
Strategies for solving index one DAE with non-negative

constraints: Application to liquid-liquid extraction

Ludovic Métivier, Philippe Montarnal

To cite this version:

Ludovic Métivier, Philippe Montarnal. Strategies for solving index one DAE with non-negative
constraints: Application to liquid-liquid extraction. Journal of Computational Physics, Else-
vier, 2012, 231 (7), pp.2945-2962. <10.1016/j.jcp.2011.12.039>. <hal-00763691>

HAL Id: hal-00763691

https://hal.archives-ouvertes.fr/hal-00763691

Submitted on 12 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47285089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00763691

Strategies for solving index one DAE with non-negative

constraints: Application to liquid-liquid extraction

Ludovic Métivier1,∗, Philippe Montarnal1

CEA Saclay, Gif-sur-Yvette, France

Abstract

Liquid-liquid extraction modeling leads to solve an index one DAE system. For
the sake of robustness, it is desirable to account for non-negative constraints.
Based on the DASSL architecture (a classical index one DAE solver) we propose
and compare three different strategies to implement these bound constraints.
Each of these strategies corresponds to a different Newton modification: clip-
ping, damping, or interior point method. The comparisons are made on two
test cases: the Robertson ODE problem, and an example from liquid-liquid
extraction modeling.

Keywords: differential algebraic system, non-negative constraints, variable
stepsize and order BDF methods, nonlinear solver, conservation of mass,
trust-regions, constrained dogleg methods
2000 MSC: 34, 49, 68

1. Introduction

The context of the work presented here is the study of liquid-liquid extraction
modeling [1] [25]. This industrial process is applied in numerous fields, such as
ore processing, oil refining, or nuclear wastes recycling. It is based mainly on the
transport of two immiscible liquid phases (generally an aqueous and an organic
phase) in opposite directions inside extractors. Depending on the affinities of
species for one or the other phase, separation of components can be efficiently
achieved, using one or more cycles of liquid-liquid extraction.

The model associated with this process belongs to the general class of reac-
tive transport models: multiphasic flows are transported within an extractor,
and different chemical reactions are defined inside each phase, as well as mass
transfer between the different phases. The corresponding model is expressed
in terms of PDAE (Partial Differential Algebraic Equations), involving trans-
port operators (such as the convection-diffusion operator), and local chemical

∗Corresponding Author
Email address: ludovic.metivier@ujf-grenoble.fr (Ludovic Métivier)

1CEA Saclay, DEN/DANS/DM2S/SFME/LSET

Preprint submitted to Journal of Computational Physics December 11, 2012

operators. Recent developments have shown that efficient numerical methods
based on the method of lines [20] can be derived for these problems: a semi-
discretization in space is performed, yielding a system of Ordinary Differential
Equations (ODE) or more generally Differential Algebraic Equations (DAE) [6].
Appropriate solvers are then used to solve the problem.

In the case of liquid-liquid extraction modeling, the semi-discretization in
space yields an index one DAE problem1:

My′(t) = f(t, y(t)), (1)

where y(t) ∈ R
m is the solution, and y′(t) ∈ R

m its derivative in time. In
addition, M ∈ Mm(R) is a constant matrix possibly singular. When M is non
singular, the DAE system is reduced to a standard ODE (Ordinary Differential
Equations) system.

As other DAE problems coming from different fields of physics, chemistry,
and biology (see for instance the testset for IVP solvers [16]), the liquid-liquid
extraction problem is subject to non-negativity constraints

∀t, y(t) ≥ 0, (2)

since the components of y(t) correspond either to a quantity of moles or chemical
concentrations.

Satisfying these constraints is crucial. Computing negative components of
the solution y(t) is not satisfactory from a physical point of view. Moreover,
f(t, y(t)) may not be defined for negative values of the components of y(t), and
this could prevent converging to the final solution.

Classical DAE solvers can be separated into two distinct families:

• those based on Runge-Kutta implicit time discretization;

• those based on linear multistep implicit time discretization.

Implicit Runge-Kutta methods are unconditionnally stable, for all orders.
However, their computation costs tend to increase rapidly as the order grows.
Indeed, the size of the nonlinear systems yielded by the implicit discretization
is multiplied by the number of stage of the Runge-Kutta method. Among the
numerous implicit Runge-Kutta methods, consider for instance the Radau IIA
methods. These methods are particularly interesting because of their inherent
stability1. The order p of these methods verify p = 2s−1, where s is the number
of stages required by the method. An implementation of this method of fifth
order thus require 3 stages. This implies solving a 3 × m nonlinear system at
each iteration. This can be an important drawback when attacking large scale
problems, even if some techniques can be employed to reduce the computational
cost of the algorithm.

1For more details about the theory of DAE and the definition of their index, the reader is
referred to [3]

1These methods are L-stable [9]

2

On the other hand, the range of stability of linear multistep methods is
bounded, but these methods require considerably less computational efforts. A
well known example of linear multistep methods is the BDF (Backward Differ-
entiation Formula) method, which is A-stable up to order 2, and A(α)-stable
up to order 6 [9]. This method only requires solving an m nonlinear system at
each iteration.

Among several DAE solvers, such as Radau5 [9] or PSIDE [11], based on
Runge-Kutta methods, MEBDFDAE or MEBDFI, based on modified extended
BDF methods [5] [19], and more recently BiMD, based on Blended Implicit
Methods [4], or GAMD [12], based on the Generalized Adams Methods2 we
focus on DASSL [3]. This solver belongs to the second category mentioned
above: it is a variable stepsize and order DAE solver based on a BDF time
discretization implemented in a prediction-correction framework. The stepsize
and order selection algorithm is particularly efficient. DASSL also implements a
non-negativity constraint algorithm in the form of a clipping method. Roughly,
this amounts to setting to 0 the negative components of the solution at each time
step. This rather simple algorithm is confronted with three main difficulties:

• it does not conserve the total mass in the considered system;

• in certain cases, the clipping method can induce a large number of time
steps and reduce the efficiency of the method;

• it does not prevent generating intermediate iterates with negative compo-
nents, possibly outside the definition domain of f(t, y(t)).

Other algorithms for implementing non-negativity constraints have been pro-
posed in the context of ODE. Shampine et al propose a redefinition of the ODE
outside the feasible region, that allows the constraint to be followed when the
solution reach the bound [23]. Although interesting, this approach can not be
applied to DAE, essentially because the equations defining the system cannot
be redefined in the context of DAE. A second possibility, proposed by Sandu
[21], consists in computing at each iteration the solution of the problem without
bound constraints and projecting it into the feasible set. This method, however,
is designed only for solving chemical kinetic systems without transport opera-
tors or algebraic constraints. Finally, another algorithm is proposed by Gobbert
et al. in the context of implicit time-discretization methods such as the BDF
method [7]. At each iteration, the nonlinear system is solved by a damped New-
ton method: the Newton steps computed are multiplied by a damping factor
in order to maintain the sequence of iterates within the feasible region. This
algorithm, contrary to the previous one, can easily be adapted for solving index
one DAE systems.

Another possibility for accounting for non-negativity constraints consists in
replacing the classical Newton method used at each time iteration by an inte-

2Blended Implicit Methods and Generalized Adams methods are designed to combine ad-
vantages from both Runge-Kutta and linear multistep based methods.

3

rior point Newton method. We focus particularly on the CODOSOL method
[2]. This method is based on the trust-region strategy, and uses a system of pro-
jection of the descent direction generated at each iteration in order to maintain
the sequence of iterates within the feasible region. Although more sophisticated
than the damping method, this method requires greater computational efforts.
Conversely, it can handle arbitrary lower and upper bound constraints, whereas
extending the damping method to this situation could be more difficult.

This work is dedicated to a comparison of the damping and CODOSOL
strategies, based on the DASSL framework: BDF time discretization method,
stepsize and order selection algorithm, convergencet tests. The clipping method
is used as a reference method to perform the comparisons. Two test cases are
considered: the classical Robertson test case, which is a stiff ODE problem [23],
and a test case derived from liquid-liquid extraction modeling.

In Section 2, we briefly review the principle of DASSL. In Section 3, we
describe in more details the three different strategies for satisfying the non-
negativity conditions: clipping, Newton damping, and the CODOSOL algo-
rithm. In Section 4, we first propose a comparison on a canonical test case: the
Robertson problem. Then, we introduce the liquid-liquid extraction model and
compare the three different strategies on a particular test case. Conclusions are
given in Section 5.

2. DASSL basis

2.1. BDF discretization

DASSL uses a BDF discretization of the time derivatives y′(t) of the DAE
system (1). This method is used under its variable stepsize and order fixed
leading coefficient formulation [9]. The implementation is made through a
prediction-correction algorithm.

Let tn ∈ R be the time reached at iteration n ∈ N, and k ∈ N the order of
the BDF method used to approximate y(tn). At time tn, k + 1 approximations
of the solution y(tn−i), i = 0, . . . , k, denoted by yn−i, i = 0, . . . , k have been
computed.

At this stage, the method aims at computing an approximation of the solu-
tion at time tn+1, namely y(tn+1). We denote this approximation by yn+1. The
stepsize hn+1 is defined as

hn+1 = tn+1 − tn. (3)

A first approximation of the solution is computed through the definition of
the predictor polynomial wP

n+1(t), such that

wP
n+1(tn−i) = yn−i, i = 0, . . . , k. (4)

The predictor polynomial interpolates the k + 1 previous approximations of
the solutions at times tn−i, i = 0, . . . , k. Therefore, wP

n+1(t) is of order k. Let

4

y
(0)
n+1 be the prediction of the solution at time tn+1, and y

′(0)
n+1 its time derivative

such that
y
(0)
n+1 = wP

n+1(tn+1), y
′(0)
n+1 = w

′P
n+1(tn+1). (5)

The final approximation yn+1 is computed through the corrector formula. This
formula is the fixed leading coefficient form of the kth order variable stepsize
BDF method. The solution of this formula is such that the corrector polynomial
and its time derivative satisfy the DAE (1) at tn+1. In addition, the corrector
polynomial interpolates the predictor polynomial at k previous points equally
spaced, distant from hn+1.

wC
n+1(tn+1) = yn+1

wC
n+1(tn+1 − ihn+1) = wP

n+1(tn+1 − ihn+1), i = 1, . . . , k

G(tn+1, w
C
n+1(tn+1), w

′C
n+1(tn+1)) = 0.

(6)

Using the properties of the predictor and the corrector polynomial, an expression

can be derived for the time derivatives y′
n+1 depending on yn+1, y

(0)
n+1 and y

′(0)
n+1

y′
n+1 = y

′(0)
n+1 −

αs

hn+1

(

yn+1 − y
(0)
n+1

)

, (7)

where αs is the fixed leading coefficient of the BDF method

αs = −
k

∑

j=1

1

j
. (8)

More details on how this expression is obtained are given in [3], based on the
work of Jackson and Sack-Davis [13].

Using (7), computing yn+1 amounts to solving the nonlinear system

G

(

tn+1, yn+1, y
′(0)
n+1 −

αs

hn+1

(

yn+1 − y
(0)
n+1

)

)

= 0. (9)

Define the functional Fn+1(y) by

Fn+1 : y −→ Fn+1(y) = G
(

tn+1, y, y
′(0)
n+1 −

αs

hn+1

(

y − y
(0)
n+1

))

R
m −→ R

m.
(10)

Solving the DAE system (1) using DASSL amounts to solving a sequence of
nonlinear systems such that

Fn+1(y) = 0, n ∈ N (11)

2.2. Stepsize and order selection algorithm

What makes DASSL very efficient is its stepsize and order selection algorithm
which can be decomposed into two steps:

• the first consists in deciding whether the approximation given by the so-
lution of (11) is accurate enough, or should be rejected;

• the second consists in determining the order and the stepsize for the next
iteration.

5

2.2.1. Selecting or rejecting the approximation yn+1

The selection algorithm is simply based on an approximation of the trunca-
ture error. This error can be expressed in terms of the norm of the difference
between the predicted value and the solution of (11) [3]. Therefore, the error
test implemented in DASSL is

C|yn+1 − y
(0)
n+1| ≤ 1, (12)

where |.| is the norm used by DASSL, taking into account the absolute and
relative tolerance criterion (atol, rtol) ∈ R

m × R
m defined for each component

of the solution

|v| =

√

√

√

√

1

m

m
∑

i=1

(

vi

rtoli|(yn)i| + atoli

)2

, ∀v ∈ R
m, (13)

and C depends only on the previous timesteps

C =
k+1
∑

j=1

hn+1

hn+1 + hn + . . . + hn+2−j
−

k
∑

j=1

1

j
. (14)

This implies that the predicted solution should not be too far from the solution
of (11). On the other hand, the factor C reflects the effect of the order and
stepsize variations on the error test:

• C decreases as the order increases, which allows a less accurate prediction
for high order steps;

• for a fixed order, C increases as the stepsize increases; a more accurate
prediction is thus required when taking larger steps;

• conversely, for a fixed order, C decreases as the stepsize decreases; a
smaller step thus allows a less accurate prediction.

2.2.2. Selecting the order and the stepsize

The order selection is based on the algorithm proposed by Shampine and
Gordon [24]. It is set up on the following principle: let Tk−2, Tk−1, Tk, Tk+1

denote the estimations of the truncature error which would have been obtained
at the current step for orders k − 2, k − 1, k, k + 1 respectively. Their detailed
expressions can be found in [3]. If

Tk−2 < Tk−1 < Tk < Tk+1, (15)

then the order can be increased. Indeed, if the error could decrease at a higher
order, it is advantageous to use a higher discretization method. Conversely, if
this is not the case, the solution probably varies rapidly, and the polynomial ap-
proximation using the former approximations yn, . . . , yn−k is no longer reliable.
Then the order should be decreased.

6

In practice, the selection algorithm implemented in DASSL starts by testing
if the order should be decreased, whether the approximation yn+1 has been
accepted or rejected at the former stage of the algorithm. Then only if the
approximation has been accepted and it is necessary to decrease the order is the
possibility of increasing the order investigated.

Next, a scaling factor r for the time step is computed, related to the chosen
order k, such that

r =

(

2Tk

k + 1

)−1/(k+1)
(16)

If r is larger than or equal to 2 and the step has been accepted, then the
time step is doubled. If this is not the case, the time step remains constant, or
is decreased, depending on the indicator value. Note that the factor r increases
if the error decreases, which makes sense: if the error is small, the time step
should be increased.

DASSL code uses a maximal order of 5 [3]. Although BDF methods are
α-stable until order 6, this value should be avoided for robustness [9].

This strategy provides a method that aims at taking timesteps as large as
possible. When the solution varies slowly, high order discretization is stable
enough to be used, thus the order of the BDF method is increased, and the
stepsize can be large. Conversely, when the solution starts to present fast varia-
tions, high order methods require small timesteps to remain stable. Hence, it is
worthwhile to first decrease the order, before decreasing the stepsize. Indeed, if
the solution varies rapidly, the former approximations of the solution does not
provide valuable information on the current approximation by the polynomial
interpolation. Therefore, low order methods are more stable than high order
ones. Choosing these low order methods yields the possibility of taking larger
steps, which improves the efficiency of the algorithm in terms of computation
time. This rather complex selection algorithm is at the core of DASSL and
makes the method very efficient.

2.3. Solving nonlinear systems

Solving the nonlinear system (11) with a Newton method amounts to gen-
erating a sequence yq from an initial guess y0 such that

yq+1 = yq − J(yq)−1Fn+1(y
q), (17)

where J(yq) denotes the Jacobian matrix of Fn+1(y
q);

J(yq) = F ′

n+1(y
q). (18)

This requires solving the linear system

J(yq)pq = −F (yq), (19)

which is done through an LU factorization of J(yq) [8].
In DASSL, the initial guess y0 is the prediction y0

n+1 given by the predictor
polynomial. Moreover, DASSL implements a modified version of the Newton

7

algorithm, designed especially to save computation time. The most expensive
part of the integration scheme is the evaluation of the Jacobian matrix and
its LU factorization. The number of entries is the square of the number of
unknowns. Therefore, instead of recomputing the Jacobian matrix J(yq) at
each iteration of the Newton method, DASSL keeps the same approximation
of the Jacobian J(y0) throughout the nonlinear iterations, and stores its LU
factorization. This approximation is not systematically recomputed at each
time step. Indeed, for small time steps, the Jacobian changes are negligible,
and the same approximation can be used. Based on this prinicple, a special
indicator is computed in the original implementation of DASSL, to determine
when the Jacobian has to be recomputed. In our implementation, however, we
decided to simplify the algorithm and systematically recompute the Jacobian
whenever the timestep or the discretization order changes, as proposed in [7]. In
our numerical experiments, we observed that this srategy only slightly increases
the overall number of Jacobian computations compared to the original DASSL
algorithm.

2.4. Stopping criterion

The stopping criterion for the Newton method is chosen as a combination of
the classical Newton methods and DASSL stopping criteria. The convergence
is declared whenever one of these two conditions is met. The Newton method
convergence condition corresponds to

‖Fn+1(y)‖ ≤ atolN , (20)

where atolN ∈ R is an absolute tolerance criterion defined for the Newton
method. This means that the current iterate is close enough to the solution of
the nonlinear system. The DASSL condition is different. It can be expressed as

ρ

1 − ρ
|yq+1 − yq| < 0.33, (21)

where ρ reflects the convergence rate of the Newton method

ρ =

(

|yq+1 − yq|

|y1 − y0|

)1/q

. (22)

Near the solution, the convergence should be quadratic, in which case ρ decreases
rapidly. Then the factor ρ

1−ρ also decreases and the iterations stop even if
the distance between the current and the previous iterate is large. On the
other hand, if ρ does not decrease rapidly, the iterations stop when the distance
between the current and the previous iterate becomes small enough. This is to
be understood as a linear convergence condition.

In addition to these two tests, a maximum permissisble number of Newton
iterations is introduced. This number is usually set to 4 in DASSL (as is in the
ODE15s solver of the ODE suite in Matlab [22]).

8

When Newton iterations do not converge, the stepsize is reduced by a factor
of one quarter. A new nonlinear system is thus defined through the time dis-
cretization algorithm described in section 2.1, based on the new stepsize. If the
stepsize becomes smaller than a fixed tolerance criterion, CDASSL stops and
returns an error flag.

Based on this algorithm, we present in the next section three different strate-
gies for introducing non-negativity constraints.

3. Three different strategies for satisfying non-negativity constraints

3.1. Clipping method

The clipping method is the simplest strategy which can be proposed to ensure
non-negativity. Consider the solution yn+1 of (11). For a given threshold η > 0,
if any component of yn+1 is lower than −η, the solution yn+1 is refused. Then
the time step hn+1 is shortened, and a new nonlinear system is built. If not,
any negative component of yn+1 is between −η and 0. All these components
are set arbitrarily to 0.

The same algorithm is applied in case of a non feasible initial guess. If some
components of the prediction y0

n+1 are smaller than −η, then the initial guess
is replaced by the previous accepted step yn (which is in the feasible region). If
not, the prediction is kept as initial guess, but all its negative components are
set to 0.

This simple method has three main drawbacks.

• The mass conservation of the system is violated by forcing some compo-
nents of the solution of the nonlinear system to 0.

• The sequence of iterates generated by the Newton method will not neces-
sary remain within the feasible set, thus the method does not prevent from
trying to evaluate the function f(t, y(t)) outside its definition domain.

• The method induces time step reduction and recomputation when some
components become lower than −η. Depending on the threshold value,
one of these drawbacks becomes prominent: if η is small, then the number
of refused steps can be large; conversely if η is large, the number of refused
steps is small, but the error on mass conservation increases.

Therefore, we are looking for a more robust strategy, that ensures mass
convervation without excessive computation costs, and generating a sequence of
iterates within the feasible region.

3.2. Newton-damping method

The second method is the damping method proposed by Gobbert et al [7].
Consider the Newton method presented in Section 2.3. A natural way of assuring
the non-negativity of the solution yn+1 is to ensure that at each iteration the

9

Newton update does not produce an iterate which lies outside the feasible region.
This can be achieved by computing a damping factor αq such that

αq = min
i=1,...,m

α
q
i where

α
q
i =

∣

∣

∣

∣

∣

∣

1 if (yn+1)
q
i + p

q
i ≥ 0

−
1

p
q
i

((yn+1)
q
i + ε) if (yn+1)

q
i + p

q
i < 0,

(23)

where ε is a threshold factor that ensures the damping factor αq never vanishes.
Then the update formula (17) is replaced by

yq+1 = yq + αqpq. (24)

At this stage, some components of the solution of a nonlinear iteration possibly
lie between −ε and 0. Thus, the strategy is complemented by a projection of
yq+1 into the feasible set.

The initial guess is also modified to satisfy the non-negativity constraints:
if some components of the prediction are negative, then another initial guess is
tested, namely

y0 = yn + (yn − yn−1). (25)

If this initial guess still presents some negative components, then the previously
described damping strategy is applied to produce an initial guess in the feasible
region, replacing pq by yn − yn−1 and yq by yn.

This produces an elegant and efficient strategy, ensuring all the iterates stay
within the feasible region. The method is therefore robust. In addition, mass
conservation is also satisfied up to the threshold value ε. Indeed, the magnitude
of component of the solution projected into the feasible set is never larger ε.
The user can tune this parameter according to the tolerance required on mass
conservation.

3.3. The CODOSOL method

We first give the general description of a trust-region based Newton method.
Then we briefly describe how CODOSOL adapts this method to handle bound
constraints [2].

3.3.1. Trust-region method

Solving (11) with a Newton method can be recast as solving a sequence of
quadratic problems

min
p

G(p) =
1

2
‖J(yq)p − Fn+1(y

q)‖2, y ≥ 0. (26)

Indeed, the solution of (26) is given by cancellation of the gradient of the
quadratic function G(p) which is

∇G(p) = J(yq)T J(yq)p − J(yq)T Fn+1(y
q). (27)

10

Provided J(yq) is nonsingular,

∇G(p) = 0 ⇐⇒ p = −J(yq)−1Fn+1(y
q). (28)

This is also equivalent to solving the optimization problem

min
y

f(y) =
1

2
‖Fn+1(y)‖2, (29)

by successive quadratic approximations of the cost function f(y).
The trust-region method consists in defining a region of radius ∆q in which

the quadratic approximation G(p) is minimized. At each nonlinear iteration,
the following problem is solved

min
p

G(p), ‖yq + p‖2 ≤ ∆q. (30)

This subproblem is solved with the following procedure:

• 1. First, compute the Newton solution pN = −J(yq)−1Fn+1(y
q).

• 2. If ‖pN‖2 ≤ ∆q select the Newton step: p = pN , and go directly to step
5.

• 3. If ‖pN‖2 > ∆q, compute the Cauchy step :

pC = −τJ(yq)T Fn+1(y
q) = −τ∇f(yq), (31)

where τ is computed to minimize f(yq) along the steepest descent direction
∇f(yq) within the trust region.

• 4. Compute γ = min
γ

G(p(γ)) where p(γ) = pN + (1 − γpC).

• 5. Form the new iterate yq+1 = yq + p(γ).

• 6. Compare the accordance rate ρ between the quadratic approximation
and the actual cost function f(y). While ρ < β1, for a given parameter
β1, refuse step p(γ) , shrink the trust-region radius, and restart at step 3.
If ρ > β1, select p(γ). If ρ > β2, for a given parameter β2 > β1, increase
the trust-region radius ∆q.

The trust-region algorithm was originally developed as a globalization of
the Newton method1. Indeed, it is well-known that if the initial guess y0 is
too far from the solution, the Newton method may not converge. Thus, the
trust-region strategy can be interpreted as follows: if the norm of the classical
Newton step is small enough for the next iterate to stay within the trust-region,
then the Newton step is chosen, and the method does not differ from the usual
Newton method. However, if the Newton step produces an iterate outside the

1This globalization strategy is an alternative to the more usual linesearch method.

11

trust region, the step actually taken is a convex combination of the Newton step
and the steepest descent step. If the accordance between the current quadratic
approximation of the misfit function and the actual misfit function is good, then
this step can be followed. If it is not the case, the trust-region is shrunk and
the step is rejected.

While the Newton method may not converge if the initial guess is too far
from the solution, the steepest descent method converges from any starting point
(possibly at a very slow rate). The trust-region method proposes a compromise
between these two methods, represented by the coefficient γ. Far from the
solution, the trust-regions are small, and the influence of the steepest descent is
stronger (γ is small). When the algorithm approaches the solution, the trust-
region radius increases, the quadratic approximation of the misfit function is
improved, and the influence of the Newton direction increases (γ is larger). The
resulting method converges globally, with a local quadratic convergence rate [2].

In terms of computational effort, the trust-region method only requires one
linear system to be solved at each iteration to compute the Newton step. How-
ever, the evaluation of the accordance rate ρ between the quadratic approxima-
tion and the actual cost function requires one additional function evaluation.
Therefore, the trust region method requires more computational efforts than
the classical Newton method.

3.3.2. Accounting for bound constraints

Based on the trust-region method, only a few modifications are necessary to
handle bound constraints. These modifications are based on the same consider-
ations as for the Newton damping method: basically, it is necessary to modify
the step taken by the algorithm to produce iterates that stay within the feasible
region.

This is done in the CODOSOL method. First, the Newton direction pN

computed at step one of the step selection algorithm is projected into the feasi-
ble set. Second, the Cauchy step is also modified following an algorithm sharing
similarities with the damping method presented in subsection 3.2. Then appro-
priate formula can be derived to compute the coefficient τ and γ. A complete
description of the method is beyond the scope of this paper, and the reader is
referred to [2] for more details.

3.3.3. Initial guess

We complete the CODOSOL method with a suitable strategy to deal with
initial guesses that do not lie within the feasible region. Indeed, the CODOSOL
method is supposed to start from a feasible initial guess. We chose to implement
the strategy proposed by Gobbert et al. for the damping Newton method [7].
Note that this strategy amounts to selecting a step closer to the previous solution
yn at time step n + 1. This is consistent with the fact that yn, as the last step
computed, is certain to be in the feasible region, whereas no guarantees are
available about the prediction y0

n+1.

12

4. Numerical results

Based on the DASSL architecture, we compare below the three strategies
for imposing non-negativity on two test cases. The first test case is the classical
Robertson problem. This is an ODE system derived from kinetic chemistry,
involving three unknowns and three kinetic reactions. The discrepancy between
the orders of magnitude of the reaction rates is significant, yielding a very stiff
problem, and possible blow up of the solution for negative component of the
solution. This test case has been studied by numerous authors [23] [7] and is
thus a good starting point to compare the three strategies.

The second test case derives from our liquid-liquid extraction application.
This model involves a larger number of unknowns (318), and also presents strong
discrepancies between the characteristic times of the different physical phenom-
ena, yielding a stiff problem, that is also more realistic with regard to potential
future applications.

4.1. The Robertson problem

The Robertson problem can be stated as follows

∂ty1 = −0.04y1 + 104y2y3

∂ty2 = 0.04y1 − 104y2y3 −3 × 107y2
2

∂ty3 = 3 × 107y2
2 ,

(32)

with initial conditions

y1(0) = 1, y2(0) = 0, y3(0) = 0. (33)

The corresponding concentrations profiles from t = 0 to tf = 4 × 1011 are
given in Figure 1. The integration time tf is chosen large enough to ensure the
solution reach stability. The results shown in Figure 1 are obtained using the
CODOSOL strategy, but clipping and damping strategies give equivalent plots.

An interesting feature of the Robertson problem is that the total mass of
the system should be conserved throughout the iterations. Indeed, the solution
of (32) satisfies

∀t, y1(t) + y2(t) + y3(t) = 1. (34)

This provides an efficient mass conservation indicator MC for the different
strategies:

MC = max
t∈[t0;tf]

|y1(t) + y2(t) + y3(t) − 1|. (35)

We found that the solution computed by the DASSL algorithm, using the
classical Newton iterations without bound constraints does not blow up as pre-
sented in [7], even with very coarse tolerance parameters. In addition, for re-
strictive tolerance parameters (atol = 10−6 and rtol = 10−6 for instance), the
solution does not contain any negative components. This difference probably
comes from the fact that the experiments in [7] are based on the ODE15s code
of the Matlab ODE suite [22], whereas this work is based on the DASSL archi-
tecture.

13

Nsteps Nfailures Nfeval Njeval MC Nclipping
Clipping 224 15 381 162 3.34 × 10−8 2

Damping 224 15 381 162 1.01 × 10−12 N/A

CODOSOL 220 14 645 158 2.43 × 10−12 N/A

Table 1: Comparison between clipping, damping and CODOSOL methods for the Robertson
test case

Therefore, we choose tolerance parameters for which the solution contains
negative components when non enforcement of non-negativity is used. This
makes is possible to compare our different strategies. This leads us to the
standard tolerance parameters of the ODE suite [22] :

atol = 10−6, rtol = 10−3. (36)

In addition, the tolerance parameter on the Newton algorithm is set equal to
atol:

atolN = atol. (37)

The maximum permissible number of Newton iterations is set to 4. The damping
parameter ε is set to 10−12. For the clipping method, we tried several values for
the clipping parameter η. It turns out that choosing a value too restrictive in
order to preserve mass conservation precludes the convergence. Thus, we finally
chose the smallest value for which we obtained convergence, η = 10−7.

The performance of the different strategies in terms of the order chosen,
number of Newton iterations at each time step, and the chosen time steps are
equivalent. The results obtained with CODOSOL method are shown in Figure
1. The same plots are obtained with the clipping and the damping methods.

For each strategy, we report the number of time steps taken (Nsteps), the
number of time steps refused (Nfailures), the total number of function evalu-
ations (Nfeval), the total number of Jacobian evaluations (NJeval), the mass
conservation indicator MC, and the number of components set to 0 (Nclipping).
The results are indicated in Table 1.

Not surprisingly, the error in mass conservation method is larger for the
clipping method than for the damping and CODOSOL methods. Note that only
2 clippings are performed. This means that the solution computed by DASSL
for these tolerance parameters without non-negativity constraints is almos non-
negative. However, 2 clippings are sufficient to introduce artificial mass in the
system and cause an error larger by 4 orders of magnitude than for the two
other methods.

14

Figure 1: Concentration profiles obtained using the CODOSOL strategy (top left), order
chosen as a function of time (top right), time step chosen as a function of time (bottom left),
number of Newton iterations per time steps (bottom right)

15

The errors in mass conservation caused by the damping and CODOSOL
methods are of the same order. In terms of computation, the number of steps
and failures is almost the same for the three strategies, even if it is slightly
smaller for the CODOSOL method. In turn, the number of evaluations of
the function is far more important for the CODOSOL method. This is not
surprising, since the trust-region strategy requires additional evaluations of F

in its step selection procedure, in order to update the size of the trust-region.
Finally, the number of evaluations of the Jacobian is the same for the clipping
and the damping method, and slightly lower for the CODOSOL method.

Note that the strategy applied to deal with unfeasible initial guesses is very
important. Simply clipping the prediction, without checking the magnitudes of
its negative components, can lead to substantial mass errors. This was observed
in particular for the CODOSOL method. Conversely, choosing the previous
accepted state modified with an order one upgrade, (possibly damped to remain
in the feasible region) turns out to be efficient.

We conclude from the study of the Robertson test case that the clipping
method is inefficient compared to the damping method and the CODOSOL
method. These two methods give equivalent results, except in terms of the num-
ber of evaluations of the function F . This comes directly from the trust-region
strategy, which requires at least one additional evaluation at each iteration.
However, this test case only involve 3 unknowns, and the constraints are almost
inactive (only 6 components are set to 0 throughout the iterations using the
clipping method). Therefore we are interested in testing these strategies on a
test case that is more representative of the problems encountered in liquid-liquid
extraction modeling.

4.2. The liquid-liquid extraction test case

4.2.1. Modeling

We summarize here the equations describing the liquid-liquid extraction
problem. More details about the construction of the model can be found in
[17].

The liquid-liquid extraction process is based on the transport of an organic
and an aqueous phase in opposite directions, inside an extractor. An emulsion of
the two immiscible phases is generated by the extractor to activate mass transfer
between them. This emulsion is generally described in terms of the phase that
remains continuous (the continuous phase) and the one that is dispersed in
droplets in the continuous phase (the dispersed phase). In the sequel the organic
phase is continuous and the aqueous phase is dispersed.

Chemical system. In our example, the aqueous phase contains six species, namely

A, B, D, F, G, H, (38)

whereas the organic phase contains five species, namely

E, BE, HE, DE, FE. (39)

16

The process modeled is the extraction of component B from the aqueous phase
using the extractor E from the organic phase to form the species BE in the
organic phase. This is performed using an organic phase containing the compo-
nents E and DE. The extraction efficiency of B involves a strong concentration
of H (an acid for example). Unfortunately, component DE of the organic phase
is back-extracted into the aqueous phase in the form of component D which
reacts with H to form component F , which degrades the efficiency of the ex-
traction of B. To mitigate this difficulty, a component A is introduced in the
aqueous phase, to react with D and form a component G. This is modeled by
the following reactions.

In the aqueous phase, two kinetically-controlled reactions are defined

D + F −→ H (aq1), A + D −→ G (aq2) (40)

For each of these reactions, a reaction rate is defined

vaq1 = kaq1[D][H], vaq2 = kaq2[A][D], (41)

with
kaq1 = 102, kaq2 = 107. (42)

Four kinetic reactions are defined to model the transfer between the organic
and the aqueous phase:

B + E −→ BE (trans1)
DE −→ D + E (trans2)

H + E −→ HE (trans3)
F + E −→ FE (trans4).

(43)

The corresponding reaction rates are:

{

vtrans1 = ktrans1[B][E][H]α vtrans2 = ktrans2[DE][E]
vtrans3 = ktrans3[H][E] vtrans4 = ktrans4[F][E],

(44)

with

ktrans1
= 1, ktrans2

= 0.1, ktrans3
= 0.001, ktrans4

= 1, α = 1.9 (45)

Transport. The chemical species are transported in a simple mixer-settler ex-
tractor. This extractor comprises successive stages. Each stage is composed of
one biphasic mixer and one biphasic settler. The aqueous flow is introduced
at the last stage, while the organic flow is introduced at the first stage. Each
mixer flows into the settler of the same stage. The aqueous phase of a settler
flows into the mixer of the previous stage. The organic phase of a settler flows
into the mixer of the next stage. This produces a countercurrent circulation of
the two phases inside the extractor (see Figure 2).

From a numerical point of view, each mixer and each phase of the settlers
is represented as an elementary volume p. The total number of elementary
volumes is P = 3 × Ns where Ns is the number of stages of the mixer/settler.

17

Figure 2: Mixer/settler description

We assume that the hydraulic part of the system is at its steady state: the
flows between the elementary volumes are equal to the flows introduced into
the mixer-settler. Two outflows are also defined at the extreme settlers. The
aqueous phase of the first settler exits from the mixer-settler, as well as the
organic phase of the last settler. These outflows are also equal to the flows that
are introduced in the mixer-settler. We denote by daq and dorg the organic flow
and the aqueous flow respectively.

The volumes of each phase in the mixers are computed given the total volume
V M

i , i = 1, . . . , Ns of the mixers and the assumption of well stirred flow. For
an arbitrary stage i, we have

V
aq
i + V

org
i = V M

i

V
aq
i

V
org
i

=
daq

dorg
,

(46)

where V
aq
i (respectively V

org
i) denotes the volume of the aqueous phase (respec-

tively the organic phase) in the mixer at stage i.
The situation is simpler for the settlers, for which we assume the interface

between the two phases is fixed. The user can thus decide what are the volumes
of each phase in the settlers.

We order the elementary volumes in the following way: at each stage,

• the first elementary volume is the aqueous phase of the settler;

• the second elementary volume is the mixer;

• the third elementary volume is the organic phase of the settler.

Using this ordering of the elementary volumes, the transport in the mixer/settler

18

is described by linear operators T aq
p and T org

p such that, for n = 1, . . . , Ns

T aq
p (maq) = daq(maq

p+1 − maq
p), p = 3n (settler aqueous phase)

T aq
p (maq) = daq(maq

p+2 − maq
p), p = 3n + 1 (mixer aqueous phase)

T org
p (morg) = dorg(morg

p−2 − morg
p), p = 3n + 1 (mixer organic phase)

T org
p (morg) = dorg(morg

p−1 − morg
p), p = 3n + 2 (settler organic phase)

(47)
where maq

p (respectively morg
p) denotes a number of moles of an arbitrary species

in the aqueous phase (respectively in the organic phase) of the elementary
volume p.

Mass transfer. We use a double layer description of mass transfer [15]. This
description assumes the presence of a zone located at the interface between the
continuous phase and the dispersed phase (the interfacial zone). The species
belonging to each phase diffuse in this zone through a film [18]. These two films
express the resistance of the species in their passage from one phase to the other.
Corresponding diffusion coefficients Kaq and Korg are defined.

The interfacial zone has an infinitely small thickness. Hence, it is assimilated
to a surface where no accumulation of mass is allowed. This implies that at each
time step, the quantity of matter exchanged in the interfacial zone is equal to
the quantity that has diffused from the inner phase.

The corresponding surface area is denoted by σ. This surface area depends
on the hydraulic properties of the dispersed phase, notably on the mean size
of the droplets diameters, for example the Sauter diameter. The amount of
exchanged mass between two phases is proportional to this surface.

Equations. The equations are written for a number of moles. These quantities
are denoted by the letter of the corresponding species. The volume concentra-
tions are denoted by [.]. Interfacial concentrations are denoted by the superscript

19

i. For each volume p, the following set of equations is defined:

∂tAp = T aq
p (A) −vaq2

∂tBp = T aq
p (B) +Kaqσ(Bi

p − [B]p)
∂tDp = T aq

p (D) +Kaqσ(Di
p − [D]p) − vaq1 − vaq2

∂tFp = T aq
p (F) +Kaqσ(F i

p − [F]p) − vaq1

∂tGp = T aq
p (G) +vaq2

∂tHp = T aq
p (H) +Kaqσ(Hi

p − [H]p) + vaq1

0 = Kaqσ([B]p − Bi
p) −vtrans1

0 = Kaqσ([D]p − Di
p) +vtrans2

0 = Kaqσ([F]p − F i
p) −vtrans3

0 = Kaqσ([H]p − Hi
p) −vtrans4

∂tEp = T org
p (E) +Korgσ(Ei

p − [E]p)
∂tBEp = T org

p (BE) +Korgσ(BEi
p − [BE]p)

∂tDEp = T org
p (DE) +Korgσ(DEi

p − [DE]p)
∂tFEp = T org

p (FE) +Korgσ(FEi
p − [FE]p)

∂tHEp = T org
p (HE) +Korgσ(HEi

p − [HE]p)
0 = Korgσ([E]p − Ei

p) −vtrans1 + 2vtrans2 − vtrans3 − vtrans4

0 = Korgσ([BE]p − BEi
p) +vtrans1

0 = Korgσ([DE]p − DEi
p) −vtrans2

0 = Korgσ([FE]p − FEi
p) +vtrans3

0 = Korgσ([HE]p − HEi
p) +vtrans4

(48)

4.2.2. Numerical results

In the following numerical example, we consider a mixer-settler composed
of 8 stages. The constant describing the diffusion from the inner phases to the
interfacial zone Kaq and Korg is set to 1. The final computation time is defined
to ensure the chemical system reaches its steady state: tf = 100 h.

The aqueous flow introduced at stage 8 contains the species A, B, and H

with the following concentrations

[A] = 0.5mol.L−1, [B] = 0.5mol.L−1, [H] = 1mol.L−1. (49)

The organic flow introduced at stage 1 contains the species E, and DE, with
the following concentrations

[E] = 0.5mol.L−1, [DE] = 1mol.L−1 (50)

The velocity of the two flows is set to 1 L.h−1. The volume of the settlers
is set to 2 L, with an interface in the middle, which yields a volume of aqueous
phase and organic phase equal to 1 L in each settler. The total volume of a
mixer is set to 1 L, which yields volumes of aqueous phase and organic phase
equal to 0.5 L in each mixer, given that the incoming flow velocities are equal.

At t = 0, the initial concentrations are set to 0, except for species A, B, H, E

and DE, whose initial concentrations correspond to the concentrations of the
incident flows.

20

Figure 3: Reference solution obtained with no enforcement and restrictive tolerance parame-
ters atol = rtol = atolN = 10−10. Aqueous phase of the first settler (left), organic phase of
the last settler (right).

Because the initial concentrations correspond to the composition of the in-
troduced flows, it is easy to define mass invariants in the system. We consider
particularly the invariant corresponding to the number of moles of the species
that contain component E:

u = E + BE + DE + FE + HE. (51)

In each settler the initial quantity of u is equal to 1.5 mol. In each mixer the
initial quantity of u is 0.75 mol. Thus, the initial quantity of u in the mixer-
settler is (1.5 + 0.75) × 8 = 18 mol. This invariant is an indicator of the mass
conserving capacities of the different numerical strategies tested. As for the
Robertson case, we define the mass conservation indicator MC such that

MC = max
t∈[0;tf]

|u(t) − 18| (52)

We first compute a reference solution using a simple Newton algorithm for
the nonlinear iterations and no enforcement of the solution. The tolerance
parameters are chosen to be very restrictive, namely

atol = rtol = atolN = 10−10 (53)

The corresponding results are shown in Figure 3.

21

Figure 4: Solution computed without enforcement and tolerance paremeters atol = rtol =
atolN = 10−4

We use the same numerical method (DASSL + Newton algorithm without
enforcement) with less restrictive tolerance parameters:

atol = rtol = atolN = 10−4 (54)

The results are indicated in Figure 4. We observe that due to the negativity of
A, the solution blows up.

This is a good illustration of the importance of preserving non-negativity for
the liquid-liquid extraction problem. On this basis, we compare the three dif-
ferent strategies introduced in section 2.3, using the same tolerance parameters.
The corresponding results are presented in Figure 5.

22

Figure 5: Comparison of the solutions: reference solution (top left), clipping method (top
right), damping method (bottom left), CODOSOL method (bottom right).

We tested different values for the η parameter for the clipping method. As
for the Robertson case, we observed that too small values prevent the numer-
ical method from converging. Indeed, the number of refused steps increases
drastically, and the method finally reduce the time step below its critical value,
leading to failure (even for a critical value set to 10−50). We thus choose η = 1
to obtain the convergence of the clipping method. As a consequence, the error
on mass conservation is large, as shown in Table 2. In addition, the solution
computed by the clipping method suffers from artifacts compared to the ref-
erence solution (see for instance the concentration profile of G in the aqueous
phase of the first settler). Before reaching its steady state at 0.5 mol.L−1, the
profile grows to 0.55 mol.L−1.

The damping method is used with a damping factor ǫ equal to 10−12 as
for the Robertson case. The results we obtained are satisfactory. First, the
solution does not blow up, as with non enforcement of non-negativity. Second,
the convergence is obtained after a few iterations, and the concentration pro-
files computed respect the reference solution. Third, the mass conservation is
ensured.

The CODOSOL method also gives satifsfactory results The computed solu-
tion does not blow up. Convergence is obtained in fewer iterations than with the

23

reference solution. However more iterations are required than for the damping
method. The computed concentration profiles do not present numerical artifacts
such the ones that can be seen in the results provided by the clipping method,
which is also satisfactory. Finally, the conservation of mass provided by the
CODOSOL method is very good, the maximum error during the integration of
the DAE being equal to 2.13 × 10−14.

The number of time steps taken (Nsteps), the number of time steps refused
(Nfailures), the total number of function evaluations (Nfeval), the total number
of Jacobian evaluations (NJeval), the mass conservation indicator MC, and the
number of components set to 0 (Nclipping) are reported in Table 2.

Nsteps Nfailures Nfeval Njeval MC Nclipping

Reference 3975 269 13493 1245 8.88 × 10−14 0

Clipping 375 44 1193 251 9.87 × 10−5 1069

Damping 343 37 1120 241 4.26 × 10−14 N/A

CODOSOL 571 96 3405 419 2.13 × 10−14 N/A

Table 2: Comparison between clipping, damping and CODOSOL for the liquid-liquid extrac-
tion test case

The damping method provides the best results in terms of number of steps
taken and number of function and Jacobian evaluations. As expected, the mass
conservation of the invariant u is very poor for the clipping method: the mag-
nitude of the error on mass is 10−4. Conversely, the damping method and the
CODOSOL method provide very good conservation of u, up to the order of
10−14.

The comparison between the CODOSOL method and the damping method
also reveals that for this test case, the CODOSOL method is less efficient.
Indeed, the number of time steps taken is larger, as the number of Jacobian
evaluation. This is also the case for the number of function evalutations, but
this is due to the nature of the CODOSOL method, which is based on a trust-
region strategy.

In order to better understand why the CODOSOL method seems to be less
efficient than the damping method, we compare other aspects of the different
strategies. First, we observe the values of the order taken at each step. The
corresponding results are shown in Figure 6.

The order evolutions generated by the clipping method and the damping method
are almost the same. Conversely, it appears that the order selected at each time

24

Figure 6: Comparison of the order taken at each time step: clipping method (top left),
damping method (top right), CODOSOL method (bottom left)

step by the DASSL method is lower when using the CODOSOL method, at
least for the first iterations.

Second, we compare the number of Newton iterations per time step. The
results are indicated in Figure 7. We observe the very similar behavior of the
clipping method and the damping method. Most of the time, only two itera-
tions of the Newton algorithm are performed. Only for the last iterations, the
maximum of 4 iterations is reached. The CODOSOL method exhibits the same
behavior with a slight difference for the last iterations: the maximum number
of 4 iterations is reached a more often.

25

Figure 7: Comparison of the number of Newton iteration at each time step: clipping method
(top left), damping method (top right), CODOSOL method (bottom left).

Finally, we compare the size of the time steps taken at each iteration. The
results are shown in Figure 8. Once again, the clipping method and the damping
method give very comparable results. Conversely, the CODOSOL method seems
to encounter more difficulties for the last iterations, which is correlated with the
number of Newton iterations performed at these steps. The time step appears
to be more irregular on the final iterations, and decreases more often.

26

Figure 8: Comparison of the stepsizes: clipping method (top left), damping method (top
right), CODOSOL method (bottom left).

The mean values for the order, the number of Newton iterations and the
stepsizes are reported in Table 3.

Mean order Mean number of Newton iterations Mean stepsize

Clipping 2.98 1.80 0.37

Damping 2.88 1.83 0.40

CODOSOL 2.05 2.00 0.24

Table 3: Comparison of the mean order, the number of Newton iterations and the mean
stepsize

The results displayed in Table 3 confirm what is visible in Figures 6, 7 and 8. The
mean values associated with the clipping method and the damping method are
quasi-similar. Conversely, the mean order is lower for the CODOSOL method,
the mean number of Newton iterations is larger, and the mean stepsize is smaller.

27

This emphasizes that the CODOSOL method is somewhat less efficient than the
damping method for the liquid-liquid extraction test-case.

Two reasons may explain the deterioration of the convergence properties of
CODOSOL, compared with the damping method. First, this could come from
the method of computation for the modified Newton step inside the CODOSOL
algorithm, described in [2]. The modified Newton step always produces an
iterate strictly in the feasible region, that may be too far from the boundary
compared with the damping method. Another possible explanation comes from
the trust-region framework, which may not be suitable for application to DASSL.
Indeed, the trust-region procedure is a method that ensures global convergence,
that is to say the method converges from any starting point. However in DASSL,
the prediction is supposed to be close enough to the solution to allow only for
four Newton iterations at each time step.

In conclusion, the results obtained on our DAE test case arising from liquid-
liquid extraction show the importance of respecting non-negativity constraints.
Indeed, authorizing negative components of the solution can lead to a solu-
tion blow up. Among the three different strategies we tested to enforce non-
negativity, we illustrate that the clipping method should be avoided. This
method, although showing good convergence properties, does not respect mass
invariance. In addition, the computed solution may present numerical artifacts.
In turns, the damping method and the CODOSOL methods are more effective,
regarding mass invariance, and convergence to the reference solution.

The comparison between the damping strategy and the CODOSOL strategy
highlights the better convergence properties of the damping method. The mean
order, the mean stepsize, and the mean number of Newton iterations are better
than with the CODOSOL strategy. The convergence of the CODOSOL strategy
is thus slower. In addition, the number of function evaluations is more impor-
tant, which is due to the trust-region strategy at the core of the CODOSOL
method.

However, the CODOSOL method should not be discarded for future applica-
tions. Indeed, in some cases, not only non-negativity constraints are necessary,
but also upper bound constraints, which may vary with the components of the
solution. In this case, the damping method could encounter strong difficul-
ties to converge, as the damping factor is computed for all the components of
the solution at the same time. On stiff large-scale problems, in the case of
upper and lower bounds; the damping factor allowing to stay within the feasi-
ble bounds could be relatively small, which could slow the convergence of the
damping method. Conversely, the CODOSOL method is naturally designed to
handle complex bound constraints. For this type of applications, the CODOSOL
method should prove to be more efficient than the damping method.

28

5. Conclusion and perspectives

The modeling of liquid-liquid extraction implies solving an index one DAE
problem, with non-negativity constraints. While solving index one DAE prob-
lems is a well known issue, accounting for non-negativity constraints is more
difficult. Non-negativity is however crucial for a large number of applications,
mainly because the physical quantitities are intrinsically non-negative (concen-
trations, number of moles). In addition, negative values of the components
of the solution may prevent convergence, either because the function f(t, y(t))
defining the DAE system is not defined for these values, or because negative val-
ues yield numerical instabilities (as shown for the liquid-liquid extraction test
case).

Based on recent work on this subject originally proposed in the context
of ODE problems, we present and compare three different strategies for tak-
ing these bound constraints into account. The comparisons are based on the
architecture of a classical index one DAE solver DASSL. This solver imple-
ments a BDF discretization of the time derivatives of the system, in a predic-
tion/correction scheme. It also implements a very efficient stepsize and order
selection algorithm. The implicit BDF discretization scheme solves a nonlinear
system at each time iteration. This is performed with a Newton solver.

The three strategies for enforcing non-negativity of the solution are variant
of the Newton solver. The first one, named as the clipping method, consists
in setting to 0 all the components of the solution computed by the classical
Newton solver if their absolute exceed a threshold parameter set by the user.
If at least one component is lower than this threshold, the solution is rejected,
and the time step is reduced, in order to define a new nonlinear system.

The second strategy, known as the damping method, consists in multiplying
the Newton step by a damping factor at each nonlinear iteration. This damping
factor is designed to force the iterates to stay within the feasible region.

The third strategy, known as the CODOSOL method, consists in replac-
ing the classical Newton method by a more complex Newton method, based
on a trust-region globalization, specially designed to handle general bound con-
straints.

We perform a comparison of these three strategies on two test cases. The
first one is the Robertson case, a stiff ODE problem with 3 unknowns considered
as a reference case by many authors [23]. This system is stiff, and also provides
a mass invariant, making it possible to control the mass-conserving character
of the three strategies. The second test case is taken from our liquid-liquid ex-
traction application. The corresponding problem is an index one DAE problem,
which is stiff, and involves 318 unknowns. As for the Robertson case, a mass
invariant can be computed in order to control the mass conserving character of
the different strategies.

The two test cases show that the clipping method should be avoided. In-
deed, clipping some components of the solution to 0 produces artificial mass,
and destroy the conservation of mass. In addition, nothing prevents attempts
to evaluate the function defining the DAE system outside its definition domain,

29

which may cause the integration to fail. Conversely, both the damping strategy
and the CODOSOL strategy provides good mass invariance, and generate se-
quence of iterates that remain within the feasible region. From the standpoint
of a computational, the damping strategy is more effective than the CODOSOL
strategy. Because of the trust-region globalization, the CODOSOL method re-
quires larger number of function evaluations. However, this is not as crucial as
the number of Jacobian evaluations, which represents the most computation-
intensive part of the DAE integration. While for the Robertson test case, the
damping and the CODOSOL method give comparable results with regard to
this number of evaluations, the damping method outperforms the CODOSOL
method on the liquid-liquid extraction test case.

However, it should not be forgotten that the CODOSOL method has at
least one advantage over the damping method. The CODOSOL method is able
to deal with upper and lower bound constraints possibly differing from one
component to another. This seems more difficult to achieve using the damping
method. Future perspectives should include comparisons of the two methods
on a test case that requires such complex upper and lower bounds. In addition,
scaling matrices (as for instance the Coleman-Li matrix[2]) can be used in the
CODOSOL method to enhance the handling of bound constraints. This should
be also tested in comparison with the damping method.

Acknowledgments

The authors are grateful to S.Bellavia, M.Macconi, S.Pieraccini for their
support, interest, and precious advice. They also warmly thank H.Roussel,
V.Pacary, C.Balaguer and X.Hérès for fruitful discussions and for their patience
in teaching chemistry to applied mathematicians. t

References

[1] M.M.Attarakih, H.J.Bart, T.Steinmetz, M.Dietzen, N.M.Faqir, LLEC-
MOD: A Bivariate Population Balance Simulation Tool for Liquid-Liquid
Extraction Columns, The Open Chemical Engineering Journal, 2, 10-34,
2008.

[2] S.Bellavia, M.Macconi, S.Pieraccini, Constrained Dogleg Methods for non-
linear systems with simple bounds, Computational Optimization and Ap-
plications, to be published.

[3] K.E.Brenan, S.L.Campbell, L.R.Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations, Classics in Applied
Mathematics 14, SIAM, North-Holland, New-York, Amsterdam, London,
1995.

[4] L.Brugnano, C.Magherini, Blended Implicit Methods for solving ODE and
DAE problems, and their extension for second order problems, J. Comput.
Appl. Math., 189, 34-50, 2006.

30

[5] J.R.Cash, Efficient numerical methods for the solution of stiff initial-value
problems and differential algebraic equations, Proc. R. Soc. Lond.,459,
797-815, 2003.

[6] C de Dieuleveut, J.Erhel, M.Kern, A global strategy for solving reactive
transport equations, Journal of Computational Physics, 228, 6395-6410,
2009.

[7] M.K.Gobbert, M.Muscedere, T.I.Seidman, R.J.Spiteri, A non-negativity
preserving Newton method for high-order implicit time stepping, submit-
ted.

[8] G.H.Gollub, C.F.Van Loan, Matrix Computation, Third Edition, John
Hopkins University Press, Baltimore, MD, USA, 1996.

[9] E.Hairer, S.P.Nørsett, G.Wanner, Solving Ordinary Differential Equations,
I, II, Springer, Berlin 1996.

[10] A.C.Hindmarsh, P.N.Brown, K.E.Grant, S.L.Lee, R.Serban,
D.E.Shumaker, C.S.Woodward, SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers, ACM Transactions on Mathemat-
ical Software, 31, 3, 363-396, 2005.

[11] P.J. van der Houwen, J.J.B. de Swart, Parallel linear system solvers for
Runke-Kutta methods, Advances in Computational Mathematics, 7, 157-
181, 1997.

[12] F.Iavernaro, F.Mazzia, Solving ordinary differential equations by general-
ized Adams Methods: properties and implementation techniques, Applied
Numerical Mathematics, 28, 107-126, 1998.

[13] K.R.Jackson, R.Sacks-Davis, An alternative implementation of variable
step size multistep formulas for stiff ODEs, ACM Trans. Math. Software,
6, 295-318, 1980.

[14] F.T.Krogh, Changing step size in the integration of differential equations
using modified divided differences, Proc. Conf. Num. Solution of ODEs,
Lecture Notes in Mathematics, 362, Springer-Verlag, New-York, 1974.

[15] W.K.Lewis, W.G.Whitman, Principles of gas absorption, Ind. Eng. Chem,
16, p.1215-1220, 1924.

[16] F.Mazzia, C.Magherini, Test set for Initial Value Problem Solvers, report
4/2008, Department of Mathematics, University of Bary, Italy.
http://pitagora.dm.uniba.it/ testset/

[17] L.Métivier, H.Roussel, Accounting robustly for instantaneous chemical
equilibriums in reactive transport: a numerical method and its applica-
tion to liquid-liquid extraction modeling, submitted.

31

[18] N. Di Miceli Raimondi, “Transfert de matière liquide-liquide en micro-canal
: application à la réaction chimique ”, PhD Thesis, Toulouse University,
France, 2008.

[19] G.Psihoyios, Solving time dependent PDEs via an improved modified ex-
tended BDF scheme, Applied Mathematics and Computation, 184, 104-
115, 2007.

[20] W.E.Schiesser, The Numerical Method Of Lines: Integration of Partial
Differential Equations, Academic Press, San Diego, 1991.

[21] A.Sandu, Positive Numerical Integration Methods for Chemical Kinetic
Systems, Journal of Computational Physics, 170, 589-602, 2001.

[22] L.F.Sampine, M.W.Reichelt, The Matlab ODE Suite, SIAM Journal on
Scientific Computing, 18, 1-22, 1997.

[23] L.F.Shampine, S.Thompson, J.A.Kierzenka, G.D.Byrne, Non-negative so-
lutions of ODEs, Applied Mathematics and Computation 170, 556-569,
2005.

[24] L.F.Shampine, M.K.Gordon, Computer Solution of Ordinary Differential
Equations, W.H.Freeman and Co., 1975.

[25] O.Weinstein, R.Semiat, D.R.Lewin, Modeling, simulation and control of
liquid-liquid extraction columns, Chemical Engineering Science, 53, 325-
339, 1998.

32

