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Abstract – The colour, with the particularity to be

defined simultaneously as a physical quantity and as a

psychophysical quantity, is one of the concepts that can link

hard sciences and behavioural sciences. From the viewpoint

of behavioural sciences colours are basically measured with

nominal scales, and in hard science colours are measured

with interval scales. Our hypothesis is that the main relation

that must be preserved during colour measurement is a

metric. We suggest then that colours must be measured with

metrical scales. The fuzzy metrical scale is preferred due to

the possibility to define it like a nominal scale.

Keywords: Measurement theory, Colour, Scale, Dis-

tance, Fuzzy subsets theory.

1. INTRODUCTION

Some quantities like colour, odour, software complexity

are usually measured with inappropriate scales. Indeed, the

theories chosen to abstract such quantities usually define an

affine space to represent measurement values even if this

choice is not justified. For example, colours are represented

in many different spaces like RGB, xyz, Luv, Lab, HSV and

the transformation from one to each other is not always an

affine transformation. We conclude from this situation that

the empirical space of colours doesn’t hold an affine

structure and then cannot be represented by an affine space.

Conversely, the metric, defined with psychophysic

experiments stays stable and is the most known relation on

colours. The basis hypothesis of this paper is that the

empirical space of some quantities manifestations, more

particularly the colour, can be represented by a non-affine

abstract space that holds a metric.

The determination of such metric depends on the theory

that is used to perform calculus reasoning and decision on an

abstract world where quantities are represented by their well

known quantity value. Let describe the full process [1]. First

the field of interest, i.e. the concrete world is identified. Then

concrete objects and their properties are selected. A theory,

made of entities, axioms and theorems, is chosen.

Experiments are then performed to obtain observations of

quantity manifestations. The representations of the

manifestations are named quantity values [VIM] and are

expressed into a space which structure depends on the theory

chosen to infer conclusions. The choice of the theory is

crucial and depends on the goal of the experiment. In the

colour field, the goal can be to use the colour to identify the

chemical components of a liquid. In this case the theory is

defined on the field of molecular physics and colour

manifestations are represented by spectral energy

distributions. Each spectra are expressed into a n-

dimensional vector space. If the goal is to check the quality

of a manufactured colour, then the experiment is based on a

theory of colour vision and colours are expressed into a

metric space. 

2. COLOUR VISION REPRESENTATION

This paper, will focus on psychophysical aspects of

colours. This means that colour quantities are not considered

exclusively into the context of physics but also into the

context of human perception. From a pure physics

consideration, a colour of an electromagnetic flow is defined

by its spectral power distribution (SPD). As for any

distribution, a general definition is never obtained due to the

necessity to define the spectral resolution. Indeed the

quantity that represent a colour is a vector such length

depends on the chosen resolution, and the chosen range of

the spectra. We can see that even with a given theory, the

goal of the measured quantity has a strong incidence on its

representation. As an example, the International

Commission on Illumination (CIE) specified that for colour

measurement of visible light the spectra range is from 360nm

to 830nm with 1nm resolution. This institution gave also a

first approximation of human colour perception with the

definition of the tristimulus values XYZ. The X, Y and Z

values are obtained with 3 colorimetric observers x(λ), y(λ)

and z(λ) (see (1) and Fig. 1.) that approximate the spectral

sensitivity of human photosensors [2]. 

(1)

Where k is a constant, and  φ(λ) is the acquired SPD.

X k φ λ( ) x λ( )⋅( ) λd

380nm

780nm∫⋅=
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Fig. 1. colour-matching functions x(λ), y(λ), z(λ)

This representation of colour into a 3D space is justified

by the fact that 2 colours represented with the same XYZ

tristimuli are considered as equal by any human. Its then easy

to deduce that this colour measurement is based on a nominal

scale, i.e. on a scale that links an equivalence relation on

empirical quantities with an equality on measured values. 

The colorimetric spaces are derived from the XYZ

tristimuli by the use of bijective transformations. This

confirms that colour measurement scales are equivalent

when considered as nominal scales: bijections are admissible

transformations for nominal scales. For a given colour

classification, colour histogram methods do not depend on

the colorimetric space and they use the classification as a

nominal scale. Most other methods need a metric on the

colorimetric space or at least a similarity relation between

colours [3]. In the first case, a metrical scale, i.e. a scale that

preserves a metric, is needed. With the main property of

preservation of a similarity relation, a fuzzy nominal scale is

a good candidate for the second case [4][5]. Some methods

use colorimetric spaces as affine spaces [6]. These last

approaches are questionable when the different colorimetric

spaces must be considered as equivalent representation

spaces of the same quantity. 

From formal point of view, a method might not depends

on the choice of a representation space that actually depends

on the choice of scale. In this paper, we promote the

hypothesis that the number of different colorimetric spaces

proposed shows that the representation space of a scale for

colour measurement may have a metric but not necessary be

an affine space. The preservation of distance is then the

generic relation of such scale known as metrical scales. The

consequence is that all signal processing need to be defined

on the basis of a distance.

3. COLOUR REPRESENTATION BY LEXICAL 
FUZZY SUBSETS

Fuzzy nominal scales where introduced in order to

formalize an application to the measurement process of a

mechanism of description of a quantity by a fuzzy subset of

symbols [7]. With these scales, values in the representation

space are fuzzy subsets of symbols also called in this paper

lexical fuzzy subsets (LFS). The measurement is split into a

measurement from the set of manifestations to a numerical

space X, then a mapping D called fuzzy description or simply

description translates a numerical scalar or vector into a

lexical fuzzy subset. In the following example, a

manifestation is represented by a scalar itself described by a

LFS defined by its membership function μ on a lexical set S

= {a,b,c,d}.

Fig. 2. Example of a fuzzy description mapping a scalar into a 

lexical fuzzy subset (LFS).

In this paper, we restrict our study to the fuzzy nominal

scales that respect:

(2)

Such scales define a fuzzy equivalence relation between

LFSs like for example the simplest one (3). 

(3)

This relation also known as similarity relation is a

representation of a relation between manifestations. It

respects the reflexivity condition, expressed by (2), and a

weak version of the transitivity condition. In our case μ~ is

TL-transitive:

(4)

where

(5)

Using fuzzy scales for colour measurement is justified by

the fact that the existence of a similarity relation between

colours even if such relation is not clearly known. On the

basis of a lexical set S = {red, blue, yellow, green, ...} a fuzzy

nominal scale defines the meaning of each symbol with a

fuzzy subset of manifestations, actually a fuzzy subset on a

colorimetric space. 

The first step to define such scale is to define the lexical

set. A usual set will be S = {green, yellow, red, purple, blue,

cyan, black, white}, the 8 colours of the RGB cube and of its

affine transformations. In the paper we restrict to a chromatic

plane then white, black and intermediate colours are

represented with the same value. We choose the symbol
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neutral for this value. We propose also to use different

symbols to represent real colours and colours that define the

extremes of the chromatic plane. Finally we add the colour

orange to the set in order to have a lexical set more

representative of the human feeling. A possible lexical set is

S = {full_green, full_orange, full_yellow, full_red,

full_purple, full_blue, full_cyan, neutral, green, orange,

yellow, red, purple, blue, cyan}.

The meaning are define by a piece wise interpolation

based on a triangulation of the chromatic plane. First each

symbol is associated with a chromatic coordinate that is

characteristic to the symbol. Then the plane is split into

triangles such that vertices are characteristic coordinates.

The meaning of a symbol is a fuzzy subset which

membership function is equal to 1 for the characteristic

coordinate of the symbol and equal to 0 on the other

characteristic coordinates, and interpolated on the triangles.

The next figure shows the triangulation used to define the

meaning of the lexical set on the ab chromatic plane. 

Fig. 3. Triangulation that defines the fuzzy meaning of S = 
{full_green, full_orange, full_yellow, full_red, full_purple, 
full_blue, full_cyan, neutral, green, orange, yellow, red, 

purple, blue, cyan}. Letters a,b,c,.. replace full_green, 
full_orange, full_yellow, ...

Building a metrical scale from a fuzzy scale needs to

define a distance d on the lexical set and to define a distance

d’ between LFSs that verifies:. 

• the singleton coincidence: d’({a},{b}) = d(a,b)

• the continuity property.

• the precision property that imposes that the distance

between two LFSs must be a positive real number.

• the consistency property that is usually verified by dis-

tances on crisp subsets

The transportation distance, denoted dtp, verifies all these

properties [9][10]. It is computed as solution for a mass

transportation problem [10] where the masses are

membership degrees, sources and destinations are items of

the lexical set and the unit cost from a source to a destination

is given by the distance d on S. This distance can be defined

relatively to the goal of the measurement process or

relatively to the application. Another solution is to use the

triangulation to compute a distance on the basis of the

adjacency of the symbols provided by the graph of

characteristic coordinates.

4. ADAPTATION OF THE SCALE

The crucial point of the scale definition is the location of

the characteristic coordinates. The coordinates given in Fig.

3. are defined for a general use and are usually not usable for

specific cases. For example, Van Gogh painting usually not

fit with this generic scale.

Fig. 4. Van Gogh painting as a context for colour measurement
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Fig. 5. Colour histogram of the painting in comparison with the 

characteristic coordinates of each symbol.

The proposal of this paper is to perform a Fuzzy C-Means

clustering (FCM) to adapt the generic knowledge given by

the initial characteristic coordinates. The idea is to fit each

characteristic point with the center of its closest cluster. The

difficulty is that the FCM algorithm is based on the

minimization of an objective function based on the

computation of the Euclidean distance between samples and

cluster centers and cannot be directly used. Indeed, as seen

before, nothing can justify that the colorimetric space, or the

space of LFSs, holds an Euclidean metric. 

In the original FCM algorithm a set of clusters is first

defined. Each cluster is randomly defined by a fuzzy subset

of samples. At each iteration, the FCM algorithm computes

the center of each cluster. Then the membership degree of

each sample to each cluster is re-evaluated relatively to its

proximity to the associated cluster center. 

In our approach, we propose several adaptations to this

process.

Let M be a set of samples in X.

In the initial state, Each cluster Cs is identified by a

symbol s and is defined by the fuzzy subset of X derived

from the fuzzy description.

(6)

where

(7)

As the fuzzy equivalence relation that characterizes the

scale defines a distance for short range LFSs, the eq. (6) can

be simplified into:

(8)

The main difference with the standard FCM is the

inclusion of a basic knowledge at the initial step of the

algorithm. This knowledge can be considered as an average

knowledge about the representation of colours.

At each iteration, the cluster center is simply computed as

the gravity center of the cluster. 

(9)

The scale is then transformed such that the center of the

cluster Cs become the characteristic point of the symbol s.

As for the original algorithm the iterations stop when

changes reach a termination criterion.

The α parameter, must be defined into [0,1]. It represents

the inertia of the learning process. If α = 1, each iterated

cluster includes only its characteristic point as unique

sample. The characteristic points never move during the

algorithm. If α = 0, each iterated cluster can include new

samples far from the characteristic point.

The next figure shows the triangulation after the

adaptation of the scale with this method. As the colours

full_green, full_orange, full_yellow, full_red, full_purple,

full_blue, full_cyan, neutral are synthetic colours defined by

a norm, they are not supposed to be changed during the

learning process. So α = 0 for these colours. 

Fig. 6. Characteristic coordinates after the adaptation of the 

scale with the FCM like clustering (α = 1 for a to h, α = 0.5 for 

i to o).
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DISCUSSION

The information of colour has the property on one side to

be typically a psychophysic information, on the other side to

be acquired with accurate measuring instrument and then to

be accurately represented on a numerical space. Between the

physical world, from where the colour entities are issued,

and the abstract human mental world, where they are defined

and represented, is the sensitive world that is a partial

perception of the physical world. Colour entities, like the

orange colour for example, cannot be considered as concrete

physical entities of the concrete physical world. they are

issued from a concrete entity, a spectra of a electromagnetic

flow, and appear into the sensitive world. The difficulty of

colour measurement is that the human sensitive world, i.e.

the human perception of the concrete world, differs from the

instrumental sensitive world, i.e. the instrumented

perception of the world. The consequence is that the abstract

worlds used to represent these sensitive worlds also differs.

In particular, the structure of the colorimetric spaces of the

instrumental abstract world are richer than the structure of

the colorimetric spaces of the abstract human mental world. 

Indeed, each colorimetric space of the instrumental

abstract world holds a metric. Usually, but not necessary, an

Euclidean metric. So it’s legitimate to consider that the

colorimetric space in instrumental sensitive world also holds

this metric. A colorimetric space of the abstract human

mental world is a metrizable space, but the associated metric

is not defined. This fits with the general knowledge that a

distance between colour exists but cannot be precisely

defined. Within this context, the space of lexical fuzzy

subsets gives an alternative to usual numerical colorimetric

spaces. Indeed, this space is a metrizable space, and the

metric depends on the goal of the colour process and not on

the sensitive world. Furthermore, the distance is based on a

fuzzy scale that can be adapted to colour process throw a

learning algorithm.

CONCLUSION

Colour measurement does not lead to a unique theory and

needs a scale for each application, or more precisely for each

concept. We proposed in this paper to use scales that

preserve a similarity relation or scales preserving a metric.

The fuzzy scales, with the expression of measurement values

on a non affine space give a good solution for colour

measurement. The counter part is the necessity to adapt the

scale according to a context or a colour process. This paper

gave an algorithm to perform such adaptation. This

adaptation can be compared with a calibration process where

the calibration standards are colour entities. Finally that the

colorimetric space associated to a fuzzy scale has a structure

closer to the human representation than classical

colorimetric spaces.
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