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DISPERSIVE WAVES GENERATED BY AN UNDERWATER

LANDSLIDE

DENYS DUTYKH∗, DIMITRIOS MITSOTAKIS, SONYA BEYSEL, AND NINA SHOKINA

Abstract. In this work we study the generation of water waves by an underwater sliding

mass. The wave dynamics are assumed to fell into the shallow water regime. However, the

characteristic wavelength of the free surface motion is generally smaller than in geophys-

ically generated tsunamis. Thus, dispersive effects need to be taken into account. In the

present study the fluid layer is modeled by the Peregrine system modified appropriately

and written in conservative variables. The landslide is assumed to be a quasi-deformable

body of mass whose trajectory is completely determined by its barycenter motion. A

differential equation modeling the landslide motion along a curvilinear bottom is obtained

by projecting all the forces acting on the submerged body onto a local moving coordi-

nate system. One of the main novelties of our approach consists in taking into account

curvature effects of the sea bed.
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1. Introduction

Extreme water waves can become an important hazard in coastal areas. Many geophysi-
cal mechanisms are related with underwater earthquakes and landslides. The former genesis
mechanism has been intensively investigated since the Tsunami Boxing Day but also be-
fore [Oka88, OS03, OS04, SB06, DD07, DD09, BCD+09]. The list of references is far from
being exhaustive. In this study we focus on the latter mechanism – the underwater land-
slides which can cause some damage in the generation region. In general, the wavelength
of landslide generated waves is much smaller than the length of transoceanic tsunamis.
Consequently, the dispersive effects might be important. This consideration explains why
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we opt for a dispersive model [DKM11], which is able to simulate the propagation and
run-up of weakly nonlinear weakly dispersive water waves on nonuniform beaches.

Most of the landslide models which are currently used in the literature can be conven-
tionally divided into three big categories. The first category contains the simplest models
where the landslide shape and its trajectory are known a priori [TBC01, THT02, LLS03,
DNPZ10]. Another approach consists in assuming that the landslide motion is translational
and the sliding mass follows the trajectory of its barycenter. The governing equation of
the center of mass is obtained by projecting all the forces, acting on the slide, onto the
horizontal direction of motion [GW99, WIG00, DBPD09]. Finally, the third category of
models describe the slide-water evolution as a two-layer system, the sliding mass being
generally described by a Savage-Hutter type model [FNBB+08]. Taking into account all
the uncertainties which exist in the modeling of the real-world events, we choose in this
paper to study the intermediate level (i.e. the second category) which corresponds better
to the precision of the available data.

The present study is organized as follows. In Section 2 we briefly describe the water
wave model we use, while Section 3 contains a more detailed presentation of the landslide
model. The test-case considered in our study along with numerical results are presented
in Section 4. Finally, the main conclusions of this study are outlined in Section 5.

2. Water wave model

The water wave model we use in this study is based on the classical system derived
by D.H. Peregrine [Per67]. However, the original derivation assumes that the bottom is
stationary in time, i.e. z = −d(x). Later, the bottom dynamics has been included into
this system derivation by T. Wu [Wu81, Wu87]. In order to simulate the wave run-up, a
conservative form of this system has to be derived. In the static bottom case it was done
recently [DKM11]. The conservative system we use in the present study can be obtained
in a similar way and can be written in the form:

Ht +Qx = 0, (2.1)

(

1 +
1

3
H2

x −
1

6
HHxx

)

Qt −
1

3
H2Qxxt −

1

3
HHxQxt +

(Q2

H
+

g

2
H2

)

x
= gHdx +

1

2
Hdxtt,

(2.2)

where H(x, t) := d(x, t) + η(x, t) is the total water depth and η(x, t) is the free surface
elevation below the still water level. The horizontal mass flux is denoted by Q(x, t) :=
H(x, t)u(x, t) where u(x, t) is the depth-averaged horizontal velocity variable. The bottom
motion enters into the momentum balance equation (2.2) through the source term 1

2
Hdxtt.

The mass conservation equation (2.1) keeps naturally its initial form. We underline that
the linear dispersion relation of the modified Peregrine system (2.1), (2.2) is identical with
that the original Peregrine model [Per67] since these models differ only in nonlinear terms.

This modified Peregrine (m-Peregrine) system (2.1), (2.2) has several advantages. First
of all, we note that the full water wave problem is invariant under the vertical translations
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[BO82]. The asymptotic expansion method around the mean water level breaks this sym-
metry. The introduction of conservative variables (H,Q) allows to recover this property.
Another advantage is that the dispersive terms in the m-Peregrine system naturally vanish
as the total water depth H along with its first derivative Hx tend to zero. This property is
in complete agreement with the physical behavior of water waves which become more and
more nonlinear to the detriment of the dispersion while approaching the shore.

In order to solve numerically the m-Peregrine system (2.1), (2.2) we choose the use of the
finite volume method. Moreover, the run-up technique is well understood in the framework
of Nonlinear Shallow Water equations [DPD11], which allows us to reuse this technology
in the dispersive setting. The advective terms are discretized using the FVCF approach
[GKL01] with UNO2 space reconstruction [HO87]. The dispersive terms are treated with
the finite differences. For the time discretization we use the Bogacki-Shampine 3rd order
Runge-Kutta scheme with adaptive time step control. Note that on each time step we have
to solve a tridiagonal system of linear equations in order to determine the time derivative
Qt. We refer to [DKM11] for more details on the numerical method.

3. Landslide model

In this section we briefly present a model of an underwater landslide motion. This process
has to be addressed carefully since it determines the subsequent formation of water waves.
In this study we will assume the moving mass to be a solid quasi-deformable body with a
prescribed shape and known physical properties that preserves its mass and volume. Under
these assumptions it is sufficient to compute the trajectory of the barycenter x = xc(t) to
determine the motion of the whole body. In general, only uniform slopes are considered
in the literature in conjunction with this type of landslide models [PP96, GW99, WIG00,
DBPD09]. However, a novel model, taking into account the bottom geometry and curvature
effects, has been recently proposed [KS10]. Hereafter we will follow in great lines this study.

The static bathymetry is prescribed by a sufficiently smooth (at least of the class C2)
and single-valued function z = −d0(x). The landslide shape is initially prescribed by a
localized in space function z = ζ0(x). For example, in this study we choose the following
shape function:

ζ0(x) = A

{

1
2

(

1 + cos(2π(x−x0)
ℓ

)
)

, |x− x0| ≤
ℓ
2

0, |x− x0| >
ℓ
2
,

(3.1)

where parameters A is the maximum height, ℓ is the length of the slide and x0 is the initial
position of its barycenter. Obviously, the model description given below is valid for any
other reasonable shape.

Since the landslide motion is translational, its shape at time t is given by the function
z = ζ(x, t) = ζ0(x − xc(t)). Recall that the landslide center is located at the point with
abscissa x = xc(t). Then, the impermeable bottom for the water wave problem can be
easily determined at any time by simply superposing the static and dynamic components:

z = −d(x, t) = −d0(x) + ζ(x, t).
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To simplify the subsequent presentation, we introduce the classical arc-length parametriza-
tion, where the parameter s = s(x) is given by the following formula:

s = L(x) =

∫ x

x0

√

1 + (d′0(ξ))
2 dξ. (3.2)

The function L(x) is monotonic and can be efficiently inverted to turn back to the original
Cartesian abscissa x = L−1(s). Within this parametrization, the landslide is initially
located at point with the curvilinear coordinate s = 0. The local tangential direction is
denoted by τ and the normal by n.

The landslide motion is governed by the following differential equation obtained by a
straightforward application of Newton’s second law:

m
d2s

dt2
= Fτ (t),

where m is the mass and Fτ (t) is the tangential component of the forces acting on the
moving submerged body. In order to project the forces onto the axes of local coordinate
system, the angle θ(x) between τ and Ox can be easily determined:

θ(x) = arctan
(

d′0(x)
)

.

Let us denote by ρw and ρℓ the densities of the water and sliding material correspondingly.
If V is the volume of the slide, then the total mass m is given by this expression:

m := (ρℓ + cwρw)V,

where cw is the added mass coefficient [Bat00]. A portion of the water mass has to be
added since it is entrained by the underwater body motion. For a cylinder, for example,
the coefficient cw is equal exactly to one. The volume V can be computed as

V = W · S = W

∫

R

ζ0(x) dx,

where W is the landslide width in the transverse direction. The last integral can be
computed exactly for the particular choice (3.1) of the landslide shape to give

V =
1

2
ℓAW.

The total projected force Fτ acting on the landslide can be conventionally represented
as a sum of two different kind of forces denoted by Fg and Fd:

Fτ = Fg + Fd,

where Fg is the joint action of the gravity and buoyancy, while Fd is the total contribution
of various dissipative forces (to be specified below).

The gravity and buoyancy forces act in opposite directions and their horizontal projection
Fg can be easily computed:

Fg(t) = (ρℓ − ρw)Wg

∫

R

ζ(x, t) sin
(

θ(x)
)

dx.
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Now, let us specify the dissipative forces. The water resistance to the motion force Fr is
proportional to the maximal transversal section of the moving body and to the square of
its velocity:

Fr = −
1

2
cdρwAWσ(t)

(ds

dt

)2

,

here cd is the resistance coefficient of the water and σ(t) := sign
(

ds
dt

)

. The coefficient σ(t)

is needed to dissipate the landslide kinetic energy independently of its direction of motion.
The friction force Ff is proportional to the normal force exerted on the body due to the
weight:

Ff = −cfσ(t)N(x, t).

The normal force N(x, t) is composed of the normal components of gravity and buoyancy
forces but also of the centrifugal force due to the variation of the bottom slope:

N(x, t) = (ρℓ − ρw)gW

∫

R

ζ(x, t) cos
(

θ(x)
)

dx+ ρℓW

∫

R

ζ(x, t)κ(x)
(ds

dt

)2

dx,

where κ(x) is the signed curvature of the bottom which can be computed by the following
formula:

κ(x) =
d′′0(x)

(

1 + (d′0(x))
2
)

3

2

.

We note that the last term vanishes for a plane bottom since κ(x) ≡ 0 in this particular
case.

Finally, if we sum up all the contributions of described above forces, we obtain the
following second order differential equation:

(γ + cw)S
d2s

dt2
= (γ − 1)g

(

I1(t)− cfσ(t)I2(t)
)

− σ(t)
(

cfγI3(t) +
1

2
cdA

)(ds

dt

)2

, (3.3)

where γ := ρℓ
ρw

> 1 is the ratio of densities and integrals I1,2,3(t) are defined as:

I1(t) =

∫

R

ζ(x, t) sin
(

θ(x)
)

dx,

I2(t) =

∫

R

ζ(x, t) cos
(

θ(x)
)

dx,

I3(t) =

∫

R

ζ(x, t)κ(x) dx.

Note also that equation (3.3) was simplified by dividing both sides by the width value W .
In order to obtain a well-posed initial value problem, equation (3.3) has to be completed
by two initial conditions:

s(0) = 0, s′(0) = 0.

In order to solve numerically equation (3.3) we employ the same Bogacki-Shampine 3rd
order Runge-Kutta scheme as we use to solve the Boussinesq equations (2.1), (2.2). The
integrals I1,2,3(t) are computed using the trapezoidal rule. Once the landslide trajectory
s = s(t) is found, we use equation (3.2) to find its motion x = x(t) in the initial Cartesian
coordinate system.
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Figure 1. Bathymetry profile for parameters given in Table 1.

4. Numerical results

Let us consider the one-dimensional computational domain I = [a, b] = [−3, 10] com-
posed from three regions: the left and right sloping beaches surrounding a complex gen-
eration region. Specifically, the static bathymetry function d0(x) is given by the following
expression:

d0(x) =







d0 + 4 tan δ · x, x ≤ 0,
d0 + tan δ · x+ p(x), 0 < x ≤ m,

d0 + 4m tan δ − 3 tan δ · x, x > m,

where the function p(x) is defined as

p(x) = A1e
−k1(x−x1)2 + A2e

−k2(x−x2)2 .

Basically, this function represents a perturbation of the sloping bottom by two underwater
bumps. We made this nontrivial choice in order to illustrate better the advantages of our
landslide model, which was designed to handle general non-flat bathymetries. The values
of all physical and numerical parameters are given in Table 1. The bottom profile for these
parameters is depicted on Figure 1.

The landslide motion starts from the rest position under the action of the gravity force.
We study its motion along with the waves of the free surface up to T = 21 s. The landslide
barycenter trajectory along with its speed and acceleration are shown in Figure 2. As it is
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Parameter Value

Gravity acceleration, g 1.0
Water depth at x = 0, d0 1.0
Bottom slope, tan(δ) 0.15

Underwater bump amplitude, A1 1.0
Underwater bump amplitude, A2 1.6

Bump steepness, k1 1.9
Bump steepness, k2 3.9

Bump center position, x1 1.2
Bump center position, x2 2.6

Boundary between bottom regions, m 4.0
Number of control volumes, N 1000

Slide amplitude, A 0.3
Length of the slide, ℓ 2.0

Initial slide position, x0 0.0
Added mass coefficient, cw 1.0
Water drag coefficient, cd 1.0
Friction coefficient, cf tan 1◦

Ratio between water and slide densities, γ 1.5

Table 1. Values of various parameters used in the numerical computations.

expected, the landslide remains trapped in the second underwater bump, where it oscillates
before stopping completely its motion.

One of the important parameters in shallow water flows is the Froude number defined as
the ratio between the characteristic fluid velocity to the gravity wave speed. We computed
also this parameter along the landslide trajectory:

Fr(t) :=
|x′

c(t)|
√

gd
(

xc(t), t)
)

.

The result is presented in Figure 3. We can see that in our case the motion remains
subcritical during the experiment.

We installed two synthetic wave gauges located at x = 2 (point located between two
underwater bumps) and x = m (endpoint of the generation region and the beginning of
the right sloping beach, m = 4 in our simulations) in order to measure the magnitude of
generated free surface motions. These synthetic records are presented in Figure 4. Finally,
the wave run-up is simulated numerically on the left and right beaches. The shoreline
motion is represented in Figure 5. We can see, that the proposed scenario provides higher
run-up values on the opposite beach to the slope where the landslide takes place.
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Figure 2. Barycenter position (blue solid line), velocity (black dashed line)
and acceleration (blue dash-dotted line) during the landslide motion.

5. Conclusions

In this study we presented a novel model of a landslide motion over general curvilin-
ear bottoms. This model takes into account the effects of bottom curvature, generally
neglected in the literature [PP96, GW99, WIG00, DBPD09]. Despite the inclusion of
some new physical effects, the considered model is computationally inexpensive and can
be potentially used in more operational context. The computed bottom motion is strongly
coupled with a conservative Peregrine system [DKM11] which describes the propagation of
nonlinear weakly dispersive water waves. The run-up of landslide generated waves on both
beaches is simulated using the m-Peregrine system. The extension of this approach to three
dimensions represents a natural perspective for future research along with investigation of
other possible scenarios.
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