A New CO₂ Capture Platform: Hollow Fiber Adsorbents for Post-Combustion Recovery

Ryan Lively The Impact of CO₂ on Global Climate Change September 3rd, 2009

Why not simply switch to less polluting power production? –*Scale*.

CO₂ capture from coal fired power plants is one bridging strategy to lower CO₂ emissions

(Values) in parentheses are atmospheric ppm levels of CO_2

CO₂ Capture Strategies

- The majority of the USA's power infrastructure cannot support other capture methods
- Post-combustion capture is the single biggest target for effective carbon capture and storage

Broad Routes for Post-Combustion CO₂ Capture

 Examples: Liquid amines (monoethanolamine), chilled ammonia, ionic liquids

<u>Ad</u>sorption: Accumulation of molecules on the surface of a material

 Examples: Zeolites, activated carbon, silicas, solid supported amines

Basic Energetic Comparison between Adsorption and Absorption

Issues with Packed Bed Adsorption Processes

Hollow Fiber Sorbents

Cooling water used to aid in <u>sorption</u> process. Plant steam used for <u>desorption</u> step.

Thin fiber wall allows for rapid heat transfer. Barrier layer prevents mass exchange between heat transfer agent and CO_2

"Utilizes favorable adsorption energetics while mitigating typical adsorption process deficiencies"...but how?

Using Fiber Sorbents in Thermal Swing Adsorption Mode

Adsorbent Selection

<u>Sorbent</u>	Zeolite 13X	High Silica MFI	Anchored Amines
CO ₂ Dry Sorption Capacity	High	Medium	Low
CO ₂ Wet Sorption Capacity	Very Low		Medium
Heat of Sorption	Medium	Low	High
Diffusion Coefficient [cm ² / s]	10-5	10-7	

Anchored Amines

Hollow Fiber Sorbents: Fabrication

- Extrusion through a concentric annulus
- Fiber characteristics are controlled by:
 - Extrusion rate
 - Fiber take up rate
 - Air gap height
 - Operating temperature

1 phase polymer solution

"Cloud Point"

polymer solution

Fiber Sorbent Spinning: 75wt% Solids

Spinning Conditions

Core flow rate	1000 mL/hr
Bore flow rate	250 mL/hr
Bore Composition	80/20 NMP/H ₂ O
Operating Temp.	25°C
Take-up Rate	11.7 m/min
Air Gap	3.0 cm

Fiber sorbent with correct dimensions

Materials Used

Sorbent	Zeolite 13X	
Polymer	Cellulose Acetate	
Solvent	N-methylpyrrolidone	
Non-Solvent	Water	
Pore Former	Polyvinyl pyrrolidone	

Zeolite 13X dispersed in cellulose acetate matrix

CO₂ Sorption Performance: Equilibrium, Cyclic, and

Barrier Layer Construction

Future Work

- Improving barrier layer performance
- Extending fiber sorbent platform to new sorbents and polymers

- MFI (sorbent) and Torlon (polymer)

- Fiber stability in constant water/steam cycles
- CO₂ capture costs and economics

Acknowledgements

- Koros Research Group
 - Particularly: Jason Ward, Ryan Adams, Vinod Babu, JR Johnson
- Dr. Koros
- Dr. Chance
- ExxonMobil for funding the research – Particularly: Harry Deckman, Rusty Kelley

