On the topology of discrete hyperplanes*

D. Jamet
damien.jamet@loria.fr

We deal with the connectedness of discrete hyperplanes $H(\mathbf{v}, \mu, \omega)=\left\{\mathbf{x} \in \mathbb{Z}^{n} \mid 0 \leq\langle\mathbf{v}, \mathbf{x}<\omega\rangle\right\}$ with $\mathbf{v} \in \mathbb{R}^{n}, \mu \in \mathbb{R}$ and $\omega \in \mathbb{R}$.

Given a vector \mathbf{v} and an intersect $\mu \in \mathbb{R}$, the question we investigate is how to calculate $\Omega(\mathbf{v}, \mu)=$ $\inf \{\omega \in \mathbb{R} \mid \mathrm{H}(\mathbf{v}, \mu, \omega)$ is connected $\}$ of \mathbb{R}

Let S be a subset of \mathbb{Z}, let us recall that a path in S is a finite sequence $\pi=\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ such that $\mathbf{x}_{i} \in S$ for every $i \in\{1, \ldots, k\}$ and $d\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{i}+\mathbf{1}}\right)=1$, for every $i \in\{1, \ldots, k\}$, where d denotes Euclidean distance. One says that the path $\pi=\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ links $\mathbf{x}_{\mathbf{1}}$ to $\mathbf{x}_{\mathbf{k}}$. The set S is connected if, for each pair (\mathbf{x}, \mathbf{y}), there exists a path $\pi=\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ in S linking \mathbf{x} to \mathbf{y}.

The first result we present is an algorithm allowing us to compute $\Omega(\mathbf{v}, \mu)$. This algorithm is already known as the fully subtractive algorithm [5] and has already been studied in [3, 4] in case of percolations models defined by rotations. It has been proved that the convergence set of the fully subtractive algorithm has Lebesgue-measure zero $[3,4,2]$. A direct consequence is the almost sure finiteness of the algorithm computing $\Omega(\mathbf{v}, \mu)$.

A natural question follows : what about the connectdness of $\mathrm{H}(\mathbf{v}, \mu, \omega)$ at the critical value $\omega=\Omega(\mathbf{v}, \mu)$?
Since $\mathrm{H}(\mathbf{v}, \mu, \Omega(\mathbf{v}, \mu))$ is connected only if the fully subtractive algorithm is convergent on the entry \mathbf{v}, it becomes natural to consider such a vector. Let α be the unique real eigenvalue of the matrix

$$
\mathcal{M}_{3}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

and let $\mathbf{v}=\alpha \mathbf{e}_{\mathbf{1}}+\left(\alpha+\alpha^{2}\right) \mathbf{e}_{\mathbf{2}}+\mathbf{e}_{\mathbf{3}}$ be the associated eigenvector. Then one computes, for each $\mu \in \mathbb{R}$, $\Omega(\mathbf{v}, \mu)=\frac{1+\alpha}{\alpha}$.

Let $\left(\mathbf{t}_{\mathbf{n}}\right)_{n \in \mathbb{N}}$ be a sequence of integer vectors satisfying $\left\langle\mathbf{t}_{\mathbf{n}}, \mathbf{v}\right\rangle=\alpha^{n}$ and let P_{n} be a sequence of subsets of \mathbb{Z}^{3} defined as follows (see Figure 1):

$$
\begin{array}{rlrl}
\mathrm{P}: \mathbb{Z} & \longrightarrow \mathfrak{P}\left(\mathbb{Z}^{3}\right) & \\
n & \longmapsto \left\lvert\, \begin{array}{l}
\mathrm{P}_{n}=\{(0,0,0)\} \\
\mathrm{P}_{n}=\mathrm{P}_{n-1} \cup\left(\mathrm{P}_{n-1}+\mathbf{t}_{n}\right)
\end{array}\right. & \text { if } n=0 \\
& \text { if } n>0
\end{array}
$$

Figure 1: Step by step construction of P_{n}
It follows that, for all $n \geq 0$, the set P_{n} is connected and is a tree. Moreover, the set $\mathrm{P}_{n} \backslash\{\mathbf{0}\}$ has exactly 3 connected components (see Figure 2)

[^0]

Figure 2: The three connected components of $\mathrm{P}_{14} \backslash\{\mathbf{0}\}$ in three different colors

It is easy to see that, for all $n \in \mathbb{N}, \mathrm{P}_{n} \subseteq \mathrm{H}\left(\mathbf{v}, 0, \frac{1+\alpha}{\alpha}\right)$. The other inclusion is a consequence of [1] which states that $\operatorname{Fin}\left(\alpha^{-1}\right)=\mathbb{Z}[\alpha]$, since $\alpha^{-3}-\alpha^{-2}-\alpha^{-1}-1=0$. It follows that the set $\mathrm{H}\left(\mathbf{v}, 0, \frac{1+\alpha}{\alpha}\right)$ is a connected, is a tree and the set $\mathrm{H}\left(\mathbf{v}, 0, \frac{1+\alpha}{\alpha}\right) \backslash\{\mathbf{0}\}$ has exactly 3 connected components.

The last problem we investigate is the role of μ in the connectedness of $\mathrm{H}\left(\mathbf{v}, \mu, \frac{1+\alpha}{\alpha}\right)$ and we show that the discrete plane $\mathrm{H}\left(\mathbf{v}, \frac{1+\alpha}{\alpha}, \frac{1+\alpha}{\alpha}\right)$ is not connected since it is a symmetric of the set $\mathrm{H}\left(\mathbf{v}, \mu, \frac{1+\alpha}{\alpha}\right) \backslash$ $\{\mathbf{0}\}$.

References

[1] Christiane Frougny and Boris Solomyak. Finite beta-expansions. Ergodic Theory Dynam. Systems, 12(4):713-723, 1992.
[2] Cor Kraaikamp and Ronald Meester. Ergodic properties of a dynamical system arising from percolation theory. Ergodic Theory Dynam. Systems, 15(4):653-661, 1995.
[3] Ronald W. J. Meester. An algorithm for calculating critical probabilities and percolation functions in percolation models defined by rotations. Ergodic Theory Dynam. Systems, 9(3):495-509, 1989.
[4] Ronald W. J. Meester and Tomasz Nowicki. Infinite clusters and critical values in two-dimensional circle percolation. Israel J. Math., 68(1):63-81, 1989.
[5] F. Schweiger. Multidimensional Continued Fractions. Oxford Science Publications. Oxford University Press, 2000.

[^0]: *Joint work with J.-L. Toutant (ISIT, Clermont-Ferrand), E. Domenjoud (Loria, Nancy), V. Berthé (Liafa, Paris 7) and X. Provençal (Lama, Chambéry)

