On the topology of discrete hyperplanes^{*}

D. Jamet

damien.jamet@loria.fr

We deal with the connectedness of discrete hyperplanes $H(\mathbf{v}, \mu, \omega) = {\mathbf{x} \in \mathbb{Z}^n \mid 0 \leq \langle \mathbf{v}, \mathbf{x} < \omega \rangle}$ with $\mathbf{v} \in \mathbb{R}^n, \mu \in \mathbb{R}$ and $\omega \in \mathbb{R}$.

Given a vector \mathbf{v} and an intersect $\mu \in \mathbb{R}$, the question we investigate is how to calculate $\Omega(\mathbf{v},\mu) = \inf \{\omega \in \mathbb{R} \mid H(\mathbf{v},\mu,\omega) \text{ is connected} \}$ of \mathbb{R}

Let S be a subset of \mathbb{Z} , let us recall that a *path* in S is a finite sequence $\pi = (\mathbf{x}_1, \ldots, \mathbf{x}_k)$ such that $\mathbf{x}_i \in S$ for every $i \in \{1, \ldots, k\}$ and $d(\mathbf{x}_i, \mathbf{x}_{i+1}) = 1$, for every $i \in \{1, \ldots, k\}$, where d denotes Euclidean distance. One says that the path $\pi = (\mathbf{x}_1, \ldots, \mathbf{x}_k)$ links \mathbf{x}_1 to \mathbf{x}_k . The set S is connected if, for each pair (\mathbf{x}, \mathbf{y}) , there exists a path $\pi = (\mathbf{x}_1, \ldots, \mathbf{x}_k)$ in S linking \mathbf{x} to \mathbf{y} .

The first result we present is an algorithm allowing us to compute $\Omega(\mathbf{v}, \mu)$. This algorithm is already known as the *fully subtractive algorithm* [5] and has already been studied in [3, 4] in case of percolations models defined by rotations. It has been proved that the convergence set of the fully subtractive algorithm has Lebesgue-measure zero [3, 4, 2]. A direct consequence is the almost sure finiteness of the algorithm computing $\Omega(\mathbf{v}, \mu)$.

A natural question follows : what about the connectdness of $H(\mathbf{v}, \mu, \omega)$ at the *critical value* $\omega = \Omega(\mathbf{v}, \mu)$? Since $H(\mathbf{v}, \mu, \Omega(\mathbf{v}, \mu))$ is connected only if the fully subtractive algorithm is convergent on the entry \mathbf{v} , it becomes natural to consider such a vector. Let α be the unique real eigenvalue of the matrix

$$\mathcal{M}_3 = \begin{pmatrix} -1 & 1 & 0\\ -1 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix}$$

and let $\mathbf{v} = \alpha \mathbf{e_1} + (\alpha + \alpha^2) \mathbf{e_2} + \mathbf{e_3}$ be the associated eigenvector. Then one computes, for each $\mu \in \mathbb{R}$, $\Omega(\mathbf{v}, \mu) = \frac{1+\alpha}{\alpha}$.

Let $(\mathbf{t_n})_{n \in \mathbb{N}}^{\alpha}$ be a sequence of integer vectors satisfying $\langle \mathbf{t_n}, \mathbf{v} \rangle = \alpha^n$ and let \mathbf{P}_n be a sequence of subsets of \mathbb{Z}^3 defined as follows (see Figure 1):

Figure 1: Step by step construction of P_n

It follows that, for all $n \ge 0$, the set P_n is connected and is a tree. Moreover, the set $P_n \setminus \{0\}$ has exactly 3 connected components (see Figure 2)

^{*}Joint work with J.-L. Toutant (ISIT, Clermont-Ferrand), E. Domenjoud (Loria, Nancy), V. Berthé (Liafa, Paris 7) and X. Provençal (Lama, Chambéry)

Figure 2: The three connected components of $P_{14} \setminus \{0\}$ in three different colors

It is easy to see that, for all $n \in \mathbb{N}$, $P_n \subseteq H\left(\mathbf{v}, 0, \frac{1+\alpha}{\alpha}\right)$. The other inclusion is a consequence of [1] which states that $\operatorname{Fin}(\alpha^{-1}) = \mathbb{Z}[\alpha]$, since $\alpha^{-3} - \alpha^{-2} - \alpha^{-1} - 1 = 0$. It follows that the set $H\left(\mathbf{v}, 0, \frac{1+\alpha}{\alpha}\right)$ is a connected, is a tree and the set $H\left(\mathbf{v}, 0, \frac{1+\alpha}{\alpha}\right) \setminus \{\mathbf{0}\}$ has exactly 3 connected components.

The last problem we investigate is the role of μ in the connectedness of $H\left(\mathbf{v}, \mu, \frac{1+\alpha}{\alpha}\right)$ and we show that the discrete plane $H\left(\mathbf{v}, \frac{1+\alpha}{\alpha}, \frac{1+\alpha}{\alpha}\right)$ is not connected since it is a symmetric of the set $H\left(\mathbf{v}, \mu, \frac{1+\alpha}{\alpha}\right) \setminus \{\mathbf{0}\}$.

References

- Christiane Frougny and Boris Solomyak. Finite beta-expansions. Ergodic Theory Dynam. Systems, 12(4):713-723, 1992.
- [2] Cor Kraaikamp and Ronald Meester. Ergodic properties of a dynamical system arising from percolation theory. *Ergodic Theory Dynam. Systems*, 15(4):653–661, 1995.
- [3] Ronald W. J. Meester. An algorithm for calculating critical probabilities and percolation functions in percolation models defined by rotations. *Ergodic Theory Dynam. Systems*, 9(3):495–509, 1989.
- [4] Ronald W. J. Meester and Tomasz Nowicki. Infinite clusters and critical values in two-dimensional circle percolation. Israel J. Math., 68(1):63–81, 1989.
- [5] F. Schweiger. Multidimensional Continued Fractions. Oxford Science Publications. Oxford University Press, 2000.