. In Culex, OPs resistance can be 

caused by co-amplification of two esterases (alpha and beta esterases) leading to insecticide 

sequestration (Hemingway et al., 1998, Karunaratne & Hemingway 2000). The amplified 
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esterases display a rapid sequestration process and slow insecticide hydrolysis rates 

(Karunaratne et al., 1993). In the aphid M. persicae, the overproduction of carboxylesterase 

E4 or its paralog FE4 via gene amplification was considered to enhance sequestration of a 

wide range of insecticides including OPs, Carbs, and Pyrs (Field & Devonshire 1998). GSTs 

are also involved in insecticide sequestration in mosquitoes (Ortelli et al., 2003). Finally, 

other proteins may be involved in insecticide sequestration. For example, the binding of 

insecticides to hexamerins of the lepidopteran Heliothis zea has been described, suggesting 

the affinity of these proteins to small organic compounds and their putative role in insecticide 

sequestration (Haunerland & Bowers 1986). 

1.4.1.4 Target-site resistance  

Target-site resistance is defined as a modification of the protein targeted by the 

insecticide leading to increased-resistance in insect. Target-site resistance is the consequence 

of non-synonymous nucleotide variations (de novo spontaneous mutation or selection of 

existing resistance alleles) leading to the substitution of amino acids in the binding site of the 

protein targeted by the insecticide. Three examples of target-site resistance to chemical 

insecticides have been well described in the literature (Ffrench-Constant 1999). 

1.4.1.4.1 Acetylcholinesterase insensitivity (ACE mutation) 

Acetylcholinesterase (AChE) plays a crucial role in animal nervous systems by 

catalysing the hydrolysis of the neurotransmitter acetylcholine in the synaptic space leading to 

the termination of the nervous signal. This enzyme is the target of OPs and Carbs. 

Insensitivity of AChE to these insecticides is the most common target-site resistance 

mechanism observed in field. This mechanism has been evidenced in various insects such as 

the greenbug Schizaphis graminum (Gao & Zhu 2002), the olive fly Bactocera oleae (Vontas 

et al., 2002) and the green peach aphid Myzus persicae (Mazzoni & Cravedi 2002). This 

mechanism was also found in mosquitoes. In An. gambiae and Cx. pipiens, two AChE loci 

(ace-1 and ace-2) were identified and the ace-1 was found highly linked with insecticide 

resistance in Cx. pipiens (Weill et al., 2002) and An. gambiae in West Africa (Djogbenou et 

al., 2008). Several mutations have been reported in mosquitoes. The mutations G119S 

(Gly119 replaced by Ser) and F290V (Phe290 replaced byVal) were reported in An. gambiae 

and Cx. pipiens respectively resistant to OPs and Carbs (Alout et al., 2007, Alou et al., 2010). 
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1.4.1.4.2 Mutation of GABA receptors 

The target site of cyclodiene insecticides (OCs) such as dieldrin is the gamma-

aminobutyric acid (GABA) type A receptor. The gene called Rdl (Resistance to dieldrin) 

encodes a mutated GABA receptor (Zheng et al., 2003) insensitive to cyclodienes. Resistance 

is associated with replacements of a single amino acid in a wide range of resistant insects 

(Ffrench-Constant et al., 2000) including diamondback moth Plutella xylostella (Li et al., 

2006), the aphid Myzus persicae (Anthony et al., 1998) and D. simulans (Le Goff et al., 

2005). In mosquitoes, the RdlR mutation has been found at high frequencies in Cx. pipiens 

quinquefasciatus and Ae. albopictus from La Réunion (Tantely et al., 2010). The replacement 

of the alanine 296 and 302 by a glycine and serine respectively led to resistance (Thompson et 

al., 1993, Brooke et al., 2006). 

1.4.1.4.3 Mutation of the voltage-gated Na-channels (Kdr mutation) 

The voltage-gated sodium channels are activated by changes in the voltage potential of 

axonal membrane. In insects, these channels are the site of action of DDT and pyrethroids. 

The intensive use of DDT and pyrethroids worldwide has resulted in the selection of 

mutations in these channels known as knock down resistance (Kdr) mutations. Kdr mutations 

have been found in several insect species such as the house fly M. domestica (Soderlund 

2008), D. melanogaster (Usherwood et al., 2007), the german cockroach Blatella germanica 

(Dong et al., 1998) and the human head lice Pediculus capitis (Kim et al., 2004). In the 

mosquito An. gambiae, the replacement of a leucine by a serine at position 1014 linked to 

pyrethroid resistance has been found in East Africa (East-Kdr) (Ranson et al., 2000) while the 

replacement of the leucine by a phenylalanine has been linked to resistance in West Africa 

(West-Kdr), (Martinez-Torres et al., 1998)). Kdr mutations were also found in An. stephensi 

(Enayati et al., 2003; Singh et al., 2011), Ae. aegypti (Brengues et al., 2003) and Cx. 

quinquefasciatus (Sarkar et al., 2011) resistant populations.  

1.4.1.5 Metabolic resistance  

Metabolic resistance is defined as a consequence of an increased-biochemical 

transformation of insecticides to less and/or completely non-toxic metabolites, reducing their 

capacity to interact with their target proteins. These transformations are mainly carried out by 

‘detoxification enzymes’, including cytochrome P450 monooxygenases (P450s), 

carboxy/choline esterases (CCEs) and glutathione S-transferases (GSTs) (Hemingway et al., 

2004), although other enzyme families may be involved. At the gene level, elevated 

insecticide metabolism can be the consequence of gene amplification (increase in gene copy 
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numbers), up-regulation (increased expression without change in the copy number) and non-

synonymous variations (changes in protein sequence) leading to an increased turnover of the 

insecticide (Li et al., 2007). 

Detoxification processes are usually separated in two different phases (Figure 1-9). 

During phase I, detoxification enzymes such as P450s or esterases catalyze the oxidation, 

reduction, or hydrolysis of xenobiotics. During phase II, other enzymes such as GSTs or 

uridine diphosphate glucosyl transferases (UDPGTs) can conjugate xenobiotics or their phase 

I metabolites with glutathione (Gly-Cys-Glu) or sugars respectively. Following phase I and/or 

phase II, insecticide metabolites are usually eliminated from the organisms through excretion 

system. One should note that, xenobiotics alone and/or their metabolites can induce lipid 

peroxidation or produce reactive oxygen species during detoxification processes leading to 

cell destruction. In such cases, antioxidants enzymes such as peroxidases, catalases or 

superoxide dismutases may contribute to limit this stress (Sies 1993). 

 
Figure 1-9: Schematic description of detoxification mechanisms (Modified from Poupardin 
2011).  
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1.4.1.5.1 Mechanisms of metabolic resistance 

 Cytochrome P450-mediated resistance  

P450s are heme-thiolate proteins of 40 to 60 kDa that were named on the basis of their 

spectrophotometric characteristics. When their reduced heme iron links with carbon-

monoxide, these enzymes show a maximum absorption peak at 450 nm (Omura & Sato 1964). 

P450 are one of the largest enzyme superfamily and are found in all organisms including 

plants, animals, fungi and bacteria. In eukaryotes, P450s and their red/ox partners NADPH-

P450 reductases are usually bound to the endoplasmic reticulum (microsomal P450s) or inner 

mitochondrial membranes (mitochondrial P450s) (Werck-Reichhart & Feyereisen 2000). In 

addition to detoxification, these enzymes can be involved in various biological processes such 

as carbon assimilation, hormones metabolism, growth and development, nutrition, or 

reproduction (Feyereisen 2005).  

Functioning of P450s in insects 

P450s use electrons from NADPH to catalyze activation of molecular oxygen, leading 

to oxidative attack of the substrate. In detoxification mechanisms, P450s are involved in 

Phase І and perform the hydroxylation of xenobiotics.  

P450 substrate specificity depends on the conformation of their substrate binding 

pocket or substrate recognition site (SRS). The catalytic sequence involves different steps and 

the overall reaction can be written as follow: 

 

P450 needs redox partners for functioning. Co-factors act as electron transporter from 

NADPH to the P450. Microsomal P450s use NADPH cytochrome P450 reductase and NADH 

cytochrome b5 reductase as cofactors while mitochondrial P450s use adrenodoxin reductase. 

Although the reactions most often catalyzed by P450s are hydroxylation, P450s can 

also catalyse other reactions such as dealkylation, dehydration, dehydrogenation, 

isomerization, dimerization, carbon-carbon bond cleavage, and even reduction (Figure 1-10) 

(Mansuy 1998). 

R-H NADPH H+ O2+ + + R-OH NADP+ H2O+ +
P450
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Figure 1-10: Monooxygenation reactions catalyzed by P450s (Mansuy 1998). 

Nomenclature of P450s 

Since the 80s, a large number of P450s have been cloned, purified and sometime 

characterized. In 1987, Nebert et al., proposed a P450 nomenclature which is now widely 

used (Nelson et al., 1996). For the identification of gene and cDNA, the italicized root symbol 

''CYP'' representing ''cytochrome P450'' is used whereas the gene products are in capitals. This 

symbol is followed by an arabic number designating the family, a letter representing the 

subfamily and an arabic number denoting the individual gene within the subfamily. Different 

alleles of a single gene are designated v1, v2, etc. (e.g., CYP6B1v2). When multiple species 

are discussed, a prefix made from species initials can be used (e.g. DmCYP6G1 for the gene 

encoding CYP6G1 in D. melanogaster). According to this nomenclature, two P450s belong to 

the same family if their protein sequence homology is superior to 40 % and in the same 

subfamily if their protein sequence homology is superior to 55 %. Since this nomenclature is 

based on overall protein sequence similarity, no information regarding the function of a P450 

should be assumed by its classification within this system (Nelson et al., 1993). So far, more 

than 12450 CYPs have been named including more than 67 families from insects.Insect CYP 

families are distributed in four large clades named from vertebrate CYP families as shown in  

(Figure 1-11) (Feyereisen 2006). The number of P450 genes varies according to the species. 

For example, D. melanogaster, An. gambiae and Apis mellifera have 83, 111 and 46 genes 

encoding P450 respectively (Tijet et al., 2001, Ranson et al., 2002, Claudianos et al., 2006). 

More than half of insect P450 genes belong to CYP4 and CYP6 families. In the mosquito Ae. 
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aegypti 178 CYP genes belonging to the four main CYP clades have been identified (Nene et 

al., 2007, Nelson 2011).  

 

Figure 1-11: Insect CYP families and their relationship with vertebrate CYP families. Insect 
CYP family numbers are indicated for each clade (Feyereisen 2006). 

 

P450s and resistance to chemical insecticides 

Several studies have reported the involvement of insect P450s in resistance to 

chemical insecticides (Feyereisen 2005). Traditionally, the use of P450 inhibitors such as 

piperonyl butoxide (PBO) in combination with insecticide during bioassays is used to get the 

first evidence of P450-mediated resistance. For example, resistance of the mosquito Cx. 

quiquefasciatus from Alabama to permethrin was partially suppressed by PBO (Xu et al., 

2005). Another line of evidence can come from the comparison of global P450 activities in 

resistant and susceptible insects by using biochemical approaches and model P450 substrates 

such as ethoxycoumarin or ethoxyresofurin (De Sousa et al., 1995).  

Comparative in vitro insecticide metabolism with purified microsomal fractions may 

also be used to validate the role of P450s in insecticide resistance. For instance, in vitro 

metabolism of permethrin with microsomes of Cx. quinquefasciatus permethrin-resistant 

larvae produced higher quantity of 4-hydroxypermethrin than microsomes from susceptible 
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larvae (Kasai et al., 1998). In the house fly, gut and fat body microsomes from a resistant 

strain were shown to metabolize the insecticide pyriproxyfen at higher rates than in 

susceptible strains (Zhang et al., 1998). However, toxicological and biochemical approaches 

are not able to identify individual genes responsible for resistance. 

Since the last decade, the sequencing of some insect genomes and the evolution of 

molecular techniques have eased identifying individual CYP genes involved in insecticide 

resistance. In most studies, the over-expression of particular P450s was first detected through 

their over-transcription by using DNA microarray or reverse transcription quantitative PCR 

(RT-qPCR) approaches. For example, microarray analysis allowed revealing the over-

transcription of the gene CYP6G1 in insecticide resistant strains of D. melanogaster (Le Goff 

et al., 2003). In mosquitoes, the over-expression of CYP genes has been identified in 

mosquitoes resistant to insecticides. In An. funestus, RT-qPCR shows that CYP6P9 gene is 

highly over expressed in the egg and adult stages of a pyrethroid resistant strain relative to a 

susceptible strain (Amenya et al., 2008). Likewise in An. Gambiae, an adult-specific CYP 

gene, CYP6Z1was shown to be over-expressed in a pyrethroid-resistant strain compared to a 

susceptible strain (Nikou et al., 2003). To date, microarray screenings have identified several 

other CYP genes over-transcribed in resistant mosquito strains or populations including 

CYP4H21, CYP4H22, CYP4H23, CYP4J4 and CYP4J6 in resistant strain of Cx. pipiens (Shen 

et al., 2003), CYP325A3, CYP6M2, CYP6P3 in An. gambiae (David et al., 2005, Djouaka et 

al., 2008, Awolola et al., 2009), CYP6P9 and CYP6M7 in An. funestus (Christian et al., 2011) 

and CYP4J15, CYP4D23b, CYP6M6, CYP6Z6b and CYP6BB2a in Ae. aegypti (Marcombe et 

al., 2009). 

Although identifying P450 genes over-transcribed in resistant insects provide good 

evidences of their potential involvement in resistance, these approaches do not demonstrate 

the ability of these enzymes to metabolize insecticides. Therefore functional studies using 

various techniques are usually required to validate the function of individual P450 candidates.  

In vitro expression of individual P450 in heterologous expression system is often used 

for P450 function validation and substrate characterization. Different expression systems such 

as Escherichia coli, yeast and baculoviruses in animal or plant cells can be used for the in 

vitro production of individual P450s. In Insects, DmCYP6A2 produced in lepidopteran cells 

infected by baculovirus allowed to demonstrate the ability of this enzyme to metabolize 

several insecticides (Dunkov et al., 1997). The same protein from wild-type DDT resistant 
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strain of D. melanogaster expressed in E. coli was able to metabolize DDT (Amichot et al., 

2004). The heterologous expression of DmCYP6G1in cell suspension cultures of Nicotiana 

tabacum L. (tobacco) demonstrated of its capacity to metabolize DDT, imidacloprid and 

methoxychlor (Joussen et al., 2008). In mosquitoes, the heterologous expression of 

AgCYP6Z1 and AgCYP6P3 confirmed their ability to metabolize DDT and pyrethroids 

respectively (Chiu et al., 2008, Müller et al., 2008). Recently, the role of AgCYP6M2 in 

deltamethrin metabolism has also been demonstrated (Stevenson et al., 2011). 

 Esterase-mediated resistance 

Nomenclature of esterase 

Carboxy/cholinesterases or esterases (CCEs) are group of enzymes belonging to the 

hydrolase family implicated in the metabolism of numerous xenobiotics (Wheelock et al., 

2002). 

Because CCEs have extremely broad substrate selectivity, their nomenclature is 

sometime confusing and they are often collectively referred as esterases. The first 

classification of esterases was based on their inhibition by the OP paraoxon. The esterases 

inhibited by paraoxon were named esterases B and those not inhibited esterases A (Aldridge 

1953, 1993). While, in Culex, carboxyesterases capable to hydrolyse the α-naphthyl-acetate 

(synthetic substrate) are named α-esterases (Est α) and those capable to hydrolyse the β-

naphthyl acetate named β-esterases (Est β). In An. gambiae, D. melanogaster and Ae. aegypti, 

51, 36 and 49 carboxylesterases have been identified respectively (Ranson et al., 2002, Strode 

et al., 2008). 

Esterases and insecticide resistance 

Esterases have been involved in insect resistance to OPs, carbamates and pyrethroids 

(Peiris & Hemingway 1993, Vulule et al., 1999, Li et al., 2007).  

In mosquitoes, elevated esterase activities linked to OPs resistance have been found in 

Cx. quinquefasciatus (Corbel et al., 2007). Karunaratne and Hemingway (2000) have shown 

that carboxylesterases CtrEst beta1 and CtrEst alpha1 are associated with elevated carbamate 

resistance in Cx. tritaeniorhynchus. Higher esterase activities have also been associated with 

pyrethroid resistance in mosquitoes although no particular mosquito esterase has yet been 

shown to metabolize pyrethroids (Rodriguez et al., 2005). 

Different molecular mechanisms can be responsible for increased esterase activity. 

Gene amplification is a genomic modification that can increase gene copy number 
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(Hemingway & Ranson 2000). In the aphid M. persicae, overproduction of carboxylesterase 

E4 or its paralog FE4 protein via gene amplification was responsible for enhanced 

degradation and sequestration of a wide range of insecticides including OPs, Carbs, and Pyrs 

(Field & Devonshire 1998). In mosquitoes, gene amplification has been observed in many 

resistant populations of Culex (Jayawardena et al., 1994, Vaughan et al., 1997, Hemingway et 

al., 1998, Paton et al., 2000). For example, the over-expression of the esterases Estα2 and 

Estβ2 was responsible for resistance to OPs in Cx. quiquefasciatus (Vaughan et al., 1995, 

Hemingway & Karunaratne 1998). As for other detoxification enzymes, over-regulation can 

also increase the production of esterases without increasing the gene copy number. 

Finally, as for other detoxification enzymes, the modification of carboxylesterase due 

to mutation in their coding sequences can also cause resistance by modifying their affinity to 

insecticides (Campbell et al., 1998, Heidari et al., 2004, Zhang et al., 2010). 

 Glutathione S-transferase based resistance  

Glutathione S-transferases (GSTs) are involved in a wide range of biological 

processes. They play a central role in the detoxification of both endogenous and exogenous 

compounds. Their primary function is to detoxify hydrophobic xenobiotics by catalyzing the 

nucleophilic conjugation of glutathione (GSH) on the electrophilic center of the substrate 

(Armstrong 1991). They are also involved in intracellular transport, biosynthesis of hormones 

and protection against oxidative stress (Enayati et al., 2005, Ranson & Hemingway 2005). 

Some GSTs have also been involved in the regulation of development (Kasai et al., 2009). 

Most of GSTs are cytosolic dimeric proteins but they also exist as membrane-bound 

microsomal enzymes in insects (Ranson et al., 2002). 

Nomenclature of GSTs 

A nomenclature was applied to mammalian GSTs assigning each enzyme to different 

classes represented by a Greek letter. GSTs sharing more than 40% amino acid similarity 

were assigned to the same class (Mannervik et al., 1992). Insect GSTs were also named in the 

same way. The name of each gene coding for GST is composed of species initials following 

acronyme GST, Greek letter designating class and an Arabic number denoting the order of 

discovery or the genomic organization. For example, AgGSTe7 is the seventh gene of the An. 

gambiae Epsilon class of GSTs identified. The proteins are represented by capital letters 

while gene names italicized (Enayati et al., 2005, Ranson & Hemingway 2005). The number 

of genes encoding GSTs varies according to each species. For example, D. melanogaster and 

An. gambiae have 37 and 28 genes coding for GSTs respectively (Strode et al., 2008). There 
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are 29 transcripts encoding cytosolic GST enzymes in Ae. aegypti, most of them belonging to 

the insect-specific Delta and Epsilon classes (Lumjuan et al., 2007).  

 

 
Figure 1-12: Classification of An. gambiae and Ae.aegypti GSTs. All named GSTs are from 
An.gambiae (Ranson and Hemingway 2005). 

 

Mechanism of detoxification 

During GST-based detoxification, the conjugation of glutathione to the substrate leads 

to the conversion of lipophilic compounds to more hydrophilic metabolites that are more 

readily exported from the cell (Habig et al., 1974). GSTs have been shown to catalyze the 

conjugation of OPs (tetrachlorvinphos and parathion), resulting in their O-dealkylation or O-

dearylation (Oppenoorth et al., 1979, Ugaki et al., 1985). GSTs also can also metabolize 

insecticides by facilitating their reductive dehydrochlorination (Clark & Shamaan 1984). 

Lumjuan et al., (2005) showed that particular mosquito GSTs can catalyze the 

dehydrochlorination of DDT to the non-toxic metabolite DDE by using GSH as a cofactor 

rather than as a conjugate. GSTs can also play a pivotal role in defence against oxidative 
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stress (Enayati et al., 2005, Wongtrakul et al., 2009). Finally, GSTs can also be involved in 

insecticide sequestration (Kostaropoulos et al., 2001, Ortelli et al., 2003). 

 

GSTs and resistance to chemical insecticides 

Several studies have explored the role of GSTs in insecticide resistance. The main 

molecular mechanisms involving GST mediated metabolic resistance are over-production 

through up-regulation or gene amplification (Li et al., 2007).  

Members of delta and epsilon classes have been implicated in resistance to several 

insecticides, most frequently organochlorines, and pyrethroids (Fournier et al., 1992, Vontas 

et al., 2001, Ranson et al., 2004, Che-Mendoza et al., 2009). As for other detoxification 

enzymes, the use of GST inhibitors such as diethyl maleate (DEM) allows to evidence their 

role in resistance. For example, resistance to permethrin in Cx. quinquefasciatus was 

suppressed by the addition of DEM to insecticide during bioassays (Xu et al., 2005). 

Measuring higher GST activities in resistant strains or populations has also been used to 

evidence GST-based resistance. For example, Etang et al., (2007) showed an increased GST 

activity in An. gambiae related to DDT and pyrethroid resistance. Elevated GST activities 

were also observed in DDT-resistant Mexican populations of An. albimanus (Penilla 2006) 

and laboratory-selected An. Arabiensis (Matambo et al., 2007). Finally, high GSTs activities 

were also associated with elevated resistance to OPs and carbamates in mosquitoes 

(Karunaratne & Hemingway 2000).   

At the molecular level, several approaches such as transcriptomics, genetic mapping, 

interfering RNA or heterologous expression and in vitro metabolism have been used to 

investigate the role of individual GST genes in insecticide resistance. For example, the gene 

encoding GSTE2 was found over-transcribed in different mosquito strains resistant to DDT 

(Ranson et al., 2001, Lumjuan et al., 2005). Later, heterologous expression of this enzyme 

evidenced its ability to metabolize DDT into its less toxic form DDE in both Ae. aegypti and 

An. gambiae (Ortelli et al., 2003, Ding et al., 2005, Wang et al., 2008). Several GSTs were 

also found over-transcribed in insecticide resistant mosquito strains or populations (David et 

al., 2005, Vontas et al., 2007).  

1.4.1.5.2 Environmental factors affecting metabolic resistance 

Because insecticide metabolic resistance mechanisms are often based on altered 

expression of detoxification enzymes and that those enzymes are also involved in the response 

of insects to other natural or man-made xenobiotics, interactions between insects’ chemical 
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environment and metabolic resistance to chemical insecticides may occur in particular 

conditions. 

Plants produce a wide range of toxic chemicals (alkaloids, terpenoids, flavonoids etc.) 

and can utilize them for defense against herbivorous insects. The chemical structure of several 

of these allelochemicals is comparable to synthetic chemical insecticide (e.g., pyrethroids and 

nicotinoids). Indeed, these compounds are also metabolized by insect ‘detoxification’ 

enzymes. Studies of plant-insect interactions demonstrated that particular plant toxins are able 

to induce or repress the expression of insect detoxification enzymes (Feyereisen 2005).  

Therefore, enzymes involved in metabolic response or resistance to chemical insecticides may 

also be affected by plant chemicals. Few studies are available to understand this phenomenon. 

For example, larvae of the corn earworm Heliothes zea exposed to xanthotoxin displayed a 

higher tolerance to the pyrethroid insecticide alpha-cypermethrin (Li et al., 2000). Similarly, 

larvae of the fall armyworm Spodoptera frugiperda fed on corn became less susceptible to 

various insecticides than larvae fed on soybean due to enhanced monooxygenase activities. 

Similarly, larvae fed on cowpeas, a potent inducer of GSTs, were twice tolerant to 

organophosphorus insecticides than larvae fed on soybean (Yu 1984). For now, interactions 

between plant chemicals and insecticide resistance remain poorly studied in mosquitoes but 

are likely occurring in nature. 

During the last century, human activities have led to the release of a wide range of xenobiotics 

in natural environments, including pesticides, polycyclic aromatic hydrocarbon (PAHs), 

polychlorobiphenyls (PCBs), dioxins, drugs, heavy metals etc. The frequent accumulation of 

these xenobiotics in wetlands where mosquito larvae develop and their capacity to induce 

detoxification enzymes has led to the hypothesis that pollutants present in mosquito breeding 

sites may affect the tolerance of mosquitoes to insecticides. Such hypothesis has been verified 

experimentally several times. In Ae. aegypti, exposing mosquito larvae to sub-lethal 

concentrations of the herbicide atrazine, the heavy metal copper or the PAH fluoranthene 

increased their tolerance to various chemical insecticides. The increased tolerance was 

correlated to an elevation of detoxification enzyme activities (Poupardin et al., 2008). Similar 

results were obtained with Ae. albopictus larvae with tire-leachate compounds and chemical 

insecticides (Suwanchaichinda & Brattsten 2002). Agricultural practices can also be involved 

in the selection of resistance in mosquitoes through inherited cross-resistance to insecticides 

or gene expression changes in response to pesticide or herbicide exposure. For example in 

Burkina Faso, An. gambiae populations from cotton growing areas appeared more resistant to 
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permethrin and DDT compared to populations from areas with limited insecticide selection 

pressure (Diabate et al., 2002). 

1.4.2 Expected imidacloprid resistance mechanisms in mosquitoes  

Because imidacloprid has not been used widely against vector insects, resistance 

mechanisms to this insecticide have not yet been characterized in mosquitoes. However, 

resistance mechanisms to neonicotinoid insecticides have been investigated in other insect 

species. Because resistant mechanisms are often conserved between different insect species, 

these studies are of value for the present work.  

1.4.2.1 Example of resistance to imidacloprid in pest insects 

Imidacloprid has been mainly used on plant sucking insects such as aphids, 

leafhoppers, planthoppers, thrips and whiteflies. This insecticide has also showed good 

efficiency against some Coleopterans, Dipterans and Lepidopterans. Because of good 

systemic and residual activity, it is mainly used for seed treatment or soil application or foliar 

spraying (Mullins 1993). Finally, imidacloprid has also been used to protect pets against 

blood sucking insects (Venco et al., 2008). 

Resistance to neonicotinoids can originate through changes in the expression of 

detoxification enzymes and/or structural alterations of target-site proteins (Thany 2010). 

Resistance to imidacloprid has been observed in multiple insect species, including the cat flea 

Ctenocephalides felis (Rust 2005), the white fly Bemisia tabaci (Prabhaker et al., 2007), the 

house fly Musca domestica (Jandowsky et al., 2010), the cotton aphid Aphis gossypii (Herron 

& Wilson 2011) and the potato beetle Leptinotarsa decemlineata (Alyokhin et al., 2007). 

In aphids, imidacloprid-resistant strains exhibited a high over-transcription of the P450 

gene CYP6CY3 (Puinean et al., 2010b). In M. domestica, imidacloprid resistance was linked 

to the constitutive over-transcription of multiple CYP genes such as CYP6A1, CYP6D1 and 

CYP6D3 (Byrne et al., 2003, Markussen & Kristensen 2010). In D. melanogaster, Joussen et 

al., (2008) validated the role of DmCYP6G1 overexpression in imidacloprid metabolic 

resistance by expressing it in tobacco cell cultures and performing in vitro insecticide 

metabolism assays. In B. tabaci, imidacloprid resistance was first associated with increased 

P450 activities (Rauch & Nauen 2003). Then, imidacloprid resistant strains of B. tabaci have 

been shown to display an over-expression of CYP6CM1vQ. (Karunker et al., 2008). Later on, 

the structural modelling and heterologous expression of this enzyme followed by in vitro 
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insecticide metabolism assays confirmed that CYP6CM1vQ catalyses the hydroxylation of 

imidacloprid to its less toxic 5-hydroxy form (Karunker et al., 2009). 

In Aphids, increased resistance to imidacloprid has also been shown to be the 

consequence of cuticular thickening leading to reduced insecticide penetration (Puinean et al., 

2010b). Finally, target-site insensitivity has been observed in B. tabaci together with P450-

mediated resistance mechanisms, suggesting that multiple resistance mechanisms to 

imidacloprid can occur concomitantly in insects (Wang et al., 2009b). 

1.4.2.2 Metabolism of imidacloprid 

In order to understand imidacloprid toxicity in non-target organisms and imidacloprid 

resistance in insects, the metabolism of this insecticide has been investigated in several 

organisms. 

In human, it was demonstrated that CYP3A4 from liver can oxidize and reduce 

imidacloprid. Metabolism of imidacloprid generates 5-hydroxy, olefin, nitrosoimine, 

guanidine and urea by hydroxylation, desaturation of imidazolidine, reduction and cleavage of 

the nitroimine substituent (Figure 1-13) (Schulz-Jander & Casida 2002). Two major 

imidacloprid metabolites were detected in rabbit liver cytosol: the nitrosoguanidine and the 

aminoguanidine. The neonicotinoid nitroreductase was identified as a molybdo-flavoenzyme 

aldehyde oxidase (Dick et al., 2005). 

 

 

Figure 1-13: Metabolism of imidacloprid by human P450s. (A) Hydroxylation and desaturation 
of the imidazolidine generate 5-hydroxy and olefin derivatives. (B) Reduction and cleavage of 
the nitroimine substituent to form the nitrosoimine, guanidine and urea derivatives. From 
Schulz-Jander and Casida 2002.  
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In insects, in vivo metabolism using topical application of 14C-labelled imidacloprid 

was carried out in B. tabaci, showing that 5-hydroxy-imidacloprid was produced (Rauch & 

Nauen 2003). Structural models and functional characterization of BtCYP6CM1vQ confirmed 

that this enzyme catalysed the hydroxylation of imidacloprid to its less toxic 5-hydroxy form 

(Karunker et al., 2009). In M. domestica, microsomes from abdomen produced significant 

amounts of the mono-hydroxy and olefin derivatives of imidacloprid (Byrne et al., 2003). In 

D. melanogaster, CYP6G1 from resistant insects was showed to be able of converting 

imidacloprid by hydroxylation to both 4-hydroxy-imidacloprid and in a lesser extent 5-

hydroxy-imidacloprid (Joussen et al., 2008). 

Finally, phase-II enzymes can be involved in further detoxification and excretion of 

imidacloprid metabolites. During in vitro studies, it was noted that mouse liver microsomes 

converted 5-hydroxy-imidacloprid and 4,5-diol-imidacloprid to O-glucuronides through UDP 

glucuronidation (Shi et al., 2009). Based on these results, similar mechanisms involving both 

phase I and II enzymes are likely to occur in insects. 
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1.5 Thesis objectives 

The repeated use of OCs, OPs, Carb and Pyr insecticides against mosquitoes led to the 

artificial selection of resistance mechanisms to these insecticide classes that are now 

threatening the efficiency of vector control programs worldwide. This led to a regain of 

interest for the use of other insecticides having different biochemical targets or mode of action 

such as neonicotinoids (Paul et al., 2006, Pridgeon et al., 2008). In this context, the overall 

purpose of the present work is to explore the potential use of the neonicotinoid imidacloprid 

for mosquito control and more specifically to identify potential imidacloprid metabolic 

resistance mechanisms in mosquitoes. This research work is divided into two chapters 

supported by the following biological questions: 

1) How do mosquitoes respond to imidacloprid exposure? 

More precisely, what is the toxicity range of imidacloprid to mosquitoes? How do they 

respond to an exposure with a sublethal dose of imidacloprid? Which mosquito genes are 

induced or repressed after imidacloprid exposure? Do pollutants found in mosquitoes 

breading sites affect the tolerance of mosquitoes to imidacloprid? If so, what mechanisms are 

involved? 

These questions will be investigated in Chapter II.  

 

2) How do mosquitoes adapt to imidacloprid exposure across multiple generations? 

More precisely, do mosquito larvae exposure to imidacloprid across several generations 

select for resistance? If so, is resistance expressed in both larvae and adults? How resistance 

level evolves in absence of insecticide pressure? Does cross-resistance to other insecticides 

occur? 

At the molecular level, are enzymes classically involved in metabolic resistance involved? 

Which genes are differentially expressed in resistant individuals? Are those candidate genes 

induced by imidacloprid exposure? Among them, which ones are the most likely responsible 

for the resistant phenotype? Is resistance likely to be multigenic and multifactorial? What is 

the role of cuticular proteins in resistance? 

These questions will be investigated in Chapter III. 
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1.5.1 Biological model 

The model used for the present work is the mosquito Ae. aegypti (Linnaeus, 1862), vector 

of several human diseases including dengue fever, yellow fever (Figure 1-1) and chikungunya 

disease (Chhabra et al., 2008). This tropical species is represented worldwide and often 

colonizes urban or peri-urban areas. Ae. aegypti larvae are frequently found in artificial water 

containers such as water storage tanks, flower vases and tires (Salvan & Mouchet 1994). 

This mosquito species has been used as a model species for a long time due to several 

biological traits. First, this species is easy to maintain in laboratory conditions as it accepts 

different host for blood feeding and has good fitness traits in laboratory (easy mating, good 

fecundity and good survival of adults in insectary). Second, the productivity of this specie is 

high (from 100 to 300 eggs per females) allowing to produce enough individuals for 

toxicological, biochemical or molecular analyses. Third, as most Aedes species, Ae. aegypti 

eggs can be stored desiccated for few months thus reducing the risk of strain crash during 

selection experiments across several generations. Fourth, the generation time is short 

(approximately 1 month) allowing to obtain a high number of generations in a reasonable 

time. Finally, the genome of this mosquito species has been fully sequenced and partially 

annotated and several molecular tools are readily available for studying insecticide resistance 

mechanisms (Nene et al., 2007, Strode et al., 2008). 

Because no imidacloprid-resistant mosquito population is available from the field, the 

laboratory strain Bora-Bora, originating from French Polynesia, was used all along this thesis. 

This strain is susceptible to all insecticides and does not present any resistance mechanisms. 

Mosquitoes were reared in standard insectary conditions (26 °C, 14 h/10 h light/dark period, 

80% relative humidity) in tap water (larvae) and 40x40 cm plastic net cages (adults). Larvae 

were fed with hay pellets and adults with papers impregnated with honey. Blood feeding of 

adult females was performed on mice on a weekly basis. 

1.5.2 Experimental approach and techniques 

In order to answer the biological questions described above, different experimental 

approaches and laboratory techniques were used: 

At the population scale, larval and adult bioassays were used to characterize the 

tolerance/resistance of Ae. aegypti to imidacloprid.  
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Exposures of larvae to sub-lethal doses of imidacloprid were also performed in order to 

investigate the short response of mosquitoes to a low dose of this insecticide.  The impact of 

pollutants on imidacloprid tolerance was investigated through larval exposure to sub-lethal 

dose of pollutants followed by bioassays with imidacloprid. 

The long-term response of mosquitoes to imidacloprid was investigated in the laboratory by 

selecting an Ae. aegypti strain with imidacloprid at the larval stage along several generations. 

Comparative bioassays between the parental and the imidacloprid-selected strains were 

performed every few generations to monitor the evolution of resistance. After several 

generations, bioassays with other insecticides were also performed to investigate for potential 

cross-resistance mechanisms. Bioassays with insecticides supplemented with detoxification 

enzyme inhibitors were used to investigate the role of detoxification enzymes in resistance. 

Finally, the role of cuticular proteins in resistance was preliminary investigated by exposing 

larvae of both strains to chitin synthesis inhibitors prior to imidacloprid bioassays. 

After eleven generations of selection, a third strain was created from the imidacloprid-selected 

strain by releasing the insecticide selection pressure for few generations. Comparative 

bioassays between the three strains allowed to investigate the dynamics of resistance in 

absence of insecticide selection pressure and the presence of resistance costs. 

 

At the biochemical level, the level of detoxification enzymes was measured in mosquito 

larvae exposed to sub-lethal concentrations of imidacloprid and other xenobiotics. These 

enzyme levels were also compared between the parental and the imidacloprid-selected strains. 

Finally, the ability of P450-enriched microsomal fractions of each strain to metabolize 

imidacloprid was qualitatively and quantitatively compared by comparative in vitro 

metabolism experiments followed by HPLC analysis. 

 

At the molecular level, different transcriptome profiling techniques such as DNA 

microarray, Digital Gene Expression Tag Profiling and mRNA-sequencing were used to 

identify genes responding to imidacloprid exposure, cross-response between imidacloprid and 

pollutants and genes associated with inherited resistance to imidacloprid. Several 

transcriptomics results were validated or further investigated by RT-qPCR. Because of time 

constraints and because the present work is about metabolic resistance mechanisms (often due 
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to gene expression variations), we decided to rather focus our effort on gene expression 

profiling rather than on genomic analyses. 

 

Finally, thanks to other members of the mosquito research group of the LECA Grenoble, the 

functional validation of some candidate genes was initiated by modeling the docking of 

imidacloprid in the active site of several candidate P450s. This work was then followed by the 

heterologous expression of one of them in yeast and the validation of its ability to metabolize 

imidacloprid. This validation was performed by in vitro metabolism assays followed by 

HPLC analyses. 

The scientific and experimental approaches used in the present work are summarized in 

Figure 1-14. 
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Chapter 2. Response of mosquitoes to imidacloprid 

exposure 

 

The increasing resistance level of mosquitoes to classical insecticides used in vector 

control has led to a regain of interest for the use of neonicotinoids against mosquitoes (Paul et 

al., 2006, Pridgeon et al., 2008).  The use of imidacloprid has been suggested and further 

studies are needed to confirm its efficiency and investigate mosquitoes’ response and 

resistance mechanisms. 

In this context, chapter 2 is devoted to the study of the response of mosquitoes to 

imidacloprid exposure. First the toxicity of imidacloprid against mosquito larvae and adults 

was investigated by bioassays. Then, the response of mosquito larvae to a short exposure with 

a sub-lethal dose of imidacloprid was investigated at the toxicological, biochemical and 

molecular levels. A further study of the transcription pattern of particular genes responding to 

imidacloprid was then performed. Finally, the impact of pollutants on the tolerance of 

mosquitoes to imidacloprid was investigated and potential cross-response mechanisms 

highlighted. Most results presented here have been extracted from three research articles 

attached at the end of the chapter (publications I, II and III). 
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List of publications for chapter 2: 

Publication I: Riaz, M. A., R. Poupardin, S. Reynaud, C. Strode, H. Ranson, and J. P. David. 

2009. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to 

chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat 

Toxicol 93:61-69. 

 Input: Experimental design, performing experiments, statistical analysis of data, 

interpretation of results, writing manucript. 

 

Publication II: David, J. P., E. Coissac, C. Melodelima, R. Poupardin, M. A. Riaz, A. 

Chandor-Proust, and S. Reynaud. 2010. Transcriptome response to pollutants and 

insecticides in the dengue vector Aedes aegypti using next-generation sequencing 

technology. BMC Genomics 11:216. 

 Input: Sample preparation, RT-qPCR experiments, data analysis and contribution to 

draft the manuscript. 

 

Publication III: Poupardin, R., M. A. Riaz, J. Vontas, J. P. David, and S. Reynaud. 2010. 

Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic 

metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19:185-193. 

  

           Input: Sample preparation, contribution to experimentations, data analysis and 

drafting the manuscript.  
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2.1 Toxicity of imidacloprid against mosquito larvae and adults 

The aim of these experiments was to investigate the toxicity of imidacloprid to Ae. 

aegypti larvae and adults. The laboratory strain Bora-Bora, susceptible to all insecticides was 

used for these experiments. Imidacloprid solutions were prepared from analytical grade 

imidacloprid (Sigma-Aldrich) in acetone and then diluted in water or acetone for larvae 

bioassays and adult topical bioassays respectively.  

Larval bioassays were performed on 4th stage larvae. Four different insecticide 

concentrations leading from 5 to 95% mortality after 24 hours exposure were used. Four 

replicates of 25 larvae were used per insecticide concentration. LC50 (concentration lethal for 

50% of individuals) and its 95% confidence interval (CI95) were then calculated using XL-

Stat software (Addinsoft, Paris, France).  

Topical adult bioassays were performed in triplicates on 4 days-old females. Each 

replicate consisted of 25 4-days-old females of uniform size and weight and four doses of 

imidacloprid leading 5 to 95% mortality. A topical application of 0.3 µL of insecticide 

solution in acetone was performed on the thorax of each female mosquito. The same volume 

of 100% acetone was applied for negative controls. After insecticide application, females 

were allowed to recover for 24h in standard insectary conditions before mortality recording. 

LD50 (lethal dose for 50% of individuals) and its 95% confidence interval (CI95) were then 

calculated with XL-Stat (Addinsoft, Paris, France). 

 

Bioassays with imidacloprid indicated that Aedes aegypti larvae show a LC50 of 462 µg/L 

(Figure 2-1). In adults, topical bioassays indicate a LD50 of approximately 2 ng/adult female.  

 
Figure 2-1: Toxicity of imidacloprid to Ae. aegypti. (a) Bioassay results from 4th instar larvae (b) 
Bioassay results from 4 days-old adult females. Larval LC50 and adult LD50 estimated using the 
probit method with XL stat software are indicated.  
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2.2 Response of larvae to a sub-lethal dose of imidacloprid 

After confirming the toxicity of imidacloprid to Ae. aegypti larvae and adults, we investigated 

how larvae respond to a short exposure with a sub-lethal dose of imidacloprid. 

2.2.1 Impact of imidacloprid exposure on the subsequent tolerance of 

larvae to imidacloprid 

The objective of this experiment was to investigate if exposing mosquito larvae to a 

sub-lethal dose of imidacloprid affect their subsequent tolerance to this insecticide. Larval 

exposures to sub-lethal doses of imidacloprid were performed in triplicate with 100 

homogenous 2nd stage larvae for 72h in 200 mL of imidacloprid solution supplemented with 

50 mg of ground larval food (hay pellets) (Figure 2-2). An imidacloprid concentration of 25 

µg/L was chosen according to preliminary bioassays. This concentration leads to less than 5 

% larval mortality after 72 h exposure. After exposure, 4th stage larvae were collected, rinsed 

twice in tap water and immediately used for standard bioassays with imidacloprid. 

 
Figure 2-2: Principle of larval exposure followed by bioassays with imidacloprid 

Larval bioassays were conducted comparatively on larvae previously exposed to imidacloprid 

and unexposed larvae (controls) as described above. Mean LC50 and LC95 were determined 

for both larvae pre-exposed to imidacloprid and controls. Tolerance ratios (TR50 and TR95) 

were then calculated by dividing LC50 or LC95 from larvae exposed to imidacloprid by those 

obtained from unexposed larvae. Because comparison of LC50 values may not well represent 
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differential tolerance across all concentrations of insecticide used for bioassays, mortality data 

were further analyzed by generating a Generalized Linear Model (GLM) followed by a 

likelihood ratio test using R software (R Development Core Team, 2007).  

Overall, these bioassays revealed that the tolerance of larvae to imidacloprid is not affected by 

their previous exposure to a sub-lethal dose of the insecticide for 72h (Figure 2-3). The 

statistical analysis confirmed that differences of mortality rates between pre-exposed larvae 

and controls were not significant across all insecticide concentrations.  

 
Figure 2-3: Tolerance of mosquito larvae after exposure to a sub-lethal dose of imidacloprid. 

 

2.2.2  Impact of imidacloprid exposure on larval detoxification enzyme 

activities 

This experiment aimed at investigating if a sub-lethal exposure of larvae to 

imidacloprid affects detoxification enzymes levels. Larvae exposure to imidacloprid was 

performed as described above (25µg/L imidacloprid for 72h). After exposure, the overall 

activities of three detoxification enzyme families were measured with standard substrates and 

compared between larvae exposed to imidacloprid and controls (publication I). The overall 

activities of P450s were evaluated by measuring the hydroxylation of the 7-ethoxycoumarin 

(7-EC) to 7-hydroxycoumarin (7-OH) (ECOD) (De Sousa et al., 1995). The overall activities 

of α-esterases and β-esterases were measured from larval cytosolic fractions following the 

spectrophotometric method of Van Asperen (Van Asperen 1962) using α-naphtyl-acetate and 

β-naphtyl-acetate as substrates. Finally, GST activities were determined from larval cytosolic 
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fractions by spectrophotometric measurement monitoring the conjugation of glutathione to the 

model substrate CDNB (1-chloro-2,4-dinitrobenzene)  as described in Habig et al., (1974). 

These results revealed that exposing larvae to a sub-lethal dose of imidacloprid for 72h do not 

affect significantly their global P450s, GSTs and esterases activities (publication I). 

2.2.3 Transcriptome profiling of larval response to imidacloprid exposure  

The aim of these experiments was to investigate if the exposure of mosquito larvae to a 

sub-lethal dose of imidacloprid can affect the transcription level of particular genes. In other 

words, which genes are induced or repressed by imidacloprid? As above, a sub-lethal dose of 

insecticide was used in order to avoid side effects due to the selection of particular resistant 

phenotypes (survivors) during insecticide exposure. 

Transcriptomic approaches are used to quantify variations of mRNA quantity for 

multiple genes concomitantly. To answer the question above, two different approaches were 

used. First a small scale microarray representing all Ae. aegypti detoxification genes (named 

‘Aedes detox chip’) was used to investigate transcription variations of detoxification genes 

after imidacloprid exposure. However, this microarray does not represent the whole Ae. 

aegypti transcriptome. In addition, microarrays suffer from various technical biases such as 

non-specific hybridization and insufficient signal for low expressed genes. Thanks to recent 

advances in sequencing techniques and because no ‘whole transcriptome microarray’ was 

available at the time of this study, we decided to use next-generation sequencing technology 

to investigate larval transcriptome variations in response to imidacloprid exposure at a larger 

scale. The sequencing of short cDNA fragments (cDNA tags) allows measuring the transcript 

level of both known and unknown genes without a priori (Nielsen et al., 2006). Therefore, we 

decided to use a method based on the massive sequencing of million short cDNA tags from 

different cDNA libraries using solexa technology (Illumina). Results from both microarray 

and next-generation sequencing approaches are described below. 

2.2.3.1 Study of transcription variations of detoxification genes using DNA 

microarrays 

DNA microarrays are the standard method used for investigating transcription level 

variations in a large set of genes simultaneously. It is based on the hybridization of labeled 

cDNAs or RNAs (targets) on a solid surface (usually a treated glass slide) having cDNA or 

RNA probes fixed on it (Figure 2-4).  
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Figure 2-4: Principle of DNA microarray experiments. 

For this experiment, larvae were exposed to a sub-lethal dose of imidacloprid for 72 h 

as described above and used immediately for RNA extraction. Three independent replicates 

RNA were extracted from both exposed larvae and controls. Messenger RNAs were then 

amplified using a T7 RNA polymerase and reverse transcribed with Cy3 or Cy5 labeled 

dUTPs. Labeled cDNAs were mixed together and hybridized to the microarray following the 

protocols described in Publication I. 

The microarray “Aedes detox chip” developed by Liverpool School of Tropical Medicine 

(LSTM Liverpool, UK) was used for this study (Strode et al., 2008). This small scale 

microarray contains more than 290 different 70-mer probes representing all Ae. aegypti genes 

coding for three main detoxification enzymes families (P450, GSTs and esterases) and several 

other genes coding for enzymes potentially involved in response to oxidative stress. A total of 

six hybridizations (1 dye swap per biological replicate) were performed. Raw results were 

analyzed using R software (Limma Package) according to Muller et al. (2007) and genes 

showing a transcription ratio > 1.5-fold in either direction and a p-value < 0.01 after multiple 

testing corrections were considered significantly differentially transcribed. 

Mosquito larvae
exposed to imidacloprid

Unexposed Mosquito larvae

Data analysis
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Microarray results showed that although the exposure of Ae. aegypti larvae to a sub-lethal 

dose of imidacloprid for 72h did not increase their tolerance to imidacloprid, such exposure 

induced the transcription of several genes encoding detoxification enzymes. Among them, 

two P450 genes (CYPs) were induced by imidacloprid exposure (CYP4G36 1.8-fold and 

CYP6CC1 1.6-fold). The glutathione S-transferase gene AaGSTs1-2 was strongly induced 

(3.9-fold) while, 3 genes coding for carboxy/choline esterases (CCEs) were also induced 

(CCEae1o 2.6-fold, CCEae2o 1.6-fold and CCEae3o 4.3-fold). Six red/ox genes including a 

superoxide dismutase, 4 peroxidases and 1 reductase were also significantly induced 

(publication I). Conversely, 6 genes were slightly repressed in larvae exposed to 

imidacloprid including two P450s (CYP6AA5 and CYP305A5) and 3 CCEs. 

2.2.3.2 Study of transcription variations using next-generation sequencing  

At a larger scale, transcription level variations associated with exposure of larvae to a 

sub-lethal dose of imidacloprid were investigated by using a method called “Digital Gene 

Expression Tag Profiling” (DGETP) which was based on the Solexa sequencing technology 

(Publication II). This method generates millions of short cDNA tags anchored on a specific 

restriction site near the 3’ end of transcripts. In this experiment, larvae were exposed for 48h 

to a sub-lethal dose of imidacloprid (40µg/L). Three independent replicates from different 

eggs batches were prepared simultaneously. After exposure, larvae were collected, rinsed 

twice and immediately used for RNA extractions. 

Total RNA was extracted from three batches of 30 larvae for each sample and 

quantified with a Nanodrop ND1000 (ThermoFisher). RNA quality was controlled with a 

Bioanalyzer (Agilent). Then total RNAs were pooled together in equal quantities and sent to 

Illumina USA for cDNA tag libraries preparation and Solexa sequencing of each library (1 

library for exposed larvae and one for controls). Figure 2-5 illustrates the preparation of 

cDNA tag libraries (publication II). 
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Figure 2-5: Schematic diagram describing the preparation of cDNA libraries used for the 
DGETP method (from publication II). 

 

Briefly, total RNAs were used to isolate mRNAs by using magnetic oligo(dT) beads and 

cDNAs were synthesized. Double stranded cDNAs were cleaved at DpnII restriction sites (5'-

GATC-3') and fragments attached to the oligo(dT) beads on their 3' end were purified. Gene 

expression (GEX) adaptors 1 were ligated to the DpnII cleavage sites using T4 DNA ligase 

(Invitrogen). Double stranded cDNAs containing both GEX adaptors 1 and oligo(dT) beads 

were then digested with MmeI to generate 20 bp double stranded cDNA tags. GEX adaptors 2 

were ligated at the MmeI cleavage site using T4 DNA ligase. The adaptor-ligated cDNA tag 

library was then enriched by PCR with two primers annealing to the end of GEX adaptors and 

Phusion DNA polymerase (Finnzymes Oy). After PCR amplification, these short cDNA tags 

were sequenced as 20-mers on a genome analyzer I (illumina).  

In this study, the sequencing of cDNA tag libraries of mosquito larvae exposed to 

imidacloprid and controls produced 4.85 and 4.35 million 20 bp reads respectively 

(Publication II). 
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With the help of Eric Coissac and Christelle Melodelima, two bio-informaticians of 

the LECA Grenoble, these reads were mapped on Ae. aegypti genome with a in-house 

software (TagMatcher). Sequenced reads were then filtered from background noise. After 

mapping to Ae. aegypti genome, only tags without ambiguous nucleotides and mapped 

without mismatch at a unique genomic location were kept for further analysis. Clustering 

consisted in gathering different reads within a 500 bp range or within the same transcript (see 

publication II for more details). Then, the number of reads falling within each transcript or 

genomic cluster was used to compute normalized transcription ratios and their associated p-

values between imidacloprid-exposed larvae and controls (Figure 2-6, see publication II for 

more details). 

Figure 2-6: Principle of reads counting adopted for the DGETP study. The number of reads in 
each condition is then used to calculate a normalized transcription ratio for each known detected 
transcript or unknown genomic location showing significant transcription signal. In this 
example, 29 versus 18 reads indicate a 1.6-fold over-transcription of gene X in imidacloprid-
exposed larvae. 

The results of this study confirmed that the exposure of mosquito larvae to a sub-lethal dose 

of imidacloprid for 48h can modify the transcription level of more than 239 annotated genes. 

Among them, 113 and 126 were found significantly over- and under-transcribed respectively 

(Figure 2-7). Genes induced or repressed by imidacloprid exposure include a large proportion 

of proteins of unknown function. Among annotated genes, those encoding enzymes, cuticular 

proteins, transporters and proteins involved in DNA interactions were affected by 

imidacloprid exposure. Interestingly, several cuticular proteins appeared induced by 

imidacloprid. Among detoxification genes, 2 CYPs (CYP325X2 and CYP9M9) were strongly 

induced by imidacloprid. These two genes were not found significantly induced from 

previous microarray data. Conversely, few other detoxification genes including 1 GST 

(GSTD11), 2 CYPs (CYP4AG5 and CYP4D23) and 2 esterases (CCEae1C and CCEae1A) 

were found repressed after imidacloprid exposure. 

- 4 tags

- 29 reads

- 3 tags

- 18 reads

Unexposed Larvae (control) Imidacloprid exposed Larvae
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Overall, these two transcriptomics studies revealed that the transcription level of few 

genes encoding detoxification enzymes but also several other genes encoding other protein 

families are affected by a short exposure of mosquito larvae to a sub-lethal dose of 

imidacloprid. These transcriptome changes did not significantly modify the subsequent 

tolerance of larvae to imidacloprid. This may suggest that genes involved in metabolic 

processes leading to imidacloprid tolerance are not strongly affected by imidacloprid 

exposure or that other metabolic changes are shading such effects. 

2.3 Impact of pollutants on imidacloprid tolerance 

Anthropogenic xenobiotics present in mosquito habitats have been shown to affect the 

tolerance of mosquitoes to chemical insecticides. These phenotypic changes were associated 

to modification of detoxification enzyme levels through induction/repression mechanisms 

(Suwanchaichinda & Brattsten 2001, Poupardin et al., 2008). Because of their ecological 

diversity, mosquito habitats can be contaminated by a wide range of anthropogenic chemicals 

including pesticides, heavy metals, polycyclic aromatic hydrocarbons (PAHs) and drugs 

(Lewis et al., 1999, Bostrom et al., 2002, Lambert & Lane 2003, Pengchai et al., 2003, Wan 

et al., 2006).  

In this context, the following experiment aimed at investigating the impact of two 

common pollutants (the PAH benzo[a]pyrene and the herbicide glyphosate) on the tolerance 

of mosquito larvae to imidacloprid. 

Third stage Ae. aegytpti larvae (Bora-bora strain, susceptible to insecticides) were exposed to 

two different sub-lethal doses of the benzo[a]pyrene (BaP) or the herbicide glyphosate for 72 

h. After exposure, larvae exposed to each xenobiotic and unexposed larvae (controls) were 

(A) (B)

Figure 2-7: Functions represented by genes differentially transcribed in mosquito larvae exposed 
to imidacloprid. Genes were assigned to 9 different categories according to their putative 
function. (A) over-transcribed genes, (B) under-transcribed genes. 
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used for comparative bioassays with imidacloprid. Larval bioassays with imidacloprid were 

performed as described earlier. 

Results of these experiments revealed that the tolerance to imidacloprid was significantly 

increased in larvae exposed to BaP or glyphosate (Table 2-1 and Publication I). Tolerance to 

imidacloprid was increased by 1.83-fold and 3.51-fold after exposure to 0.1 and 1 µM BaP 

respectively while increased tolerance after glyphosate exposure was less pronounced (1.70-

fold and 1.98-fold for 0.1 and 1 µM respectively). These results indicate that both pollutants 

have an impact on larval tolerance to imidacloprid and that such cross-responses are dose-

dependant. 

Table 2-1: Impact of benzo[a]pyren and glyphosate exposure on imidacloprid tolerance in Ae. 

aegypti larvae 

Pollutants 
LC50 µg/L  
(CI 95%) 

Increased 
tolerance (fold) 

Likelihood ratio 
test p-value 

Control  
819.5 

-- 
 

(650.5-1020.9) 

Benzo[a]pyrene 0.1 µM 
1502.9 

1.83 *** 
(1158.9-1987.2) 

Benzo[a]pyrene 1 µM 
2880.4 

3.51 *** 
(2162.0-4065.2) 

Glyposate 0.1 µM 
1394.1 

1.70 *** 
(1133.1-1729.1) 

Glyposate 1 µM 
1621.3 

1.98 *** 
(1315.4-2025.0) 

 

Following these results, cross-responses between imidacloprid and these two pollutants were 

compared in mosquito larvae at the gene expression level. First, the microarray “Aedes detox 

chip” representing all Ae. aegypti detoxification genes was used to compare larvae responses 

to sub-lethal doses of imidacloprid, benzo[a]pyrene and glyphosate. Larval exposure was 

performed in triplicates as described above and total RNAs were extracted immediately after 

exposure. Microarray analysis was performed as described earlier (see Publication I for more 

details). 

Results demonstrated that although some detoxification genes were affected by imidacloprid 

exposure, very few of them show cross-responses between imidacloprid and these two 

pollutants (Publication I). Among them the glutathione S-transferase AeGSTs1-2 was 
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induced by both imidacloprid and BaP. Interestingly, no CYP genes (P450s) were found 

induced by both imidacloprid and pollutants. Finally, among red/ox enzymes found induced 

by imidacloprid, the superoxide dismutase AAEL006271 and the glutathione peroxidase 

AAEL000495 were also induced by BaP and glyphosate respectively.  

Following this study we decided to investigate cross-responses of larvae between 

imidacloprid and pollutants at the whole transcriptome levelusing the Digital Gene 

Expression Tag Profiling method described earlier (see publication II for more details). 

Transcriptome variations associated to a 48 h exposure of Ae. aegypti larvae to sub-lethal 

doses of imidacloprid, of thePAH fluoranthene, of theherbicide atrazine, of copper sulfate, of 

thepyrethroid insecticide permethrin and of the carbamate insecticide propoxur were 

compared. 

This study revealed that among the 6850 transcripts detected (showing signal significantly 

higher than background), 85 were significantly induced by imidacloprid and at least one other 

xenobiotic. These include 36 transcripts coding for proteins of unknown functions, 16 

transcripts coding for cuticle proteins and 1 P450 (Table 2-2). Reciprocally, 112 transcripts 

were significantly repressed by imidacloprid and at least one other xenobiotic. These include 

38 transcripts encoding unknown proteins, 1 cuticle protein and 2 P450s.  

When looking more precisely at the dataset, the number of genes commonly induced between 

imidacloprid and each other xenobiotic were 10, 69, 4, 40 and 5 genes for permethrin, 

propoxur, atrazine, fluoranthene and copper sulfate respectively. Reciprocally, the number of 

genes commonly repressed between imidacloprid and each other xenobiotic were 2, 112, 4, 33 

and 1 for permethrin, propoxur, atrazine, fluoranthene and copper sulfate respectively. These 

results might suggest that important cross responses occur between imidacloprid, the 

carbamate insecticide propoxur and the PAH fluoranthene while cross-response between 

imidacloprid and permethrin, atrazine and copper sulfate appear limited. However, these 

results are subjected to caution because the concentrations of xenobiotics used for larval 

exposure were different. Moreover, the dose of each xenobiotic penetrating inside mosquito 

larvae may depend on the lipophilicity of each chemical (log Kow).  
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Table 2-2: Annotated genes commonly induced by imidacloprid and other xenobiotics 

  
Log10 Transcription Ratio (exposed Vs control) 

Acc. number Description Imida Cu Fluo Atraz Propo Perm 

AAEL008288 pupal cuticle protein 78E, putative 2.46 1.57 1.73 0.00 2.20 0.31 
AAEL008294 pupal cuticle protein 78E, putative 1.70 0.72 1.31 0.76 1.45 0.76 
AAEL011447 60S ribosomal protein L14 1.64 0.28 1.50 0.23 1.59 0.20 
AAEL002909 lysosomal acid lipase, putative 1.44 0.63 1.26 0.91 1.47 0.63 
AAEL004767 pupal cuticle protein, putative 1.26 0.49 1.07 0.59 1.10 0.55 
AAEL011197 actin 1.14 0.15 0.82 -0.36 1.15 -0.03 
AAEL002110 cuticle protein, putative 1.10 0.06 0.87 0.43 1.16 0.19 
AAEL002295 leucine-rich transmembrane protein 1.09 0.23 1.37 0.36 0.97 0.02 
AAEL004762 pupal cuticle protein, putative 1.07 0.22 0.74 0.38 1.05 0.72 
AAEL013514 pupal cuticle protein 78E, putative 1.05 0.12 0.71 0.47 1.07 0.58 
AAEL005127 ribonuclease UK114, putative 1.04 0.36 0.73 0.30 1.27 0.16 
AAEL004748 pupal cuticle protein, putative 1.02 0.15 0.58 0.38 1.05 0.45 
AAEL009556 Niemann-Pick Type C-2, putative 1.00 1.09 0.32 0.00 0.64 0.07 
AAEL010276 aminomethyltransferase 0.96 -0.11 0.86 0.19 1.06 0.01 
AAEL008295 pupal cuticle protein 78E, putative 0.94 0.29 0.66 0.36 0.92 0.46 
AAEL008381 oligopeptide transporter 0.86 0.15 0.64 0.13 0.80 0.51 
AAEL002040 protein serine/threonine kinase 0.85 0.06 0.50 0.30 0.72 0.05 
AAEL001981 protein serine/threonine kinase 0.83 0.11 0.55 0.20 0.74 0.18 
AAEL001735 pupal cuticle protein 78E, putative 0.82 0.50 0.84 0.32 0.48 0.49 
AAEL005159 latent nuclear antigen, putative 0.79 0.98 0.30 -0.05 1.02 0.30 
AAEL007325 Mob3B protein, putative 0.79 0.02 0.85 0.21 0.74 0.14 
AAEL004829 NADH dehydrogenase, putative 0.76 0.45 0.69 0.10 0.99 0.31 
AAEL013499 prophenoloxidase 0.72 0.17 0.61 0.12 0.82 0.30 
AAEL008866 pupal cuticle protein 78E, putative 0.71 0.44 0.77 0.12 0.26 0.29 
AAEL009793 cuticle protein, putative 0.70 -0.14 0.57 -0.28 0.43 0.49 
AAEL000679 NEDD8, putative 0.69 0.39 0.61 0.33 0.87 0.38 
AAEL008789 apolipophorin-III, putative 0.69 0.21 0.60 0.21 0.88 0.24 
AAEL003716 ribonuclease UK114, putative 0.65 0.14 0.40 0.20 0.94 0.13 
AAEL001826 odorant-binding protein 56a 0.65 -0.37 0.15 0.01 0.67 0.09 
AAEL003239 pupal cuticle protein, putative 0.64 0.24 0.26 0.49 0.82 0.59 
AAEL006860 ribosomal protein S28, putative 0.63 0.20 0.48 0.17 0.62 0.31 
AAEL004780 pupal cuticle protein, putative 0.60 -0.12 0.42 0.05 0.57 0.21 
AAEL013744 NADH:ubiquinone dehydrogenase 0.59 0.23 0.43 0.11 0.74 0.26 
AAEL001807 cytochrome P450 0.55 0.02 0.39 -0.10 0.52 0.14 
AAEL003352 ribosomal protein l7ae 0.54 0.13 0.31 0.30 0.59 0.17 
AAEL013517 pupal cuticle protein 78E, putative 0.53 -0.05 0.36 0.04 0.65 0.08 
AAEL003427 ribosomal protein S9, putative 0.48 0.01 0.26 -0.07 0.46 0.06 
AAEL002813 coupling factor, putative 0.48 0.19 0.40 0.16 0.65 0.25 
AAEL004781 pupal cuticle protein, putative 0.48 0.16 0.11 0.39 0.08 0.47 
AAEL005817 60S ribosomal protein L26 0.48 0.20 0.39 0.23 0.59 0.21 
AAEL007824 ribosomal protein S29, putative 0.47 0.11 0.40 0.19 0.57 0.18 
AAEL002372 40S ribosomal protein S11 0.47 0.05 0.33 -0.08 0.40 0.07 
AAEL009151 30S ribosomal protein S8 0.46 0.10 0.36 0.05 0.43 0.21 
AAEL012359 nucleoside-diphosphate kinase 0.45 0.08 0.34 0.18 0.62 0.26 
AAEL003582 ribosomal protein S15p/S13e 0.45 -0.07 0.23 -0.22 0.40 -0.01 
AAEL013279 peptidyl-prolyl cis-trans isomerase 0.43 0.14 0.25 0.17 0.58 0.22 
AAEL012883 pupal cuticle protein, putative 0.42 -0.15 0.14 -0.23 0.54 0.00 
AAEL003396 60S ribosomal protein L32 0.42 0.15 0.31 0.10 0.38 0.22 
AAEL012944 60S ribosomal protein L11 0.42 0.10 0.35 0.10 0.38 0.09 
AAEL006511 anopheles stephensi ubiquitin 0.38 0.05 0.26 0.07 0.38 0.15 

Bold indicates significant differential transcription compared to unexposed larvae (controls). Detoxification genes and 
cuticle proteins are shown in red. 
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2.3.1 Differential expression of CYP genes in relation to tissue and life 

stage following xenobiotics exposure 

Following these studies, I participated in the transcription profiling of several CYP 

genes likely involved in xenobiotic response in Ae. aegypti larvae. Although not directly 

related to imidacloprid response, results of this work are described in Publication III and 

briefly presented below. One should not that some of the genes studied here will also be 

studied in the next chapter related to inherited imidacloprid resistance. 

Transcription profiles of 11 Ae. aegypti CYP genes (CYP6AL1, CYP6Z6, CYP6Z7, CYP6Z8, 

CYP6Z9, CYP6M6, CYP6M11, CYP6N12, CYP9M8, CYP9M9 and CYP9J15) were 

investigated by real-time quantitative RT-PCR. Differential transcription of these genes was 

investigated in relation to tissues (head, anterior midgut including gastric caeca, midgut, 

malpighian tubules and abdomen carcass), life stages (4th instar larvae and pupae) and sex 

(adult male and female). Differential transcription was also investigated in a dynamic way in 

larvae exposed to sub-lethal dose of the pollutant fluoranthene and the insecticide permethrin. 

Results revealed that several CYP genes were preferentially transcribed in tissues classically 

involved in detoxification processes such as midgut and malpighian tubules (Figure 2-8). 

Transcription profiling across different life-stages revealed important variations between 

larvae, pupae, and adult males and females. 

  

Figure 2-8: Constitutive transcription profiles of 11 Aedes aegypti P450s across different larval 
tissues (left) and different life stages (right). Tissues analysed were: whole larva (WL), head (H), 
anterior midgut including gastric caeca (AM), midgut (M), Malpighian tubules (MT) and 
abdomen carcass (C). Life stages analyzed were: 4th stage larvae (L), pupae (P), 3-days-old adult 
males (M) and 3-days-old adult females (F). Transcription levels are expressed as mean fold 
transcription relative to whole larvae (tissue) or adult females (life-stages). Genes are organized 
according to their protein sequence homology.   
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Exposure of mosquito larvae to sub-lethal dose of fluoranthene and permethrin induced the 

transcription of several genes including CYP6AL1, CYP6Z8, CYP6M6, CYP6M11, CYP6N12, 

CYP9M8, CYP9M9 and CYP9J15 with an induction peak after 48h to 72h exposure. 

Overall, our studies on the responses of mosquito larvae to imidacloprid and other insecticides 

and pollutants suggest that cross-responses between imidacloprid and other chemicals exist. 

These metabolic interactions involve detoxification genes although other effector genes 

encoding various proteins and regulator genes appear to be involved. Deciphering mosquito 

xenobiotic response pathways is beyond the objective of the present thesis but represents an 

interest in eco-toxicology. 
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2.4 Publications 

2.4.1 Publication I: Impact of glyphosate and benzo[a]pyrene on the 

tolerance of mosquito larvae to chemical insecticides. Role of 

detoxification genes in response to xenobiotics. 
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The effect of exposure of Aedes aegypti larvae for 72 h to sublethal concentrations of the herbicide

glyphosate and the polycyclic aromatic hydrocarbon benzo[a]pyrene on their subsequent tolerance to

the chemical insecticides imidacloprid, permethrin and propoxur, detoxification enzyme activities and

transcription of detoxification genes was investigated. Bioassays revealed a significant increase in larval

tolerance to imidacloprid and permethrin following exposure to benzo[a]pyrene and glyphosate. Larval

tolerance to propoxur increased moderately after exposure to benzo[a]pyrene while a minor increased

tolerance was observed after exposure to glyphosate. Cytochrome P450 monooxygenases activities were

strongly induced in larvae exposed to benzo[a]pyrene and moderately induced in larvae exposed to imida

cloprid and glyphosate. Larval glutathione Stransferases activities were strongly induced after exposure

to propoxur and moderately induced after exposure to benzo[a]pyrene and glyphosate. Larval esterase

activities were considerably induced after exposure to propoxur but only slightly induced by other xeno

biotics. Microarray screening of 290 detoxification genes following exposure to each xenobiotic with the

DNA microarray Aedes Detox Chip identified multiple detoxification and red/ox genes induced by xeno

biotics and insecticides. Further transcription studies using realtime quantitative RTPCR confirmed the

induction of multiple P450 genes, 1 carboxy/cholinelesterase gene and 2 red/ox genes by insecticides

and xenobiotics. Overall, this study reveals the potential of benzo[a]pyrene and glyphosate to affect the

tolerance of mosquito larvae to chemical insecticides, possibly through the crossinduction of particular

genes encoding detoxification enzymes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Mosquitoes transmit numerous human and animal pathogens

and chemical insecticides are widely employed in their control.

However the success of control programs is now threatened as the

repeated exposure of mosquito populations to chemical insecti

cides has led to the selection of mutations conferring an increased

resistance to these insecticides (Hemingway et al., 2004). Inherited

resistance to chemical insecticides is usually caused by mutations

q Data deposition: The description of the microarray ‘Aedes Detox Chip’ can be

accessed at http://www.ebi.ac.uk/arrayexpress. Experimental microarray data have

been deposited at VectorBase.org and can be accessed at: http://funcgen.vectorbase.

org/ExpressionData/experiment/Larval%20response%20to%202%20pollutants%20

and%203%20insecticides%20(Riaz%20et%20al.,%202009).
∗ Corresponding author at: Laboratoire d’Ecologie Alpine (LECA), UMR CNRS

Université 5553, Unit Perturbations Environnementales et Xénobiotiques, Domaine

Universitaire de SaintMartin d’Hères, 2233, rue de la piscine Bât D Biologie, BP 53,

38041 Grenoble Cedex 9, France. Tel.: +33 476 51 44 59; fax: +33 476 51 44 63.

Email address: jeanphilippe.david@ujfgrenoble.fr (J.P. David).

in the protein targeted by the insecticide (targetsite resistance)

or the increases in the rate of biodegradation of the insecticide

(metabolic resistance). Considerable research efforts are focused

on elucidating the molecular basis of these resistance mechanisms

but less attention has been paid to the shortterm effect of exposure

to insecticides or other xenobiotics on the mosquitoes’ tolerance to

insecticides and yet this could also have a significant impact on

the efficacy of mosquito control. More precisely, it can be hypothe

sized that in polluted environments, xenobiotics found in mosquito

habitats may induce particular enzymes involved in the degrada

tion of chemical insecticides, leading to an increased tolerance of

mosquitoes to insecticides. This is supported by the capacity of

detoxification enzymes such as cytochrome P450 monooxygenases

(P450s or CYP for genes), glutathione Stransferases (GSTs) and car

boxy/cholinelesterases (CCEs), to be induced by various chemicals

(Hemingway et al., 2002, 2004; Feyereisen, 2005).

To date, few studies have investigated molecular interac

tions between other environmental xenobiotics and insecticides

in aquatic insects. Exposure of Ae. albopictus larvae to benzoth

iazole (a major leachate compound of automobile tires) and

0166445X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.aquatox.2009.03.005
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pentachlorophenol (a woodprotecting agent) increased their tol

erance to different types of insecticides such as carbaryl, rotenone

and temephos (Suwanchaichinda and Brattsten, 2001, 2002). This

increased tolerance was correlated with an induction of P450

activity. Recently, microarraybased approaches have been used to

investigate the effect of xenobiotic exposure on the transcription

of detoxification genes in Drosophila. The barbiturate phenobarbi

tal and the herbicide atrazine induced the transcription of multiple

CYPs and GSTs in adult flies including genes previously linked to

insecticide resistance (Le Goff et al., 2006). In mammals, a causal

link between the induction of particular detoxification enzymes

by xenobiotics and their ability to metabolize them has been

demonstrated and successfully utilized to identify drug metabo

lizing enzymes (Waxman, 1999; Luo et al., 2004). This approach

was also used to identify two CYP6 genes in Papilio polyxenes

metabolizing furanocoumarins, toxins produced by their host plant

(Petersen et al., 2001; Wen et al., 2003). Hence, studying the induc

tion profile of insect detoxification enzymes has been suggested

as a mean to identify the major enzymes involved in insecticide

detoxification. In Drosophila, exposure to high concentrations of

insecticides induced the transcription of few detoxification genes

while two known inducers (phenobarbital and caffeine) and piper

onyl butoxide induced multiple detoxification genes, including

those involved in insecticide metabolism (Willoughby et al., 2006,

2007). In mosquitoes, insecticides have also been shown to induce

detoxification enzymes. By using a microarray representing more

than 11,000 unique ESTs, Vontas et al. (2005) identified Anopheles

gambiae detoxification genes induced by the insecticide perme

thrin. Recently, we used Ae. aegypti larvae to study the interactions

between three environmental pollutants and three chemical insec

ticides (Poupardin et al., 2008). This study revealed that exposing

mosquito larvae to sublethal concentrations of the herbicide

atrazine, copper sulfate and fluoranthene increased their tolerance

to the pyrethroid insecticide permethrin and the organophosphate

insecticide temephos. In these experiments, increased tolerance

was correlated to an elevation of detoxification enzyme activities

and, by using a DNA microarray approach, specific detoxification

genes induced by these xenobiotics were identified (Poupardin et

al., 2008).

The objective of the current study was to determine whether

other environmental xenobiotics found in polluted mosquito

breeding sites also impacted on the mosquitoes’ tolerance to chem

ical insecticides. Glyphosate (N(phosphonomethyl)glycine, trade

name Roundup) is a soluble systemic herbicide. It is used massively

on crops genetically engineered to resist its effects (Roy, 2004;

Young, 2006). Although glyphosate does not seem to generate a sig

nificant toxicity on most arthropods (Haughton et al., 2001; Jackson

and Pitre, 2004), its indirect potential effects on insect ability to

resist insecticides have not yet been investigated. Concentrations of

glyphosate up to 1 mg/L have been recorded in pools or streams near

agricultural areas (Wan et al., 2006) suggesting that mosquito larvae

near treated areas can be temporarily exposed to high concentra

tions of this herbicide and its metabolites. The polycyclic aromatic

hydrocarbon (PAH) benzo[a]pyrene is a common product of incom

plete combustion of fossil fuels such as coal, diesel and gasoline

(Bostrom et al., 2002; Pengchai et al., 2003). This hydrophobic pol

lutant has been found at concentrations up to 5 ppm adsorbed on

particles from various ecosystems (Lewis et al., 1999; Lambert and

Lane, 2004) and is likely to be in contact with mosquito larvae,

commonly feeding on small particles, in breeding sites located in

proximity of industrial or urban areas (Hassanien and AbdelLatif,

2008). In vertebrates, planar aromatic hydrocarbons can trigger

the induction of CYP genes via the intracellular aryl hydrocar

bon receptor (AhR) (Goksoyr and Husoy, 1998). As these genes

have been frequently involved in metabolic resistance to chemical

insecticides in insects, it can be hypothesized that benzo[a]pyrene

has an impact on the tolerance of mosquito larvae to chemical

insecticides.

In the present study, we investigate the capacity of glyphosate

and benzo[a]pyrene to modify the tolerance of Ae. aegypti lar

vae to three different chemical insecticides used worldwide for

controlling mosquito populations (permethrin, imidacloprid and

propoxur). We exposed mosquito larvae for 72 h to sublethal

concentrations of each chemical before comparing their larval toler

ance to each insecticide and their detoxification enzyme activities.

Transcription pattern of 290 detoxification genes following expo

sure to xenobiotics and insecticides were compared by using the

microarray ‘Aedes Detox Chip’ (Strode et al., 2008) and validated

by realtime quantitative RTPCR. Overall, our work suggests that

the induction of detoxification enzymes involved in insecticide

metabolism by benzo[a]pyrene and glyphosate may enhance the

tolerance of mosquito larvae to chemical insecticides.

2. Materials and methods

2.1. Mosquitoes and xenobiotics

A laboratory strain of Ae. aegypti (Bora–Bora strain, susceptible

to insecticides) was reared in standard insectary conditions (26 ◦C,

8 h/12 h light/dark period, tap water) and used for all experiments.

This mosquito species is an important vector of human pathogens

such as dengue hemorrhagic fever and is often found in close prox

imity to urban, suburban and industrial areas (Dutta et al., 1999).

Larvae were reared in insectary conditions with controlled amount

of larval food (hay pellets) for 3 days before exposure for 72 h to two

different xenobiotics likely to be found in highly polluted mosquito

larvae habitats: the herbicide glyphosate (trade name Roundup,

Monsanto, Belgium) and the polycyclic aromatic hydrocarbon (PAH)

benzo[a]pyrene (Fluka, USA).

2.2. Preexposure of mosquito larvae to xenobiotics

Preexposures to xenobiotics were performed in triplicate with

100 homogenous 2nd stage larvae in 200 mL of tap water con

taining 50 mg of ground larval food (hay pellets). Concentrations

of xenobiotics used for larval preexposure were chosen accord

ing to the concentrations likely to be found in highly polluted

mosquito breeding sites (INERIS, http://www.ineris.fr/rsde/). Prior

to bioassays with insecticides, larvae were exposed for 72 h to 0.1

or 1 mM benzo[a]pyrene and glyphosate separately. After 72 h, 4th

stage larvae were collected, rinsed twice in tap water and immedi

ately used for bioassays. Biochemical and molecular analysis were

performed on the mosquitoes preexposed in the same manner

but in addition to benzo[a]pyrene and glyphosate, the effect of

preexposure to three chemical insecticides on enzyme activity

and gene transcription was also investigated. Three insecticides

massively employed worldwide for mosquito control, belong

ing to different chemical classes and having different modes of

action were used: the neonicotinoid imidacloprid (Sigma–Aldrich,

Germany), the pyrethroid permethrin (Chem Service, USA) and

the carbamate propoxur (Sigma–Aldrich, Germany). For insecti

cide preexposures, a concentration resulting in 10–15% larval

mortality after 72 h exposure was selected. This low mortality

threshold was chosen in order to minimize the effect of the arti

ficial selection of particular phenotypes more resistant to the

insecticide during preexposure. Concentrations of xenobiotics

used for preexposure were: 1 mM (169.1 mg/L) glyphosate, 1 mM

(252.3 mg/L) benzo[a]pyrene, 25 mg/L imidacloprid, 1 mg/L per

methrin and 200 mg/L propoxur. For benzo[a]pyrene, the water

solubility limit (∼10 mg/L) was exceeded in order to mimic an

aquatic environment highly contaminated with benzo[a]pyrene

where mosquito larvae can ingest high dose of this pollutant
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together with food particles or as microcrystals. After 72 h, 4th

stage larvae were collected, rinsed twice in tap water and immedi

ately used for the determination of detoxification enzyme activities

and RNA extractions. All larval preexposures were repeated three

times with egg batches from different generations.

2.3. Bioassays with insecticides

Larval bioassays were conducted comparatively on larvae

exposed to glyphosate or benzo[a]pyrene and unexposed larvae

(controls) with the 3 chemical insecticides imidacloprid, perme

thrin and propoxur. Bioassays were performed in triplicate with 25

larvae in 50 mL insecticide solution and repeated 3 times with lar

vae from different xenobiotic exposure experiments (see above).

Four different insecticide concentrations leading to larval mortal

ity ranging from 5% to 95% were used. Imidacloprid, permethrin

and propoxur were used at 300–2750, 2.5–10 and 400–1000 mg/L,

respectively. Larval mortality was monitored after 24 h contact

with insecticide and further analyzed using the LogProbit software

developed by Raymond (1993). For each insecticide, the mean LC50

was determined and tolerance ratios for larvae exposed to each

xenobiotic comparatively with unexposed larvae were calculated

and expressed as fold increased tolerance. Because comparison of

LC50 values may not well represent differential tolerance across

all concentrations of insecticide used for bioassays, differential

insecticide tolerance between larvae exposed to each xenobiotics

and controls was further analyzed as described in Poupardin et al.

(2008) by generating a Generalized Linear Model (GLM) from mor

tality data followed by a likelihood ratio test using R software (R

Development Core Team, 2007).

2.4. Glutathione Stransferase activities

Glutathione Stransferase (GST) activities were measured

on cytosolic fractions using 1chloro2,4dinitrobenzene (CDNB;

Sigma–Aldrich, Germany) as substrate (Habig et al., 1974). One gram

of fresh larvae were homogenised in 0.05 M phosphate buffer (pH

7.2) containing 0.5 mM DTT, 2 mM EDTA and 0.8 mM PMSF. The

homogenate was centrifuged at 10,000 × g for 20 min at 4 ◦C and

the resulting supernatant was ultracentrifuged at 100,000 × g for

1 h at 4 ◦C. Protein content of the cytosolic fraction (100,000 g super

natant) was determined by the Bradford method before measuring

GST activities. The reaction mixture contained 200 mg protein,

2.5 mL of 0.1 M phosphate buffer 1.5 mM reduced glutathione

(Sigma) and 1.5 mM CDNB. The absorbance of the reaction was mea

sured after 1 min at 340 nm with a UVIKON 930 spectrophotometer.

Results were expressed as median nanomoles of conjugated CDNB

per mg of protein per minute ± interquartile ranges (IQR). Three

biological replicates per treatment were made and each measure

ment was repeated 6 times. Statistical comparison of GST activities

between controls and preexposed larvae was performed by using

a Mann and Whitney test (N = 3).

2.5. Cytochrome P450 monooxygenase activities

P450 monooxygenase activities were comparatively evaluated

by measuring ethoxycoumarinOdeethylase (ECOD) activities on

microsomal fractions based on the microfluorimetric method of

De Sousa et al. (1995). For each sample, the microsomal fraction

was obtained from 100,000 g pellet (see above) and resuspended

in 0.05 M phosphate buffer before measuring microsomal protein

content by the Bradford method. Twenty micrograms microso

mal proteins were then added to 0.05 M phosphate buffer (pH

7.2) containing 0.4 mM 7ethoxycoumarin (7Ec, Fluka) and 0.1 mM

NADPH for a total reaction volume of 100 ml and incubated at

30 ◦C. After 15 min, the reaction was stopped and the production

of 7hydroxycoumarin (7OH) was evaluated by measuring the flu

orescence of each well (380 nm excitation, 460 nm emission) with

a Fluoroskan Ascent spectrofluorimeter (Labsystems, Helsinki, Fin

land) in comparison with a scale of 7OH (Sigma). P450 activities

were expressed as median picomoles of 7OH per mg of microsomal

protein per minute ± IQR. Three biological replicates per treatment

were made and each measure was repeated 8 times. Statistical com

parison of P450 activities between controls and preexposed larvae

was performed by using a Mann and Whitney test (N = 3).

2.6. Esterase activities

Esterases activities were comparatively measured on cytosolic

fractions from the 100,000 g supernatant (see above) accord

ing to the method described by Van Asperen (1962) with

anaphthylacetate and bnaphthylacetate used as substrates (aNA

and bNA, Sigma–Aldrich, Germany). Thirty micrograms cytosolic

proteins were added to 0.025 mM phosphate buffer (pH 6.5) with

0.5 mM of aNA or bNA for a total volume reaction of 180 mL and

incubated at 30 ◦C. After 15 min, the reaction was stopped by the

addition of 20 mL 10 mM Fast Garnett (Sigma) and 0.1 M sodium

dodecyl sulfate (SDS, Sigma–Aldrich, Germany). The production of

a or bnaphthol was measured at 550 nm with a 6960 microplate

reader (Metertech, Taipei, Taiwan) in comparison with a scale of

anaphthol or bnaphthol and expressed as median mmoles of a

or bnaphthol per mg of cytosolic protein per minute ± IQR. Three

biological replicates per treatment were made and each measure

was repeated 8 times. Statistical comparison of esterases activities

between controls and preexposed larvae was performed by using

a Mann and Whitney test (N = 3).

2.7. Microarray screening of detoxification genes induced after

xenobiotic exposure

The ‘Aedes detox chip’ DNAmicroarray developed by Strode et al.

(2008) was used to monitor changes in the transcription of multiple

detoxification genes in larvae exposed to each xenobiotic compared

to unexposed larvae. This microarray contains 318 70mer probes

representing 290 detoxification genes including all cytochrome

P450 monooxygenases (P450s), glutathione Stransferases (GSTs),

carboxy/cholinesterases (CCEs) and additional enzymes potentially

involved in response to oxidative stress from the mosquito Ae.

aegypti. Each 70mer probe, plus 6 housekeeping genes and 23 arti

ficial control genes (Universal Lucidea Scorecard, G.E. Health Care,

Bucks, UK) were spotted four times on each array.

RNA extractions, cDNA synthesis and labelling reactions were

performed independently for each biological replicate. Total RNA

was extracted from batches of thirty 4th stage larvae using the

PicoPureTM RNA isolation kit (Molecular Devices, Sunnyvale, CA,

USA) according to manufacturer’s instructions. Genomic DNA was

removed by digesting total RNA samples with DNase I by using the

RNasefree DNase Set (Qiagen). Total RNA quantity and quality were

assessed by spectrophotometry before further use. Messenger RNAs

were amplified using a RiboAmpTM RNA amplification kit (Molec

ular Devices) according to manufacturer’s instructions. Amplified

RNAs were checked for quantity and quality by spectrophotometry.

For each hybridisation, 8 mg of amplified RNAs were reverse tran

scribed into labelled cDNA and hybridised to the array as previously

described by David et al. (2005). Each comparison was repeated

three times with different biological samples. For each biological

replicate, 2 hybridisations were performed in which the Cy3 and

Cy5 labels were swapped between samples for a total of 6 hybridi

sations per comparison. All hybridisations were performed against

a global reference sample obtained from a pool of amplified RNAs

from unexposed larvae obtained from each biological replicate.
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Spot finding, signal quantification and spot superimposition for

both dye channels were performed using Genepix 5.1 software

(Axon Instruments, Molecular Devices, Union City, CA, USA). For

each data set, any spot satisfying one of the following conditions

for any channel was removed from the analysis: (i) intensity val

ues less than 300 or more than 65,000, (ii) signal to noise ratio less

than 3, (iii) less than 60% of pixel intensity superior to the median

of the local background ±2. Normalization and statistic analysis

were performed on R software (R Development Core Team, 2008)

with limma package available on www.bioconductor.org according

to Muller et al. (2007). First, background intensities were sub

tracted to the foreground intensities for both Cy3 (G) and Cy5 (R)

intensities. Then, corrected intensities were transformed to inten

sity logratios, M = log2 R/G, and their corresponding geometrical

means, A = (log2 R + log2 G)/2. Data were then normalized using the

local intensitydependent algorithm Lowess (Cleveland and Devlin,

1988). For each comparison, only genes detected in at least 2 of 6

hybridisations were used for further statistical analysis. To assess

the data significance, M values were then submitted to a one sample

Student’s ttest against the baseline value of 1 (equal gene tran

scription in both samples). Genes showing an transcription ratio

>1.5fold in either direction and a corrected Pvalue lower than

0.01 (Benjamini and Hochberg’s multiple testing correction) were

considered significantly differentially expressed after xenobiotic

exposure. In Table 2, M values were transformed into transcription

ratios.

2.8. Quantitative realtime RTPCR

Transcription profiles of 8 particular genes found induced by dif

ferent xenobiotics in larvae were validated by realtime quantitative

RTPCR using the same RNA samples as used for microarray exper

iments. Four micrograms of total RNA were treated with DNase I

(Invitrogen) and used for cDNA synthesis with superscript III and

oligodT20 primer for 60 min at 50 ◦C according to manufacturer’s

instructions. Resulting cDNAs were diluted 100 times for realtime

quantitative PCR reactions. All primer pairs used for quantitative

PCR were tested for generating a unique amplification product

by melt curve analysis. Realtime quantitative PCR reactions of

25 mL were performed in triplicate on an iQ5 system (BioRad)

using iQ SYBR Green supermix (BioRad), 0.3 mM of each primer

and 5 mL of diluted cDNAs according to manufacturer’s instruc

tions. For each gene analysed, a cDNA dilution scale from 10 to

100,000 times was performed in order to assess efficiency of PCR.

Data analysis was performed according to the 11CT method taking

into account PCR efficiency (Pfaffl, 2001) and using the two genes

encoding the ribosomal protein L8 (AeRPL8 GenBank accession no.

DQ440262) and the ribosomal protein S7 (AeRPS7 GenBank acces

sion no. EAT38624.1) for normalisation. Results were expressed as

mean transcription ratios (±SE) between larvae exposed to each

xenobiotic or insecticide and unexposed larvae (controls). Only

genes showing more than 1.5fold overtranscription were consid

ered induced.

3. Results

Exposing Ae. aegypti larvae to sublethal concentrations of the

herbicide glyphosate and the PAH benzo[a]pyrene for 72 h affected

their subsequent tolerance to insecticides. Overall, exposing larvae

to these xenobiotics increased larval tolerance to insecticides with

a more pronounced effect observed with higher concentrations of

xenobiotics (Table 1). Larval tolerance to the neonicotinoid insecti

cide imidacloprid increased after exposure to 1 mM benzo[a]pyrene

and glyphosate (3.51fold and 1.98fold increase in LC50, respec

tively) and also, to a lesser extent, after exposure to 0.1 mM

benzo[a]pyrene and glyphosate (1.83fold and 1.70fold, respec T
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Fig. 1. Differential GST activities of Ae. aegypti larvae exposed for 72 h to sub

lethal concentrations of glyphosate, benzo[a]pyrene, imidacloprid, permethrin and

propoxur. Larval GST activities were measured with the CDNB method (Habig et al.,

1974) on 200 mg cytosolic proteins during 1 min and expressed as median nmol of

conjugated CDNB/mg protein/min ± interquartile ranges (IQR). For each treatment,

statistical comparison of larval GST activities between xenobioticexposed larvae

and controls were performed with a Mann and Whitney’s test (N = 3, *P < 0.05).

tively). Larval tolerance to the pyrethroid insecticide permethrin

increased after exposure to 1 mM benzo[a]pyrene or glyphosate

(1.78fold and 1.72fold, respectively). This increased tolerance to

permethrin remains even when using 0.1 mM benzo[a]pyrene (1.72

fold) but decreased when using 0.1 mM glyphosate (1.39fold).

Larval tolerance to the carbamate insecticide propoxur was only

slightly enhanced after exposure to the highest concentration of

benzo[a]pyrene and glyphosate (1.39fold and 1.14fold, respec

tively).

Larval exposure to xenobiotics and insecticides led to signifi

cant modifications of their GST, P450 and esterases activities, as

measured using model substrates. GST activity with CDNB (Fig. 1)

was strongly induced after exposure to propoxur (2.04fold with

P < 0.05). Exposure of larvae to benzo[a] pyrene also slightly induced

GST activity (1.37fold and P < 0.05) while exposure to glyphosate,

imidacloprid and permethrin did not significantly affect larval GST

activities. Microsomal P450 activities (Fig. 2) were significantly

induced after exposing larvae to benzo[a]pyrene (2.09fold with

P < 0.05) while no significant changes were observed after exposure

to other xenobiotics. Significant modifications of esterase activities

were observed in larvae exposed to xenobiotics and insecticides

(Fig. 3). Alphaesterase activities were highly induced in larvae

Fig. 2. Differential microsomal P450 activities of Ae. aegypti larvae exposed for 72 h

to sublethal concentrations of glyphosate, benzo[a]pyrene, imidacloprid, perme

thrin and propoxur. Larval P450 activities were measured with the ECOD method

(De Sousa et al., 1995) on 20 mg microsomal proteins after 15 min and expressed

as median pmol of 7OH/mg microsomal protein/minute ± interquartile ranges

(IQR). For each treatment, statistical comparison of larval P450 activities between

xenobioticexposed larvae and controls were performed with a Mann and Whitney’s

test (N = 3, *P < 0.05).

Fig. 3. Differential esterase activities of Ae. aegypti larvae exposed for 72 h to

sublethal concentrations of five different xenobiotics (glyphosate, benzo[a]pyrene,

imidacloprid, permethrin and propoxur). Larval aesterase and besterase activities

were measured with anaphthylacetate and bnaphthylacetate as substrates on

30 mg cytosolic proteins during 15 min and expressed as median mmol of aor b

naphtol/mg protein/min ± interquartile ranges (IQR). Statistical comparison of larval

esterases activities between xenobioticexposed larvae and controls were performed

with a Mann and Whitney’s test (N = 3, *P < 0.05).

exposed to propoxur (2.20fold with P < 0.05), slightly significantly

elevated after exposure to glyphosate (1.10fold with P < 0.05) while

no significant induction was observed with other xenobiotics. Sim

ilarly, besterase activities were highly induced in larvae after

exposure to propoxur (2.40fold with P < 0.05) but no significant

induction was observed with other xenobiotics.

By using the microarray ‘Aedes Detox Chip’ representing 290 Ae.

aegypti genes encoding detoxification and red/ox enzymes (Strode

et al., 2008), 23 detoxification genes significantly induced in 4th

stage larvae following a 72 h exposure to a sublethal concentration

of xenobiotics or insecticides were identified (Table 2 and Suppl.

Table 1). Among them, 9 genes encode P450s (CYPs), 4 encode

GSTs, 3 encode carboxy/cholinelesterases (CCEs) and 7 encode

enzymes putatively involved in response to oxidative stress (red/ox

enzymes). Larvae exposed to the herbicide glyphosate showed a sig

nificant induction of 5 CYPs (CYP6N11, CYP6N12, CYP6Z6, CYP6AG7

and CYP325AA1), 3 GSTs (AaGSTe4, AaGSTe7, AaGSTi1 and AaGSTs12)

and 1 glutathione peroxidase. Exposing larvae to benzo[a]pyrene

significantly induced 3 CYP genes (CYP6Z6, CYP6Z8 and CYP9M5),

2 GSTs (AaGSTi1 and AaGSTs12) and 2 red/ox genes (1 superoxide

dismutase and 1 reductase). Exposure to imidacloprid significantly

induced 2 CYPs (CYP4G36 and CYP6CC1), 1 GST (AaGSTs12), 3 CCEs

(CCEae1o, CCEae2o and CCEae3o) and 6 red/ox genes including a

superoxide dismutase, 4 peroxidases and 1 reductase. Exposure to

a sublethal concentration of the pyrethroid insecticide permethrin

significantly induced only one CCE (CCEae3o). Propoxur expo

sure revealed a significant overtranscription of 1 GST (AaGSTi1),

1 CCE (CCEae3o) and 1 superoxide dismutase. Finally, microar

ray screening revealed that different chemicals can significantly

induce identical genes such as CYP6Z6 induced by glyphosate and

benzo[a]pyrene, AaGSTi1 induced by glyphosate, benzo[a]pyrene

and propoxur and CCEae3o induced by the insecticides imidaclo

prid, permethrin and propoxur.

Realtime quantitative RTPCR was used to validate the tran

scription pattern of 8 genes selected from microarray experiments

(Fig. 4). Overall, the induction patterns obtained from microar

ray screening and realtime quantitative RTPCR were in good

agreement (Pearson correlation coefficient r = 0.745, P < 0.001). The

induction of CYP6Z6, CYP6Z8, CYP9M5 and superoxide dismutase

(AAEL006271RA) by benzo[a]pyrene was confirmed (3.1fold, 4.4

fold, 3.4fold and 2.6fold, respectively). Likewise, the induction of

CCEae3o (3.0fold) and TPx2 (2.0fold) by imidacloprid was con

firmed. High induction ratios were obtained for CYP6Z8 and CYP9M5

(benzo[a]pyrene 4.4fold and 3.4fold, respectively). Finally, the
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Table 2

Microarray analysis of the induction of detoxification genes in Ae. aegypti larvae after 72 h exposure to xenobiotics and insecticidesa .

Gene name/annotation Transcript ID Glyphosate Benzo[a]pyrene Imidacloprid Permethrin Propoxur

Ratio P value Ratio P value Ratio P value Ratio P value Ratio P value

Cytochrome P450 monooxygenases

CYP4G36 AAEL004054RA ND ND ND ND 1.77 8.3E−08 1.00 9.8E−01 1.04 6.8E−01

CYP6N11 AAEL009138RA 1.75 2.1E−14 1.30 1.2E−03 0.88 4.0E−01 0.95 4.4E−01 1.07 4.6E−01

CYP6N12 AAEL009124RA 1.68 4.2E−13 1.42 3.4E−12 0.86 1.6E−04 0.68 4.0E−12 1.04 2.0E−01

CYP6Z6 AAEL009123RA 1.52 4.6E−14 1.96 3.9E−19 0.95 5.9E−02 1.06 3.5E−02 1.26 4.3E−09

CYP6Z8 AAEL009131RA 1.09 8.8E−03 2.08 4.1E−17 0.86 1.9E−04 0.90 9.7E−04 0.81 2.9E−03

CYP6AG7 AAEL006989RA 1.58 6.1E−09 1.06 2.6E−01 1.10 9.2E−02 0.87 1.6E−01 0.83 1.2E−02

CYP6CC1 AAEL014890RA 0.47 4.6E−14 0.70 1.5E−05 1.63 1.2E−10 1.10 1.9E−02 1.18 1.4E−01

CYP9M5 AAEL001288RA 1.49 6.8E−12 3.08 3.0E−13 1.10 6.1E−02 0.94 2.5E−01 1.48 3.4E−05

CYP325AA1 AAEL004012RA 2.03 2.9E−12 1.46 2.5E−03 1.00 1.0E+00 1.25 1.6E−04 1.85 1.8E−02

Glutathione Stransferases

AaGSTe4 AAEL007962RA 1.61 2.0E−20 1.37 4.8E−11 1.42 2.1E−10 1.03 3.5E−01 1.10 1.9E−01

AaGSTe7 AAEL007948RA 1.56 3.2E−15 1.18 7.2E−08 0.93 5.4E−02 0.85 8.5E−06 1.02 5.6E−01

AaGSTi1 AAEL011752RA 2.74 1.0E−23 2.33 2.9E−13 0.76 4.0E−02 0.87 2.1E−01 3.10 4.8E−10

AaGSTs12 AAEL011741RB ND ND 1.60 5.1E−04 3.98 6.3E−09 ND ND ND ND

Carboxylesterases

CCEae1o AAEL004341RA ND ND 1.06 4.6E−01 2.59 2.2E−06 1.49 1.8E−01 1.49 1.2E−04

CCEae2o AAEL007486RA 0.72 2.5E−11 0.96 2.2E−01 1.56 1.3E−09 1.16 3.2E−04 1.13 9.9E−03

CCEae3o AAEL011944RA 0.27 4.8E−11 0.88 1.6E−03 4.34 1.4E−16 1.67 8.4E−10 1.75 2.6E−08

Red/ox enzymes

Superoxide dismutase AAEL006271RA 1.19 1.5E−06 1.89 9.8E−18 2.51 7.8E−10 1.39 2.4E−07 1.50 2.3E−09

Peroxidasin AAEL000376RA ND ND 1.21 6.5E−01 1.77 6.3E−04 ND ND ND ND

Peroxidase AAEL013171RA 0.77 8.0E−07 0.94 5.3E−02 1.67 5.8E−14 1.29 1.8E−07 1.29 7.5E−07

Glutathione peroxidase AAEL000495RA 1.76 4.2E−06 1.45 9.4E−04 2.05 1.2E−05 0.76 2.5E−01 1.22 3.3E−02

Thioredoxin peroxidase TpX2 AAEL004112RA ND ND 1.27 2.3E−01 2.19 4.3E−04 ND ND 1.22 4.2E−01

Aldoketo reductase AAEL007275RA ND ND 0.76 3.2E−02 1.88 1.3E−05 0.93 8.1E−01 1.09 3.9E−02

Aldoketo reductase AAEL015002RA 1.03 8.4E−01 1.94 4.3E−04 1.35 3.6E−01 1.50 3.8E−03 1.59 2.4E−03

a Larvae were exposed for 72 h to sublethal concentrations of five different insecticides and xenobiotics (permethrin, imidacloprid, propoxur, benzo[a]pyrene and

glyphosate) before microarray analysis of the transcription of detoxification genes. Only genes showing a significant overtranscription (ratio > 1.5 and P value < 1.0E−03)

after a minimum of one treatment are shown. Transcription ratios between treated larvae and controls are indicated for each treatment. Transcription ratios and P values of

genes significantly induced are shown in bold. ND: Gene not detected in at least 3 hybridisations out of 6.

slight induction of CYP6Z6, AaGSTe4 and AaGSTe7 by glyphosate,

CCEae3o by permethrin and propoxur and superoxide dismutase

(AAEL006271RA) by imidacloprid and propoxur were confirmed

by realtime quantitative RTPCR. The most important discrepan

cies between the two techniques were obtained for CYP6Z8 with

benzo[a]pyrene (4.4fold in qRTPCR and only 2.0fold in microar

ray) and CCEae3O with imidacloprid (3.0fold in qRTPCR and

4.34fold in microarray).

Comparison of the transcription levels of those 8 detoxification

genes in 4th stage larvae revealed differences in their basal tran

scription level (Fig. 5). As expected, transcription of detoxification

genes was considerably lower than the transcription of the house

Fig. 4. Comparative realtime quantitative RTPCR analysis of the differential

transcription of 8 selected genes in Ae. aegypti larvae exposed for 72 h to sub

lethal concentrations of glyphosate, benzo[a]pyrene, imidacloprid, permethrin and

propoxur. Gene transcription values are indicated as transcription ratios (±SE) in

larvae exposed to each xenobiotic comparatively to unexposed larvae (controls).

The housekeeping genes AeRPL8 and AeRPS7 were used as internal controls for nor

malization. Horizontal broken line indicates a 1.5fold overtranscription in treated

larvae as compared to controls.

Fig. 5. Constitutive transcription levels of 8 selected genes in Ae. aegypti larvae. Gene

transcription was measured by realtime quantitative RTPCR in 4thstage larvae in

absence of xenobiotics. transcription levels were normalized with the housekeeping

gene AeRPL8 and are shown as transcription ratios relative to CYP6Z8, the detoxifi

cation gene showing the highest transcription level (mean ± SE). Fold transcription

is indicated above each bar.

keeping gene AeRPL8 (from 33 to >3200fold reduction). Among

detoxification genes, larval basal transcription levels vary greatly,

with CYP6Z8 and GSTe7 showing the highest transcription levels,

GSTe4, TPx2, CCEae3O, CYP6Z6 and SOD being moderately tran

scribed (2–11fold reduction comparatively to CYP6Z8) and CYP9M5

being transcribed at very low level in 4thstage larvae (95fold

reduction comparatively to CYP6Z8).

4. Discussion

Lasting recent decades, the amount of anthropogenic xenobi

otics released into natural ecosystems has dramatically increased.

Although the effect of these chemicals on human health is inten
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sively studied, their impact on insect metabolism and insecticide

resistance mechanisms remains poorly understood. Here we inves

tigated the potential of the herbicide glyphosate and the PAH

benzo[a]pyrene, likely to be found in polluted mosquito breed

ing sites, to modify the tolerance of mosquito larvae to 3 chemical

insecticides through the induction of detoxification enzymes.

We showed that the presence of these xenobiotics in the water

where mosquito larvae develop can significantly increase their

tolerance to insecticides, particularly the pyrethroid permethrin

and the neonicotinoid imidacloprid. Although the increases in

insecticide tolerance reported here are lower than inherited

resistance levels obtained after many generations of selection

with insecticides, our results show that the presence of these

xenobiotics may contribute to insecticide tolerance in mosquito

larvae. This phenomenon might be more pronounced in highly

polluted mosquito breeding sites or following a temporary dra

matic pollution event. Recently, we also showed that exposing

Ae. aegypti larvae for 24 h to low concentrations of the herbicide

atrazine and the PAH fluoranthene increase their tolerance to the

insecticide permethrin and temephos (Poupardin et al., 2008).

Suwanchaichinda and Brattsten (2001) exposed Ae. albopictus

larvae for 48 h to various herbicides and fungicides before mea

suring their tolerance to the insecticide carbaryl. Interestingly,

no significant effect was observed with atrazine, simazine and

2,4dichlorphenoxyacetic acid (2,4D) while a 70% reduced mor

tality to carbaryl and a significant increase of P450 activities were

observed after exposing larvae to pentachlorophenol.

Many studies have revealed the capacity of insect detoxifica

tion enzymes to be induced by xenobiotics and the relationship

between elevated detoxifying enzyme levels and tolerance to

chemical insecticides (Yu, 1996; Hemingway et al., 2004; Enayati

et al., 2005; Feyereisen, 2005). Our work demonstrates that larval

GST activities were strongly induced by the insecticide propoxur

and to a lesser extent by benzo[a]pyrene. Esterase activities were

strongly induced by propoxur but very low effect was observed

after exposure to glyphosate, suggesting a limited impact of this

pollutant on esteraserelated insecticide metabolism. P450 activ

ities appeared strongly induced by benzo[a]pyrene. Overall, our

work also suggests that insecticides may not always be the most

potent inducers of detoxifying enzymes able to metabolize them.

This hypothesis is supported by results obtained in Drosophila by

Willoughby et al. (2006) showing that short exposures to high

lethal concentrations of insecticides only induce few detoxification

genes comparatively to other inducers. Benzo[a]pyrene exposure

led to the highest increase of larvae tolerance to permethrin and

imidacloprid and was also the best inducers of P450 activities.

This trend supports the central role of P450s in the tolerance of

mosquito larvae to these two insecticides. Poupardin et al. (2008)

revealed that fluoranthene, another PAH, strongly induced P450s in

mosquito larvae together with enhancing their tolerance to perme

thrin. The capacity of PAHs to induce P450 activities is well known

in vertebrates. Many PAHs induce P450s by binding to the AhR

(aryl hydrocarbon receptor) in the cytosol. Upon binding, the trans

formed receptor translocates to the nucleus where it dimerises

with the aryl hydrocarbon receptor nuclear translocator and then

binds to DNA sequences such as xenobiotic response elements

(XREs) located upstream of certain genes. This process increases

transcription of certain genes, followed by increased protein pro

duction. Recently, XRElike sequences have been found upstream

insect CYP genes involved in xenobiotic metabolism (McDonnell

et al., 2004; Brown et al., 2005). Putative XRElike elements have

also been found upstream An. gambiae CYP genes induced by the

insecticide permethrin (David J.P., unpublished data). Recently,

we showed that XRElike elements are also found upstream Ae.

aegypti CYP genes induced by fluoranthene (Poupardin et al.,

2008). The fact that exposure to different PAHs induce mosquito

larvae P450 activities together with increasing their tolerance to

permethrin and imidacloprid might indicate that PAHs have the

ability, through an AhRlike nuclear receptor, to induce P450s

involved in the degradation of these insecticides in mosquitoes.

We used the microarray Aedes Detox Chip (Strode et al.,

2008) to identify 23 genes encoding detoxification and

red/ox enzymes induced in 4th stage larvae after exposure

to benzo[a]pyrene, glyphosate, imidacloprid, permethrin and

propoxur. Benzo[a]pyrene induced a significant overtranscription

of CYP6Z8, CYP6Z6 and CYP9M5 (Fig. 4). Poupardin et al. (2008) also

found CYP6Z8 induced by fluoranthene, copper sulfate and the two

insecticides permethrin and temephos. In the malaria vector An.

gambiae, CYP6Z genes have been frequently found constitutively

overtranscribed in insecticideresistant strains (Nikou et al., 2003;

David et al., 2005; Muller et al., 2007). Recent studies demonstrated

that the enzyme encoded by An. gambiae CYP6Z1 can metabolize the

insecticides carbaryl and DDT while CYP6Z2, with a narrower active

site, only metabolizes carbaryl (Chiu et al., 2008; McLaughlin et al.,

2008). The high transcription level of CYP6Z8 in larvae (Fig. 5) may

indicate that this particular P450 play a major role in xenobiotic

response during the aquatic larval stage. Although transcription

ratios were lower, glyphosate also induced several CYP6s and

epsilon GSTs, indicating that this chemical may have an impact on

insecticide tolerance through P450 or GST induction.

Epsilon GSTs have been widely implicated in resistance to DDT

and pyrethroid insecticides (Ding et al., 2003; Ortelli et al., 2003;

Lumjuan et al., 2005; Strode et al., 2008). Therefore, the slight induc

tion of GST activities by glyphosate including the specific induction

of two epsilonclass GST genes (GSTe4 and GSTe7) might contribute

to the improved insecticide tolerance of mosquito larvae exposed

to this herbicide.

Two P450s, 1 GST, 3 carboxy/cholinesterases and several genes

encoding for enzymes potentially involved in response to oxida

tive stress were found induced in larvae exposed to imidacloprid.

Although esterases have been reported to be potentially involved

in crossresistance between the pyrethroid fenvalerate and imi

dacloprid in the cotton aphid Aphis gossypii (Wang et al., 2002),

the direct involvement of esterases in resistance to neonicotinoids

remains unclear. In human pulmonary and neuronal cultivated

cells, imidacloprid was showed to induce cell toxicity leading to

apoptosis (Skandrani et al., 2006). It is known that P450 func

tioning can generates excess reactive oxygen species, leading to

oxidative stress (Zangar et al., 2004) and that P450s are likely to

be involved in metabolic resistance to imidacloprid in insects (Le

Goff et al., 2003). Therefore, the induction of several genes encod

ing red/ox enzymes observed after exposing larvae to imidacloprid

might result from the generation of excess reactive oxygen species

from P450mediated imidacloprid metabolism.

Overall, our study demonstrated that the herbicide glyphosate

and the PAH benzo[a]pyrene likely to be found in polluted mosquito

breeding sites were able to increase tolerance of mosquito lar

vae to different classes of insecticides and suggested that this

is the consequence of an induction of particular detoxification

enzymes. Considering that only genes belonging to main detox

ification and red/ox enzyme families are represented on the

‘Aedes detox Chip’, a whole transcriptome analysis will allow iden

tifying additional genes and molecular mechanisms potentially

involved in mosquitoes’ response to pollutants and insecticides.

Our study was focused on the shortterm effect of xenobiotics on

the phenotypic plasticity associated with the tolerance of mosquito

larvae to insecticides. Finally, considering the persistent contami

nation of wetlands by anthropogenic chemicals and the potential

effect of phenotypic plasticity on the selection of particular genes

(Ghalambor et al., 2007), the question of the longterm impact of

environmental xenobiotics on inherited insecticide resistance also

represents an important future research direction.
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Abstract

Background: The control of mosquitoes transmitting infectious diseases relies mainly on the use of chemical 

insecticides. However, mosquito control programs are now threatened by the emergence of insecticide resistance. 

Hitherto, most research efforts have been focused on elucidating the molecular basis of inherited resistance. Less 

attention has been paid to the short-term response of mosquitoes to insecticides and pollutants which could have a 

significant impact on insecticide efficacy. Here, a combination of LongSAGE and Solexa sequencing was used to 

perform a deep transcriptome analysis of larvae of the dengue vector Aedes aegypti exposed for 48 h to sub-lethal 

doses of three chemical insecticides and three anthropogenic pollutants.

Results: Thirty millions 20 bp cDNA tags were sequenced, mapped to the mosquito genome and clustered, 

representing 6850 known genes and 4868 additional clusters not located within predicted genes. Mosquitoes exposed 

to insecticides or anthropogenic pollutants showed considerable modifications of their transcriptome. Genes 

encoding cuticular proteins, transporters, and enzymes involved in the mitochondrial respiratory chain and 

detoxification processes were particularly affected. Genes and molecular mechanisms potentially involved in 

xenobiotic response and insecticide tolerance were identified.

Conclusions: The method used in the present study appears as a powerful approach for investigating fine 

transcriptome variations in genome-sequenced organisms and can provide useful informations for the detection of 

novel transcripts. At the biological level, despite low concentrations and no apparent phenotypic effects, the 

significant impact of these xenobiotics on mosquito transcriptomes raise important questions about the 'hidden 

impact' of anthropogenic pollutants on ecosystems and consequences on vector control.

Background
During the past 60 years, the amount of anthropogenic

xenobiotics released into natural ecosystems has dramati-

cally increased. Although the effect of these chemicals on

human health is intensively studied, their impact on other

organisms remains poorly understood. Because pollut-

ants often accumulate in fresh-water bodies and sedi-

ments [1], their impact on wetland fauna is of importance

for these ecosystems. Among aquatic arthropods found

in wetlands, mosquitoes are distributed worldwide and

are often exposed to anthropogenic pollutants and insec-

ticides during their aquatic larval stage. Indeed insecti-

cides are often deliberately introduced into the mosquito

habitat in the fight against the many human diseases they

transmit (e.g. malaria, dengue fever, yellow fever and

filariasis) [2]. As a consequence mosquito control pro-

grams are now threatened by the selection of mosquito

populations resistant to these chemical insecticides [3].

Differential gene transcription in insecticide-resistant

mosquitoes has been frequently used to identify genes

putatively involved in inherited metabolic resistance

mechanisms [4-7]. For that purpose most approaches

used cDNA microarrays and were often focused on genes

encoding enzymes potentially involved in the bio-trans-

formation of insecticides molecules [8,9], although recent

findings suggest that the differential expression of other
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transcripts may also contribute to insecticide tolerance

[4,10]. Less attention has been paid to the short term

transcriptome response of insects to xenobiotics, though

this may lead to the discovery of novel molecular mecha-

nisms contributing to insecticide tolerance [11-13]. We

recently demonstrated that exposing mosquito larvae to

low concentrations of pollutants for a few hours can

increase their tolerance to chemical insecticides, possibly

due to an alteration of the expression of detoxification

enzymes [11,12]. In this context, understanding cross

responses of mosquitoes to insecticides and pollutants at

the whole transcriptome level may ultimately lead to

improvements in vector control strategies by optimizing

insecticide treatments in polluted areas [7]. Moreover,

deciphering transcriptome response of mosquitoes to

anthropogenic xenobiotics may identify genes involved in

chemical stress response that were not detected by stan-

dard toxicological studies.

Today, quantitative transcriptomic methods are diversi-

fied and divided into two kind of technology: 'closed' and

'open' techniques depending on genome annotation con-

straints [14,15]. In 'closed' technologies, gene expression

microarrays are the standard method used for transcrip-

tome analysis. However, this type of technology does not

allow the characterization and analysis of new transcripts

and suffers from various technical biases such as non-

specific hybridization and insufficient signal for low

expressed genes. In contrast, 'open' transcriptome analy-

ses based on the sequencing of either ESTs or short

cDNA tags, like Serial Analysis of Gene Expression

(SAGE) [16], LongSAGE [17] and Massive Parallel Signa-

ture Sequencing (MPSS) [18] can measure the transcript

level of both known and unknown genes [19]. The short

cDNA tags obtained by LongSAGE or MPSS can directly

be mapped to the genome sequence, allowing the identifi-

cation of new transcripts [15]. Because these sequencing

techniques do not target a defined portion of cDNAs,

these approaches are not optimized for the deep analysis

of transcriptome variations [20]. Recently, a combination

of LongSAGE and Solexa sequencing technology, leading

to the production and sequencing of millions of tags on a

defined region of cDNAs, has been used to characterize

mouse hypothalamus transcriptome [15]. To our knowl-

edge, this new method, called Digital Gene Expression

Tag Profiling (DGETP) has never been used to compare

whole transcriptome variations of a non-mammalian

organism in different environmental conditions.

Here, we used the DGETP approach to perform a deep

transcriptome analysis of larvae of the mosquito Aedes

aegypti exposed to different anthropogenic xenobiotics.

We examined the effect of sublethal doses of three pollut-

ants likely to be found in wetlands (the herbicide atrazine,

the polycyclic aromatic hydrocarbon fluoranthene and

the heavy metal copper) and three chemical insecticides

used for mosquito control (the pyrethroid permethrin,

the neonicotinoid imidacloprid and the carbamate

propoxur). This approach was suitable for investigating

deep transcriptome variations in mosquitoes and identi-

fied several loci with high transcription signal not previ-

ously identified in mosquito genome. At the biological

level, the transcript levels of many genes were affected by

xenobiotic exposure. Several genes and protein families

responding to individual or multiple xenobiotics were

identified, unraveling the complexity of xenobiotic-

response in mosquitoes and identifying genes potentially

involved in insecticide tolerance or biological interactions

between insecticides and pollutants.

Results
Sequencing, mapping and clustering of cDNA tags

By sequencing 7 cDNA tag libraries from mosquito larvae

exposed to different xenobiotics, a total of 29.45 million

reads (100% of total reads) corresponding to 726,269 dis-

tinct 20-mer tags were obtained (Table 1). By removing

any tag represented by less than 20 reads across all librar-

ies, background filtering slightly reduced the total num-

ber of reads to 28.12 million (95.5%) but greatly reduced

the number of distinct tags to 33,037. Among them,

15,253 distinct tags were successfully mapped onto the

Ae. aegypti genome at a unique genomic location without

mismatch, representing 15.2 million reads (51.6%).

Among successfully mapped tags, 9,812 distinct tags

(12.59 million reads, 42.7%) were mapped to 6,850 pre-

dicted genes while the remaining reads (8.9%) were

mapped outside gene boundaries (see methods).

Clustering analysis of 20-mer cDNA tags successfully

mapped to mosquito genome allowed us to identify a

total of 13,118 distinct clusters including 8,250 clusters

associated to predicted genes. Distribution of the total

number of reads across genes, clusters and tags (Addi-

tional file 1: Suppl. Figure 1) spanned more than 4 orders

of magnitude with most genes/clusters being represented

by 25 to 5000 reads. Median total number of reads per

gene, cluster, tag and cluster not mapped within pre-

dicted gene were 217, 124, 101 and 79 respectively.

Quantitative transcription data obtained from cDNA tags

Analysis of transcription levels in mosquito larvae

exposed to each xenobiotic was performed at the gene

level for tags mapped within predicted genes (i.e. gather-

ing all tags mapped within each gene) and at the cluster

level for tags not mapped within predicted genes (i.e.

gathering all tags mapped within each cluster). This anal-

ysis identified 453 genes and 225 additional clusters with

a mean transcript ratio (TR) significantly > 2-fold in

either direction in at least 1 condition (Fisher's test Pvalue

< 10-3 after multiple testing correction). Overall distribu-

tion of TRs and their associated Pvalues revealed a well-bal-
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anced distribution between over- and under transcription

with TRs ranging from 600-fold under transcription to

more than 2000-fold over transcription compared with

controls (Figure 1 and Additional file 2: Suppl. Table 1).

Cross-validation of TRs with real-time quantitative RT-

PCR on 14 genes (Additional file 3: Suppl. Figure 2)

revealed a good correlation of TRs obtained from the two

techniques (r = 0.71 and P = 4.16 E-05), although the

DGETP method often produced higher TRs (in either

direction) than real-time quantitative RT-PCR.

Overall transcriptome variations across treatments

Global analysis of transcriptome variations between mos-

quito larvae exposed to each xenobiotic revealed that the

proportion of genes/clusters differently transcribed var-

ied greatly between treatments (Table 2). This proportion

ranged from 0.26% to 3.94% of all detected genes/clusters

for permethrin and propoxur respectively. No correlation

was found between the number of genes/clusters differ-

entially transcribed in each treatment and the number of

reads sequenced or the number of cDNA tags success-

fully mapped to genome, suggesting an accurate normal-

ization across all libraries. When considering organic

xenobiotics (all but copper), the number of genes/clusters

differentially transcribed for each treatment was signifi-

cantly positively correlated with the molarity of the xeno-

biotic used for larval exposure, (r = 0.89 and P < 0.05).

This overall positive correlation revealed that despite the

different nature of xenobiotics, increasing the number of

organic molecules lead to an increase in the number of

genes/cluster differentially transcribed. Principal compo-

nent analysis (PCA) based on TRs of genes/clusters dif-

ferentially transcribed revealed similar transcriptome

variations of mosquito larvae exposed to the two chemi-

cal insecticides propoxur and imidacloprid and the poly-

cyclic aromatic hydrocarbon fluoranthene (Additional

file 4: Suppl. Figure 3). Conversely, transcriptome varia-

tions of larvae exposed to the insecticide permethrin, the

herbicide atrazine and copper were more specific.

Genes differentially transcribed across treatments

Functional analysis of the 453 genes differentially tran-

scribed in mosquito larvae exposed to xenobiotics

revealed that genes responding to xenobiotics encode

proteins with diverse functions, including a large propor-

tion (up to 50%) of proteins of unknown function (Figure

2 and Additional file 1: Suppl Table 1). Among them, 108

Table 1: Sequencing statistics

Reads Ctrl

(×106)

Copper

(×106)

Fluo

(×106)

Atraz

(×106)

Propo

(×106)

Perm

(×106)

Imida

(×106)

Mean

(×106)

Total

(×106)

% Total Distinct 

tags

Sequenced 4.35 4.30 4.41 2.75 3.88 4.90 4.85 4.21 29.45 100 726 269

Filtered 

from 

background

4.16 4.10 4.21 2.63 3.72 4.68 4.62 4.02 28.12 95.5 33 037

Mapped to 

genome

2.27 2.31 2.29 1.42 1.80 2.63 2.48 2.17 15.20 51.6 15 253

Mapped to 

genes

1.89 1.93 1.87 1.19 1.49 2.19 2.03 1.80 12.59 42.7 9 812

Reads filtered from background represent tags showing > 20 reads across all conditions. Reads mapped to genome represent tags mapped to a 

unique genomic location without mismatch. Reads mapped to genes represent tags filtered from background and mapped to predicted genes. 

Ctrl: controls; Copper: exposed to copper sulfate; Fluo: exposed to fluoranthene; Atraz: exposed to atrazine; Propo: exposed to propoxur; Perm: 

exposed to permethrin; Imida: exposed to imidacloprid.

Figure 1 Distribution and significance of transcription variations 

in mosquito larvae exposed to xenobiotics. Transcription ratios of 

genes are shown as black dots while genomic clusters not mapped 

within genes are shown as white dots. Differential transcription is indi-

cated as a function of both log10 transcription ratios (exposed to xeno-

biotics/controls) and Fisher's test Pvalues. Only the transcription ratios of 

453 genes and 250 clusters showing a Fisher's test Pvalue < 0.001 in at 

least one condition are shown.
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genes were affected by both pollutants and insecticides.

Several genes affected by xenobiotics encoded enzymes,

cuticular proteins and proteins involved in transport or

DNA interactions. As previously shown by PCA, the two

chemical insecticides propoxur and imidacloprid, and to

a lesser extent the polycyclic hydrocarbon fluoranthene,

induce similar functional responses. Response induced by

copper appeared distinct compared to organic xenobiot-

ics, with a high proportion of enzymes being over tran-

scribed. Conversely, response to organic xenobiotics was

characterized by the overproduction of a large proportion

of transcripts encoding cuticular proteins. For these com-

pounds, a positive correlation was found between their

lipophilicity (Log Kow) and the proportion of transcripts

encoding cuticular proteins being significantly over-pro-

duced (r = 0.91; P < 0.01; Log Kow from 0.57 for imidaclo-

prid to 6.1 for permethrin,). Genes encoding cytoskeleton

and ribosomal proteins were also affected by various xen-

obiotics with cytoskeleton proteins showing a marked

repression in larvae exposed to the herbicide atrazine.

Finally, genes encoding proteins involved in transport

were also differentially affected by xenobiotics. A nega-

tive correlation was found between the lipophilicity (Log

Kow) of organic xenobiotics and the number of tran-

scripts involved in transport being over-produced (r =

0.95, P < 0.01).

Impact of xenobiotics on transcripts encoding enzymes

Clustering analysis of genes encoding enzymes signifi-

cantly differentially transcribed in larvae exposed to xen-

obiotics revealed that the transcript level of 115 enzymes

was affected by one or more xenobiotic (Figure 3). The

transcript level of these enzymes was strongly affected in

larvae exposed to the insecticides propoxur and imida-

cloprid and the aromatic hydrocarbon fluoranthene. A

gene tree based on transcript levels across all treatments

revealed a distribution in 6 main different enzyme clus-

ters mainly influenced by these 3 xenobiotics. Twelve

genes encoding enzymes potentially involved in xenobi-

otic detoxification were found differentially transcribed,

including 5 cytochrome P450s monooxygenases (P450s),

4 glutathione S-transferases (GSTs) and 3 carboxy/cho-

linesterases (CCEs). Among them, the three P450s

CYP9M9 (AAEL001807), CYP325X2 (AAEL005696) and

CYP6M11 (AAEL009127) were induced by multiple xen-

obiotics. Interestingly, the cytochrome b5 (AAEL012636),

a co-factor associated with P450 detoxification systems,

was also strongly induced in mosquito larvae exposed to

insecticides and copper. Among GSTs, GSTX2

(AAEL010500) was strongly and specifically induced by

the insecticide propoxur while the induction of GSTD4

(AAEL001054) appeared less specific. Transcripts encod-

ing esterases were mostly found under produced follow-

ing xenobiotic exposure. Finally, several transcripts

encoding enzymes involved in the production of energy

within the respiratory chain such as NADH dehydroge-

nase and ATP synthase were over-produced in mosquito

larvae exposed to xenobiotics while multiple serine pro-

teases, amylases and peptidases were down-regulated.

Discussion
Analyzing transcriptome variations using digital gene 

expression tag profiling

Following the genome sequencing of the dengue vector

Ae. aegypti, 15,419 putative genes were identified and

transcripts were detected for 12,350 genes by combining

cDNA microarray, massive parallel signature sequencing

(MPSS) or EST sequencing on several mosquito life

stages [21]. By using the DGETP method, we sequenced

29.4 millions 20-mer tags across 7 distinct cDNA libraries

obtained from 4th-stage larvae. This approach allowed us

to detect significant transcription signals for 6,850 pre-

dicted genes. Considering that several genes may not be

transcribed in 4th-stage larvae and that transcripts

assayed by the DGETP method require the presence of a

DpnII restriction site, such transcriptome coverage

appears satisfactory. Besides, sequence variations

between the Ae. aegypti strain used in our study (Bora-

Bora strain) and the one used for genome sequencing

(Liverpool strain), led to the rejection of numerous reads.

Within our mosquito strain, allelic variations were

detected for numerous loci and also led to the rejection of

a considerable proportion of reads as only alleles exactly

matching to the reference genome sequence were consid-

ered in the analysis (see methods). However, we believe

that such high mapping stringency is critical for generat-

ing accurate gene transcription data with short cDNA

tags. Improving the number of reads by replicating

sequencing libraries for each sample will allow a better

assessment of biological and technical variations together

with increasing transcriptome coverage. By sequencing

10 million random 36 bp cDNA fragments from two

cDNA libraries of females Drosophila melanogaster,

Sackton et al. detected 2,540 annotated genes [22]. By tar-

geting a defined region of cDNAs, the DGETP method

can generate wider transcriptome coverage together with

a higher number of cDNA tags per gene, leading to more

precise gene transcription data. Provided a reference

genome is available and the aim is to quantify transcript

levels between different biological samples, we confirm

that methods based on the combination of LongSAGE

and next-generation sequencing technologies are per-

fectly suited for deep transcriptome analysis [15]. Recent

improvements in sequencing technologies (~30 million

reads/lane on the illumina Genome Analyzer system) are

now making sequencing-based approaches the methods

of choice for whole transcriptome analyses.
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Among the 15,253 20-mer cDNA tags successfully

mapped to Ae. aegypti genome, 35% were not located

within predicted gene boundaries extended by 300 bp at

their 3' end (see methods). These tags could be gathered

into 4,868 genomic clusters with more than 40% of them

showing significant transcription signal (> 100 reads,

Additional file 1: Suppl. Figure 1). These clusters may

represent genes, exons or UTR extensions not predicted

by automated annotation. Recent studies revealed that

the genome of complex organisms produce large num-

bers of regulatory noncoding RNAs (ncRNAs) that can be

antisense, intergenic, interleaved or overlapping with

protein-coding genes [23,24]. In that concern, it is likely

that a significant proportion of transcript signatures

detected outside predicted genes represent ncRNAs. The

use of next-generation sequencing approaches specifi-

cally targeting insect ncRNAs will help decipher their

role in mosquito gene regulation and in the capacity of

insects to adapt to different environmental conditions.

Impact of xenobiotics on mosquito larvae transcriptome

Global analysis of transcriptome variations associated

with a 48 h exposure of mosquito larvae to low doses of

insecticides and pollutants revealed their ability to adjust

to modifications of their chemical environment. The

number of transcripts affected varies greatly depending

on the xenobiotic used for exposure. When considering

organic xenobiotics (all but copper), this number

increased together with the molarity of the xenobiotics.

Our results also revealed that the lipophilicity of the xen-

obiotics affects the number of differentially transcribed

genes encoding cuticular proteins and transporters. It has

been demonstrated that lipophilic xenobiotics accumu-

late in biological membranes or lipid reserves, modifying

their distribution across tissues and cells [25,26].

Although our experimental design did not allow segregat-

ing between the quantity of xenobiotic and their inherent

chemical properties, it is likely that molarity and lipophi-

licity are key factors affecting the magnitude and the

specificity of transcriptome variations observed here.

Our results demonstrated the similar strong transcrip-

tome response of mosquito larvae exposed to the insecti-

cides propoxur and imidacloprid. Despite belonging to

two different chemical groups, the carbamate propoxur

and the neonicotinoid imidacloprid both potentiate the

functioning of nicotinic cholinergic receptors [27].

Although genes encoding the primary targets of these

insecticides (acetylcholinesterase or nicotinic receptors)

Table 2: Genes and clusters differentially transcribed after xenobiotic exposure

Genes/

clusters 

differentially 

transcribed

Copper Fluo Atraz Propo Perm Imida

N % N % N % N % N % N %

Total genes 

and additional 

clusters

71 0.61 141 1.20 98 0.84 462 3.94 31 0.26 361 3.08

Total genes 49 0.72 86 1.26 60 0.88 318 4.64 20 0.29 239 3.49

Over-

transcribed

46 0.67 50 0.73 25 0.36 130 1.90 16 0.23 113 1.65

Under-

transcribed

3 0.04 36 0.53 35 0.51 188 2.74 4 0.06 126 1.84

Total 

additional 

clusters not 

within genes

22 0.45 55 1.13 38 0.78 144 2.96 11 0.23 122 2.51

Over-

transcribed

18 0.37 36 0.74 21 0.43 53 1.09 9 0.18 51 1.05

Under-

transcribed

4 0.08 19 0.39 17 0.35 91 1.87 2 0.04 71 1.46

For each treatment, the number (N) of genes and additional clusters not mapped within predicted genes found significantly differentially 

transcribed are indicated. For each value, the associated percentage regarding the total number of genes (6850), the total number of clusters 

not mapped within predicted genes (4868), or the total of genes and additional clusters (11718) is indicated. Genes or clusters were 

considered significantly differentially transcribed comparatively to controls if their associated P value (Fisher's test) was < 0.001 after multiple 

testing corrections. Copper: exposed to copper sulfate; Fluo: exposed to fluoranthene; Atraz: exposed to atrazine; Propo: exposed to 

propoxur; Perm: exposed to permethrin; Imida: exposed to imidacloprid.
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were not found significantly differentially transcribed, the

similar transcriptome responses to these two insecticides

may be partly related to similar effects generated by the

alteration of cholinergic neurons functioning [28,29].

We previously demonstrated that exposing mosquito

larvae to various pollutants for few hours can increase

their tolerance to insecticides possibly through an induc-

tion of detoxification enzymes [11,12,30]. Among the dif-

ferent pollutants tested, polycyclic aromatic

hydrocarbons were often the most potent for increasing

insecticide tolerance, possibly due to their ability to

induce detoxification enzymes [31]. The present study

detected a considerable number of genes encoding detox-

ification enzymes (89 cytochrome P450s, 22 GSTs and 27

carboxylesterases) including several genes showing tran-

scription level variations. However, only a small propor-

tion of them were found significantly affected by

xenobiotic exposure, probably due to insufficient number

of reads regarding our Fisher's t test Pvalue threshold.

Among them, members of cytochrome P450 families fre-

quently involved in resistance to insecticides and plant

toxins [7-9,32-34] were over transcribed following expo-

sure to fluoranthene, propoxur or imidacloprid. By

revealing that several other genes with a broad range of

biological functions are similarly affected by insecticides

and pollutants, our results suggest that the impact of pol-

lutants on the ability of mosquitoes to better tolerate

chemical insecticides might also be the consequence of

the induction/repression of other proteins involved in a

wide range of functions. In this concern, several cuticular

proteins were found over transcribed in mosquito larvae

exposed to insecticides or organic xenobiotics. It has

been suggested that mosquito may protect themselves

from insecticides by cuticular protein thickening leading

to a reduction of insecticide penetration [4,35]. Other

studies demonstrated that cuticular component deposi-

tion is stimulated by environmental stress [36].

Our results also suggest that mosquito larvae exposed

to xenobiotics undertake a metabolic stress associated

with changes of their chemical environment. Global cel-

lular stress response has been defined as all proteins over-

produced due to environmental stress. This response ini-

tially named 'general adaptation syndrome' occurs

together with increased mobilization of energy from stor-

age tissues [37]. Such stress response has been described

for numerous stress factors including exposure to pollut-

ants [38]. In insect cells, response to environmental

aggressions can involve various proteins including heat

shock proteins [39], metallothioneins [40] or p-glycopro-

tein synthesis [41]. Although differentiating between xen-

obiotic-specific and general stress responses is difficult,

we also highlighted such protein families including chap-

eronins, heat shock proteins and ATP-binding cassette

transporters (p-glycoprotein family). Moreover, numer-

ous genes encoding enzymes involved in the production

of energy or in cellular catabolism such as NADH dehy-

drogenase, ATP synthase, trypsin and lipases were found

over transcribed in mosquito larvae exposed to xenobiot-

ics, confirming a global stress response [37,42].

Significant transcript level variations were observed in

response to anthropogenic pollutants though those com-

pounds were not toxic for mosquito larvae (see methods).

Although we predicted the relatively important effect of

the polycyclic aromatic hydrocarbon (PAH) fluoranthene

on mosquito larvae due to known cellular effects on ani-

mals [11,12,31,43], responses to atrazine and copper were

Figure 2 Genes differentially transcribed in mosquito larvae exposed to xenobiotics. Analysis was performed on 453 genes found significantly 

differentially transcribed in at least 1 condition (Fisher's test Pvalue < 0.001). Genes were assigned to 9 different categories according to their putative 

function: enzymes (dark blue), kinases (blue), transport (pink), DNA interaction (purple), cuticle (orange), cytoskeleton dark green), ribosomes (green), 

others (grey) and unknown hypothetical proteins (dark grey). For each condition, numbers of genes found significantly over transcribed (A) and under-

transcribed (B) were compared. Copper: exposed to copper sulfate; Fluo: exposed to fluoranthene; Atraz: exposed to atrazine; Propo: exposed to 

propoxur; Perm: exposed to permethrin; Imida: exposed to imidacloprid.
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Figure 3 Enzymes differentially transcribed in mosquito larvae exposed to xenobiotics. Hierarchical clustering analysis based transcription lev-

els was performed on 115 enzyme-encoding genes showing significant differential transcription (Fisher's test Pvalue < 0.001) in larvae exposed to any 

xenobiotic. Gene tree (left) and condition tree (top) were obtained using Pearson's uncentered distance metric calculated from all Log10 transcription 

ratios (xenobiotic exposed/controls). Color scale from blue to yellow indicates Log10 transcription ratios from -1 (10-fold under transcription) to +1 (10-

fold over transcription). For each gene, accession number and annotation are indicated. Copper: exposed to copper sulfate; Fluo: exposed to fluoran-

thene; Atraz: exposed to atrazine; Propo: exposed to propoxur; Perm: exposed to permethrin; Imida: exposed to imidacloprid.
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unanticipated. In animals, the cellular impact of PAHs

has been associated with the uncoupling of mitochon-

drial respiration, direct genotoxic damages and the for-

mation of reactive oxygen species [31,44-46]. The over

transcription of NADH dehydrogenase and ATP synthase

observed after exposing larvae to fluoranthene confirm

that similar effects occur in mosquitoes. Although mos-

quitoes do not possess the protein targeted by the triazine

herbicide atrazine (plastoquinone-binding protein in

photosystem II) [47] and a very low concentration was

used (10 μg/L), this chemical affected the transcription of

several mosquito genes. In plants, atrazine disrupts the

electron transport in chloroplasts [48]. In mosquito lar-

vae, several members of the oxidative phosphorylation

pathway including NADH dehydrogenase and ATP syn-

thase were induced by atrazine, suggesting a compensa-

tion for partial uncoupling of oxidative phosphorylation

[44]. Larvae exposed to copper sulfate exhibited a signifi-

cant over transcription of 45 genes including a large pro-

portion of enzymes while only 3 genes were under-

transcribed. The induction of enzymes by copper might

be the consequence of chemical interactions between

Cu2+ ions and metalloenzymes together with other metal-

loproteins involved in electron transfers, hydrolysis and

oxido-reductions [49-51]. The strong induction of the

hemo-protein cytochrome b5 (co-factor of P450s for

electron transfer) together with several serine proteases

and oxidase/peroxidases support this hypothesis.

Conclusions
Overall, despite low concentrations, short exposure time

and no apparent phenotypic modification, the significant

effect of pollutants and insecticides on mosquito larvae

transcriptome raise important questions about the 'hid-

den impact' of anthropogenic pollutants on ecosystems,

including mammals. This concern may even be underes-

timated considering the complex and unknown cross-

effects generated by pollutant mixtures often encoun-

tered in polluted ecosystems [52]. In nematodes, it has

been shown that by applying a realistic heat stress to both

uncontaminated and polluted systems, the specimen

from polluted environment showed a stronger response

[53]. Such effects are likely to occur in polluted mosquito

breeding sites and are likely to affect the efficacy of chem-

ical insecticides used for mosquito control

[4,5,7,11,12,53]. Although further experiments are

required to fully characterize the molecular mechanisms

by which pollutants affect insecticide tolerance in mos-

quitoes, the present study clearly demonstrate that simi-

lar response mechanisms are activated by pollutants and

insecticides. Finally, the persistent contamination of wet-

lands by anthropogenic chemicals and the role of pheno-

typic plasticity in driving selection mechanisms [54] raise

the question of the long-term impact of pollutants on the

selection of insecticide resistance mechanisms. Addi-

tional experiments combining exposure of mosquitoes to

pollutants and their subsequent selection with insecti-

cides will provide valuable biological material to answer

this question and may later allow improving mosquito

control strategies.

Methods
Mosquitoes and xenobiotics

A laboratory strain of the dengue vector Ae. aegypti

(Bora-Bora strain), susceptible to insecticides was reared

in standard insectary conditions (26°C, 8 h/16 h light/

dark period) and used for all experiments. Larvae were

reared in tap water with controlled amount of larval food

(ground hay pellets) for 4 days (3rd instar) before exposure

for 48 h to 3 chemical insecticides and 3 pollutants

belonging to various chemical classes: the pyrethroid

insecticide permethrin (Chem Service, USA), the neonic-

otinoid insecticide imidacloprid (Sigma Aldrich, USA),

the carbamate insecticide propoxur (Sigma Aldrich,

USA), the herbicide atrazine (Cluzeau, France), the poly-

cyclic aromatic hydrocarbon (PAH) fluoranthene

(Aldrich, France) and the heavy metal copper (obtained

from CuSO4, Prolabo, France). Atrazine is an herbicide

heavily used worldwide and is likely to be found in mos-

quito breeding sites near cultivated areas (e.g. field drain-

pipes) [30,55]. Similarly, copper is the major component

of Bordeaux mixture and is widely used to control fungus

on grapes and other berries [56]. Finally, fluoranthene is

one of the most ubiquitous PAH and is found at high con-

centrations in road sediments [57]. Elevated doses of flu-

oranthene are likely to be found in urban mosquito

breeding sites such as road trenches [58] or in oil spillage

areas [4].

Samples preparation

Exposures to all xenobiotics were performed in triplicate

with larvae from different egg batches (3 biological repli-

cates per treatment). One hundred larvae were exposed

to each xenobiotic in 200 ml tap water containing 50 mg

of larval food. Control larvae were obtained simultane-

ously in similar conditions without xenobiotics. Doses of

xenobiotics used for larval exposure were chosen accord-

ing to the doses likely to be found in highly polluted mos-

quito breeding sites (INERIS, http://www.ineris.fr).

Preliminary experiments revealed that fluoranthene,

atrazine or copper did not show any toxicity on mosquito

larvae even at higher concentrations than those used in

the present study. For insecticides, we chose a concentra-

tion resulting in less than 15% larval mortality after 48 h

exposure. This low mortality threshold was chosen in

order to minimize the effect of the artificial selection of

particular genotypes more tolerant to the insecticide dur-

ing exposure. Doses of xenobiotics used for exposures
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were 1.5 μg/L permethrin, 40 μg/L imidacloprid, 500 μg/L

propoxur, 25 μg/L fluoranthene, 10 μg/L atrazine and 2

mg/L CuSO4. After 48 h, larvae were collected, rinsed

twice in tap water and immediately used for RNA extrac-

tions.

Preparation of double stranded cDNA tag libraries

For each biological replicate, total RNA was extracted

from 30 fresh larvae using the PicoPure™ RNA isolation

kit (Arcturus Bioscience, Mountain View, USA) accord-

ing to manufacturer's instructions. Total RNA quality and

quantity were controlled on an Agilent 2100 Bioanalyzer

(Agilent, USA). Total RNAs were then diluted to 750 ng/

μL in nuclease-free water. For each treatment, total RNAs

from the 3 biological replicates were then pooled

together in equal proportions. Double-stranded cDNA

tag libraries (Additional file 5: Suppl. Figure 4) were pre-

pared by Illumina Corporation. Two μg total RNA were

used to isolate mRNAs by using magnetic oligo(dT)

beads before cDNA synthesis using superscript II (Invit-

rogen) at 42°C for 1 h. Second strand cDNAs were then

synthesized and mRNAs were removed. Double stranded

cDNAs were cleaved at DpnII restriction sites (5'-
GATC-3') and fragments attached to the oligo(dT) beads

on their 3' end were purified. Gene expression (GEX)

adapters 1 were ligated to the DpnII cleavage sites using

T4 DNA ligase (Invitrogen). Double stranded cDNAs

containing both GEX adaptors 1 and oligo(dT) beads

were then digested with MmeI for 1.5 h at 37°C to gener-

ate 20 bp double stranded cDNA tags. These tags were

purified before ligating GEX adapters 2 at the MmeI

cleavage site using T4 DNA ligase. The adapter-ligated

cDNA tag library was then enriched by PCR with two

primers annealing to the end of GeX adapters and Phu-

sion DNA polymerase (Finnzymes Oy). PCR cycles were

30 s at 98°C followed by 15 cycles of 10 s at 98°C, 30 s at

60°C, 15 s at 72°C and a final elongation step of 10 min at

72°C. Sequences of primers used for library preparation

are available at http://illumina.com. Enriched cDNA tag

library was then gel-purified before quality control analy-

sis on an Agilent 2100 Bioanalyzer.

Sequencing and mapping of cDNA tags to mosquito 

genome

Each cDNA tag library was sequenced as 20-mers on a

genome analyzer I (illumina Corporation). Each cDNA

tag library was sequenced on a separated flow cell lane.

Sequenced cDNA tags were then filtered from back-

ground noise according to their total number of reads

across all conditions. Only cDNA tags represented by

more than 20 reads were kept for further analysis. Back-

ground-filtered cDNA tags were then mapped to the Ae.

aegypti genome assembly (AaegL 1.1 annotation) using

TagMatcher, a software developed in our laboratory and

based on the short sequence mapping algorithm 'agrep'

[59]. TagMatcher allows matching tags to a reference

genome with errors and multiple matching loci (available

on request to 

eric.coissac@inrialpes.fr

). After mapping to Ae. aegypti genome, only tags without

ambiguous nucleotides and mapped without mismatch at

a unique genomic location were kept for clustering and

differential transcription analysis. To avoid possible bias

due to incomplete 3' UTR annotation and because most

cDNA tags were expected on the 3' side of genes (see

Additional file 5: Suppl. Figure 4), cDNA tags were con-

sidered to be 'within' a gene if located between the 5'

boundary of a gene and its 3' boundary extended by 300

bp.

Clustering and differential transcription analysis

In order to collect transcription data from distinct tags

matching to a unique transcript or a unique genomic loci

without a priori knowledge of genome annotation, we

clustered tags previously mapped to Ae. aegypti genome.

Two distinct tags were assigned to a single cluster if i)

tags were found on the same DNA strand and genomic

supercontig, ii) tags were separated by less than 500 bp

and iii) the total number of reads across all conditions

was higher for the tag located downstream (3' side) than

for the tag located upstream (5' side). The later condition

was adopted in order to take in account the effect of par-

tial DpnII digestion of cDNAs during cDNA library prep-

aration, leading to multiple tags located on a single

transcript with decreasing number of reads toward the 5'

direction (see Additional file 5: Suppl. Figure 4).

Differential analysis of transcription levels in mosquito

larvae exposed to each xenobiotic was performed at the

gene level for cDNA tags mapped within predicted genes

(i.e. gathering all tags mapped within each gene) and at

the cluster level for cDNA tags not mapped within pre-

dicted genes (i.e. gathering all tags mapped within each

cluster). Transcription ratios (TR) were calculated by

dividing the number of reads per million (RPM) in xeno-

biotic-exposed larvae by the number of RPM in control

larvae following the formula: TR = [(RPMtreated + x)/

(RPMcontrols + x)], where x is a pseudocount equal to 0.2

(approximately 1 read per million per condition). Then,

the probability of each gene to be differentially tran-

scribed more than 2-fold in either direction between

treated and controls was computed for each condition

from raw read counts, taking into account library size.

This computation was performed using Fisher's noncen-

tral hypergeometric distribution, which has the advan-

tage over standard hypergeometric law to allow

computation of Pvalue for a ratio different of one [60].

Holm correction was then applied to multiple test proce-

dure. Genes/clusters were considered differentially tran-
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scribed between xenobiotic-exposed larvae and controls

if Pvalue < 10-3.

Differential effect of xenobiotics on mosquito larvae 

transcriptome

To compare the global effect of each xenobiotic on Ae.

aegypti larvae transcriptome, a principal component

analysis (PCA) based on Log10 TRs was performed on the

453 genes and 225 clusters not mapped within genes

showing significant differential transcription following

exposure to at least one xenobiotic. Representation of

observations (genes and clusters) and conditions (xenobi-

otics used for exposure) on PCA axis was optimized by

applying a Varimax rotation on the 5 axis best represent-

ing the variance [61]. A comparative analysis of gene

functions differentially transcribed was performed on the

453 genes showing significant differential transcription

following exposure to at least one xenobiotic. Genes were

classified in 9 different categories: enzymes, kinases,

transport, DNA interaction, cuticle, cytoskeleton, ribo-

somes, others and hypothetical proteins. For each treat-

ment, percentages of genes significantly over- and under-

transcribed were compared. To investigate the role of

enzymes in the response of mosquito larvae to xenobiot-

ics, a hierarchical clustering analysis based on TRs was

performed on the 115 enzymes showing a significant dif-

ferential transcription. Clustering analysis was performed

by loading Log10 transcription ratios into TM4 Multi

experiment Viewer (MeV) software [62]. Gene and condi-

tion trees were calculated using Pearson's uncentered dis-

tance metric and complete linkage method with

optimization of genes order [63,64].

Real-time quantitative RT-PCR validation

Transcription profiles of 14 genes were validated by

reverse transcription followed by real-time quantitative

PCR on same RNA samples used for cDNA library prepa-

ration. Four μg total RNAs were treated with DNAse I

(Invitrogen) and used for cDNA synthesis with super-

script III (Invitrogen) and oligo-dT20 primer according to

manufacturer's instructions. Resulting cDNAs were

diluted 100 times for PCR reactions. Real-time quantita-

tive PCR reactions of 25 μL were performed in triplicate

on an iQ5 system (BioRad) using iQ SYBR Green super-

mix (BioRad), 0.3 μM of each primer and 5 μL of diluted

cDNAs according to manufacturer's instructions. Data

analysis was performed according to the ΔΔCT method

taking into account PCR efficiency [65] and using the two

genes encoding the ribosomal protein L8 (GenBank

accession no. DQ440262) and the ribosomal protein S7

(Genbank accession no. EAT38624.1) for normalisation.

For each treatment, results were expressed as mean tran-

scription ratios (± SE) between xenobiotic-exposed larvae

and control larvae.

Data deposition
Detailed transcription data for the 6850 genes detected in

the present study are presented in the Additional file 6

(supplementary Table 2).

All next-generation sequencing data and cDNA library

informations associated to the present study have been

deposited at the EMBL-EBI European Read Archive

(ERA) under accession number ERA000115. Experiment

metadata are freely accessible at ftp://ftp.era-

xml.ebi.ac.uk/meta/xml/ and sequence data are freely

accessible at ftp://ftp.era-xml.ebi.ac.uk/vol1/ERA000/

ERA000115/. Expression data from the 453 genes found

differentially transcribed after xenobiotic exposure are

also accessible at http://funcgen.vectorbase.org/Expres-

sionData/.

All gene accession numbers mentioned in the present

manuscript are compatible with Ensembl, NCBI-Gen-

Bank and Vectorbase http://aaegypti.vectorbase.org

genome databases.

Additional material

Additional file 1 Supplementary figure 1. This figure represents the dis-

tribution of the number of reads across distinct genes (6850 genes), clusters 

not mapped within predicted genes (4868 clusters), all mapped clusters 

(13118 clusters) and all mapped tags (15253 tags). Genes, clusters and tags 

are ranked in ascending order according to their total number of reads 

across all conditions.

Additional file 2 Supplementary table 1. This table contains all tran-

scription data for the 453 genes found differentially transcribed in Aedes 

aegypti larvae exposed to xenobiotics. Genes are arranged in nine different 

functional categories: enzymes; kinases; transport; DNA interaction; cuticle; 

cytoskeleton; ribosomes; others and unknown hypothetical proteins. For 

each gene, accession number and gene name or annotation are indicated. 

The number of reads per million (RPM) across all conditions is indicated as 

an average transcription level. Log10 transcription ratios (exposed to xeno-

biotic/control) are indicated for each xenobiotic relative to control. Tran-

scription ratios with a significant Fisher's test Pvalue < 0.001 are shown in 

bold.

Additional file 3 Supplementary figure 2. This figure shows the valida-

tion of transcription ratios obtained from Digital Gene Expression Tag Profil-

ing (DGETP) by real-time quantitative RT-PCR. Validation was performed on 

14 genes found significantly over-transcribed by DGETP in at least one con-

dition. For each gene, transcription ratios from both techniques across all 

conditions are represented. Black dots represent conditions showing a sig-

nificant over-transcription in DGETP. Accession numbers and annotations of 

gene analyzed were: AAEL001626 (zinc/iron transporter); AAEL001981 (ser-

ine/threonine kinase); AAEL002110 (cuticular protein); AAEL004748 (pupal 

cuticular protein); AAEL004829 (NADH dehydrogenase); AAEL005416 (oxi-

dase/peroxidase); AAEL005696 (cytochrome P450 CYP325X2); AAEL005929 

(ATP-binding cassette transporter); AAEL010500 (glutathione S-transferase 

GSTX2); AAEL011008 (lipase); AAEL012636 (cytochrome b5); AAEL013514 

(pupale cuticle protein); AAEL009127 (cytochrome P450 CYP6M11); 

AAEL001807 (cytochrome P450 CYP9M9).

Additional file 4 Supplementary figure 3. This figure represents the 

results of the principal component analysis of the effect of xenobiotics on 

mosquito larvae transcriptome. Analysis was based on log10 transcription 

ratios of all genes and clusters not mapped within genes showing a signifi-

cant differential transcription in at least one treatment. Both xenobiotic 

treatments (black dots) and genes or clusters (grey crosses) are represented 

using the 3 axis best representing the variance. Biplot A: axis 1 and 2 (81.5% 

of variance). Biplot B: axis 1 and 3 (69.7% of variance).
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Abstractimb_967 1..9

Transcription profiles of 11 Aedes aegypti P450 genes

from CYP6 and CYP9 subfamilies potentially involved

in xenobiotic metabolism were investigated. Many

genes were preferentially transcribed in tissues clas-

sically involved in xenobiotic metabolism including

midgut and Malpighian tubules. Life-stage transcrip-

tion profiling revealed important variations amongst

larvae, pupae, and adult males and females. Exposure

of mosquito larvae to sub-lethal doses of three xeno-

biotics induced the transcription of several genes

with an induction peak after 48 to 72 h exposure.

Several CYP genes were also induced by oxidative

stress and one gene strongly responded to 20-

hydroxyecdysone. Overall, this study revealed that

these P450s show different transcription profiles

according to xenobiotic exposures, life stages or

sex. Their putative chemoprotective functions are

discussed.

Keywords: cytochrome P450 monooxygenases,

CYPs, Aedes aegypti, mosquitoes, gene induction,

xenobiotics, detoxification, insecticides.

Introduction

Cytochrome P450 monooxygenases (P450s or CYPs

for individual proteins/genes) constitute a large ubiquitous

superfamily of heme-containing enzymes (Feyereisen,

2005). Originally identified as monooxygenases, P450s

are now known to catalyse an extremely diverse range of

reactions playing important roles in development, metabo-

lism and in the detoxification of foreign compounds (Scott

et al., 1998). In insects, P450s are involved in the meta-

bolism of endogenous compounds such as steroid

hormones and lipids. Amongst insect P450s, the best

characterized ones are probably Drosophila melanogaster

Halloween genes encoding the P450s involved in steroid

hormone biosynthesis (Gilbert, 2004). Insect P450s are

also involved in the metabolism of exogenous compounds

(xenobiotics) from natural or anthropogenic origins. These

P450s are highly diversified in insects, probably because

of intense coevolution between herbivorous insects and

defensive compounds produced by their host plants

(Schuler, 1996; Berenbaum, 2002). This important genetic

diversity reflects their diverse substrate specificities and

the broad range of chemical reactions they catalyse (Scott

& Wen, 2001).

Another characteristic of P450s is their frequent capac-

ity to be induced by xenobiotics (Feyereisen, 2005). The

relationship between the capacity of insect P450s to

degrade xenobiotics and their ability to be induced by drugs

and chemicals has sometimes been used for identifying

genes responsible for insecticide resistance (Petersen

et al., 2001; Wen et al., 2003). Recently, Wen et al. (2009)

showed that uncommonly encountered phytochemicals, as

well as synthetic substances, can enhance Helicoverpa

zeametabolic activity in an adaptative fashion against both

natural and synthetic toxins. Several studies have revealed

that exposing mosquitoes to various chemicals, including

pollutants and insecticides can increase their tolerance

to insecticides through an induction of P450s (Boyer

et al., 2006; Poupardin et al., 2008; Riaz et al., 2009). How-

ever, Willoughby et al. (2006) showed that Drosophila

P450s involved in dichlorodiphenyltrichloroethane (DDT)
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resistance were not induced by this insecticide, suggesting

that the relationship between the capacity of an enzyme to

metabolize an insecticide and its induction by the insecti-

cide is not always correlated. Moreover, little is known

about the long term impact of pollutants on the emergence

of metabolic resistances. Müller et al. (2007) pointed out

the fact that the season of intensive use of insecticides

to protect cotton crops in Cameroon coincides with an

increased tolerance of Anopheles arabiensis to pyrethroid

insecticides and an increased transcription of various

P450s. More recently, Djouaka et al. (2008) identified par-

ticular P450s specifically over-transcribed in insecticide-

resistant Anopheles gambiae populations from urban,

agricultural and oil-spillage areas.

Many additional factors such as sex, developmental

stage, hormone titre, tissue expression and stress

response have been involved in insect P450 regulation

(Harrison et al., 2001; Vontas et al., 2005; Le Goff et al.,

2006). Characterizing the response of genes encoding

P450 enzymes to these factors can also be of help for

discerning those involved in xenobiotic degradation from

those involved in other physiological processes (Chung

et al., 2009). In insects, CYP6 and CYP9 families are

over-represented and have been frequently involved in

detoxification of xenobiotics and metabolic resistance to

insecticides (Daborn et al., 2002; David et al., 2005;

Després et al., 2007; Müller et al., 2007; Chiu et al., 2008;

Strode et al., 2008).

Previously, a microarray screening of all Aedes aegypti

detoxification genes allowed us to identify several CYP6s

andCYP9s induced by various xenobiotics including insec-

ticides and pollutants (Poupardin et al., 2008; Riaz et al.,

2009). Some of these P450s, or their orthologues in other

mosquito species, were found to be up-regulated in

insecticide-resistant strains (David et al., 2005; Strode

et al., 2008; Marcombe et al., 2009). In the present study,

transcription profiles of 11 Ae. aegypti CYP6 and CYP9

P450s potentially involved in insecticide resistance or

xenobiotic response were investigated by real-time quan-

titative RT-PCR in order to identify those likely to be

involved in xenobioticmetabolism. Differential transcription

of these genes was investigated in relation to tissues, life

stages and sex. Differential transcription was also investi-

gated in a dynamic way in larvae exposed to sub-lethal

doses of two pollutants and one insecticide. Finally, differ-

ential transcription in relation to oxidative stress and moult-

ing hormone levels was investigated by exposing larvae to

hydrogen peroxide (H2O2) and 20-hydroxyecdysone (20E).

Results and discussion

Protein sequence comparison to other insect P450s

As shown in Table 1, the CYP6Z subfamily has been

frequently associated with resistance to chemical insecti-

cides in An. gambiae. Recently, Chiu et al. (2008)

demonstrated the capacity of An. gambiae CYP6Z1 to

metabolize the insecticides DDT and carbaryl and

McLaughlin et al. (2008) suggested that An. gambiae

CYP6Z2 also possesses a probable role in chemoprotec-

tion. The CYP6M subfamily, represented in our study by

CYP6M6 and CYP6M11, appeared interesting as recent

studies have pointed out its potential role in insecticide

resistance in An. gambiae (Müller et al., 2007; Djouaka

et al., 2008). Recent results indicated that An. gambiae

CYP6M2, similar to Ae. aegypti CYP6M11 and CYP6M6

can metabolize the pyrethroid insecticide permethrin (B.

Stevenson, pers. comm.). Interestingly, the Ae. aegypti

CYP6AL1 did not seem to have a clear orthologue in An.

gambiae but is rather close to the Culex pipiens CYP6F1

previously found over-transcribed in a pyrethroid-resistant

strain (Gong et al., 2005). Finally, Ae. aegypti CYP9s

considered in the present study appeared relatively close

to An. gambiae CYP9s, but none of them or their most

similar insect P450s have yet been associated with

xenobiotic metabolism.

Transcription profiling according to larval tissues,

life-stages and sex

Constitutive transcription profiles of CYP genes were first

investigated in different larval tissues (Fig. 1, left side and

Supporting Information Table S1). Transcription levels of

these P450 genes appeared highly dependent on the

tissues considered and could vary greatly amongst genes

showing high sequence homology. Most analysed P450s

were preferentially transcribed in the alimentary canal

(anterior midgut, midgut and Malpighian tubules) com-

paratively to head and abdomen carcass. All analysed

CYP6Zs, CYP6Ms and CYP6Ns displayed this transcrip-

tion pattern except CYP6Z6 was preferentially transcribed

in head and anterior midgut. Despite 68% cDNAsequence

homology and contiguous genomic location, CYP9M8 and

CYP9M9 showed different transcription profiles in larval

tissues. Both showed a low transcription level in abdomen

carcass, but CYP9M9 was preferentially transcribed in

alimentary canal and under-transcribed in head whereas

CYP9M8 revealed a low transcription level in midgut and

Malpighian tubules. Ai et al. (2009) have shown that two

P450s (CYPA19 and CYPA21) from Bombyx mori with

striking sequence identity have different transcription pat-

terns. CYP9A19 was detectable in the brain, midgut and

testis, whereas CYP9A21 was found in the brain, fat body,

epidermis and ovary, with no expression in the midgut.

This phenomenon might be the consequence of their

recent duplication followed by modification of their pro-

moter sequence leading to different transcription profiles

(Ai et al., 2009). Finally, CYP9J15 was the only CYP being

preferentially transcribed in Malpighian tubules whereas

2 R. Poupardin et al.

© 2009 The Authors

Journal compilation © 2009 The Royal Entomological Society



Table 1. Protein sequence comparison of studied P450s with other insect P450s

Aedes

aegypti

P450

Accession

number

Role in xenobiotic

response or

insecticide

resistance

Most similar

insect P450

Accession

number

Identity

(%) Species

Role in xenobiotic

response or

insecticide

resistance

CYP6Z6 AAEL009123 (1) (3)* CYP6Z2 AGAP008218 62 Anopheles gambiae (5) (6) (7)

CYP6Z3 AGAP008217 61 An. gambiae

CYP6Z1 AGAP008219 58 An. gambiae (5) (7) (8) (10)

CYP6Z4 AGAP002894 60 An. gambiae

CYP6D4 AE003740 41 Drosophila melanogaster (9)

CYP6Z7 AAEL009130 CYP6Z2 AGAP008218 62 An. gambiae (5) (6) (7)

CYP6Z3 AGAP008217 61 An. gambiae

CYP6Z1 AGAP008219 58 An. gambiae (5) (7) (8) (10)

CYP6Z4 AGAP002894 57 An. gambiae

CYP6D4 AE003740 42 D. melanogaster (9)

CYP6Z8 AAEL009131 (2)* (3)* CYP6Z2 AGAP008218 61 An. gambiae (5) (6) (7)

CYP6Z3 AGAP008217 61 An. gambiae

CYP6Z1 AGAP008219 59 An. gambiae (5) (7) (8) (10)

CYP6Z4 AGAP002894 59 An. gambiae

CYP6D4 AE00374 41 D. melanogaster (9)

CYP6Z9 AAEL009129 (4) CYP6Z2 AGAP008218 60 An. gambiae (5) (6) (7)

CYP6Z3 AGAP008217 60 An. gambiae

CYP6Z1 AGAP008219 57 An. gambiae (5) (7) (8) (10)

CYP6Z4 AGAP002894 57 An. gambiae

CYP6D4 AE003740 40 D. melanogaster (9)*

CYP6M6 AAEL009128 (1) (2)* CYP6M3 AGAP008213 61 An. gambiae

CYP6M2 AGAP008212 60 An. gambiae (7)(12)

CYP6M4 AGAP008214 58 An. gambiae

CYP6M1 AGAP008209 56 An. gambiae

CYP6N2 AGAP008206 50 An. gambiae (12)

CYP6M11 AAEL009127 (1) (2)* CYP6M3 AGAP008213 68 An. gambiae

CYP6M2 AGAP008212 66 An. gambiae (7)(12)

CYP6M4 AGAP008214 61 An. gambiae

CYP6M1 AGAP008209 60 An. gambiae

CYP6N2 AGAP008206 51 An. gambiae

CYP6N12 AAEL009124 (2)* (3)* CYP6N1 AGAP008210 60 An. gambiae (12)

CYP6N2 AGAP008206 58 An. gambiae

CYP6M3 AGAP008213 55 An. gambiae

CYP6M2 AGAP008212 54 An. gambiae (7)(12)

CYP6M4 AGAP008214 52 An. gambiae

CYP6AL1 AAEL008889 (2)* (5)* CYP6F1 AB001324 54 Culex pipiens (11)

CYP6BE1 AADG05009058 40 Apis mellifera

CYP6AZ1 AY884043 37 Momomorium destructor

CYP6N1 AGAP008210 39 An. gambiae (12)

CYP6M4 AGAP008214 37 An. gambiae

CYP9M8 AAEL009591 (2)* CYP9M1 AGAP009363 50 An. gambiae

CYP9M2 AGAP009375 47 An. gambiae

CYP9K1 AGAP000818 40 An. gambiae

CYP9E1 AY509245 37 Dasiprocta punctata

CYP9J4 AGAP012292 35 An. gambiae

CYP9M9 AAEL001807 (2)* CYP9M1 AGAP009363 53 An. gambiae

CYP9M2 AGAP009375 53 An. gambiae

CYP9E1 AY509245 39 D. punctata

CYP9K1 AGAP000818 39 An. gambiae

CYP9E2 AF275640 37 Blattella germanica

CYP9J15 AAEL006795 (2)* CYP9J3 AGAP012291 58 An. gambiae

CYP9J4 AGAP012292 48 An. gambiae

CYP9J5 AGAP012296 51 An. gambiae

CYP9E2 AF275640 42 B. germanica

CYP9L2 AGAP012294 43 An. gambiae

Percentages of identities were obtained by comparing protein sequences with known insect P450s from the insect P450 website (http://

p450.sophia.inra.fr) using the BLASTP function. References describing the possible involvement of each P450 in xenobiotic induction (*) or constitutive

insecticide resistance are indicated. Numbers refer to publications. (1) Marcombe et al., 2009, (2) Poupardin et al., 2008, (3) Riaz et al., 2009, (4) Strode

et al., 2008, (5) David et al., 2005, (6) McLaughlin et al., 2008, (7) Müller et al., 2007, (8) Chiu et al., 2008 (9), Willoughby et al., 2006, (10) Nikou et al.,

2003, (11) Gong et al., 2005, (12) Djouaka et al., 2008.
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CYP6AL1 was the only gene preferentially transcribed in

abdomen carcass. In their breeding sites, Aedes larvae

are indiscriminate filter feeders continuously exposed to a

wide range of xenobiotics dissolved in water or bound

to food particles (Aly, 1988). The preferential transcription

of these P450s in the larval alimentary canal might be

related to their ability to metabolize xenobiotics present in

their environment (Li et al., 2008). In Drosophila, CYP6G1

was associated with DDT resistance and was over-

transcribed in the Malpighian tubules, midgut and fat

bodies (Chung et al., 2006; Yang et al., 2007), suggesting

that xenobiotic metabolism may be linked to the renal

function in this species. More generally, 40% of D. mela-

nogaster P450s were found transcribed in the midgut sup-

porting the hypothesis of the alimentary canal being the

main xenobiotic defence tissue (Li et al., 2008). Similarly,

a recent study revealed that most An. gambiae P450s

were over-transcribed in the midgut, hindgut and Mal-

pighian tubules, suggesting that these tissues play a

major role in xenobiotic detoxification (Neira Oviedo et al.,

2008). Yang et al. (2007) suggested that the midgut con-

stitutes the first barrier for ingested chemicals, whereas

the tubules are more likely to handle topically applied

agents that appear in the haemocoel. Our data demon-

strated that Ae. aegypti CYP6Z7, CYP6Z8, CYP6M6,

CYP6M11 and CYP6N12 are preferentially transcribed in

the larval alimentary canal and Malpighian tubules.

Secondly, we investigated the influence of the develop-

ment stage on P450 transcription levels by comparing

fourth stage larvae, pupae, adult males and adult females

(Fig. 1, right side and Supporting Information Table S1).

Most of the P450s studied were over-transcribed in adult

males compared to adult females. All CYP6Zs except

CYP6Z9 followed this pattern. Le Goff et al. (2006) iden-

tified similar transcription patterns for several D. melano-

gaster CYP6 genes. The An. gambiae CYP6Z1 was also

found to be over-transcribed in adult males compared to

adult females in both pyrethroid resistant and susceptible

strains (Nikou et al., 2003). Female mating can regulate

P450s expression and the frequent down-regulation of

P450s in females could result from a trade-off in resource

allocation between reproduction and detoxification

(McGraw et al., 2004). Our results revealed that CYP6Z6,

CYP6Z8, CYP9M9 and CYP9J15 were all over-

transcribed in larvae compared to pupae. During the pupal

stage, mosquitoes do not feed and in consequence are

less exposed to dietary xenobiotics. Therefore, the under-

transcription of P450s involved in dietary xenobiotic

detoxification during this stage is not surprising. Strode

et al. (2006) have described the same transcription

pattern for CYP6Z2 and CYP6Z3 in An. gambiae. Con-

versely, CYP9M8 and CYP6AL1 were both strongly over-

transcribed in pupae compared to larvae (18- and

ninefold, respectively). The over-transcription of these

two P450s at the pupal stage may be linked to metabolic

or hormonal changes during pupation. In Ae. aegypti,

Margam et al. (2006) found an increase in ecdysteroid

level at the beginning of the pupal stage which may affect

the transcription of particular P450s. As for tissue tran-

scription profiles, despite highly similar sequences,

CYP9M9 and CYP9M8 showed a marked differential

transcription in pupae (¥621-fold vs./1.25-fold compara-

tively to adult females) suggesting a different role in pupal

development. Despite different transcription profiles in

larval tissues and pupae, these two P450s were both

highly over-transcribed in larvae compared to the adults

(¥35-fold) suggesting that they may play distinct but

significant roles in larvae.

Transcription profiling in larvae exposed to xenobiotics

The induction capacity of the 11 studied P450s by xeno-

biotics was investigated by exposing larvae to sub-lethal

doses of three different xenobiotics: the polycyclic aro-

H AM M MT C WL L P M F

CYP6Z6

CYP6Z8

CYP6Z7

CYP6Z9

CYP6M6

CYP6M11

CYP6N12

CYP9M8

CYP9M9

CYP9J15

CYP6AL1

Life stageTissue

Fold transcription

x1.5

/1.5

/3.0

/4.5

x3.0

x4.5

1.0

Figure 1. Constitutive transcription profiles of 11 Aedes aegypti P450s across different larval tissues (left) and different life stages (right). Tissues

analysed were: whole larva (WL), head (H), anterior midgut including gastric caeca (AM), midgut (M), Malpighian tubules (MT) and abdomen carcass (C).

Life stages analysed were: fourth-stage larvae (L), pupae (P), 3-day-old adult males (M) and 3-day-old adult females (F). Transcription levels are

expressed as mean fold transcription relative to whole larvae (tissues) or adult females (life-stages). Red and green indicate significant over- and

under-transcription respectively (ratio >1.5-fold in either direction and Mann–Whitney test P-value < 0.05). Yellow indicates no significant transcription

variations. Genes are organized according to their protein sequence homology.
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matic hydrocarbon fluoranthene, the pyrethroid insecticide

permethrin and the heavy metal copper (Fig. 2 and Sup-

porting Information Table S2). For each gene, transcrip-

tion levels in larvae exposed to each xenobiotic were

measured up to 96 h following xenobiotic exposure and

normalized according to controls (unexposed larvae).

These experiments confirmed the capacity of particular

P450s to be induced by sub-lethal doses of xenobiotics.

Bearing in mind the low xenobiotic concentrations used,

the maximum peak of induction was observed after 48 to

72 h of exposure. Amongst the 11 analysed genes, six

were induced by fluoranthrene, five by permethrin and

five by copper sulphate. Interestingly, CYP6M11,

CYP6N12 and CYP6AL1 were induced by all xenobiotics.

All genes induced by the three xenobiotics, except

CYP6AL1, were also preferentially transcribed in the ali-

mentary canal (Fig. 1), supporting a significant role of

these tissues in xenobiotic response. Finally, CYP6AL1

displayed a particular transcription profile in larvae

exposed to xenobiotics with marked down-regulation a

few hours after the beginning of exposure followed by

gradual up-regulation. Considering that this gene does

not show tissue and life-stage transcription profiles likely

to be associated with xenobiotic metabolism (see above),

these variations might be the consequence of the stress

generated by xenobiotics and/or the indirect effect of

xenobiotics on larval development.

Transcription variations in response to oxidative

stress and 20E

To investigate the effect of oxidative stress on the 11

P450s studied, Ae. aegypti larvae were exposed to H2O2

for 6 and 24 h (Fig. 3 left side and Supporting Information

Table S3). Several genes including CYP6Z8, CYP6Z9,

CYP6M6, and CYP9M9 were induced by oxidative stress

at one or both time points. Interestingly, most of the genes

induced by H2O2 except CYP6Z9 were induced by at least

one xenobiotic supporting the hypothesis that the induc-

tion of some detoxification genes following xenobiotic

exposure could be the result of oxidative stress (Ding

et al., 2005).

Ctrl 6h 24h 48h 72h 96h Ctrl 6h 24h 48h 72h 96h Ctrl 6h 24h 48h 72h 96h

CYP6Z6

CYP6Z8

CYP6Z7

CYP6Z9

CYP6M6

CYP6M11

CYP6N12

CYP9M8

CYP9M9

CYP9J15

CYP6AL1

etaflus reppoCnirhtemrePenehtnaroulF

Fold transcription

x1.5

/1.5

/3.0

/4.5

x3.0
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Figure 2. Transcription profiles of 11 P450s in Aedes aegypti larvae exposed from 6 to 96 h to sub-lethal concentrations of three different xenobiotics:

the polycyclic aromatic hydrocarbon fluoranthene, the pyrethroid insecticide permethrin and the heavy metal copper. For each time point, transcription

levels are expressed as mean fold transcription relative to controls (unexposed larvae). Red and green indicate significant over- and under-transcription

respectively (ratio >1.5-fold in either direction and Mann–Whitney test P-value < 0.05). Yellow indicates no significant transcription variations. Genes are

organized according to their protein sequence homology.
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Figure 3. Transcription profiles of 11 P450s in Aedes

aegypti larvae exposed to sub-lethal concentrations

of hydrogen peroxide (H2O2) and

20-hydroxyecdysone (20E). Larvae were exposed

during 6 and 24 h to 0.025% of H2O2 and 5 mg/l 20E.

For each time point, transcription levels are

expressed as mean fold transcription relative to

controls (unexposed larvae). Red and green indicate

significant over- and under-transcription respectively

(ratio >1.5-fold in either direction and Mann–Whitney

test P-value < 0.05). Yellow indicates no significant

transcription variations. Genes are organized

according to their protein sequence homology.
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Differential P450 transcription during mosquito develop-

ment may be explained by hormonal variations such as

moulting hormone fluctuations. To test this hypothesis,

mosquito larvae were exposed to 20E, the active moulting

hormone for 6 and 24 h (Fig. 3 right side and Supporting

Information Table S3). Only CYP6AL1 showed a strong

response to 20E, suggesting that this gene may play a

significant role in moults, metamorphosis and/or hormone

metabolism. This hypothesis is supported by a chaotic

xenobiotic induction profile, a preferential transcription

in the abdomen carcass and an over-transcription in

pupae. Similarly, CYP9M8, found over-transcribed in

pupae and down-regulated in the alimentary canal, slightly

responded to 20E, suggesting that this gene may also

have a possible role in endogenous metabolism.

Conclusion

In the present study, transcription profiles of 11 Ae. aegypti

CYP6s and CYP9s were investigated in order to identify

those possibly involved in xenobiotic metabolism. Follow-

ing these results, most CYP6Zs but also CYP6M11,

CYP6M6 and CYP6N12 are all preferentially transcribed

in typical detoxification tissues and larvae or adult males.

Most of these genes are also inducible by various xeno-

biotics and oxidative stress. Although the unambiguous

functional characterization of these enzymes requires

further experimental work such as heterologous expres-

sion followed by in vitro metabolism studies, these P450s

are likely to have a chemoprotective role in Ae. aegypti.

Experimental procedures

Choice of studied P450s and sequence analysis

Candidate Ae. aegypti CYP genes were chosen for their ability to

be induced by pesticides or pollutants (Poupardin et al., 2008;

Riaz et al., 2009) and for their putative role in insecticide resis-

tance according to the literature (Table 1). Considering the high

sequence similarity of CYP6Zs, we decided to analyse the tran-

scription profile of all subfamily members. For each P450, protein

sequence was compared to other available insect P450s by using

the local BLASTP function available at the insect P450 website

(http://p450.sophia.inra.fr). For each P450, only the five BLASTP

hits showing the smallest E-values were considered. The involve-

ment of those similar insect P450s in insecticide resistance

and/or xenobiotic induction was reported based on the existing

literature.

Mosquitoes and sample preparation

A laboratory Ae. aegypti strain susceptible to insecticides (Bora-

Bora strain) was reared in standard insectary conditions (27 °C,

16 h/8 h light/dark period, 80% relative humidity) and used for

all experiments. Larvae were reared in tap water and fed with

standard larval food (hay pellets). Each experiment was per-

formed with three independent egg batches from different

generations (three biological replicates).

P450 transcription profiles were first investigated at four differ-

ent life stages: fourth-stage larvae, pupae, adult males and adult

females (3-days post emergence, nonblood-fed). For each bio-

logical replicate, 30 fresh individuals of each life stage were

collected and immediately used for RNA extractions.

Transcription profiles were then investigated in different larval

tissues obtained by dissecting fourth stage larvae. The different

larval tissues studied were: whole larvae (WL), head (H), anterior

midgut including gastric caeca (AM), midgut (M), Malpighian

tubules and hindgut (MT) and carcass from abdomens (C).

Tissues were dissected from more than 200 fresh larvae in

ice-cold RNAlater (Ambion, Austin, TX, USA) and stored in

RNAlater at 4 °C until RNA extractions.

The capacity of P450s to be induced by xenobiotics was

investigated by exposing larvae to three different xenobiotics for

6 to 96 h. To avoid any bias because of pupation during xeno-

biotic exposure, third-stage larvae were used for exposure,

leading to fourth-stage larvae after 96 h exposure. Xenobiotics

used for larval exposure were: the polycyclic aromatic hydro-

carbon fluoranthene (Aldrich, Saint-Louis, MO, USA), the pyre-

throid insecticide permethrin (Chem Service, West Chester,

PA, USA) and the heavy metal copper (obtained from copper

sulphate; Prolabo, France). Concentrations used for larval

exposure were chosen according to the concentrations likely

to be found in highly polluted environments (INERIS, http://

www.ineris.fr). For the insecticide permethrin, a concentration of

1 mg/l resulting in less than 5% larval mortality after 96 h expo-

sure was chosen. For the other xenobiotics, no larval mortality

was observed during exposure and doses of 25 mg/l and 1 mg/l

were chosen for fluoranthene and copper sulphate, respectively.

Time-points chosen for monitoring gene transcription compara-

tively to unexposed larvae were 6, 24, 48, 72 and 96 h after the

beginning of exposure. Exposures to all xenobiotics were per-

formed in six replicates of 100 homogenous 2-day-old larvae in

200 ml tap water and 50 mg larval food (ground hay pellets). At

each time point, three ¥ 30 larvae were collected, rinsed twice

in tap water and immediately used for RNA extractions.

The capacity of P450s to respond to oxidative stress and moult-

ing hormone level was investigated by exposing fourth-stage

larvae to H2O2 (Sigma-Aldrich, Saint-Louis, MO, USA) and puri-

fied 20E kindly provided by Dr C. Dauphin-Villemant (Univ. Pierre

et Marie Curie, France). Preliminary experiments allowed us to

choose a concentration of H2O2 resulting in less than 5%mortality

after 24 h. Similarly, a concentration of 20E resulting in no larval

mortality and no modification of larval development time was

chosen. Fourth-stage larvae were exposed during 6 and 24 h to

0.025% H2O2 or 5 mg/l 20E. Exposures were repeated three

times with different egg batches. At each time point, 30 larvae

were collected, rinsed twice in tap water and immediately used for

RNA extractions.

RNA extractions and real-time quantitative RT-PCR

Total RNAs from each sample were extracted using Trizol

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions. Four micrograms of total RNAs were treated with

DNAse I (Invitrogen) for 20 min at 20 °C and used for cDNA

synthesis with Superscript III (Invitrogen) and oligo-dT20 primer

(Invitrogen) for 60 min at 50 °C according to the manufacturer’s
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instructions. Resulting cDNAs were diluted 100 times in ultra-high

quality water for real-time quantitative RT-PCR reactions. Real-

time quantitative PCR reactions of 25 ml were performed on an

iQ5 system (BioRad, Hercules, CA, USA) using MesaGreen

Supermix (Eurogentec, Liège, Belgium), 0.3 mM of each primer

and 5 ml of diluted cDNAs according to the manufacturers’

instructions. For each gene analysed, a cDNA dilution scale

from five to 50 000 times was performed in order to assess

PCR efficiency and quantitative differences amongst samples.

For each gene analysed, a melt curve analysis was performed

to check for the unique presence of the targeted PCR product

and the absence of significant primer dimers. Primers used for

real-time quantitative PCR are listed in Table 2. Data analysis

was performed according to the DDCt method taking into

account PCR efficiency (Pfaffl, 2001) and using the housekeep-

ing genes encoding the ribosomal protein L8 (AeRPL8,

GenBank accession no.: DQ440262) and the ribosomal protein

S7 (AeRPS7, GenBank accession no.: EAT38624.1) for a dual-

gene normalization. For xenobiotic exposure experiments,

results were expressed as mean transcription ratios (fold)

between larvae exposed to each xenobiotics and controls at

each time point. For life-stage experiments, results were

expressed as mean transcription ratios (fold) relative to adult

females. For tissue experiments, results were expressed as

mean transcription ratios (fold) relative to whole larvae. Quan-

titative RT-PCR data were computed by using a Mann–Whitney

test on transcription ratios (H0: transcription ratio = 1). Genes

were considered significantly over-transcribed when the

transcription ratio minus SE was superior to 1.5 and the Mann–

Whitney P-value was <0.05. Reciprocally, genes were consid-

ered significantly under-transcribed when transcription ratio

plus SE was inferior to 0.67 (corresponding to 1.5-fold under-

transcription) and the Mann–Whitney P-value was <0.05.
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Chapter 3.  Long-term response of mosquitoes to 

imidacloprid 

 

In the previous chapter, the short-term response of mosquito larvae to imidacloprid 

exposure was investigated at the toxicological, biochemical and molecular levels.   

The present chapter is dedicated to the study of the response of mosquitoes to 

imidacloprid exposure across several generations. Because no mosquito strain resistant to 

imidacloprid is available, an Ae. aegypti strain was selected with imidacloprid at the larval 

stage in the laboratory for multiple generations to obtain the Imida-R strain showing an 

increased resistance to imidacloprid.  

After several generations of selection, the constitutive resistance of Imida-R larvae and 

adults to imidacloprid was monitored by performing bioassays. Evolution of resistance of the 

Imida-R strain across three generations without insecticide selection was also monitored. 

Mechanisms associated to resistance were investigated using various biochemical and 

molecular approaches and candidate genes putatively involved in resistance identified. Then, 

cross resistance of the Imida-R strain to other neonicotinoids and other insecticides from 

different chemical families was investigated. The inducibility of candidate detoxification 

genes by imidacloprid was then compared between susceptible and resistant strains. 

Following this, the role of one gene encoding a P450 in imidacloprid metabolic resistance was 

validated by heterologous expression followed by in vitro insecticide metabolism.  

Finally, the potential role of cuticle modifications in imidacloprid resistance was 

preliminary investigated through the use of a chitin inhibitor. Several results presented are 

extracted from a publication attached at the end of this chapter (Publication IV). 

 

List of publications for chapter 3: 

Publication IV: Muhammad Asam Riaz, A. Chandor-Proust, C. Dauphin Villemant, R. 

Poupardin, C. Jones, C. Strode, J. P. David, S. Reynaud. 2011. Molecular mechanisms 

associated with resistance to the neonicotinoid insecticide imidacloprid in the dengue 

vector Aedes aegypti. Submitted to Chemosphere. 

 Input: Experimental design, performing experiments, statistical analysis of data, 

interpretation of results, writing manucript. 
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3.1 Constitutive resistance to imidacloprid 

3.1.1 Selection procedure 

In this experiment, the laboratory strain Bora-Bora, originating from French Polynesia, 

was used as a parental strain for selection experiments. This strain is susceptible to all 

insecticides and does not present any target-site or metabolic resistance mechanisms. Larvae 

were selected with imidacloprid for 14 generations to obtain the Imida-R strain (Table 3-1). 

Selection was performed by exposing 3rd-4th-stage larvae for 24h to a lethal dose of 

imidacloprid. The dose of insecticide was adjusted at each generation to obtain 60% to 80% 

larval mortality. Surviving larvae were transferred in tap water, fed with standard larval food 

and allowed to emerge. Adults were allowed to mate before being blood feed on mice to 

obtain eggs for the next generation. In order to limit bottleneck effects, each generation was 

seeded with more than 7000 individuals. 

Table 3-1: Demographic history of the imida-R strain 

No of Generation Imidacloprid (µg/L) Mortality No of larvae 

Imida-RG1 500 78% 9000 

Imida-RG2 500 81% 7000 

Imida-RG3 500 78% 8000 

Imida-RG4 500 75% 7000 

Imida-RG5 500 67% 7000 

Imida-RG6 600 65% 8000 

Imida-RG7 750 72% 9000 

Imida-RG8 750 65% 8000 

Imida-RG9 750 60% 10000 

Imida-RG10 900 65% 10000 

Imida-RG11 900 65% 10000 

Imida-RG12 1000 74% 9000 

Imida-RG13 1000 70% 10000 

Imida-RG14 1000 71% 10000 

3.1.2 Monitoring of imidacloprid resistance level 

The constitutive imidacloprid resistance level of the Imida-R strain was monitored by 

comparative bioassays on 4th stage larvae from the sixth generation and every three 

generations. Four different insecticide concentrations leading to 5 to 95% mortality after 24h 

exposure were used for each strain. LC50 with 95% confident intervals (CI95) were then 

calculated with a probit approach for each strain using XL-Stat (Addinsoft, Paris, France) and 

compared between the two strains by calculating a resistance ratio (RR50). 
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These bioassays revealed a significant increase in larval resistance to imidacloprid after few 

generations of selection. Monitoring resistance level along the selection process suggested 

that resistance increased gradually and is not yet stabilized. The resistance level of Imida-R 

larvae was estimated to be 5.4-fold greater than the susceptible strain after 8 generations of 

selection increasing to 7.2-fold after 13 generations of selections (Figure 3-1, Publication IV). 

In addition, relaxing the selection process from G11 to G14 (NS-Imida G14 strain) led to a 

decrease in larval resistance (RR50 from 7.2 to 4.3-fold), suggesting that resistance is not fixed 

and associated with an adaptive cost.  

 

Figure 3-1: Evolution of larval resistance level along the selection process. Grey area represents 
confidence interval limits. Doted line represents the resistance level of Imida-R larvae after 
releasing the selection process from G11 to G14 (NS-Imida-R strain). 
 

In order to investigate if the resistance phenotype is life-stage specific or expressed at both 

life stages, comparative adult bioassays with imidacloprid were performed between the Imida-

R and the susceptible strain. Comparative topical adult bioassays were performed in 

triplicates with G9 females of same age and uniform size and weight (2.2 mg) from each 

strain. These bioassays did not reveal a significant increased tolerance of Imida-R adult 

compared to the parental susceptible strain (RR50 of 1.2-fold), suggesting that molecular 

mechanisms linked to the resistance phenotype are differentially expressed between larvae 

and adults (Publication IV). 
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3.1.3 Investigating resistance mechanisms of the Imida-R strain  

3.1.3.1 Bioassays with detoxification enzyme inhibitors  

The aim of these experiments was to investigate the potential role of detoxification 

enzymes in the increased resistance of the imida-R strain to imidacloprid. Comparative 

bioassays with imidacloprid were conducted on G9 larvae of the Imida-R and the susceptible 

strains in presence or absence of different enzyme inhibitors.  

Three detoxification enzyme inhibitors were used: Piperonyl butoxide (PBO; 5-((2-(2-

butoxyethoxy)ethoxy) methyl)-6-propyl-1,3-benzodiox- ole) was used as an inhibitor of 

P450s, tribufos (DEF; S,S,S-tributyl phosphorotrithioate) as a carboxylesterase inhibitor and 

diethyl maleate as a GST inhibitor. A sub-lethal concentration of each enzyme inhibitor was 

used in combination with insecticide for bioassays (0.3 ppm, 1 ppm and 0.5 ppm for PBO, 

DEM and DEF respectively). Mortality data were analyzed as described earlier and the effect 

of enzyme inhibitors were assessed by calculating synergism ratios (SR50) with 95% 

confidence intervals for each strain by dividing the LC50 obtained with and without enzyme 

inhibitor (Publication IV and Table 3-2). Resistant ratios (RR) were considered significant 

when their confidence interval at 95% (CI 95%) did not overlap the value of 1 (susceptible 

strain). Synergistic ratios (SR) were considered significant when their CI 95% obtained from 

the resistant strain did not overlap with those obtained from the susceptible strain (Marcombe 

et al., 2009). 

Table 3-2: Imidacloprid resistance of Imida-R larvae with and without enzyme inhibitors. 

Significant RR and SR are shown in bold.  

Strain 
Enzyme 
inhibitor 

LC50 (µg/L) RR50 SR50 
(CI 95%) (CI 95%)  (CI 95%)  

Bora-Bora 

- 339 - - 

 

(261 – 465)   

PBO 291 - 1.17 

 

(222 – 420)  (0.62 – 2.09) 

DEF 385 - 0.88 

 

(291 – 469)  (0.56 – 1.60) 

DEM 255 - 1.32 

  (80 – 313)   (0.83 – 5.81) 

Imida-R 

- 1833 5.4 - 

 

(1634 - 2057) (3.51-7.88)  

PBO 663 2.28 2.77 

 

(507 - 760) (1.2 - 3.42) (2.15 - 4.06) 

DEF 607 1.58 3.02 

 

(347 - 814) (0.73 - 2.79) (2.01 - 5.93) 

DEM 820 3.22 2.24 

  (532 - 1053) (1.69 - 13.16) (1.55 - 3.87) 
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Larval bioassays with enzyme inhibitors led to a decrease in Imida-R larvae resistance 

to imidacloprid (synergism ratios SR50 of 2.77-fold, 3.02-fold and 2.24-fold for PBO, DEF 

and DEM respectively). Synergism ratios obtained with the susceptible strain were lower, 

supporting the role of detoxification enzymes in the resistance observed (1.17-fold, 0.88-fold 

and 1.32-fold for PBO, DEF and DEM respectively). Highest differences between the two 

strains were observed for PBO and DEF suggesting the main involvement of P450s, CCEs in 

the resistance at the larval stage. 

3.1.3.2 Detoxification enzyme activities 

In order to confirm the involvement of metabolic processes in imidacloprid resistance, 

we compared the level of detoxification enzyme activities between the imida-R strain (G10 

individuals) and the susceptible strain. The global activities of the three main detoxification 

enzyme families (P450s, GSTs and esterases) were evaluated in the larvae and adult females 

of each strain using ‘broad activity range’ synthetic substrates.  P450 activities were evaluated 

with ethoxycoumarin as described by De Sousa et al., 1995, GST activities were measured 

with CDNB and glutathione as described by Habig et al., 1974 and  α and β esterase activities  

were evaluated with naphtyl acetate following the method described by Van Asperen 1962 

respectively (see Publications I and IV for more details). 

Results of these experiments indicated that P450 and in a lesser extent GST activities 

were increased in Imida-R larvae compared to larvae of the susceptible strain (1.75-fold and 

1.17-fold respectively). Supporting a lower expression of resistance at the adult stage, no 

significant difference of detoxification enzyme activities were measured between Imida-R and 

susceptible adults (Publication IV). Overall, these results supported the role of detoxification 

enzymes such as P450s in metabolic resistance to imidacloprid at the larval stage. 

3.1.3.3 Transcriptome profiling 

Because metabolic resistance is frequently associated with changes in the transcription 

level of several genes including those encoding detoxification enzymes, experiments were set 

up to compare the constitutive transcriptome of the Imida-R and the susceptible strains. 

Two trancriptome profiling techniques were used in parallel to compare Imida-R 

larvae and adults after 10 generations of selection with the susceptible strain. First, a large 

scale DNA-microarray representing 14172 Ae. aegypti transcripts (‘Aedes detox chip plus’) 

was used to compare the transcriptome of larvae and adults of each strain (see publication IV 
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for detailed methods). Later on, another comparison was performed in larvae only using a 

mass-sequencing approach known as mRNA-sequencing. 

3.1.3.3.1 Transcriptome profiling using DNA-microarray 

Transcriptome profiling of the Imida-RG11 larvae and adult females compared to 

susceptible larvae and adults were performed by using the ‘Aedes detox chip plus’ microarray 

(ArrayExpress accession no. A-MEXP-1966) in collaboration with the Liverpool School of 

Tropical Medicine. A total of 6 hybridizations, including dye swaps, were performed for each 

life stage and only genes flagged as present or marginal in all hybridizations were considered 

for analyses. Following these criteria, a total of 13,678 and 7,699 transcripts were detected in 

larvae and adults respectively. Among them, 344 and 108 were considered significantly 

differentially transcribed in larvae and adults of the Imida-R strain respectively, with 

transcription ratios > 2-fold in either direction and adjusted p-values < 0.01 (Figure 3-2). 

Interestingly a large proportion of genes differentially transcribed in Imida-R larvae were 

over transcribed while such difference was not observed at the adult stage. 

The transcription ratios of particular genes found highly over transcribed in Imida-R 

larvae were successfully validated by reverse transcription followed by real-time quantitative 

PCR (RT-qPCR). Then, over and under transcribed genes were used for investigating gene 

functions differentially transcribed in Imida-R larvae and adults. Because the Gene Ontology 

(GO) annotation of Ae. aegypti genome is still incomplete (less than 9,500 genes annotated 

with GO terms over 15,988 predicted genes), we manually annotated the ‘biological function’ 

of all transcripts showing a significant differential transcription at any life stage. Genes were 

then assigned into 12 different categories: detoxification enzymes, dehydrogenases, 

kinases/phosphatases, other enzymes, cuticle, transport/chaperonin, cell 

catabolism/anabolism, RNA/DNA interactions, cytoskeleton, ribosomal proteins, others and 

hypothetical proteins. For each life stage, percentages of genes significantly over- and under-

transcribed were compared.  

This analysis revealed a high proportion of detoxification enzymes, cuticle proteins, 

and proteins involved in transport (mainly hexamerins) or cell catabolism being differentially 

transcribed in the Imida-R strain at the larval stage (Figure 3-2). In adults, genes encoding 

proteins involved in detoxification, RNA/DNA interactions and cell metabolism appeared 

differentially transcribed in Imida-R strain. Only 19 genes were differentially transcribed in 

both life stages with 18 of them showing a conserved transcription pattern between larvae and 

adults. Genes encoding cuticular protein AAEL015119 and the ‘brain chitinase’ 

AAEL002972 were both over-transcribed in larvae and adults. No gene encoding 
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detoxification enzymes presented a common transcription pattern at both life stages. Finally, 

the hexamerin AAEL013990 was 2.4-fold over-transcribed in larvae but 2.0-fold under-

transcribed in adults (Figure 3-2). 

 

 

 

Figure 3-2: Genes and biological functions differentially transcribed in the Imida-R strain 
comparatively to the susceptible strain Bora-Bora. Venn diagram describes the number of genes 
found significantly over- or under-transcribed in larvae and adults (fold transcription > 2 in 
either direction and p-value < 0.01). Arrows indicate over- or under-transcription. Pie charts 
describe biological functions represented by genes presented in the Venn diagram. Genes were 
assigned to 12 different categories according to their putative function. 

 

 

Among detoxification enzymes, several genes encoding cytochrome P450 

monooxygenases (CYPs) and glucosyl/glucuronosyl transferases (UGTs) were over-

transcribed in Imida-R larvae compared to susceptible larvae, supporting the hypothesis of 

enhanced detoxification mechanisms. Among P450s, the genes CYP4D24, CYP6Z8, CYP6N9, 

CYP6BB2, CYP325S3 and CYP9M9 were highly over-transcribed in Imida-R larvae (Figure 

3-3). Finally the important over-transcription of several genes encoding cuticle proteins in the 

Imida-R strain may indicate that modifications or thickening of the cuticle contribute to the 

resistance of the Imida-R strain. 
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Figure 3-3: Hierarchical clustering of detoxification enzyme differentially transcribed in Imida-
R larvae and adults. Clustering analysis based on transcription levels was performed separately 
on the 24 CYPs and 12 other detoxification genes showing a significant differential transcription 
in larvae or adults. Color scale from blue to yellow indicates transcription ratios from -5-fold to 
+5-fold (Imida-R / Susceptible). For each gene, accession number and gene names or annotation 
are indicated. 

 

3.1.3.3.2 Transcriptome profiling using messenger RNA sequencing 

Although microarrays are high throughput and inexpensive, they show limitations 

which include: dependence on the existing knowledge about genome sequence, cross-

hybridization between closely related sequences and limited detection due to background and 

signal saturation (Okoniewski & Miller 2006, Royce et al., 2007). Conversely, sequence-

based transcriptomic approaches identify genes based on their cDNA sequence. Initially, 
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and generally not quantitative. cDNA tag-based methods including serial analysis of gene 

expression (SAGE) (Velculescu et al., 1995, Harbers & Carninci 2005) and cap analysis of 

gene expression (CAGE) (Shiraki 2003) were then developed to overcome these limitations. 

Recently some of these methods were adapted to next-generation sequencing, increasing even 

more the transcriptome coverage (Hanriot et al., 2008).  

The recent development of high throughput sequencing of full length cDNAs known 

as mRNA-sequencing (RNA-seq) has provided improvements in both mapping and 

quantifying transcriptomes. Beyond gene expression changes, RNA-Seq can identify novel 

transcripts or isoforms, alternative splice sites, allele-specific expression, and rare transcripts 

in a single experiment (Wang et al., 2009a). 

 

In the present study, RNA-sequencing was performed on the same Imida-RG11 and 

susceptible larvae as those used for microarray studies (same total RNAs) in order to obtain a 

true comparison between the two techniques. RNA-seq cDNA libraries were prepared 

following illumina’s mRNA-seq sample preparation protocol (version 1004898 Rev. D). This 

procedure was used for producing two cDNA libraries ligated with sequencing adaptors for 

each strain (two technical replicates).  

Briefly, total RNAs were used to isolate mRNAs by using magnetic oligo (dT) beads 

(Figure 3-4). Following purification, the mRNA is fragmented into small pieces using 

divalent cations under elevated temperature. Then the cleaved RNA fragments were copied 

into first strand cDNA using reverse transcriptase and random primers. This was followed by 

second strand cDNA synthesis. Adaptors were then ligated to these cDNA fragments. Each 

library was then enriched by performing 15 PCR cycles and sequenced on a single flow cell 

line with a Genome Analyzer II (illumina) at the Genoscope (France). Figure 3-4 below 

provides an overview of the whole RNA-seq procedure. Sequenced reads were then analyzed 

with the help of the ‘Pôle Rhône-Alpes de Bioinformatique’ (PRABI). A publication 

describing these results is in preparation. 
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Figure 3-4: Schematic representation of the mRNA-sequencing approach (from Wang et al., 
2009). 

 

 Analysis of sequenced reads was performed as follow. Briefly, the Tophat algorithm (release 

1.0.14) (Trapnell et al., 2009) (http://tophat.cbcb.umd.edu) was applied with defaults 

parameters, to align all the short reads onto the Ae. aegypti reference genome (AaegL1.2, 

September 2009, 15,988 genes and 17,402 transcripts) by taking into account, both already 

known and novel ab initio splice exon-exon junctions. The htseq-count software was then 

applied with default parameters on Tophat alignments to enumerate the number of short reads 

overlapping the vectorbase’s annotation. The Bioconductor package DESeq was next used to 

(i) normalize short read counts between each library and (ii) test for differential expression of 

the annotated transcripts between the Imida-R and susceptible strains at the transcript and 

exon levels (Anders & Huber 2010). 

Only transcripts showing at least two normalized reads across the two strains were considered 

as detected. Transcripts showing a transcription ratio > 2-fold in either direction and an 
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adjusted p-value < 10-6 were considered significantly differentially transcribed between the 

two strains. A global analysis of gene functions differentially transcribed in the Imida-R strain 

was then performed on all genes showing a significant differential transcription in Imida-R 

larvae. Because of the poor GO annotation of Ae. aegypti genome, transcripts showing a 

significant differential transcription were manually assigned into 13 different categories: 

detoxification enzymes, dehydrogenases, kinases/phosphatases, other enzymes, cuticle, 

transport/chaperonin, cell catabolism/anabolism, RNA/DNA interactions, cytoskeleton, 

ribosomal proteins, others, unknown and hypothetical proteins. 

 

In total, 66,990,113 and 60,691,821 reads were sequenced for the susceptible and Imida-R 

strains respectively (Table 3-3). More than 75% of the reads were mapped to the mosquito 

genome. Only 33 to 40% of reads were mapped to known Vectorbase transcripts possibly due 

to incomplete annotation of the genome, variations between our strains and the reference 

genome (Liverpool strain) and transcription events outside exon boundaries. High correlation 

(r2 > 0.94) were observed between the number of normalized reads obtained for each 

transcript from the two library replicates for each strain (Figure 3-5).  

 

Figure 3-5: Comparison of the number of reads per transcript between RNA-seq library 
replicates. (a) Susceptible strain; (b) Imida-R strain.  

 

After combining reads from each replicated library, a total of 12736 and 12646 transcripts 

were detected in the susceptible and Imida-R strains respectively (Table 3-3). Comparison 

with microarray data revealed that 10288 transcripts were detected by both techniques while 

2673 and 3391 transcripts were only detected by RNA-seq and microarray respectively. 
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Table 3-3: Sequencing and mapping statistics 

Strain 
Library 

replicate 

Total 
sequenced 

reads 

mapped to 
genome 

% mapped 
to genome 

mapped to 
trancripts 

% mapped 
to 

transcripts 

Detected  
transcripts  

Susceptible 
1 35634800 29354434 82.38 9907447 33.75 

12736 

2 31355313 24539955 78.26 8169003 33.29 

Imida-R 
1 26992614 20568269 76.20 8085229 39.31 12646 

2 33699207 29183015 86.60 10932796 37.46 

 

 

RNA-seq experiment identified 373 transcripts (2.2 % of total) significantly differentially 

transcribed in larvae of the Imida-R strain compared to the susceptible strain. These were 

divided into 293 transcripts over-transcribed in the Imida-R strain and 80 under-transcribed, 

with transcription ratios ranging from 2-fold under-transcription to 2-fold over-transcription 

(Figure 3-6). 

 

 
Figure 3-6: Graphical representation of transcription ratios and their associated adjusted p- 
values for the 12961 detected transcripts. Transcription ratios are represented along the X axis 
(log10 scale) and p-value are shown along the Y axis (log10 scale). Dotted line indicates 
significance threshold (p-value < 10-6) chosen for the present study. 
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Analysis of biological functions differentially over-transcribed in the imida-R strain revealed 

an over-representation of transcripts encoding cuticle proteins, detoxification enzymes, 

dehydrogenases and proteins involved in cell catabolism/anabolism including lipases, 

proteases and peptidases. Conversely, enzymes not assigned to any categories (other 

enzymes), and transcripts associated with transporters/chaperonins were slightly over-

represented among under-transcribed genes (Figure 3-7). Among detoxification enzymes 

over-transcribed in Imida-R larvae, P450s were well represented compared to GSTs and 

esterases.  

 

Figure 3-7: Biological functions differentially transcribed in the Imida-R strain compared to the 
susceptible strain 

 

Comparison between results obtained by microarray and RNA-seq in larvae revealed that 139 

transcripts were found commonly differentially transcribed in both approaches with 137 and 2 

transcripts over- and under-transcribed respectively (Figure 3-8a). This confirmed the marked 

imbalance between over- and under-transcribed genes previously observed from microarray 

data. Comparison of transcriptions ratios of these genes from both techniques indicated a 

relatively good correlation (r2=0.42) with all transcript variations being in the same direction 

(Figure 3-8b).  Among the 137 genes over-transcribed in the Imida-R strain from both 

techniques, 21 genes (15 %) encoded cuticle proteins while detoxification enzymes 

represented 7 % (Figure 3-8c). Among detoxification enzymes, 8 P450s (CYP325S3, 

CYP9M9, CYP6Z8, CYP6Z7, CYP6BB2, CYP6N9, CYP4D24 and CYP4H28) and one GST 

(GSTD4) were found. Four genes potentially involved in transport were represented by 

hexamerins. Proteins and enzymes involved in cell catabolism/anabolism were mainly 

represented by lipases, proteases and peptidases. Finally, the 2 commonly under-transcribed 
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genes were represented by transcripts potentially involved in cell catabolism and hypothetical 

proteins (Figure 3-8c). 

 

 

Figure 3-8: Analysis of transcripts commonly differentially transcribed from microarray and 
RNA-seq. (a) Venn diagram shows the number of transcripts found over- and under-transcribed 
in both techniques; (b) Correlation between transcription ratios of the 147 transcripts commonly 
differentially transcribed; (c) Biological functions represented by genes over- and under-
transcribed in both techniques. 

Real-time quantitative RT-PCR was used to validate the transcription pattern of 7 

genes selected from mRNA seq and microarray studies. Overall, the transcription patterns 

obtained from mRNA seq, microarray and real-time quantitative RT-PCR were in good 

agreement. The Pearson correlation values between microarray and real-time quantitative RT-

PCR, between microarray and mRNA seq and between mRNA seq and RT-PCR were 0.94, 

0.62 and 0.71 respectively (Figure 3-9). Only the transcription ratio of CYP325S3 was over 

estimated by mRNAseq compared to the two other techniques. 
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Figure 3-9: Comparative real-time quantitative RT-PCR, microarray and mRNA seq analysis of 
the differential transcription of 7 selected genes in Imida-R larvae. Gene transcription levels are 
indicated as transcription ratios in Imida-R larvae compared to susceptible larvae. The 
housekeeping genes AeRPL8 and AeRPS7 were used as internal controls for normalization in 
RT-qPCR.  

 

Among all genes annotated in Ae. aegypti genome, 1071 genes with alternative splice variants 

were identified so far, encoding 2431 different transcripts. Among them, 344 transcripts were 

detected by our mRNA-seq approach (transcription signal above background).  Among them, 

12 genes with alternative transcripts were found significantly differentially transcribed in the 

Imida-R strain (p-value ≤ 10
-6). Eleven showed 2 alternative transcripts and one showed 3 

alternative transcripts. Only one gene, the nuclear receptor β-ftz AAEL002062, showed 

different splice variants with significant transcription signal (AAEL002062-RA and 

AAEL002062-RB). The transcript AAEL002062-RA possesses 7 exons, while, 

AAEL002062-RB possesses 8 exons (Figure 3-10). RNAseq data indicated a higher over-

transcription of exon 1 of RA transcript in the Imida-R strain compared to exon 1 of RB 

transcript (Figure 3-10). Although preliminary, this first analysis suggests that the over-

transcription of the transcript RA (exon1) has been preferentially selected by imidacloprid 

compared to transcript RB. In other words, this may indicate an alternative splicing event 

linked to imidacloprid selection process and resistance. Further analyses based on the 

comparison of reads distribution between these two transcripts will help to confirm this result. 
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Figure 3-10: Representation of gene AAEL002062 with its two alternative transcripts 
(AAEL002062-RA and AAEL002062-RB) on supercontig 1.48. Black boxes represent exons 
detected by mRNA-seq while grey boxes represent exons that were not detected. Location and 
sizes (in bp) of exons are indicated within boxes. Genome ruler is represented on the x-axis. The 
value of the transcription (Imida-R / susceptible) are represented for each exon along the y-axis. 
The significance of transcription ratios (adjusted p-value) are shown above each detected exon. 

 

3.1.3.4 Differential imidacloprid in vitro metabolism between Imida-R and Bora-Bora 

strains.   

As a predominant increase in P450 activity and the over-transcription of several CYP 

genes were observed in Imida-R larvae, the capacity of P450s from the Imida-R strain to 

metabolize imidacloprid was further examined. This work was performed with the help of Dr. 

Dauphin-Villemant from Paris University and Dr. Chandor-Proust from the LECA. 
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from the Imida-R strains compared to the susceptible strain and the kinetic constants showed 

that the apparent Km and Vmax obtained for the Imida-R strain (111 µM and 770 nmol/min/mg 

protein) were respectively 1.6- and 3.0-fold higher than those estimated for the susceptible 

strain (70 µM and 259 nmol/min/mg protein) (Figure 3-11).  

 

Figure 3-11: Comparison of imidacloprid in vitro metabolism between the Imida-R and 
susceptible strains. A) Production of imidacloprid metabolites by microsomal proteins obtained 
from susceptible larvae (white bar) and Imida-R larvae (black bar) with or without NADPH 
during 30 minutes. Metabolite production was expressed as pmol of metabolites produced/mg 
microsomal protein /minute ± SE. Statistical comparison of metabolite production between the 
two strains was performed with a Mann and Whitney's test (* p < 0.05). ND: not detected. B) 
Lineweaver-Burk plots used for determining the kinetic constants of P450-dependent 
imidacloprid metabolism in the susceptible (white dots) and Imida-R (black dots) strains. 
Microsomal preparations (100 µg) were incubated for 45 minutes with 1 to 100 µM imidacloprid 
in the presence of NADPH and NADPH regenerating system. 
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3.1.3.5 Protein sequence analysis and homology modeling 

Considering the capacity of several insect P450s to metabolize imidacloprid (Karunker 

et al., 2009), a multiple protein alignment of the 19 P450s found over-transcribed in Imida-R 

larvae with BtCYP6CM1vQ and DmCYP6G1, two P450s capable to metabolize imidacloprid 

in B. tabaci and D. melanogaster was done. Although I contributed to this study, the research 

presented below was mainly performed by Dr. Chandor-Proust from the LECA Grenoble.  

Proteins alignments of SRS domains revealed three distinct clades corresponding to 

CYP4s, CYP6s and CYP9s. Since BtCYP6CM1vQ and DmCYP6G1 had more similarities 

with AeCYP6 family, another protein alignment restricted to the AeCYP6 protein sequences 

was made (Publication IV). AeCYP6BB2 and AeCYP6Z8 seemed to have the highest 

sequence similarity with DmCYP6G1 (Joussen et al., 2008) and BtCYP6CM1vQ (Karunker 

et al., 2009) (Figure 3-12). 

 
Figure 3-12: SRS multiple alignment of CYP6 proteins from Aedes aegypti (Ae), Drosophila 

melanogaster (Dm) and Bemisia tabaci (Bt). Amino acid residues of BtCYP6CM1vQ that are 
within 4 Å of imidacloprid are shown in white on a black background (Karunker et al., 2009). 
Amino acid residues in a grey background are residues interacting with imidacloprid strictly 
conserved in CYP3A4, DmCYP6G1 and BmCYP6CM1vQ. Residue numbering shown above the 
alignment is that of BtCYP6CM1vQ. Amino-acid conservation level is indicated below the 
alignment. 

Subsequent homology modelling studies indicated that AeCYP6BB2 has a very similar 

binding pocket to BtCYP6CM1vQ and may bind and metabolize imidacloprid in the same 

manner (5-hydroxylation), although this needs to be confirmed experimentally. This 

prediction, combined with the high rate of AeCYP6BB2 over-transcription in the Imida-R 
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strain, identify this enzyme as a good candidate for imidacloprid metabolism in Ae. aegypti. 

However, AeCYP6N12 and AeCYP6Z8 binding sites also had good similarities with 

BtCYP6CM1vQ and thus need also to be considered as serious candidates for imidacloprid 

metabolism (Figure 3-13 and Publication IV). 

 

Figure 3-13: Homology modeling of CYP and imidacloprid interactions. Binding site models of 
the complex formed by imidacloprid and BtCYP6CM1vQ (from Karunker et al., 2009), 
AeCYP6BB2, AeCYP6N12 and AeCYP6Z8 are presented. Imidacloprid is displayed with green 
carbon atoms and the heme is displayed with red atoms. Predicted binding residues are 
indicated in yellow. Calculated distances in Angstroms between imidacloprid and putative 
binding residues are indicated by dashed lines. 
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3.2 Cross resistance of the Imida-R strain to other chemical 

insecticides 

As described in the introduction section, cross-resistance occurs when the selection of 

resistance mechanisms to one insecticide also confer an elevated resistance level to one or 

more other insecticides. This phenomenon has been often described for insects resistant to 

OCs displaying higher resistance to pyrethroids (Fonseca-Gonzalez et al., 2009) and for 

insects resistant to OPs displaying higher resistance to carbamates (Tikar et al., 2009). 

Although cross-resistance between different neonicotinoids has been described (Mota-

Sanchez et al., 2006, Wang et al., 2009b) and can be expected for the Imida-R strain, cross-

resistance between imidacloprid and other insecticide families have been less investigated.  

In this concern, our transcriptomic results identified several candidate genes encoding 

detoxification enzymes including P450s, UGTs and GSTs and other proteins being over-

transcribed in the Imida-R strain compared to the susceptible strain. As metabolic resistance 

mechanisms often lead to cross-resistance, the over expression of these genes may lead to 

cross-resistance to other neonicotinoids and/or other chemical insecticides. This will be 

investigated in both larvae and adults in the following sections. 

3.2.1 Cross-resistance of the Imida-R strain at the larval stage 

3.2.1.1 Cross resistance to other neonicotinoids  

Comparative bioassays were performed as described above on Imida-RG12 larvae with the 

neonicotinoids acetamiprid and thiamethoxam. Four different insecticide concentrations 

leading 5 to 95% mortality after 24h exposure were used for each strain. LC50 with 95% 

confident intervals (CI95) were then calculated with a probit approach for each strain using 

XL-Stat (Addinsoft, Paris, France) and compared between the two strains by calculating a 

resistance ratio (RR50). Bioassays showed that the Imida-R strain was 3.5- and 4.4-fold more 

resistant to acetamiprid and thiamethoxam respectively compared to susceptible strain (Table 

3-4) suggesting a significant cross-resistance to other neonicotinoids.  
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Table 3-4: Cross resistance of larvae from the Imida-R strain to other neonicotinoids. 

Insecticide Strain LC50 µg/L (CI 
95%) 

LC95 µg/L  
(CI 95%) 

RR50 RR95 

    

Acetamiprid 

Susceptible 
529 2383 - - 

(367 - 674) (1970 - 3113) 
  

Imida-R 
1876 3632 3.55 1.52 

(1692 - 2126) (3181 - 4315) (1 - 5.79) (1.02 - 2.19) 

Thiamethoxam 

Susceptible 
183 428 - - 

(162 - 205) (383 - 490) 
  

Imida-R 
806 2156 4.40 5.04 

(701 - 910) (1932 - 2468) (3.42 - 5.62) (3.94 - 6.44) 

3.2.1.2 Cross resistance to other classes of insecticides 

Six insecticides from different chemical classes were then tested: DDT (OC), 

temephos (OP), propoxur (carbamates) and permethrin (Pyrethroids) and two insects growth 

regulators (IGRs), diflubenzuron (chitin synthesis inhibitor) and pyriproxyfen (JH analog), 

were used to assess the level of cross-resistance of the imida-R strain (Annexe table 1). 

Comparative bioassays were performed on susceptible and Imida-RG9 larvae as described 

above; whereas for IGRs, the larvae of 2nd and 3rd instar were exposed to one diagnostic dose 

(diflubenzuron : 400µg/L and pyriproxyfen : 500µg/L) determined from preliminary 

laboratory experiments causing 20 to 40% mortality after 24h. Mortality was recorded 24h 

after exposure to DDT, temephos, propoxur and permethrin whereas, for IGRs, the mortality 

was recorded every 24h until the death of all mosquito larvae. 

Bioassays showed that larvae of the Imida-R strain are also resistant to the IGR 

pyriproxyfen (8.3-fold-increased life) (Table 3-5) and in a lesser extent to diflubenzuron (2.1-

fold) (Table 3-6). Imida-R larvae were also slightly cross-resistant to DDT with 1.8-fold 

increase in LC50 (Table 3-7); while, no cross-resistance to temephos, propoxur and 

permethrin was observed (Table 3-8).  

Since, Imida-R larvae displayed significant cross-resistance to DDT, diflubenzuron 

and pyriproxyfen, bioassays with the three enzyme inhibitors, Piperonyl butoxide (PBO, 0.3 

ppm), tribufos (DEF, 0.5 ppm) and diethyl maleate (DEM,1 ppm) were performed as 

described above to investigate the possible implication of detoxification enzymes..  

 

Larval bioassays with enzyme inhibitors did not lead to a significant increase in DDT 

and diflubenzuron toxicity in G9 Imida-R larvae (Table 3-6; Table 3-7). However, the toxicity 
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of pyriproxyfen was moderately increased (SR50 of 4.8-fold) in the presence of PBO and DEF 

(SR50 of 3.3-fold). This increase was significantly higher in the Imida-R strain compared to 

the susceptible strain. These results suggest the involvement of P450s and in a lesser extent 

CCEs in the resistance of Imida-R larvae to this insecticide (Table 3-5). 
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3.2.2 Cross-resistance of the Imida-R strain at the adult stage 

Although no significant resistance to imidacloprid was measured at the adult stage, 

cross-resistance of adults to other insecticide may occur. To answer this question, adult 

bioassays were performed by using WHO test kits (WHO 1998) against the Imida-R (G9) and 

the susceptible strains with DDT (OC), malathion (OP), propoxur (Carb) and permethrin 

(Pyr). Insecticide-impregnated papers with WHO discriminating dosages of each insecticide 

were used: DDT (4%), malathion (5%), propoxur (0.1 %) or permethrin (0.75 %). Bioassay 

consisted of three replicates of 25 unfed 3 days-old females from each strain exposed to 

insecticide-impregnated papers as shown in Figure 3-14 for 25, 30, 20 and 1 minutes for 

DDT, malathion, propoxur and permethrin respectively. After insecticide exposure, females 

were allowed to recover for 24h in mosquito test tubes in standard insectary conditions before 

mortality recording. Test tubes equipped with neutral papers (only solvent, no insecticide) 

served as controls for each bioassay. Statistical comparison of mortality between the Imida-R 

and the susceptible strains were performed by using Mann Whitney Tests (N = 3).  

 

Figure 3-14: Procedure for bioassays on adult females. Adult female were exposed to insecticide 
impregnated paper for a short time and then transferred to recovery tubes for 24h before 
mortality recording. 

Overall, these comparative bioassays did not reveal the presence of significant cross-

resistance in Imida-R adults to DDT, malathion, propoxur or permethrin (Figure 3-15). 

25 x

3 days after
emergence
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Figure 3-15: Mortality rates of 3 days-old females from the susceptible and Imida-R strains 
following exposure to DDT (4%, 25 min), malathion (5%, 30 min), propoxur (0.1%, 20 min) and 
permethrin (0.75%, 1 min). The mortality was recorded after a 24h recovery time. 

 

3.3 Precising the transcription profiles of candidate genes 

constitutively and after imidacloprid exposure. 

The aim of the work described in the following section was to perform a precise study 

of the transcription profile of several candidate genes potentially involved in imidacloprid 

resistance of the Imida-R strain and to examine their inducibility by imidacloprid in both 

susceptible and resistant strains. Three different strains were used for this study: the 

susceptible, the imida-R (G14) and the NS-Imida-R (G14) strains. As described in the 

beginning of this chapter, NS-Imida-R G14 individuals were obtained by relaxing the selection 

process during 3 generation from G11 to G14. This release in the selection process led to a 

decrease in larval resistance level (RR50 from 5.96 to 4.3-fold). Conversely the resistance of 

the Imida-R strain from G11 to G14 increased (RR50 from 5.96 to 7.2). 

Ten genes over-transcribed in the Imida-R strain and potentially involved in metabolic 

resistance mechanisms were selected for this study from previous transcriptomics analyses, 

including 6 P450s CYP4D24, CYP6Z8, CYP325S3, CYP6N9, CYP6BB2, and CYP6N12), 2 

UDP-Glucosyl transferases, one GST (GSTD4) and one Oxydase/peroxidase (Figure 

3-16).The transcription profiles of these genes were studied in 4th stage larvae by RT-qPCR as 

described previously with specific primers and two housekeeping genes (RPL8 and RPS7) for 

data normalization. RNA extraction, reverse transcription and Real Time-qPCR were 

performed as described above (see Publication IV). 
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Figure 3-16: Detoxification genes over-transcribed in Imida-R larvae (from microarray 
screening). Genes selected for the study are indicated with an arrow. 

3.3.1 Constitutive transcription profiling 

 First the constitutive transcription level of each candidate gene was compared between 

4th stage larvae of the susceptible, the ImidaR (G14) and the NS-Imida-R (G14) strains. 

Statistical comparison of transcription levels between each strain was performed through an 

ANOVA followed by a LSD (Least Significant Difference) test. For each gene, transcription 

ratios were normalized to the transcription level obtained in the susceptible strain (ratio of 1). 

 

 

 

Figure 3-17: Constitutive expression of ten candidate genes in 4th instar larvae of Imida-RG14, 
NS-Imida-RG14 and susceptible strains. Transcription ratios are expressed as fold transcription 
relative to the susceptible strain. Statistical differences were analysed by an ANOVA test 
followed by a LSD (Least significant difference test). Letters indicates significant difference of 
transcription level between strains. (SE = Standard error). 
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Results revealed that constitutive transcription levels of most candidate genes (Figure 3-17) 

are about 4 or 5-fold higher in the Imida-R and NS-Imida-R strains as compared to the 

susceptible strain. Only CYP325S3 and the Oxidase/Peroxidase were not significantly 

differentially transcribed between the three strains suggesting these two genes as false 

positives from previous analyses. CYP6Z8 and UGT-1 were the most highly over-transcribed 

genes in the two resistant strains. CYP6Z8 and GSTD4 were significantly over-transcribed in 

the Imida-R strain compared to the NS-Imida-R strain suggesting a strong link with the 

resistant phenotype. Conversely, CYP6N9, CYP6N12 and UGT-1 appeared slightly over-

transcribed in the NS-Imida-R compared to the Imida-R strain. 

 

3.3.2 Transcription profiling after imidacloprid exposure 

Several studies revealed that genes involved in metabolic resistance to one insecticide 

are often inducible by this insecticide (Vontas et al., 2005, Lertkiatmongkol et al., 2010, 

Markussen & Kristensen 2010, Liu et al., 2011). On the other hand, it has also been suggested 

that genes constitutively over-transcribed in resistant strains are often less inducible by the 

insecticide because their up-regulation has reached a maximum (Le Goff et al., 2006). In 

order to investigate these complex phenomenons in relation with imidacloprid resistance, the 

transcription profile of the ten candidate genes were compared in each strain between larvae 

exposed to a sub-lethal dose of imidacloprid (5µg/L) for 48h and unexposed larvae (controls). 

Sample preparation and RT-qPCR were performed as described above. 

One should note that imidacloprid pre-exposure did not significantly modify larval 

tolerance to imidacloprid in any of the 3 strains (Figure 3-18), confirming results obtained in 

chapter II on the susceptible strain.  
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Figure 3-18: Larval tolerance to imidacloprid after exposure to sub-lethal dose of imidacloprid. 
For each strain, fold increase in tolerance are relative to the tolerance of unexposed larvae. 

RT-qPCR results from each strain with and without imidacloprid exposure are presented in 

Figure 3-19. These results showed that only UGT-1 was significantly induced (1.8-fold) 

following imidacloprid exposure in the susceptible strain (Figure 3-19a). Three CYPs, 

CYP4D24, CYP6N9 and CYP6Z8 were significantly induced (1.5, 1.2 and 1.1-fold 

respectively) by imidacloprid in the NS-Imida-R strain (Figure 3-19b). Finally, the Imida-R 

strain seemed to be more responsive to imidacloprid exposure with 7 candidate genes 

including, CYP4D24, CYP6N9, CYP6N12, CYP6Z8, GSTD4, UGT-1 and UGT-2 being 

significantly induced following imidacloprid exposure (Figure 3-19c).  
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Figure 3-19: Transcription levels of candidate genes with or without sub-lethal exposure to 
imidacloprid in 4th instar larvae of susceptible (Figure 3-19a), NS-Imida-RG14 (Figure 3-19b) and 
Imida-RG14 (Figure 3-19c) strains. For each gene,  transcription ratios are normalized to the 
transcription level obtained from unexposed larvae of the susceptible strain (ratio of 1). 
Differences between exposed or unexposed larvae were evaluated for each strain by a t-test (* 
p<0.05;** p<0.001) 
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Overall, these results indicate that some of these genes are inducible by imidacloprid and that 

their inducibility is frequently higher in resistant strains compared to the susceptible strain. 

This suggests that a better inducibility of particular genes involved in detoxification of 

imidacloprid may have been obtained in the larval stage after several generations of selection. 

 

3.4 Functional characterization of one P450 potentially involved 

in imidacloprid metabolism 

In the publication IV, we have identified 3 CYPs (CYP6Z8, CYP6BB2 and CYP6N12), 

constitutively over-transcribed in the Imida-R stain and for which homology modeling studies 

with insect P450s known to metabolize imidacloprid (BtCYP6CM1vQ and DmCYP6G1) have 

pointed them as serious candidates for imidacloprid metabolism in Ae aegypti.  

In this context, the purpose of this section was to validate the role of one of these genes, 

CYP6Z8, in imidacloprid metabolism. Although I participated in some experiments, this work 

was mainly performed in the LECA Grenoble by Alexia Chandor-Proust with the assistance 

of Jessica Roux and consisted of producing the recombinant P450 enzyme in yeast and 

investigating in vitro its capacity to metabolize imidacloprid. 

Briefly, full length CYP6Z8 was amplified from cDNA with specific primers, cloned in 

pIBV5 vector and entirely sequenced. In order to express a functional CYP6Z8 protein in 

Saccharomyces cerevisiae, an AaCYP6Z8 synthetic gene was constructed by Genecust 

(Luxemburg) in order to optimize CYP6Z8 nucleotide sequence for yeast codon usage and 

avoid mRNA secondary structures. CYP6Z8 synthetic gene was then subcloned in the 

expression vector pYeDP60 (given by Dr. Pompon). The plasmid named p6Z8-v60 was used 

to transform W(AeR), a genetically modified yeast strain overexpressing Ae. aegypti 

cytochrome P450 reductase (CPR) instead of yeast CPR. Expression level and functionality of 

the CYP6Z8 protein was assessed by CO-binding P450 dosage following the method 

described by Omura & Sato (1964) on yeast microsomes. 

Imidacloprid metabolism assays were conducted as described in Publication IV with 190 

pmol of CYP6Z8 protein incubated with 12.5 µM imidacloprid 98.6% (Sigma-Aldrich) in the 

presence or absence of 0.5 mM NADPH and its generating system consisting of 2 mM 

glucose-6-phosphate and 0.2 U glucose-6-phosphate dehydrogenase. Samples were incubated 

for 30 min at 30°C with manual shaking every 5 min. Reactions were stopped by adding 100 
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µL acetonitrile and stored at 4°C over-night. After a 20 min centrifugation at 20000g, the 

supernatants were evaporated to dryness and resuspended in 100 µL of 10% acetonitrile 

solution. Samples were then transferred to HPLC vials and analyzed by RP-HPLC on a 

Agilent 1260 apparatus, using a C18 column (Poroshell EC-C18 120A 4.6x50mm 2.7µ) at 

25°C and a flow-rate of 0.5 mL/min. The following gradient of solvent B (acetonitrile) in A 

(water) was used to elute imidacloprid and metabolites: 10 % B during 5 min, 10 to 20% B 

from 5 to14 min, 20 to100% B from 14 to 15 min, 100% B from 15 to 17 min, and return to 

initial conditions at 18 min. Imidacloprid turn over and production of metabolites were 

monitored by UV absorption at 270 nm and quantified by peak integration. 

Our results demonstrated that CYP6Z8 expressed in yeast was functional and capable 

of metabolizing imidacloprid in vitro. Two metabolites appeared in the presence of NADPH 

together with a slight decrease of imidacloprid (Figure 3-20).  Identification of these 

metabolites is still in progress but the presence of 5’-hydroxy-imidaclopride is likely. 

 

 

Figure 3-20: HPLC chromatograms showing comparative imidacloprid in vitro metabolism by 
CYP6Z8 protein with (black line) and without NADPH (dashed grey line). Imidacloprid was 
incubated with yeast microsomes containing 190 pmol of CYP6Z8 for 30 min. Imidacloprid and 
its metabolites were detected at 270 nm.  

Imidacloprid

Metabolite 2Metabolite 1A
U

 (
2

7
0

 n
m

)

Retention time (min)



129 
 

Overall, these results indicate that at least one P450 (CYP6Z8) is able to degrade imidacloprid 

in Ae. aegypti. The over-expression of this enzyme and its inducibility by imidacloprid appear 

to have been selected in the Imida-R strain after only a couple of generations. However, 

additional detoxification enzymes and other proteins may also contribute to imidacloprid 

metabolic resistance in the Imida-R strain and further work is required to validate the role of 

other candidate genes in resistance. 

 

3.5 Role of cuticle proteins in imidacloprid resistance 

Cuticle, the outermost layer of insect body consists predominantly of chitin (N-acetyl-

β-D-glucosamine), proteins and other substances such as lipids, pigments, inorganic materials 

and small organic molecules. In insects, a thicker cuticle can reduce the penetration of the 

insecticide and lead to resistance (Puinean et al., 2010b). In mosquitoes, cuticle thickening 

has been proposed as a potential pyrethroid resistance mechanism in An. stephensi (Vontas et 

al., 2007). Similarly, the over-expression of two cuticular genes (CPLC8 and CPLC#) in a 

pyrethroid-resistant strain of An. gambiae suggested a role of the cuticle in insecticide 

resistance (Awolola et al., 2009). Since our mRNAseq and microarray screenings pointed out 

an over-representation of several transcripts encoding cuticle proteins in Imida-R larvae (see 

Figure 2, Publication IV; Figure 3-7), additional experiments were conducted in order to try to 

confirm the role of cuticle proteins in imidacloprid resistance. 

 

Diflubenzuron is an insect growth regulator (IGRs) and likely to inhibit chitin 

synthesis. Hence, exposing larvae to diflubenzuron results in a decrease of chitin synthesis 

which is concentration-dependent (Zhang & Zhu 2006). In order to further investigate the role 

of cuticle proteins in the resistance of Imida-R to imidacloprid, larvae of the Imida-R strain 

(G12) and the susceptible strain were exposed to a sub-lethal concentration of diflubenzuron 

(25 µg/L) for 24h before performing comparative larval bioassays with imidacloprid as 

described above. 
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Figure 3-21: Decrease in tolerance of larvae of the Imida-R (G12) and susceptible strains to 
imidacloprid after exposure to a sub-lethal concentration of diflubenzuron for 24h. For each 
strain, the decrease in tolerance was calculated by dividing the LC50 of unexposed larvae with 
the LC50 of exposed larvae.   

 

These bioassays revealed that Imida-R larval resistance to imidacloprid is less affected 

by chitin synthesis inhibition compared to the susceptible strain. This might indicate that 

cuticle synthesis inhibition by diflubenzuron was not sufficient to overcome the over-

regulation of cuticle synthesis in the resistant strain, supporting the involvement of cuticle 

thickening in resistance to imidacloprid (Figure 3-21). However, these results are preliminary 

and additional experiments are required to validate or unvalidate the role of cutilcle protein in 

resistance of mosquitoes to imidacloprid. 
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3.6 Publications 

3.6.1 Publication IV: Molecular mechanisms associated with resistance to 
the neonicotinoid insecticide imidacloprid in the dengue vector Aedes 

aegypti. 
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Abstract 37 

Background: Mosquitoes are vectors of several major human diseases and their control is 38 

mainly based on the use of chemical insecticides. Resistance of mosquitoes to 39 

organochlorines, organophosphates, carbamates and pyrethroids led to a regain of interest for 40 

the use of neonicotinoid insecticides in vector control. The present study investigated the 41 

molecular basis of neonicotinoid resistance in the mosquito Aedes aegypti.  42 

Methodology/Principle Findings: A strain susceptible to insecticides was selected at the 43 

larval stage with imidacloprid. After 8 generations of selection, larvae of the selected strain 44 

(Imida-R) showed a 5.4-fold increased resistance to imidacloprid while adult resistance level 45 

remained low. Transcriptome profiling identified respectively 344 and 108 genes 46 

differentially transcribed in larvae and adults of the Imida-R strain compared to the parental 47 

strain. Comparative analysis of their biological functions revealed cuticle proteins, 48 

hexamerins as well as other proteins involved in cell metabolism and a high proportion of 49 

detoxification enzymes. Among detoxification enzymes, cytochrome P450 monooxygenases 50 

(CYPs) and glucosyl/glucuronosyl transferases (UDPGTs) were over-represented. Bioassays 51 

with enzyme inhibitors and biochemical assays confirmed the contribution of P450 enzymes 52 

with an increased capacity to metabolize imidacloprid in Imida-R strain. Comparison of 53 

substrate recognition sites and imidacloprid docking models of six CYP6s over-transcribed in 54 

the Imida-R strain together with Bemiscia tabaci CYP6CM1vQ and Drosophila melanogaster 55 

CYP6G1, both able to metabolize imidacloprid, suggested that CYP6BB2, CYP6N12 and 56 

CYP6Z8 are good candidates for imidacloprid metabolism in Ae. aegypti. 57 

Conclusions/Significance: The present study provides new insights about molecular 58 

mechanisms associated with neonicotinoid resistance in mosquitoes and other insects. Our 59 

results reveal that imidacloprid resistance in mosquitoes can arise after few generations of 60 

selection at the larval stage but do not lead to a significant resistance of adults. As in other 61 
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insects, P450-mediated insecticide metabolism appears to play a major role in imidacloprid 62 

resistance in mosquitoes. 63 

 64 
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Introduction 67 

 Mosquitoes transmit numerous human and animal diseases and their control represents 68 

a public health challenge worldwide. Dengue fever and yellow fever viruses are both 69 

transmitted by the mosquito Aedes aegypti. Fifty million people have been estimated to be 70 

affected by dengue fever with nearly 2.5 billion people at risk while 30,000 deaths are 71 

attributed to yellow fever each year [1]. Because vaccination against dengue is not available 72 

and access to yellow fever vaccine is not effective worldwide [2,3], limiting the transmission 73 

of these diseases is highly dependent on controlling vector populations [4]. 74 

 Effective vector control generally relies on the use of chemical insecticides targeting 75 

adults or larvae [5]. However, resistance of mosquitoes to all classes of chemical insecticides 76 

has been reported and threatens vector control programs [6]. Resistance to insecticides can be 77 

the consequence of a mutation of the protein targeted by the insecticide (target-site 78 

resistance), a lower penetration or a sequestration of the insecticide, or an increased 79 

biodegradation of the insecticide (metabolic resistance) [7]. Detoxification enzymes such as 80 

cytochrome P450 monooxygenases (P450s or CYPs), glutathione S-transferases (GSTs) and 81 

carboxy/choline esterases (CCEs) are well-known for their role in the metabolism of 82 

insecticides in insects [8,9] and over-production of these enzymes has been associated with 83 

resistance to all classes of chemical insecticides in mosquitoes [7].  84 

 The increasing resistance level of mosquitoes to organochlorines (OCs), 85 

organophosphates (OPs), carbamates (Carbs) and pyrethroids (Pyrs) led to a renewed interest 86 

for the use of neonicotinoids against mosquitoes [10,11]. Imidacloprid ((E)-1-(6-chloro-3-87 

pyridinylmethyl)-N-nitroimidazolidin-2-ylideneamine) is a neonicotinoid insecticide targeting 88 

acetylcholine receptors in insect nervous systems [12]. This insecticide is extensively used in 89 

agriculture against pests of various crops such as cotton, cereals and vegetables [13,14]. 90 

Several studies conducted on agricultural pests suggested the capacity of several insect 91 
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species to develop resistance to imidacloprid and revealed that resistance to neonicotinoids 92 

was linked to higher levels of P450s [15,16,17]. In addition, other studies have demonstrated 93 

the capacity of Drosophila melanogaster CYP6G1 (DmCYP6G1) and Bemiscia tabaci 94 

CYP6CM1vQ (BtCYP6CM1vQ) to metabolize imidacloprid [18,19]. However, despite the 95 

potential use of imidacloprid for vector control, resistance mechanisms of mosquitoes to this 96 

insecticide remain poorly investigated. 97 

 In this study, a laboratory strain of Ae. aegypti susceptible to insecticides was selected 98 

with imidacloprid at the larval stage. Resistance to imidacloprid increased 5 times in larvae 99 

after 8 generations of selection. The potential mechanisms responsible for this resistance were 100 

investigated using a combination of transcriptomic and biochemical approaches. Several 101 

candidate genes belonging to detoxification enzymes and other protein families were 102 

identified as potentially involved in imidacloprid resistance. As P450s appear to play a major 103 

role, comparison of protein sequences and insecticide docking predictions were used to 104 

identify several candidate Ae. aegypti P450s for imidacloprid metabolism. These results are 105 

discussed in regards of known and new potential insecticide resistance mechanisms in insects. 106 

 107 
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Results 109 

Comparative bioassays 110 

Larval bioassays (Table 1) performed after 8 generations of selection on G9 individuals 111 

revealed an increased tolerance to imidacloprid of the Imida-R strain compared to the parental 112 

susceptible strain (RR50 of 5.4-fold). Adult topical bioassays did not reveal a significant 113 

increased-tolerance of Imida-R adult females compared to the parental susceptible strain 114 

(RR50 of 1.2-fold). Monitoring larval resistance level along the selection process revealed that 115 

larval resistance has increased gradually from G6 to G14 suggesting that resistance level has 116 

not yet stabilized (Figure S1). In addition, stopping the selection process from G11 to G14 led 117 

to a decrease in larval resistance level (RR50 from 7.2 to 4.3-fold). In the susceptible strain, 118 

imidacloprid toxicity was not significantly increased in the presence of any detoxification 119 

enzyme inhibitor. Conversely, resistance of G9 Imida-R larvae to imidacloprid was 120 

significantly reduced in the presence of enzyme inhibitors (synergism ratios SR50 of 2.77-fold, 121 

3.02-fold and 2.24-fold for PBO, DEF and DEM respectively) suggesting the involvement of 122 

P450s, CCEs and to a lesser extent of GSTs in the resistance of the Imida-R strain to 123 

imidacloprid at the larval stage.  124 

 125 

Global transcription profiling 126 

 The Agilent microarray ‘Aedes detox chip plus’ representing 14204 Ae. aegypti 127 

transcripts was used to compare gene transcription levels between the resistant strain Imida-R 128 

and the susceptible strain in larvae and adult females after 10 generations of selection (G11 129 

individuals). Overall, 13,678 and 7,699 probes were detected in all hybridizations in larvae 130 

and adults respectively (Table S1). Cross-validation of larval microarray data by RT-qPCR on 131 

12 selected genes revealed a good correlation of transcription ratios between the two 132 

techniques (Figure S2). The most important discrepancies were obtained for the genes 133 
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encoding the cuticle protein AAEL008996 (160-fold in qRT-PCR versus 22-fold in 134 

microarray) and the two hexamerins AAEL013757 and AAEL013981 (over 200-fold in qRT-135 

PCR versus 13-fold and 10-fold in microarray). In larvae, 344 genes (2.5% of detected genes) 136 

were differentially transcribed between the Imida-R strain and the susceptible strain (Figure 1 137 

and Table S1). Among them, 289 genes were over-transcribed while only 55 genes were 138 

under-transcribed with transcription ratios ranging from 98-fold over-transcription to 27-fold 139 

under-transcription. In adults, 108 genes (1.4% of detected genes) were differentially 140 

transcribed in the Imida-R strain (Figure 1 and Table S1). Among them, 43 genes were over-141 

transcribed while 65 genes where under-transcribed with transcription ratios ranging from 5-142 

fold over-transcription to 24-fold under-transcription.  143 

 144 

Biological functions differentially transcribed in the Imida-R strain 145 

 Comparing the function of genes differentially transcribed in the Imida-R strain 146 

revealed differences between larvae and adults (Figure 1 and Table S1). Among genes over-147 

transcribed in the Imida-R strain, those encoding cuticle proteins appeared strongly over-148 

represented in larvae (10.2 %) compared to adults (4.7 %) and in comparison with their 149 

proportion in Ae. Aegypti genome (0.8 %). The proportion of genes involved in transport also 150 

over-represented in larvae (3.8 %) and adults (2.3 %) and mainly represented by hexamerins. 151 

Most genes encoding cuticle proteins (AAEL008980, AAEL008996, AAEL009001, 152 

AAEL014769, AAEL000085, AAEL015281, AAEL004771, AAEL008973) and hexamerins 153 

(AAEL000765, AAEL013757, AAEL013981, AAEL013983) showed a stronger over-154 

transcription in Imida-R larvae (mean transcription ratio of 7.1-fold) compared to adults (1.6-155 

fold). Genes encoding detoxification enzymes were over-represented in both Imida-R larvae 156 

and adults (9.5 % and 12.9 % respectively) in comparison with their proportion in Ae. Aegypti 157 

genome (1.5 %) but none of them appeared over-transcribed simultaneously in both life 158 
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stages. Among genes encoding detoxification enzymes over-transcribed in larvae, P450s 159 

(CYP genes) and to a lesser extent glucosyl/glucuronosyl transferases (UDPGTs) were 160 

predominant compared to GSTs and esterases. Genes encoding components of cellular 161 

metabolism were over-represented in adults compared to larvae. Among them, lipases, 162 

proteases, peptidases and collagenases were often over-transcribed in both life stages. 163 

 Differences between larvae and adults were even more marked among genes under-164 

transcribed in the Imida-R strain. The major differences were observed for genes involved in 165 

detoxification, cuticle structure, transport, cell metabolism and RNA/DNA interactions. A 166 

higher proportion of under-transcribed CYP genes occurred in larvae compared to adults, 167 

while kinases/phosphatases appeared under-represented. In adults, genes encoding proteins 168 

involved in cuticle structure, transporters/chaperonins, RNA/DNA interactions and cell 169 

metabolism appeared over-represented compared to larvae. 170 

 Only 19 genes were differentially transcribed in both life stages with 18 showing a 171 

conserved transcription pattern between larvae and adults. The genes encoding cuticular 172 

protein AAEL015119 and the ‘brain chitinase’ AAEL002972 were both over-transcribed in 173 

larvae and adults. No gene encoding detoxification enzymes presented a common 174 

transcription pattern at both life stages. Finally, the hexamerin AAEL013990 was 2.4-fold 175 

over-transcribed in larvae but 2.0-fold under-transcribed in adults. 176 

 177 

Clustering analysis of detoxification enzymes differentially transcribed in the Imida-R 178 

strain 179 

 Clustering analysis of the 24 P450s and 12 other detoxification enzymes differentially 180 

transcribed in Imida-R larvae or adults revealed a high proportion of genes over-transcribed 181 

(Figure 2 and Table S1). Among CYP genes, only 2 were over-transcribed in adults versus 17 182 

in larvae including six CYP4s (CYP4D24, CYP4H28, CYP4H31, CYP4J14, CYP4J15 and 183 
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CYP4J16), six CYP6s (CYP6Z8, CYP6Z7, CYP6N9, CYP6N12, CYP6N14, CYP6BB2 and 184 

CYP6F3), one CYP9 (CYP9M9) and one CYP325 (CYP325S3). Among them CYP4D24, 185 

CYP6Z8, CYP325S3, CYP6N9, CYP6BB2 and CYP9M9 showed the highest over-transcription 186 

with 12-fold, 10-fold, 9-fold, 5.8-fold, 5.7-fold and 4.4-fold respectively. Among other 187 

detoxification enzymes, UDPGTs appeared over-represented including 5 genes over-188 

transcribed in larvae with transcription ratios ranging from 3.3-fold to 2.0-fold. Finally, the 189 

oxidase/peroxidase AEL005416 was 5.1-fold over-transcribed in larvae of the Imida-R strain 190 

but not in adults. 191 

 192 

Constitutive activities of detoxification enzymes in the Imida-R strain 193 

 Considering the high proportion of detoxification genes over-transcribed, constitutive 194 

activities of these enzymes were compared between the Imida-R and the susceptible strains. 195 

No significant differences were measured at the adult stage (Figure 3). In larvae, a limited but 196 

significant increase of GST activity (1.17-fold, P < 0.05) and a strong increase of P450 197 

activity (1.75-fold, P < 0.001) were found in the Imida-R versus susceptible strain. Although 198 

not significant, a slight increase of α-esterase activities was also observed (1.17-fold).  199 

 200 

Comparative in vitro metabolism of imidacloprid 201 

 As a predominant increase in P450 activity was observed in Imida-R larvae, the 202 

capacity of P450s to metabolize imidacloprid was further examined. Comparative in vitro 203 

imidacloprid metabolism by equal amount of microsomal proteins from larvae of each strain 204 

showed that microsomal enzymes from both strains metabolize imidacloprid, both producing 205 

two more hydrophilic metabolites (Figure S3). This metabolism required the presence of 206 

NADPH confirming the role of P450s (Figure 4A and Figure S3). Conversion rate of 207 

imidacloprid was found to be significantly higher in microsomes from the Imida-R compared 208 
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to the susceptible strain (Figure 4A).The kinetic constants of imidacloprid metabolism by 209 

larval microsomes were then estimated for each strain. The apparent Km and Vmax obtained for 210 

the Imida-R strain (111 µM and 770 nmol/min/mg protein) were respectively 1.6- and 3.0-211 

fold higher than those estimated for the susceptible strain (70 µM and 259 nmol/min/mg 212 

protein). The relative specificity (Vmax/Km) for imidacloprid conversion was therefore 1.9-fold 213 

higher in the Imida-R strain (Figure 4B). 214 

 215 

Identification of P450 enzymes potentially involved in imidacloprid metabolism 216 

Protein alignment of the 19 P450s found over-transcribed in Imida-R larvae with 217 

BtCYP6CM1vQ and DmCYP6G1, P450 enzymes known to metabolize imidacloprid in B. 218 

tabaci and D. melanogaster, revealed three distinct clades corresponding to CYP4s, CYP6s 219 

and CYP9s. Since BtCYP6CM1vQ and DmCYP6G1 had more similarities with AeCYP6 220 

family, another protein alignment restricted to the AeCYP6 protein sequences was made 221 

(Figure 5). AeCYP6BB2 and AeCYP6Z8 seemed to have the highest sequence similarity with 222 

DmCYP6G1 and BtCYP6CM1vQ. According to Karunker et al. [19], among the key residues 223 

proposed to interact with imidacloprid, three positions were conserved between DmCYP6G1, 224 

BtCYP6CM1vQ and human CYP3A4. These residues were Phe130, Ala322 and Gly323 225 

(numbered from BtCYP6CM1vQ protein sequence). These positions were strictly conserved 226 

between all CYP6s except AeCYP6N14 where Ala322 is replaced by Gly303. In 227 

BtCYP6CM1vQ, other residues were proposed by Karunker et al. [19] to anchor imidacloprid 228 

by hydrophobic interactions (Phe226) or to play a role in imidacloprid binding by hydrogen 229 

bond stabilization (Arg225, Ser321 and Ser388). These residues were not conserved in all 230 

CYP6s. Phe226 was present in AeCYP6BB2 (position 216), and AeCYP6N12 (position 210). 231 

Arg225 was present in AeCY6BB2 (Arg215), but was replaced by Thr219, Ser208, Ser209 232 

and Tyr 208 in DmCYP6G1, AeCYP6CB1, AeCYP6N12 and AeCYP6Z8 respectively. 233 
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Ser321 was replaced by Thr311 in DmCYP6G1 and Thr309 in AeCYP6BB2, but these amino 234 

acids can also act as hydrogen bond donors. Finally, Ser388 was only present in AeCYP6CB1 235 

(position 374).  236 

In order to see if these positions were critical for imidacloprid binding, we submitted all 237 

AeCYP6 protein sequences to homology modelling (Figure S4). From these models, 238 

AeCYP6BB2 and AeCYP6N12 seemed to have the best binding site similarity with 239 

BtCYP6CM1vQ (Figure 6). Regarding AeCYP6BB2, the imidacloprid local environment was 240 

very similar to that of BtCYP6CM1vQ. Ser321 was replaced by Thr309, but the hydrogen 241 

bond interaction seemed to be still present due to the alcohol side-chain of Thr, which remains 242 

close to imidacloprid (4.20 Å instead of 3.95 Å). Ser388 was replaced by Val376 although 243 

this did not change the hydrogen bonding network (Figure 6). With AeCYP6N12, the 244 

predicted imidacloprid local environment was somewhat different with only Phe116, Phe208 245 

and Phe210 being conserved. The positively charged Arg225 was replaced by a polar 246 

uncharged amino acid (Ser209) and all the residues were predicted to be further than 4 Å of 247 

imidacloprid. With AeCYP6Z8, the predicted imidacloprid local environment was different 248 

but hydrophobic stabilization exists between Tyr 208 and imidacloprid and the residues were 249 

predicted to be within 4 Å of imidacloprid. From these 3D model predictions, AeCYP6BB2 250 

appeared to be the best candidate for imidacloprid metabolism. However, AeCYP6Z8 and 251 

AeCYP6N12 also appeared as good candidates due to SRS sequence similarity and conserved 252 

interactions. 253 
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Discussion 259 

Resistance level in the Imida-R strain 260 

 Since neonicotinoid insecticides have a mode of action different from other chemical 261 

insecticides mostly used for vector control (pyrethroids, OCs, OPs and carbamates), they have 262 

been suggested as a possible alternative to manage insecticide resistance in the field 263 

[10,11,20]. In this context, the present study aimed at investigating molecular mechanisms 264 

associated with resistance to the neonicotinoid insecticide imidacloprid in mosquitoes. 265 

Because no imidacloprid-resistant mosquito strain has been described yet, and in order to 266 

avoid comparing strains with different genetic backgrounds, a resistant Ae. aegypti strain was 267 

obtained in the laboratory by selecting a susceptible strain at the larval stage for several 268 

generations. After 8 generations of selection, bioassays revealed a significant increased 269 

resistance to imidacloprid of the Imida-R strain larvae (5.4-fold), while resistance of adults 270 

remained low (1.2-fold), suggesting that mechanisms conferring resistance in larvae are not 271 

selected or less expressed in adults. In B. tabaci, resistance to imidacloprid has also been 272 

shown to be stage-specific and a higher resistance ratio was observed in adults compared to 273 

other life stages [21].  274 

 Monitoring resistance level along the selection process revealed that larval 275 

resistance level increased gradually and has not yet stabilized (Figure S1). Considering the 276 

absence of any insecticide resistance mechanism in the parental susceptible strain, our study 277 

suggests that neonicotinoid resistance can appear relatively rapidly in mosquito populations 278 

under selection pressure with this insecticide at the larval stage. This resistance could be the 279 

consequence of an enrichment of the Imida-R in resistance alleles along the selection process 280 

[22]. 281 

 282 

 283 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



13 

 

Comparative gene transcription levels between the Imida-R and the susceptible 284 

strains  285 

Comparison of gene transcription levels between the Imida-R and the susceptible strains by 286 

using a DNA microarray representing 14204 Ae. aegypti transcripts revealed significant 287 

transcriptome variations. This study identified 344 and 108 genes differentially transcribed in 288 

larvae and adults of the Imida-R strain respectively with a strong over-representation of over-289 

transcribed genes in larvae (289 versus 55 genes) but not in adults (43 versus 65 genes). 290 

Validation of transcription profiles by RT-qPCR indicated a good overall correlation of 291 

transcription ratios obtained from the two techniques. The strong under-estimation of 292 

transcription ratios by microarray for 2 cuticle proteins and 1 hexamerin may be the 293 

consequence of cross-hybridization events with other members of these gene families. 294 

 Analysis of gene functions differentially transcribed in the Imida-R strain revealed an 295 

over-representation of several genes involved in cellular. Insecticide resistance is frequently 296 

associated with fitness costs and an increased metabolism is often observed in insecticide-297 

resistant individuals to maintain resistance mechanisms. If such compensation mechanism 298 

does not take place, the energy reallocation necessary for the individual protection from 299 

insecticides may impair fundamental physiological processes such as development and 300 

reproduction [23,24,25]. In insecticide-resistant strains of Sitophilus zeamais, resistance cost 301 

was associated with an increased activity of enzymes involved in cellular catabolism such as 302 

proteinases, proteases, amylases and collagenases [26]. The over transcription of these 303 

enzymes in the resistant strain together with a decrease of resistance following the release of 304 

the selection pressure for 3 generations (Figure S1) suggest a significant resistance cost in the 305 

Imida-R strain. 306 

 Among genes found over-transcribed in Imida-R larvae, those encoding cuticle 307 

proteins appeared strongly over-represented. The cuticle barrier plays a crucial role in the 308 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



14 

 

protection of insects from their environment. The vast majority of chemical insecticides are 309 

lipophilic compounds, penetrating into insects through their cuticle. Moreover, cuticle 310 

thickening has been suggested to play a role in the resistance of mosquitoes to insecticides 311 

[27,28,29]. In a recent study, we demonstrated that several genes encoding cuticle proteins 312 

were induced in Ae. aegypti larvae exposed for 48h to a sub lethal dose of imidacloprid [30]. 313 

Moreover, in vivo penetration assays by using radiolabeled insecticide have demonstrated a 314 

reduced cuticular penetration of imidacloprid in neonicotinoid resistant insects [31]. Although 315 

further validation is required, these results suggest that modification of larval cuticle may 316 

contribute to the resistance of Imida-R larvae to imidacloprid. 317 

 Several genes encoding hexamerins were found over-transcribed in Imida-R larvae. 318 

One of them (AAEL013757) was also found induced by imidacloprid [30]. Insect hexamerins 319 

may be involved in cuticle formation, hormone transport, immune defense and metamorphosis 320 

[32]. Hexamerins of the lepidopteran Heliothis zea have been shown to bind to lipophilic 321 

insecticides,, suggesting a putative role in resistance [33]. However, the relative low 322 

lipophilicity of imidacloprid (log Kow = 0.57) does not support the hypothesis of its 323 

sequestration by hexamerins [33]. 324 

 Numerous genes encoding detoxification enzymes were differentially transcribed in 325 

the Imida-R strain, including several P450s and UDPGTs. P450s were represented by 24 CYP 326 

genes mainly belonging to the CYP4, CYP6, CYP9 and CYP325 families previously involved 327 

in insecticide resistance [34]. Among them, CYP4D24, CYP6Z8, CYP325S3, CYP6N9, 328 

CYP6BB2 and CYP9M9 were all over-transcribed more than 4-fold in Imida-R larvae but not 329 

in adults. Interestingly CYP9M9 was previously shown to be induced in larvae exposed to 330 

imidacloprid [30] and other chemicals [35,36]. This gene was also found constitutively over-331 

transcribed in Ae. Aegypti from Martinique island resistant to temephos and deltamethrin [37]. 332 

The induction of CYP6Z8 by various xenobiotics has also been reported [35,38] and members 333 
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of the CYP6Z subfamily are known for their role in metabolic resistance to insecticides and 334 

chemoprotection in mosquitoes [37,39,40,41,42,43,44]. In the brown plant hopper N. lugens, 335 

the increased metabolism of imidacloprid by P450s was considered as the main resistance 336 

mechanism [17]. In D. melanogaster, DmCYP6G1 conferring resistance to DDT was also 337 

involved in imidacloprid resistance [45,46]. Later, its heterologous expression in Nicotiana 338 

tabacum cells confirmed its capacity to metabolize imidacloprid to its 4- and 5-hydroxy forms 339 

[18]. More recently, the over-transcription of BmCYP6CM1 in the white fly B. tabaci was 340 

correlated to imidacloprid resistance [16] and the capacity of this P450 to hydroxylate 341 

imidacloprid to its less toxic 5-hydroxy form was confirmed [19]. 342 

 343 

Role of P450-mediated insecticide metabolism in imidacloprid resistance 344 

 The significant effects of detoxification enzyme inhibitors observed from bioassays 345 

suggest that an over-production of detoxification enzymes such as P450s is involved in the 346 

resistance of Imida-R larvae. Comparison of global detoxification enzyme activities between 347 

Imida-R and susceptible strains confirmed the importance of P450s with a strong increase of 348 

ethoxycoumarin-O-deethylase activity in Imida-R larvae. The significant role of P450s in 349 

resistance was then confirmed by a NADPH-dependent in vitro metabolism of imidacloprid 2-350 

fold higher in the Imida-R strain than in the susceptible strain. 351 

 The multiple protein alignment of SRS domains of CYP6s over-transcribed in Imida-R 352 

larvae with BmCYP6CM1vQ and DmCYP6G1 known to metabolize imidacloprid identified 353 

several CYP6s having significant SRS similarities. Among them, AeCYP6BB2, AeCYP6N12 354 

and AeCYP6Z8 showed high similarities with DmCYP6G1 and BtCYP6CM1vQ, particularly 355 

for residues proposed to be involved in imidacloprid binding [19]. A modeling approach was 356 

then used to predict if any of the CYP6 candidates could bind and metabolize imidacloprid. 357 

Our models were based on BtCYP6CM1vQ, itself modeled from the crystal structure of 358 
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CYP3A4, a human P450 able to metabolize imidacloprid [19,47]. These models do not allow 359 

varying imidacloprid position and should therefore be interpreted with caution. Nevertheless, 360 

our models suggest that AeCYP6BB2 has a very similar binding pocket to BtCYP6CM1vQ 361 

and may bind and metabolize imidacloprid in the same manner (5-hydroxylation), although 362 

this needs to be confirmed experimentally. This prediction, combined with the high rate of 363 

AeCYP6BB2 over-transcription in the Imida-R strain, identify this enzyme as a good 364 

candidate for imidacloprid metabolism in Ae. aegypti. However, AeCYP6N12 and 365 

AeCYP6Z8 binding sites also had good similarities with BtCYP6CM1vQ and thus need also 366 

to be considered as serious candidates for imidacloprid metabolism. Indeed, it is probable that 367 

multiple Ae. Aegypti P450s have the capacity to metabolize imidacloprid. . Heterologous 368 

expression of these P450s is currently in progress and will allow investigating in vitro their 369 

capacity to metabolize imidacloprid. 370 

 P450s often metabolize imidacloprid through hydroxylation and desaturation of 371 

imidazoline moiety to give the 5-hydroxy and olefin derivatives [48]. It has been shown in 372 

mammals that hydroxy-imidacloprid metabolites are rapidly converted in conjugates by 373 

UDPGTs [49]. In our study, we identified several UDPGT genes over-transcribed in Imida-R 374 

larvae. Insect UDPGTs can be involved in several processes, including cuticle formation, 375 

pigmentation, and olfaction [50] but their role in the conjugation of insecticides or their 376 

metabolites is likely and requires further attention. 377 

 378 

Conclusions 379 

 The present study provides new insights about molecular mechanisms associated with 380 

neonicotinoid resistance in mosquitoes and other insects. Our results reveal that imidacloprid 381 

resistance in mosquitoes can arise after few generations of selection at the larval stage but do 382 

not lead to a significant resistance of adults, suggesting that the selected resistance 383 
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mechanisms are life-stage specific. Larval resistance to imidacloprid was associated to 384 

important modifications of gene transcription levels, with protein families involved in 385 

detoxification, cuticle synthesis, xenobiotic transport and cell catabolism being mainly 386 

affected. As in other insects, P450-mediated insecticide metabolism appears to play a major 387 

role in imidacloprid resistance in mosquitoes and our results identified Ae. aegypti CYP6BB2, 388 

CYP6N12 and CYP6Z8 as best candidates for imidacloprid metabolism. 389 

 390 

Methods 391 

Ethics 392 

Approval was not necessary because no experimentations were conducted on mice (mice were 393 

not anesthetized for blood meal to avoid interaction with detox enzymes in mosquitoes) and 394 

because the supervisor of the study (S. Reynaud) possesses the first level habilitation for 395 

Animal experimentation. Mice were cared in accordance with guidelines of the French 396 

Committee on Care and Use of Laboratory Animals in a conventional animal house. 397 

Selection procedure  398 

 Mosquitoes were reared in standard insectary conditions (26 °C, 14 h/10 h light/dark 399 

period, 80% relative humidity) in tap water (larvae) and net cages (adults). Larvae and adults 400 

were fed with hay pellets and papers impregnated with honey respectively. Blood feeding of 401 

adult females was performed on mice. The laboratory strain Bora-Bora, originating from 402 

French Polynesia, was used as a parental strain for selection experiments. This strain is 403 

susceptible to all insecticides and does not present any target-site or metabolic resistance. 404 

Bora-Bora larvae were selected with imidacloprid (Sigma-Aldrich, Germany) for 10 405 

generations at the larval stage to obtain the Imida-R strain. Selection was performed by 406 

exposing 3rd-4th-stage larvae for 24h to imidacloprid. The dose of imidacloprid (500 to 900 407 

µg/L) was adjusted at each generation to reach 70-80% mortality. Surviving larvae were 408 
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transferred in tap water, fed with standard larval food and allowed to emerge. Adults were 409 

allowed to reproduce for 4-days and blood fed to obtain eggs for the next generation. In order 410 

to limit bottleneck effects, each generation was started with more than 7000 individuals. 411 

Considering the high number of mosquitoes required for bioassays, biochemical assays and 412 

transcriptome profiling, these analyses were performed on individuals from the 9th, 10th and 413 

11th generations respectively (G9, G10, G11). In order to only consider constitutive resistance 414 

mechanisms, individuals used for these analyses were not exposed to imidacloprid. 415 

 416 

Larval and adult bioassays with imidacloprid 417 

 To assess the constitutive resistance level of each strain, comparative bioassays with 418 

imidacloprid were conducted on larvae and adults of the Imida-R and the susceptible strains 419 

after eight generations of selection. Larval bioassays were performed on G9 4
th stage larvae in 420 

triplicates with 25 larvae in 50 mL insecticide solution. Four different insecticide 421 

concentrations (from 150 to 2200 µg/L) leading to 5% to 95% mortality after 24h exposure 422 

were used for each strain. LC50 and 95% confident intervals (CI95) were then calculated with a 423 

probit approach using XL-Stat (Addinsoft, Paris, France) and compared between the two 424 

strains by calculating a resistance ratio (RR50). In order to evaluate the role of detoxification 425 

enzymes in imidacloprid resistance, three detoxification enzyme inhibitors were used in 426 

combination with imidacloprid for larval bioassays. Piperonyl butoxide (PBO; 5-((2-(2-427 

butoxyethoxy) ethoxy) methyl)-6-propyl-1,3-benzodiox- ole; Sigma-Aldrich) was used as an 428 

inhibitor of P450s, tribufos (DEF; S,S,S-tributyl phosphorotrithioate; Supelco Analytical, 429 

USA) as a carboxylesterase inhibitor and diethyl maleate (DEM, Sigma-Aldrich) as a GST 430 

inhibitor. Sub-lethal concentrations of each inhibitor (0.3 ppm, 1 ppm and 0.5 ppm for PBO, 431 

DEM and DEF respectively) were co-applied with the insecticide. Mortality data were 432 

analyzed as described above and the effect of enzyme inhibitors were assessed by calculating 433 
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synergism ratios (SR50) and their 95% confidence intervals for each strain by dividing the 434 

LC50 obtained with and without enzyme inhibitor. 435 

Comparative topical adult bioassays were performed in triplicates with G9 unexposed 436 

females of each strain. Each replicate consisted of 25 four days-old females and 4 437 

concentrations of insecticide leading to 5% to 95% mortality. A topical application of 0.3 µL 438 

imidacloprid solution in acetone containing 0.9 to 6 ng insecticide was performed on the 439 

thorax of each mosquito (modified from [51]). The same volume of 100% acetone was 440 

applied on each strain for negative controls. After insecticide application, females were 441 

allowed to recover for 24h in mosquito test tubes in standard insectary conditions before 442 

mortality recording. Mortality data were analyzed as described above by calculating LC50 and 443 

RR50. 444 

 445 

Detoxification enzyme activities 446 

 Activities of GSTs, carboxylesterases and P450s were compared in larvae and adults 447 

between the Imida-R and the susceptible strains after 9 generations of larval selection with 448 

imidacloprid. Enzyme activities were measured on G10 4
th-stage larvae and 4 days-old adult 449 

females. Microsomal and cytosolic fractions were obtained by homogenizing one gram of 450 

fresh larvae or adults in 2 mL of 0.05 M phosphate buffer (pH 7.2) containing 0.5 mM DTT, 2 451 

mM EDTA and 0.8 mM PMSF. The homogenate was centrifuged at 10000 g for 20 minutes 452 

at 4°C and the resulting supernatant was ultracentrifuged at 100000 g for 1 hour at 4°C. 453 

Pellets were resuspended in 0.05 M phosphate buffer. The protein content of the microsomal 454 

(pellets) and the cytosolic (supernatants) fractions were measured by the Bradford method. 455 

Microsomes were used immediately for assessing P450 activities while the cytosolic fractions 456 

were stored at -20°C for one day before measuring GST and carboxylesterase activities as 457 

described below. 458 
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 Glutathione S-transferase (GST) activities were measured on cytosolic fractions using 459 

1-chloro-2,4-dinitrobenzene (CDNB; Sigma-Aldrich) as substrate [52]. The reaction mixture 460 

contained 50 µg cytosolic proteins, 0.1 M phosphate buffer, 1.5 mM reduced glutathione 461 

(Sigma-Aldrich) and 1.5 mM CDNB for a total reaction volume of 200 µL. The absorbance of 462 

the reaction was measured after 1 min at 340 nm with a Varioskan Flash Multimode Reader 463 

(Thermo Fisher Scientific). Results were expressed as mean nanomoles of conjugated CDNB 464 

per mg of protein per minute ± SE. Three biological replicates per treatment were made and 465 

each measurement was repeated 6 times. Statistical comparison of GST activities between 466 

Bora-Bora and Imida-R larvae was performed by using a Mann and Whitney test (N=3). 467 

 Esterase activities were comparatively measured on cytosolic fractions according to 468 

the method described by Van Asperen [53] with α-naphthylacetate and β-naphthylacetate used 469 

as substrates (α-NA and β-NA, Sigma–Aldrich). Thirty µg proteins were added to 0.025 mM 470 

phosphate buffer (pH 6.5) with 0.5 mM of α-NA or β-NA for a total reaction volume of 180 471 

µL and incubated at 30°C. After 15 min, the reaction was stopped by dispensing 20 µL 10 472 

mM Fast Garnett (Sigma) and 0.1 M sodium dodecyl sulfate (SDS, Sigma–Aldrich). The 473 

production of α- or β-naphthol was measured at 550 nm with a Varioskan Flash Multimode 474 

Reader (Thermo Fisher Scientific) in comparison with a scale of α-naphthol or β-naphthol and 475 

expressed as mean µmoles of α- or β-naphthol per mg of cytosolic protein per minute ± SE. 476 

Three biological replicates per treatment were made and each measure was repeated 8 times. 477 

Statistical comparison of esterases activities between Bora-Bora and Imida-R larvae and 478 

adults was performed by using a Mann and Whitney test (N=3).  479 

 P450 monooxygenase activities were evaluated by measuring ethoxycoumarin-O-480 

deethylase (ECOD) activities on microsomal fractions using a microfluorimetric method 481 

modified from De Sousa et al. [54]. For each sample, 20 µg microsomal protein was added to 482 

0.05 M phosphate buffer (pH 7.2) containing 0.4 mM 7-ethoxycoumarin (7-Ec, Fluka), 0.1 483 
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mM NADPH and an electron regenerative system consisting of 3 mM glucose 6-phosphate 484 

and 0.4 unit of glucose 6-phosphate dehydrogenase for a total reaction volume of 100 µL and 485 

incubated at 30°C. After 15 min, the reaction was stopped by adding 100 µL of 50/50 486 

glycine/ethanol buffer (v/v) and the production of 7-hydroxycoumarin (7-OH) was evaluated 487 

by measuring the fluorescence of each well (380 nm excitation, 460 nm emission) with a 488 

Varioskan Flash Multimode Reader (Thermo Fisher Scientific) in comparison with a scale of 489 

7-OH (Sigma Aldrich). P450 activities were expressed as mean picomoles of 7-OH per mg of 490 

microsomal protein per minute ± SE. Three biological replicates per treatment were made and 491 

each measure was repeated 10 times. Statistical comparison of P450 activities between Bora-492 

Bora and Imida-R strains was performed for each life stage by using a Mann and Whitney test 493 

(N=3). 494 

 495 

Imidacloprid in vitro metabolism 496 

Microsomal fractions from Imida-R and Bora-Bora 4th-stage larvae were obtained as 497 

described above. Hundred and eighty µg microsomal proteins were incubated with 12.5 µM 498 

imidacloprid (Sigma-Aldrich) in the presence or absence of 0.5 mM NADPH and a NADPH 499 

regenerating system consisting of 2 mM glucose 6-phosphate and 0.2 U of glucose 6-500 

phosphate dehydrogenase in a final volume of 100 µL. Reactions were incubated for 30 to 501 

180 min at 30 °C. The reactions were stopped by adding 100 µL acetonitrile and samples 502 

were stored at 4°C overnight. After a 20 min centrifugation at 20000g, the supernatants were 503 

evaporated to dryness and resuspended in 100 μL of HPLC initial mobile phase (10% 504 

acetonitrile). Samples were then transferred to HPLC vials and analyzed by RP-HPLC on a 505 

Agilent 1260 apparatus, using a C18 column (Poroshell EC-C18 120A 4,6x50mm 2,7µ) at 506 

25°C and a flow-rate of 0.5 mL/min. The following gradient of solvent B (acetonitrile) in A 507 

(water) was used to elute imidacloprid and metabolites: 10 % B during 5 min, 10 to 20% B 508 
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from 5 to14 min, 20 to100% B from 14 to 15 min, 100% B from 15 to 17 min, and return to 509 

initial conditions at 18 min. Imidacloprid turn over and production of metabolites were 510 

monitored by UV absorption at 270 nm and quantified by peak integration. Statistical 511 

comparison of imidacloprid metabolism between Bora-Bora and Imida-R larvae was 512 

performed by using a Mann and Whitney test (N=3). For calculating apparent Km and Vmax, 513 

100 µg microsomal proteins of each strain were incubated during 45 minutes with varying 514 

concentrations of imidacloprid (1–100 µM) in the presence of NADPH and NADPH 515 

regenerating system. Vmax and Km were determined by fitting the Lineweaver-Burk equation. 516 

 517 

RNA extractions and samples preparation 518 

 Microarray studies were conducted on larvae and adults of the susceptible and Imida-519 

R strains after 10 generations of selection. For each strain, G11 individuals were obtained 520 

simultaneously from three different egg batches (biological replicates) in order to minimize 521 

growth differences. Each biological replicate consisted of 200 larvae reared in 200 mL water 522 

supplemented with 50 mg standard larval food. Total RNAs were extracted from sixty 4th-523 

stage larvae and twenty 3 days-old non blood fed females by using the RNAqueous-4PCR Kit 524 

(Applied Biosystems) and RNA pellets were resuspended in 100 µL DEPC treated water. 525 

Total RNA amounts were then evaluated with a NanoDrop ND1000 (Thermo Fisher 526 

Scientific). Two hundreds ng total RNA were amplified and labeled with Cy-3 and Cy-5 527 

fluorescent dyes with the Two Colors Low Input Quick Amp Labeling Kit (Agilent 528 

technologies) according to manufacturer’s instructions. Labeled cRNA were purified with the 529 

Stratagene absolutely RNA Nanoprep kit (Agilent technologies) and resuspended into 25 µL 530 

nuclease-free water. Quantification and quality assessment of labeled cRNAs was performed 531 

by using the NanoDrop ND1000 and the Agilent 2100 Bioanalyser (Agilent technologies). 532 

Purified labeled cRNAs were stored at -80°C in the dark until microarray hybridizations. 533 
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 534 

 535 

Microarray hybridisations, data acquisition and statistical analyses 536 

Microarray hybridizations were performed with the ‘Agilent Aedes detox chip plus’ 537 

recently designed by the Liverpool School of Tropical Medicine (ArrayExpress accession 538 

no.A-MEXP-1966), containing eight replicated arrays of 15K oligo-probes representing 539 

14172 different Ae. aegypti transcripts. We have made all microarray data MIAME compliant. 540 

For each hybridization, 300 ng of labeled cRNA from larvae or adults of each strain were 541 

used. For each biological replicate, two hybridizations were performed in which the Cy-3 and 542 

Cy-5 labels were swapped between samples for a total of six hybridizations per strain 543 

comparison in larvae and adults. For each life stage, all hybridizations were performed against 544 

a global reference sample obtained from a pool of labeled cRNAs from three biological 545 

replicates of the susceptible strain. After hybridization, non-specific probes were washed off 546 

with the ‘Agilent hybridization kit’ according to manufacturer’s instructions (Agilent 547 

technologies). Microarray slides were scanned by using the Agilent microarray scanner 548 

G2205B (Agilent technologies). Spot finding, signal quantification and spot superimposition 549 

for both dye channels were performed using Agilent Feature Extraction Software. Data were 550 

then loaded into Genespring GX (Agilent technologies) for normalization and statistical 551 

analysis. For each life stage, only transcripts flagged ‘present or marginal’ in all 6 552 

hybridizations were used for further statistical analysis. Mean transcription ratios were then 553 

submitted to a one sample Student’s t-test against the baseline value of 1 (equal gene 554 

expression in both strains) with Benjamini and Hochberg’s multiple testing correction 555 

procedure. For each selected strain, transcripts showing a fold change > 2-fold in either 556 

direction and a t-test Pvalue lower than P < 0.01 after multiple testing correction were 557 
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considered significantly differentially transcribed in the Imida-R strain compared to the 558 

susceptible strain. 559 

 560 

Analysis of gene functions differentially transcribed in the Imida-R strain 561 

A global analysis of gene functions differentially transcribed in the Imida-R strain was 562 

performed on all genes showing a significant differential transcription in Imida-R larvae or 563 

adults. Because Gene Ontology (GO) annotation of Ae. aegypti genome is still incomplete 564 

(less than 9500 genes annotated with GO terms over 15988 predicted genes), we manually 565 

annotated the ‘biological function’ of the 431 transcripts showing a significant differential 566 

transcription in larvae or adults. Genes were then assigned into 12 different categories: 567 

detoxification enzymes, dehydrogenases, kinases/phosphatases, other enzymes, cuticle, 568 

transport/chaperonin, cell catabolism/anabolism, RNA/DNA interactions, cytoskeleton, 569 

ribosomal proteins, others and hypothetical proteins. For each life stage, percentages of genes 570 

significantly over- and under-transcribed were compared. 571 

 572 

Clustering analysis of detoxification genes differentially transcribed in the Imida-R 573 

strain 574 

 To identify genes potentially involved in imidacloprid metabolism, a hierarchical 575 

clustering analysis based on transcription ratios was performed on transcripts encoding 576 

detoxification enzymes showing a significant differential transcription in the Imida-R strain at 577 

any life stage. Clustering analysis was performed by loading fold transcription values into 578 

TM4 Multi experiment Viewer (MeV) software [55]. Gene and condition trees were 579 

calculated using Pearson's uncentered distance metric and complete linkage method with 580 

optimization of genes order [56]. 581 
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Microarray data validation by RT-qPCR 583 

 Transcription profiles of 12 particular genes found over transcribed in Imida-R larvae 584 

(Table S1) were validated by reverse transcription followed by real-time quantitative PCR 585 

(RT-qPCR) using the same RNA samples used for microarray experiments. These genes were 586 

selected on the basis of their high transcription level in the Imida-R strain and their possible 587 

role in insecticide resistance mechanisms. Two micrograms of total RNA were treated with 588 

DNase I (Invitrogen) and used for cDNA synthesis with superscript III and oligo-dT20 primer 589 

for 60 min at 50°C according to manufacturer’s instructions. Resulting cDNAs were diluted 590 

100 times for qPCR reactions. All primer pairs used for qPCR were tested for generating a 591 

unique amplification product by melt curve analysis. Quantitative PCR reactions of 25 µL 592 

were performed in triplicate on an iQ5 system (BioRad) using iQ SYBR Green supermix 593 

(BioRad), 0.3 µM of each primer (Table S2) and 5 µL of diluted cDNAs according to 594 

manufacturer’s instructions. For each gene, a cDNA serial dilution over 5-logs was performed 595 

in order to assess PCR efficiency. Data analysis was performed according to the ΔΔCT method 596 

taking into account PCR efficiency [57] and using the two genes encoding the ribosomal 597 

protein L8 (AAEL000987) and the ribosomal protein S7 (AAEL009496) for normalization. 598 

Results were expressed as mean transcription ratios ± SE between Imida-R and Bora-Bora. 599 

 600 

P450 protein sequence analysis and homology modeling 601 

 Multiple sequence alignments of P450 protein sequences were performed using 602 

ClustalW. A first alignment was performed with the 19 P450s over-transcribed in larvae or 603 

adults of the Imida-R strain together with the D. melanogaster CYP6G1 (DmCYP6G1) 604 

(Jouben et al. 2008) and B. tabaci CYP6CM1vQ (BtCYP6CM1vQ), which were previously 605 

shown to metabolize imidacloprid [19]. A second alignment was restricted to those belonging 606 

to the CYP6 family (CYP6Z8, CYP6Z7, CYP6BB2, CYP6F3, CYP6CB1, CYP6N9, 607 
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CYP6N12, CYP6N14, DmCYP6G1 and BtCYP6CM1vQ). Substrate Recognition sites (SRS) 608 

regions were determined from [58] and [19] and used to obtain a cladogram and determine 609 

conserved aminoacids. The 3D structure of the 8 Ae. aegypti CYP6 protein sequences was 610 

then predicted using swissmodel software (http://swissmodel.expasy.org). The structure of 611 

BtCYP6CM1vQ obtained by Karunker et al. [19] was used as template for each model and 612 

imidacloprid was positioned as calculated for BtCYP6CM1vQ. 613 

 614 

615 
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Data deposition 616 

We have made all microarray data MIAME compliant. The description of the microarray used 617 

in this study can be accessed at ArrayExpress (http://www.ebi.ac.uk/arrayexpress) accession 618 

no. A-MEXP-1966. 619 

All experimental microarray data can be accessed at VectorBase (http://VectorBase.org) and 620 

ArrayExpress database accession no. E-MTAB-616. 621 
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Figures legends 803 

Figure 1. Genes and biological functions differentially transcribed in the Imida-R strain 804 

comparatively to the susceptible strain Bora-Bora.  805 

Venn diagram describes the number of genes found significantly over- or under-transcribed in 806 

larvae and adults (fold transcription > 2 in either direction and P value < 0.01). Arrows 807 

indicate over- or under-transcription. Pie charts describe biological functions represented by 808 

genes presented in the Venn diagram. Genes were assigned to 12 different categories 809 

according to their putative function. 810 

 811 

Figure 2. Hierarchical clustering of detoxification enzyme differentially transcribed in 812 

Imida-R larvae and adults.  813 

Clustering analysis based on transcription levels was performed separately on the 24 CYPs 814 

and 12 other detoxification genes showing a significant differential transcription in larvae or 815 

adults. Gene tree was obtained using Pearson's uncentered distance metric calculated from 816 

transcription ratios. Color scale from blue to yellow indicates transcription ratios from -5-fold 817 

to +5-fold (Imida-R / Susceptible). For each gene, accession number and gene names or 818 

annotation are indicated. 819 

 820 

Figure 3. Comparison of detoxification enzymes activities between the Imida-R strain 821 

and the susceptible strain Bora-Bora.  822 

A) P450 activities were measured with the ECOD method and expressed as pmol of 7-OH 823 

produced/mg microsomal protein/minute ± SE. B) GST activities were measured with the 824 

CDNB method and expressed as nmol of conjugated CDNB/mg protein/min ± SE. Alpha-825 

esterase (C) and β-esterase (D) activities were measured with the naphthyl acetate method and 826 

expressed as µmol α- or β-naphthol produced/mg protein/minute ± SE. Statistical comparison 827 
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of enzyme activities between the Imida-R and susceptible strains were performed for larvae 828 

and adults separately with a Mann and Whitney's test (* p < 0.05, ** p < 0.01, *** p < 0.001). 829 

 830 

Figure 4. Comparison of imidacloprid in vitro metabolism between the Imida-R and 831 

susceptible strains.  832 

A) Production of imidacloprid metabolites by microsomal proteins obtained from susceptible 833 

larvae (white bar) and Imida-R larvae (black bar) with or without NADPH during 30 minutes. 834 

Metabolite production was expressed as pmol of metabolites produced/mg microsomal 835 

protein /minute ± SE. Statistical comparison of metabolite production between the two strains 836 

was performed with a Mann and Whitney's test (* p < 0.05). ND: not detected. B). 837 

Lineweaver-Burk plots used for determining the kinetic constants of P450-dependent 838 

imidacloprid metabolism in the susceptible (white dots) and Imida-R (black dots) strains. 839 

Microsomal preparations (100 µg) were incubated for 45 minutes with 1 to 100 µM 840 

imidacloprid in the presence of NADPH and NADPH regenerating system.  841 

 842 

Figure 5. SRS multiple alignment of CYP6 proteins from Aedes aegypti (Ae), 843 

Drosophila melanogaster (Dm) and Bemisia tabaci (Bt).  844 

Amino acid residues of BtCYP6CM1vQ that are within 4 Å of imidacloprid are shown in 845 

white on a black background (Karunker et al., 2009). Amino acid residues in a grey 846 

background are residues interacting with imidacloprid strictly conserved in CYP3A4, 847 

DmCYP6G1 and BmCYP6CM1vQ. Residue numbering shown above the alignment is that of 848 

BtCYP6CM1vQ. Amino-acid conservation level is indicated below the alignment. 849 

 850 

Figure 6. Homology modeling of CYP and imidacloprid interactions. 851 

Binding site models of the complex formed by imidacloprid and BtCYP6CM1vQ (from 852 

Karunker et al, 2009), AeCYP6BB2, AeCYP6N12 and AeCYP6Z8 are presented. 853 
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Imidacloprid is displayed with green carbon atoms and the heme is displayed with red atoms. 854 

Predicted binding residues are indicated in yellow. Calculated distances in Angstroms 855 

between imidacloprid and binding residues are indicated by dashed lines. 856 
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Multimedia Files and Supporting Information 859 

Figure S1. Evolution of imidacloprid resistance of Imida-R larvae along the selection 860 

process. Resistant ratios RR50 were obtained by dividing LC50 obtained from Imida-R and 861 

Bora-Bora strains (black fitted curve). 95% confident intervals are indicated (grey fitted 862 

curves). Resistance level of Imida-R larvae after releasing the selection process from G11 to 863 

G14 is indicated ± 95% confident intervals (dashed fitted curve). 864 

 865 

Table S1. Genes significantly differentially transcribed in imida-R larvae or adults. 866 

 867 

Figure S2. Cross-validation of microarray data by RT-qPCR on 12 selected genes at the 868 

larval stage. Dashed line represents an equal transcription level obtained by the two 869 

techniques. Gene names, annotation and accession numbers are indicated. 870 

 871 

Figure S3. HPLC chromatograms showing comparative imidacloprid in vitro metabolism 872 

by microsomes extracted from Bora-Bora and Imida-R larvae. Imidacloprid metabolisms with 873 

and without NADPH was monitored after 30 minutes incubation at 30 °C. 874 

 875 

Figure S4. Binding site models of all AeCYP6 proteins found over-transcribed in the Imida-876 

R strain. Imidacloprid is displayed with green carbon atoms and the heme is displayed with 877 

red atoms. Predicted binding residues are indicated in yellow. 878 

 879 

Table S2. Primers used for microarray data validation by RT-qPCR 880 

 881 

 882 

 883 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



38 

 

Tables and captions 884 

 885 

Table 1. Imidacloprid resistance of Imida-R larvae and adults with and without 
enzyme inhibitors. 

Strain 
Life 
stage 

Enzyme 
inhibitor 

LC50 (µg/L) RR50a SR50b 

(CI 95%) (CI 95%)  (CI 95%)  

Bora-Bora 
Larvae 

- 339 - - 

 
(261 – 465)   

PBO 291 - 1.17 

 
(222 – 420)  (0.62 – 2.09) 

DEF 385 - 0.88 

 
(291 – 469)  (0.56 – 1.60) 

DEM 255 - 1.32 

  (80 – 313)   (0.83 – 5.81) 

Adults 
- 6830 - - 

 
(5577 – 7964)   

Imida-R 
Larvae 

- 1833 5.4 - 

 
(1634 - 2057) (3.51-7.88)  

PBO 663 2.28 2.77 

 
(507 - 760) (1.2 - 3.42) (2.15 - 4.06) 

DEF 607 1.58 3.02 

 
(347 - 814) (0.73 - 2.79) (2.01 - 5.93) 

DEM 820 3.22 2.24 

  (532 - 1053) (1.69 - 13.16) (1.55 - 3.87) 

Adults 
- 8352 1.2  - 

 
(7221 - 9462) (0.9 - 1.7)   

 
a: Resistant ratios RR50 were obtained by calculating the ratio between the LC50 obtained from Imida-R and 
Bora-Bora strains. b: Synergism ratios SR50 were obtained by calculating the ratio between LC50 with and 
without enzyme inhibitor. Significant RR and SR are shown in bold. 
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Chapter 4. Discussion and perspectives 

 

Chemical insecticides mostly used in vector control belong to four classes according to their 

chemical properties: Organochlorines (OCs), Organophosphates (OPs), Carbamates (Carbs) 

and Pyrethroids (Pyrs). The repeated use of these insecticides against mosquitoes led to the 

artificial selection of resistance mechanisms that are now threatening the efficiency of vector 

control programs worldwide. This led to a regain of interest for the use of other insecticides 

having different biochemical targets or mode of action such as neonicotinoids (Paul et al., 

2006, Pridgeon et al., 2008). 

In this context, the overall purpose of the present work was to explore the potential use of the 

neonicotinoid imidacloprid for mosquito control and more specifically to identify potential 

imidacloprid metabolic resistance mechanisms in mosquitoes. To answer this question, my 

thesis work has been divided into two main sections (chapters II and III) dealing with two 

different temporal scales:  

Chapter II was devoted to the study of the response of mosquitoes to imidacloprid exposure. 

This part explored the toxicity of imidacloprid against mosquito larvae and adults and the 

response of mosquito larvae to a short exposure with a sub-lethal dose of imidacloprid at the 

toxicological (tolerance to insecticides), biochemical (detoxification enzyme activities) and 

molecular (transcriptome profiling) levels. Cross-responses between imidacloprid and 

anthropogenic pollutants were also investigated at different biological levels. 

Chapter III was dedicated to the study of the response of mosquitoes to imidacloprid exposure 

across several generations. To investigate this, an Ae. Aegypti strain was selected with 

imidacloprid at the larval stage in the laboratory for several generations to obtain the Imida-R 

strain showing an increased resistance to imidacloprid. Mechanisms associated to resistance 

were investigated using various biochemical and molecular approaches and candidate genes 

putatively involved in resistance at the larval stage have been identified. Cross-resistance of 

the Imida-R strain to other neonicotinoids and other insecticides from different chemical 

families was also investigated. Finally, the functional validation of the role of CYP genes 

potentially involved in metabolic resistance to imidacloprid in Ae. aegypti was initiated and 

the involvement of one of them was confirmed. 
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4.1 Response of mosquitoes to imidacloprid exposure 

4.1.1 Toxicity of imidacloprid in Ae. aegypti 

Bioassays with imidacloprid indicated that Aedes aegypti larvae show a LC50 around 400 

µg/L of unformulated insecticide. This reveals a relatively good efficiency compared to other 

chemical insecticides (Publication 1; Poupardin et al., 2008). In adults, topical bioassays 

indicate a LD50 of approximately 2 ng/adult female. Again, this value seems relatively good 

compared to similar results obtained with other chemical adulticides such as the pyrethroid 

deltamethrin (Marcombe et al 2009). Taken together, these results confirm the toxicity and 

the potential use of imidacloprid against mosquitoes. However, testing the efficacy of this 

insecticide in field conditions was beyond the aim of the present thesis and will require 

additional experimental work. In this concern, combining imidacloprid with other chemical or 

biological insecticides may represent an interesting alternative for improving vector control 

strategies and managing insecticide resistance. 

4.1.2 Response of Ae. aegypti larvae to imidacloprid exposure 

 The subsequent tolerance of mosquito larvae to insecticides following a sublethal 

exposure to imidacloprid was investigated. Toxicological and biochemical studies 

demonstrated that exposing larvae to a sub-lethal dose of imidacloprid for 72 hours did not 

affect their tolerance to imidacloprid and the activity of detoxification enzymes.  

Transcriptomic results showed that although the larval exposure did not affect their tolerance 

to imidacloprid, such sub-lethal exposure induced and repressed the transcription of several 

genes. Two different transcriptomic approaches were used in this study. First, the microarray 

“Aedes detox chip” representing 290 Ae. aegypti genes encoding detoxification and red/ox 

enzymes (Strode et al., 2008) and the “Digital Gene Expression Tag Profiling” (DGETP)  

based on the Solexa sequencing technology for a deeper transcriptome analysis. Although 

better methods were developed later, DGETP was considered as the best sequence-based 

approach at the time of this study.  

Overall, these two transcriptomic approaches revealed that several detoxification genes were 

induced following imidacloprid exposure, including 4 CYP (CYP4G36, CYP6CC1, CYP9M9, 

CYP325X2). Interestingly, two of these CYP genes (CYP9M9 and CYP4G36) have been 

found up-regulated in an Ae. aegypti permethrin resistant strain (Strode et al., 2008). CYP9M9 

was also found constitutively over-transcribed in Ae. Aegypti from Martinique island resistant 
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to temephos and deltamethrin (Marcombe et al., 2009). One GST (AaGSTs1-2) and 3 

carboxy/cholinelesterases (CCEae1o, CCEae2o and CCEae3o) genes were also found over 

transcribed following imidacloprid exposure. The higher activities of GSTs have been linked 

with neonicotinoids resistance. For example in Nilaparvata lugens, glutathione S-transferases 

were considered to play a role in imidacloprid detoxification (Liu et al., 2003). Likewise, the 

increase activities of esterases have been previously associated with neonicotinoid resistance. 

In B. tabaci, a resistance to the neonicotinoid thiamethoxam has been associated to increased-

carboxylesterase activities (Feng et al., 2010). Esterases have also been reported to be 

potentially involved in cross-resistance between the pyrethroid fenvalerate and the 

neonicotinoid imidacloprid in the cotton aphid Aphis gossypii (Wang et al., 2002). 

Several genes encoding other protein families were affected when exposing mosquito larvae 

to a sub-lethal dose of imidacloprid. For example, multiple genes encoding cuticle proteins 

were found strongly over-regulated. This phenomenon could play a role in resistance and may 

represent a response of mosquito larvae to the toxic molecule in order to limit its penetration 

(Puinean et al., 2010b). Therefore, it can be hypothesized that this mechanism can be used to 

develop resistance across several generations. In another hand, it cannot be excluded that this 

phenomena is only a ‘side-effect’ of imidacloprid exposure and that the insecticide simply 

disturbs the synthesis and dynamic of insect cuticle. 

Our results also pointed out the over-regulation of 6 red/ox genes including a superoxide 

dismutase, 4 peroxidases and 1 reductase associated with oxidative stress (Canuto et al., 1993, 

Sies 1993, Berhane et al., 1994, Orr & Sohal 1994). It is known that P450 functioning can 

generates excess reactive oxygen species, leading to oxidative stress (Zangar et al., 2004) and 

that P450s are likely to be involved in metabolic resistance to imidacloprid in insects (Le Goff 

et al., 2003). Therefore, the induction of several genes encoding red/ox enzymes observed 

after exposing larvae to imidacloprid might result from the generation of excess reactive 

oxygen species from P450-mediated imidacloprid metabolism. In addition, several genes 

encoding enzymes involved in the production of energy or in cellular catabolism such as 

NADH dehydrogenase, ATP synthase, trypsin and lipases were found over transcribed in 

mosquito larvae exposed to imidacloprid, suggesting a global stress response. Such stress 

response often linked to increased catabolism activity has been previously described in 

various organisms (Palmfeldt et al., 2009, Pereira et al., 2010).  
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Overall, these transcriptome changes did not modify significantly the subsequent tolerance of 

larvae to imidacloprid. This may suggest that genes involved in metabolic processes to 

imidacloprid tolerance are not strongly affected by imidacloprid exposure or that other 

metabolic changes are shading such effects. These results also suggest that insecticides may 

not always be the most potent inducers of detoxifying enzymes able to metabolize them 

(Willoughby et al., 2006). However, it has been demonstrated that xenobiotics including 

environmental pollutants can affect the tolerance of mosquitoes to insecticides through the 

induction of detoxification enzymes (Suwanchaichinda & Brattsten 2001, Poupardin et al., 

2008). 

4.2 Impact of pollutants on imidacloprid tolerance 

 Anthropogenic xenobiotics present in mosquito habitats have been shown to affect the 

tolerance of mosquitoes to chemical insecticides. These phenotypic changes were often 

associated to modification of detoxification enzyme levels through induction/repression 

mechanisms (Suwanchaichinda & Brattsten 2001, Poupardin et al., 2008). Because of their 

ecological diversity, mosquito habitats can be contaminated by a wide range of anthropogenic 

chemicals including pesticides, heavy metals, polycyclic aromatic hydrocarbons (PAHs) and 

drugs (Lewis et al., 1999, Bostrom et al., 2002, Pengchai et al., 2003, Lambert & Lane 2004, 

Wan et al., 2006). In this context, the impact of two common pollutants: the polycyclic 

aromatic hydrocarbon benzo[a]pyrene (BaP) and the herbicide glyphosate on the tolerance of 

mosquito larvae to imidacloprid was investigated. 

Our results revealed that the tolerance of larvae to imidacloprid was ‘dose-dependently’ 

increased following BaP or glyphosate exposures. Transcriptomic results obtained with the 

microarray “Aedes detox chip” following BaP and glyphosate exposures revealed that 

although some detoxification genes were affected by these two pollutants, very few of them 

showed a cross-response with imidacloprid. Among them the glutathione S-transferase 

AeGSTs1-2 was induced by both imidacloprid and BaP. Interestingly, no CYP genes (P450s) 

were found induced by both imidacloprid and pollutants. Finally, among red/ox enzymes 

found induced by imidacloprid, only the superoxide dismutase AAEL006271 was also 

induced by BaP and the glutathione peroxidase AAEL000495 by glyphosate. A causal link 

between the induction of particular detoxification enzymes by xenobiotics and their ability to 

metabolize them has been suggested to identify drug metabolizing enzymes (Waxman 1999). 

However, insecticides may not always be the most potent inducers of detoxifying enzymes 



185 
 

able to metabolize them (Willoughby et al., 2006). In this case, it can be hypothesized that 

particular detoxification genes induced or repressed by BaP or glyphosate might be involved 

in the increase imidacloprid tolerance observed despite their relative insensitivity to 

imidacloprid. 

Larvae exposed to the herbicide glyphosate showed a significant induction of 5 CYPs 

(CYP6N11, CYP6N12, CYP6Z6, CYP6AG7 and CYP325AA1) and 3 GSTs (AaGSTe4, 

AaGSTe7 and AaGSTi1). Exposing larvae to benzo[a]pyrene significantly induced 3 CYP 

genes (CYP6Z6, CYP6Z8 and CYP9M5) and 2 GSTs (AaGSTi1 and AaGSTs1-2). Epsilon 

GSTs have been widely implicated in resistance to DDT and pyrethroid insecticides (Ortelli et 

al., 2003, Ding et al., 2005, Lumjuan et al., 2005, Strode et al., 2008). Interestingly, CYP6Z 

genes have been frequently found constitutively over-transcribed in insecticide-resistant 

mosquito strains (Nikou et al., 2003, David et al., 2005, Müller et al., 2007) and CYP6Z8 and 

CYP6N12 are among the few candidate genes pointed out in publication IV for their potential 

role in imidacloprid metabolism in Ae. aegypti. 

 Following this study we investigated cross-responses of larvae between imidacloprid 

and pollutants at the whole transcriptome level. The DGETP method described earlier was 

used to compare transcriptome variations associated to a 48 h exposure of Ae. aegypti larvae 

to sub-lethal doses of imidacloprid, the PAH fluoranthene, the herbicide atrazine, copper 

sulfate, the pyrethroid insecticide permethrin and the carbamate insecticide propoxur. The 

number of genes commonly induced between imidacloprid and each other xenobiotic were 

10, 69, 4, 40 and 5 genes for permethrin, propoxur, atrazine, fluoranthene and copper sulfate 

respectively. As described before, this study revealed the importance of cuticle proteins in the 

response of mosquito to xenobiotics. Sixteen transcripts encoding cuticle proteins were 

commonly found over-produced following imidacloprid and at least one other xenobiotic. 

Although cuticle thickening may have a direct impact on imidacloprid tolerance and inherited 

resistance in mosquitoes (Vontas et al., 2007, Djouaka et al., 2008, Puinean et al., 2010b). 

Additional experiments are required to validate this hypothesis.  

Overall, the study of mosquitoes response to a short exposure to imidacloprid and other 

xenobiotics confirmed that insecticide tolerance of mosquitoes can be affected by xenobiotic 

exposure. Regarding the direct impact of imidacloprid on mosquito larvae, although no clear 

phenotypic effect could be evidenced, important gene transcription level variations were 
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induced by imidacloprid exposure, even at a low concentration, suggesting that mosquito 

larvae can adjust their metabolism to face this chemical challenge.  

 

4.3 Long term response of mosquitoes to imidacloprid 

Neonicotinoid resistance mechanisms have been investigated in various insect pests 

but very few data are available in mosquitoes. The study of the short-term response to 

imidacloprid developed in chapter II highlighted transcriptome variations associated to this 

insecticide in Ae aegypti larvae. In chapter III, the molecular mechanisms associated with 

imidacloprid inherited resistance in mosquitoes were investigated with a focus on 

metabolic resistance mechanisms. Because no imidacloprid-resistant mosquito strain has been 

described yet, and in order to avoid comparing strains with different genetic backgrounds, a 

resistant Ae. aegypti strain was selected in our laboratory with imidacloprid at the larval stage 

for several generations to obtain the Imida-R strain. 

4.3.1 Resistance status of the Imida-R strain 

 After 14 generations of selection, bioassays revealed a significant increased larval 

resistance to imidacloprid of the Imida-R strain (more than 7-fold) while resistance of adults 

remained low. This suggests that mechanisms conferring resistance in larvae are not selected, 

or less expressed, in adults. This stage-specific resistance has been frequently observed in 

insects and well described in B. tabaci regarding imidacloprid (Nauen et al., 2008). 

Monitoring resistance level along the selection process revealed that larval resistance level 

increased gradually and has not yet stabilized. Considering the absence of any insecticide 

resistance mechanism in the parental susceptible strain, these results suggests that 

imidacloprid resistance can appear relatively rapidly in mosquito populations under selection 

pressure with this insecticide at the larval stage. Although de novo mutations linked to 

resistance could have occurred during the selection process, the rapid and gradual emergence 

of resistance rather suggests an enrichment of the Imida-R strain in resistance alleles initially 

present at low frequency (McKenzie & Batterham 1994). 

Interestingly, significant cross-resistance of the Imida-R strain with other insecticides was 

observed. The Imida-R strain was 3.5- and 4.4-fold resistant to the neonicotinoids acetamiprid 

and thiamethoxam respectively. When considering other insecticide classes our results 

demonstrated a high cross-resistance to the IGR pyriproxyfen and a slight cross-resistance to 
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diflubenzuron and DDT. In insects, the phenomenon of cross-resistance is quite common and 

thus insects resistant to one neonicotinoid usually display cross resistance to other 

neonicotinoids (Mota-Sanchez et al., 2006, Wang et al., 2009b). Cross-resistance between 

Imidacloprid and DDT has been observed in Drosophila (Daborn et al., 2002). Such cross-

resistance patterns involving both other neonicotinoids and other chemical families confirm 

the probable important role of metabolic processes in the resistant phenotype. Indeed, 

detoxification enzymes can frequently metabolize different xenobiotics leading to cross-

resistance within and among different chemical insecticide families.The absence of cross-

resistance of the Imida-R strain to OPs, Carbs and Pyrs can be beneficial for using 

imidacloprid for managing mosquito populations already resistant to these insecticide families 

(Nauen and Denholm 2005). 

 

4.3.2 Gene transcription variations associated with resistance 

Because metabolic resistance is frequently associated with changes in the transcription 

level of several genes, two transcriptome profiling techniques were used in parallel to 

compare Imida-R larvae and adults after 10 generations of selection with the parental 

susceptible strain. First, a DNA-microarray representing 14172 Ae. aegypti transcripts 

(‘Aedes detox chip plus’) was used to compare the transcriptome of larvae and adults between 

the Imida-R and the susceptible strains (publication IV and chapter III). Later on, another 

comparison was performed, focusing in larvae where resistance is highly expressed, by using 

a recent mass sequencing approach known as mRNA-sequencing. 

DNA-microarray screening identified 344 and 108 genes differentially transcribed in 

Imida-R larvae and adults respectively with a strong over-representation of over-transcribed 

genes in larvae (289 versus 55 genes) but not in adults (43 versus 65 genes). Messenger RNA 

sequencing identified 393 transcripts differentially expressed in Imida-R larvae compared to 

the susceptible strain with a similar imbalance between genes over- and under-transcribed 

(293 versus 80 genes). Comparison between results obtained by microarray and RNA-seq 

indicated a good correlation between the results obtained from the two techniques (r² = 0.42) 

and revealed that 139 transcripts were found commonly significantly differentially transcribed 

in both approaches with 137 and 2 transcripts over- and under-transcribed respectively. 

Indeed, these 139 genes were therefore considered as strong candidates for a potential role in 

imidacloprid resistance.  
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Among the 137 genes over-transcribed in the Imida-R strain, 21 genes (15 %) encoded 

cuticle proteins. The cuticle barrier plays a crucial role in the protection of insects from their 

environment. The vast majority of chemical insecticides are lipophilic compounds, 

penetrating into insects through their cuticle. Moreover, cuticle thickening has been suggested 

to play a role in the resistance of mosquitoes to insecticides (Vontas et al., 2007, Djouaka et 

al., 2008, Wood et al., 2010). In vivo penetration assays by using radiolabeled insecticide 

have demonstrated a reduced cuticular penetration of imidacloprid in neonicotinoid resistant 

insects (Puinean et al., 2010b). Our preliminary results obtained in chapter III revealed that 

the imidacloprid tolerance of larvae exposed to diflubenzuron (a chitin synthesis inhibitor) 

was less affected in Imida-R larvae compared to susceptible larvae. These preliminary results 

support the involvement of cuticle thickening in imidacloprid resistance. Conversely, our 

previous results showing the over-transcription of multiple cuticle genes following 

imidacloprid exposure without any subsequent increase in imidacloprid tolerance did not 

support this hypothesis (publication I and II). The role of cuticle thickening in imidacloprid 

resistance in mosquitoes needs to be further investigated by using other approaches. For 

example, the use of 14C-radiolabelled imidacloprid will allow comparing insecticide uptake 

between the Imida-R and the susceptible strains. 

Four genes encoding hexamerins were found over-transcribed in Imida-R larvae by 

both techniques. One of them (AAEL013757) was also found induced by imidacloprid 

(Publication II). Insect hexamerins may be involved in cuticle formation, hormone transport, 

immune defense and metamorphosis (Burmester 1999). Hexamerins of the lepidopteran 

Heliothis zea have been shown to bind lipophilic insecticides, suggesting a putative role in 

resistance (Haunerland & Bowers 1986). However, the relative low lipophilicity of 

imidacloprid (log Kow = 0.57) does not fully support the hypothesis of its sequestration by 

hexamerins ((Haunerland & Bowers 1986). Further studies using functional biology 

techniques such as interfering RNA may allow investigating further the role of these proteins 

in insecticide resistance.  

Analysis of gene functions found differentially transcribed by both techniques in the 

Imida-R strain revealed an over-representation of several genes involved in cellular 

catabolism. Insecticide resistance is frequently associated with fitness costs and an increased 

metabolism is often observed in insecticide-resistant individuals to maintain resistance 

mechanisms. If such compensation mechanism does not take place, the energy reallocation 

necessary for the individual protection from insecticides may impair fundamental 
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physiological processes such as development and reproduction (Hostetler et al., 1994, Chown 

& Gaston 1999, Harak et al., 1999). In insecticide-resistant strains of Sitophilus zeamais, 

resistance cost was associated with an increased activity of enzymes involved in cellular 

catabolism such as proteinases, proteases, amylases and collagenases (Araujo et al., 2008). 

The over transcription of these enzymes in the Imida-R resistant strain together with a 

decrease of resistance following the release of the selection pressure for 3 generations  

support the hypothesis of a significant resistance cost in the Imida-R strain (Chapter III and 

Publication IV). 

Numerous genes encoding detoxification enzymes were found differentially 

transcribed in the Imida-R strain by the two techniques, including 8 P450s (CYP325S3, 

CYP9M9, CYP6Z8, CYP6Z7, CYP6BB2, CYP6N9, CYP4D24 and CYP4H28) and one GST 

(GSTD4). Interestingly CYP9M9 was previously shown to be induced in larvae exposed to 

imidacloprid and other chemicals (Publication I and II; Poupardin et al., 2008). This gene was 

also found constitutively over-transcribed in Ae. aegypti from Martinique island resistant to 

temephos and deltamethrin (Marcombe et al., 2009). The induction of CYP6Z8 by various 

xenobiotics has also been reported (Poupardin et al., 2008) and members of the CYP6Z 

subfamily are known for their role in metabolic resistance to insecticides and chemoprotection 

in mosquitoes (David et al., 2005, Chiu et al., 2008, McLaughlin et al., 2008, Marcombe et 

al., 2009). The over expression of CYP6Z genes in the Imida-R strain may explain the cross-

resistance phenomenon observed, in particular with DDT (Chapter III). Indeed AeCYP6Z7 

and AeCYP6Z8 genes are very similar to AgCYP6Z1 (Publication III) which has been 

demonstrated to metabolize DDT (Chiu et al., 2008). In the brown plant hopper N. lugens, the 

increased metabolism of imidacloprid by P450s was considered as the main resistance 

mechanism (Puinean et al., 2010a). In D. melanogaster, DmCYP6G1 was involved in 

imidacloprid resistance (Daborn et al., 2001, 2002). Later, its heterologous expression in 

Nicotiana tabacum cells confirmed its capacity to metabolize imidacloprid to its 4- and 5-

hydroxy forms (Joussen et al., 2008). More recently, the over-transcription of BmCYP6CM1 

in the white fly B. tabaci was correlated to imidacloprid resistance (Karunker et al., 2008) and 

the capacity of this P450 to hydroxylate imidacloprid to its less toxic 5-hydroxy form was 

confirmed (Karunker et al., 2009). 
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4.3.3 From transcriptomics to candidate genes 

 The significant effects of detoxification enzyme inhibitors observed from bioassays 

and comparison of biochemical activities between Imida-R and susceptible strains suggested 

the importance of P450s in the resistance of Imida-R larvae (Publication IV). The significant 

role of P450s in resistance was then confirmed by a NADPH-dependent in vitro metabolism 

of imidacloprid 2-fold higher in the Imida-R strain than in the susceptible strain. 

Considering the role of P450s in the resistance observed, a multiple protein alignment 

of the  P450s found over-transcribed in Imida-R larvae with BtCYP6CM1vQ and 

DmCYP6G1, P450 enzymes known to metabolize imidacloprid in B. tabaci and D. 

melanogaster was performed (Publication IV). Substrate Recognition Site (SRS) domains 

alignment identified several CYP6s having significant SRS similarities. Among them, 

AeCYP6BB2, AeCYP6N12 and AeCYP6Z8 showed high similarities with DmCYP6G1 and 

BtCYP6CM1vQ, particularly for residues proposed to be involved in imidacloprid binding 

(Karunker et al., 2009). A modeling approach was then used to attempt to predict if any of the 

CYP6 candidates could bind and metabolize imidacloprid. Our models were based on 

BtCYP6CM1vQ, itself modeled from the crystal structure of CYP3A4, a human P450 able to 

metabolize imidacloprid (Honda et al., 2006, Karunker et al., 2009). These models did not 

allow varying imidacloprid position and should therefore be interpreted with caution. 

Nevertheless, our models suggested that AeCYP6BB2 has a very similar binding pocket to 

BtCYP6CM1vQ and may bind and metabolize imidacloprid in the same manner (5-

hydroxylation), although this needs to be confirmed experimentally. This prediction, 

combined with the high rate of AeCYP6BB2 over-transcription in the Imida-R strain, 

identified this enzyme as a good candidate for imidacloprid metabolism in Ae. aegypti. 

However, AeCYP6N12 and AeCYP6Z8 binding sites also had good similarities with 

BtCYP6CM1vQ and were thus also considered as serious candidates for imidacloprid 

metabolism. 

In the meantime, heterologous expression of one candidate gene, AeCYP6Z8, was 

successfully performed in our laboratory by Dr. Alexia Chandor-Proust. Our results 

demonstrated that CYP6Z8 expressed in yeast was functional and able to metabolize 

imidacloprid in vitro. Two metabolites of imidacloprid were observed in the presence of 

NADPH. Although imidacloprid metabolism is not known in mosquitoes, different studies 

have demonstrated the production of hydroxy-imidacloprid in insects (Rauch & Nauen 2003, 



191 
 

Joussen et al., 2008, Karunker et al., 2009). Additional studies using mass spectrometry are 

needed to identify the two metabolites observed in our study.  

Finally, the importance of CYP6Z8 in the Imida-R resistance is supported by RT-qPCR results 

obtained after a released of the selection pressure from G11 to G14 leading to the NS-Imida-R 

strain (Chapter 3). In this strain, a decrease in the resistance to imidacloprid was observed 

concomitantly with a significant decrease in the constitutive expression of CYP6Z8. 

 

4.3.4 Molecular mechanism associated with resistance 

The research work presented here clearly suggests that molecular mechanisms hidden 

behind metabolic resistance and response to insecticides are very complex (Hines & 

McCarver 2002, Li et al., 2007). Increase resistance following insecticide selection may be 

the consequence of different processes. First, the resistance might be the consequence of the 

accumulation and enrichment of individuals carrying ‘minor’ resistance alleles after selection 

at each generation. These alleles are not all present in one individual but overall, the resistant 

strain is enriched in particular allelic combinations leading to resistance (McKenzie & 

Batterham 1994).  

Repeated insecticide exposure may also conduct to the over-expression of a particular 

gene able to metabolize the insecticide following two different alteration in DNA sequence: 

1) A gene may be amplified by the multiplication of its copy number on DNA leading to an 

increase in detoxification processes, (2) Gene expression may be increased through a 

mutation in its promoter sequence (or a regulatory element) leading to increased-transcription 

and enzyme over-production. Finally, metabolic resistance might be also the consequence of a 

mutation in the coding sequence of a detoxification enzyme leading to an ‘new’ enzyme allele 

metabolizing the insecticide at a higher rate (Figure 4-1) (Scott 1995, Hemingway & Ranson 

2000, Paton et al., 2000, Li et al., 2007, Alou et al., 2010). 
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Figure 4-1: The type of genetic mutations which can occur and cause resistance in insects (Scott 
1995). 

Mechanisms involved in Imida-R metabolic resistance are not fully elucidated. 

However, these mechanisms are likely the consequence of gene over-expression under the 

control of ‘cis’ or ‘trans’ regulatory elements (Waxman 1999, Xu et al., 2005). Some 

elements regulating the expression of detoxification enzymes have been identified in insects 

(McDonnell et al., 2004). Elevated level of GSTs has been identified in insecticide resistant 

strains of mosquitoes as a consequence of both trans  and cis acting factors. In Ae. aegypti, a 

mutation in a trans acting repressor element has been proposed for the enhanced expression of 

a GST in a DDT resistant strain (Grant & Hammock 1992). In A. gambiae, the 

overexpression of GSTe2 in a resistant strain was associated with the deletion of two 

adenosine residues in the core promoter of this gene (Ding et al., 2005). An in silico 

preliminary analysis of the promoter regions of two of the three candidate genes highlighted 

in our study (CYP6Z8 and CYP6N12) revealed the presence of potential cis regulatory 

elements within 1000 bp upstream of first codon. Interestingly, promoter sequences of 

CYP6Z8 shown to metabolize imidacloprid and induced by multiple xenobiotics, contains 

three “Xenobiotic responsive element” (XRE) (Poupardin et al., 2008). 

In chapter III, a transcription profiling of several candidate genes was performed in the 

susceptible, NS-Imida-R and Imida-R strains following imidacloprid exposure (Figure 3-19). 

In the susceptible strain only UGT-1 was induced after imidacloprid exposure. Three CYPs, 

CYP4D24, CYP6N9 and CYP6Z8 were significantly induced by imidacloprid in NS-Imida-R 

while the Imida-R strain seemed to be more responsive to imidacloprid with CYP4D24, 

CYP6N9, CYP6N12, CYP6Z8, GSTD4, UGT-1 and UGT-2 being induced.  

These results suggested that genes selected by imidacloprid selection are also more 

responsive to imidacloprid. This phenomenon has been described before (Vontas et al., 2005) 
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and supports the hypothesis of an important selection pressure on particular regulatory 

elements. Indeed, additional experiments are needed to confirm the implication of cis or trans-

acting elements. Combining in silico promoter analysis and promoter activity luciferase 

assays will contribute to identify regulatory element involved in the over-regulation of genes 

involved in the resistance of the Imida-R strain to imidacloprid. 

The resistance observed in the Imida-R strain may also be the consequence of the 

selection of particular alleles or to alternatively spliced transcripts. Messenger RNA-

sequencing technique, described in the chapter 3 is a very suitable method for the 

identification of such processes. For example, we have identified one gene encoding the 

nuclear receptor β-ftz (AAEL002062) which displayed a significant difference in the 

proportion of its two detected alternative transcripts between the Imida-R and the susceptible 

strain. Data obtained clearly indicated a higher over-transcription of the exon1 from the RA 

transcript in the Imida-R strain compared to the exon1 from the RB transcript. This nuclear 

receptor is known to dimerize with the ecdysone receptor and to interact with Ec-RE 

(ecdysone responsive element) present in the promoter sequence of several genes including 

CYPs (Fisk & Thummel 1995, Crispi et al., 1998, Giguere 1999). Interestingly, promoter 

sequences of CYP6Z8 shown to metabolize imidacloprid and CYP6N12 contain one EcRE 

(Poupardin et al., 2008). Although this can be a pure coincidence, this may require further 

investigations.   

Finally, regarding the selection of particular mutations and/or allelic variations in the 

Imida-R strain, further analyses of our mRNA-seq data are currently in progress and should 

allow us to identify nucleotide variations associated with imidacloprid resistance.  
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4.4 Conclusions and perspectives 

The overall purpose of my thesis work was to explore the potential use of the 

neonicotinoid imidacloprid for mosquito control and more specifically to identify potential 

imidacloprid metabolic resistance mechanisms in mosquitoes. 

We confirmed the good efficiency of imidacloprid against mosquitoes, suggesting its 

potential use for vector control were resistance to other insecticides occurs. However, the use 

of neonicotinoids and particularly imidacloprid is polemic. Some studies pointed out the high 

toxicity of imidacloprid against non-target beneficial insects such as bees (Yang et al., 2008, 

Tennekes 2010), Other studies considered viral-related diseases (including wing deform 

virus), bee’s colony dynamics (e.g., age of queen) and other environmental factor (e.g. flora 

diversity and pollution) mainly responsible for the decrease of bee hives (Genersch et al., 

2010) and denied the adverse effects of imidacloprid (Maus and Nauen 2011).  This 

controversy is undoubtedly a limitation for the use of imidacloprid against mosquitoes in 

areas where non-target insects are present. In this context, imidacloprid might be used in 

urban areas where non-target insects are barely present and resistance level to conventional 

insecticides is high. In addition, other neonicotinoids showing less toxicity against non-target 

insects such as bees may also be considered as good alternative for vector control, especially 

for controlling disease outbreaks when mosquitoes are resistant to other insecticides. 

Despite the relative good efficiency of imidacloprid against mosquitoes compared to 

other insecticides classes, the present work demonstrate that neonicotinoid resistance can 

appear relatively rapidly in mosquito populations under selection pressure with imidacloprid 

at the larval stage. Interestingly selection at the larval stage did not lead to resistance at the 

adult stage suggesting that resistance mechanisms are life-stage-specific. Larval resistance to 

imidacloprid was associated with important modifications of gene transcription levels, with 

protein families involved in detoxification, cuticle synthesis, xenobiotic transport and cell 

catabolism being mainly affected. As in other insects, P450-mediated insecticide metabolism 

appears to play a major role in imidacloprid resistance in mosquitoes and our results identified 

three genes (CYP6BB2, CYP6N12 and CYP6Z8) as best candidates for imidacloprid 

metabolism. Until now, only the role of CYP6Z8 in imidacloprid metabolism has been 

confirmed in vitro through heterologous expression in yeast and the expression of CYP6BB2 

and CYP6N12 are currently in process in our laboratory. In addition, several other candidate 

genes potentially involved in resistance are waiting for further functional validation. Scaling 
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up the throughput of functional validation techniques is clearly one of the challenges 

biologists are now facing following the development of high throughput ‘omic’ approaches. 

An understanding of the molecular pathways of insecticide metabolism would open up new 

avenues for manipulating mosquito populations to restore their susceptibility to insecticides. 

The SNP markers represent a useful tool for genetic studies in mosquitoes, and it 

would be helpful in identifying candidate genes that affect diverse ranges of phenotypes and 

thereby impact on vector control (insecticide resistance, mosquito behavior etc). The analysis 

of promoter regions would be helpful to understand the regulation of candidate genes. 

Techniques such as CAGE (Cap Analysis of Gene Expression) would allow deciphering the 

role of particular promoter sites in thealtered expression of genes linked to resistance. Beyond 

transcriptomics, further functional studies will be required to validate the possible role of 

specific genes in the resistance phenotype. Techniques such as gene silencing by RNA 

interference or genes over expression by using germline transformation could be used to 

verify the role of specific candidate genes in conferring resistance. 

Interactions between phenotypic plasticity and genotype modifications in the context 

of adaptation are complex and may also need further investigations. Indeed, relations between 

these two adaptive mechanisms are of interest to better understand the molecular basis of 

insecticide resistance and the impact of environmental factors on the selection of resistance 

alleles.  

This thesis was of multidisciplinary nature, including Toxicology, Biochemistry, and 

Molecular biology approaches. This PhD research work provided me an opportunity to learn 

different new techniques and methods and work in collaboration with other researchers from 

the LECA Grenoble and other laboratories such as the Liverpool School of Tropical Medicine 

(LSTM). Every year, my own country, Pakistan, is threatened by mosquito transmitted 

diseases which affect thousands of people. The present research experience provided me with 

the necessary experience to conduct researches on mosquitoes in the University of Sargodha, 

Sargodha (UOS), Pakistan and University of Agriculture, Faisalabad (UAF), Pakistan for 

monitoring the resistance levels and mechanisms of mosquitoes to insecticide and optimize 

vector control strategies in Pakistan.  
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Annexe table 1: The following table list all chemicals (synergists, xenobiotics and insecticides) 
used in the present work. 

Type Name Chemical formula Remarks 
Exposition / 

Bioassays 

H
er

bi
ci

de
s 

Atrazine 

 

Triazine herbicide. 
Blocks photosynthesis. 
Heavily used in 
agriculture. Known water 
contaminant.  

Larval 
exposure 

Glyphosate 

 

Amino-phosphonate 
herbicide. 
Heavily used in 
agriculture known 
contaminant of wetlands.  

Larval 
exposure 

P
A

H
s 

Fluoranthene 

 

Polycyclic aromatic 
hydrocarbon pollutant 
(PAH). Produced due to 
incomplete combustion. 
Frequently found in 
urban and industrial 
areas. 

Larval 
exposure 

Benzo[a]pyrene 

 

 

Polycyclic aromatic 
hydrocarbon pollutant 
(PAH). Produced due to 
incomplete combustion. 
Frequently found in 
urban and industrial 
areas.  

Larval 
exposure 

M
et

al
/i

on
 

Copper sulfate CuSO4 

Metal pollutant. Major 
component of Bordeaux 
mixture used in 
agriculture. 

Larval 
exposure 
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N
eo

ni
co

ti
no

id
s 

Acetamiprid 

 

Class Neonicotinoids, 
subclass 
Chloronicotinyl. First 
neonicotinoids 
generation. Binds to 
acetylcholine receptors. 

Bioassays 

Imidacloprid 

 
Class Neonicotinoids, 
subclass 
Chloronicotinyl. First 
neonicotinoids 
generation.. Binds to 
acetylcholine receptors.  

Bioassays/Ex
posure 

Thiamethoxam 

 

Class Neonicotinoids, 
subclass Thianicotinyl. 
Second neonicotinoids 
generation. Binds to 
acetylcholine receptors.  

Bioassays 

IG
R

s 

Diflubenzuron 

 

Insect growth regulator 
(IGR), class 
Benzoylphenylurea. 
Chitin synthesis 
inhibitor.  

Bioassays/Ex
posure 

Pyriproxyfen 

 

Insect Growth regulator. 
Juvenile hormone analog. 
Prevents larvae from 
developing into pupae 
and adults..  

Bioassays 

P
yr

et
hr

oi
d 

Permethrin 

 

Class Pyrethroid (Pyr)  
Disturbs the functioning 
of voltage gated sodium 
channels. Often used as 
an adulticide.  

Bioassays/Ex
posure 

C
ar

ba
m

at
e 

Propoxur 

 

Class Carbamates 
(Carbs). Blocks the 
acetylcholinesterase. Can 
be used as larvicide or 
adulticide in vector 
control. 

Bioassays/Ex
posure 
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O
rg

an
op

ho
sp

ha
te

 

Temephos 

 

Class 
Organophosphates 
(OPs). 
Blocks the 
acetylcholinesterase. 
Mostly used as a 
larvicide in vector 
control. 

Bioassays 
O

rg
an

oc
hl

or
id

e 

DDT 

 

Class Organochlorides 
(OCs). 
Binds to the voltage-
gated sodium channel 
and locks it in the open 
state. 

Bioassays 

S
yn

er
gi

st
s 

Piperonyl 

butoxide (PBO) 

 

Inhibitor of Cytochrome 
P450s 

Bioassays 

(with 

insecticides) 

Diethyl maleate 

(DEM) 

 

 

Inhibitor of Glutathione 
S-transferases 

Bioassays 

(with 

insecticides) 

Tributyl 

phosphorotrith

ioate (DEF) 
 

Inhibitor of esterases Bioassays 

(with 

insecticides) 

 

 

 

 


