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EXTREME WAVE RUN-UP ON A VERTICAL CLIFF

FRANCESCO CARBONE, DENYS DUTYKH∗, JOHN M. DUDLEY, AND FRÉDÉRIC DIAS

Abstract. Wave impact and run-up onto vertical obstacles are among the most impor-

tant phenomena which must be taken into account in the design of coastal structures.

From linear wave theory, we know that the wave amplitude on a vertical wall is twice

the incident wave amplitude with weakly nonlinear theories bringing small corrections to

this result. In this present study, however, we show that certain simple wave groups may

produce much higher run-ups than previously predicted, with particular incident wave

frequencies resulting in run up heights exceeding the initial wave amplitude by a factor of

5, suggesting that the notion of the design wave used in coastal structure design may need

to be revisited. The results presented in this study can be considered as a note of caution

for practitioners, on one side, and as a challenging novel material for theoreticians who

work in the field of extreme wave - coastal structure interaction.

Key words and phrases: run-up; wave/wall interaction; Serre equations; coastal struc-

tures; wave groups
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1. Introduction

The robust design of various coastal structures (such as sea-walls, breakwaters, etc.)
relies on the accurate estimation of the wave loading forces. To this end, engineers have
introduced the notion of the so-called design wave. Once the particular characteristics
of this design wave are determined, the pressure field inside the bulk of fluid is usually
reconstructed (in the engineering practice) using the [32] or [17] semi-empirical formulas.
However, there is a difficulty in determining the wave height to be used in design works.
Sometimes, it is taken as the significant wave height H1/3, but in other cases it is H1/10 (the

∗ Corresponding author.
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average of 10% highest waves) that are substituted into the wave pressure formulas. If we
take, for example, an idealized sea state which consists only of a single monochromatic
wave component with amplitude a0, its wave height H0 can be trivially computed

H0 ≡ H1/3 ≡H1/10 = 2a0. (1.1)

Consequently, the design wave will have also the height equal to 2a0.
In the present study, we show that even such simple monochromatic sea states, subject

to the nonlinear dynamics over a constant bottom, can produce much higher amplitudes on
a vertical wall. Namely, we show below that some wave frequencies can lead to an extreme
run-up of the order of ≈ 5.5a0 on the cliff. The results presented in this study suggest that
the notion of the design wave has to be revisited. Moreover, the mechanism elucidated
in this work can shed some light onto the freak wave phenomenon in the shallow water
regime, where we recall in this context that over 80% of reported past freak wave events
have been in shallow waters or coastal areas [29, 30].

It is well known that wave propagation on the free surface of an incompressible homoge-
neous inviscid fluid is described by the Euler equations combined with nonlinear boundary
conditions on the free surface [38]. However, this problem is difficult to solve over large
domains and, consequently, simplified models are often used. In particular, in this study
we focus our attention on long wave propagation. A complete description of wave pro-
cesses, including collisions and reflections, is achieved by employing two-way propagation
models of Boussinesq type [2]. Taking into account the fact that we are interested here in
modeling (potentially) high amplitude waves, we adopt the fully nonlinear Serre–Green–
Naghdi (SGN) equations [35, 18, 19, 44], which make no restriction on the wave amplitude.
Only the weak dispersion assumption is adopted in the mathematical derivations of this
model [41, 23, 12].

We consider a two-dimensional wave tank with a flat impermeable bottom of uniform
depth d = const, filled with an incompressible, inviscid fluid (see Figure 1). The Cartesian
coordinate system Oxy is chosen such that the y−axis points vertically upwards and the
horizontal x−axis coincides with the undisturbed water level y = 0. The free surface eleva-
tion with respect to the still water level is denoted by y = η(x, t) and hence, the total water
depth is given by h(x, t) = d + η(x, t). Denoting the depth-averaged horizontal velociy by
u(x, t), the SGN system reads [23, 12, 8]:

ht + (hu)x = 0, (1.2)

ut + (12u2 + gh)
x
= 1

3
h−1[h3(uxt + uuxx − u2

x)]
x
, (1.3)

where g is the acceleration due to gravity.
The SGN system possesses Hamiltonian and Lagrangian structures [24, 8] and conser-

vation laws for mass, momentum, potential vorticity and energy [24, 14]. From a more
physical perspective the SGN model combines strong nonlinear effects with some disper-
sion that approximates well the full water wave dynamics. This model has been previously
validated by extensive comparisons with experimental data for wave propagation and run-
up [7, 40, 5, 14].

One of the most important questions in water wave theory is the understanding of wave
interactions and reflections [25, 1, 9] and the interaction of solitary waves has also been
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Figure 1. Upper panel (a): schematic view of the numerical experiments. Here

L is the length of the computational domain, d is the uniform water
depth, a0 is the incoming wave amplitude and λ is its wavelength;
lower panel (b): temporal evolution of the first four harmonics of a

sinusoidal wave of frequency ω = 0.01 injected in the domain (in the
absence of the right wall).

extensively studied [43, 3, 16, 11]. By using symmetry arguments, one can show that
the head-on collision of two equal solitary waves is equivalent to the solitary wave/wall
interaction in the absence of viscous effects.
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The accurate determination of the maximum wave height on a wall is of primary impor-
tance for applications. Several analytical predictions for periodic or solitary wave run-up
Rmax in terms of the dimensionless wave amplitude α = a0/d have been developed: linear
theory [27] Rmax/d = 2α; third-order theory [39] Rmax/d = 2α+1/2α2+3/4α3, and nonlinear

shallow water theory [28] Rmax/d = 4(1 +α −√1 +α) = 2α + 1/2α2 − 1/4α3 +O(α4).
These results have been confirmed in previous experimental [26], theoretical [4] and

numerical [16, 11] studies. All these theories agree on the fact that the wave height on
the wall is two times the incident wave amplitude plus higher order corrections. This
conclusion provides a theoretical justification for the use of a wave height such as H1/3 in
the design wave definition.

2. Numerical study

From a practical point of view, however, the reasoning presented above contains at least
one serious flaw — in real-world conditions, waves seldom come isolated but rather as
groups. In this Section, we show numerically how simple wave groups can produce much
higher run-ups than expected from the existing theoretical predictions.

Our numerical wave periods cover a range between 20 s and 1100 s (i.e. for 6 < d < 30
m and g = 9.81 m/s2), from long swells to tsunami waves. Extreme run-ups are obtained
for wave periods which are in between swell periods and tsunamis periods, corresponding
possibly to tsunamis generated by underwater landslides. Moreover, we take as initial
conditions waves which are not exact solutions to the equations. Naturally they deform as
they evolve towards the vertical wall. This deformation is reminiscent of the transformation
of waves over sloping bathymetries.

2.1. Numerical scheme and set-up

Let us consider a flat channel of constant depth d and length L. This channel is bounded
on the right by a rigid vertical wall and by a wavemaker on the left (see Figure 1). We
use dimensionless variables where lengths are normalized with d, speeds with

√
gd and

time with
√
d/g. This scaling is equivalent to setting g = 1 m/s2, d = 1 m in the governing

equations (1.2) and (1.3).
In order to solve numerically the SGN equations we use the high-order finite-volume

scheme described in [14]. This scheme has been successfully validated against analytical
solutions and experimental data [20]. For the time integration we use the classical fourth-
order Runge–Kutta scheme [36, 37]. The computational domain is divided into equal
intervals (i.e. control volumes) such that we have N = 1000 control volumes per wavelength.
The convergence study showed that this grid provides a good trade-off between accuracy
and overall computational time. Note that the extreme run-up values reported in this
study can slightly increase under mesh refinement, which decreases the effect of numerical
dissipation. All simulations start with the rest state η(x, t = 0) ≡ 0, u(x, t = 0) ≡ 0.

The wavemaker generates a monochromatic incident wave:

η(x = 0, t) = η0(t) = a0 sin(ωt)H(T − t), (2.1)
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where the amplitude a0 = 0.05, ω ∈ [0.01, 0.25] and H(t) is the Heaviside function and

cs is the wave speed cs = √g(d + a0) [14]. An important remark should be made on
the initialization of the problem: sometimes spurious high-frequency standing waves are
generated when numerical simulations of nonlinear progressive waves are initialized using
linear waves (in particular for deep water waves). In such cases the problem should be
initialized by suppressing the spurious generation of standing waves. However, a nonlinear
simulation can be initialized with simple linear waves if the runtime is long enough to
adjust the wave shape [13]. As can be seen in the lower panel of Figure 1 the amplitude
of the first harmonic remains constant during the propagation while the amplitudes of the
higher harmonics tend to increase until a constant value is reached, as illustrated in [13].
For this reason no adjustment is required in our case.

We generate only a finite number Nw of waves with period T0 = 2π/ω and thus, the
wave generation time T is defined as T = NwT0. The monochromatic deviation of the free
surface at the left boundary is then propagated towards the right wall under the SGN
dynamics. The length L of the computational domain and the final simulation time Tf are
chosen adaptively in order to allow all important interactions and to prevent any kind of
reflections with the left generating boundary:

L = (Nw + 1

2
)λ, Tf = L√

g(d + a0) + T,

λ being the wavelength corresponding to the frequency ω.

2.2. Numerical results

We begin our numerical experiments by considering a single sinusoidal wave interacting
with the solid wall. In Figure 2 we show three snapshots of the single wave evolution at
three different times, i. e. before reaching the wall, during the impact and right after
the reflection. The initial sinusoidal wave undergoes steepening during its propagation.
The run-up on the vertical wall is shown on the lower panel of Figure 2. The maximal
dimensionless wave elevation Rmax ≃ 0.10245 on the wall reaches roughly twice the incident
wave amplitude a0 = 0.05 (at t ≃ 70). This result is in good agreement with previous
numerical studies on the solitary waves interactions [10, 31, 6] even if the incident shape
is not exactly the same. The maximal relative run-up Rmax/a0 ≃ 2.34 is achieved for
ωmax = 0.145. The value of Rmax is slowly decreasing for ω > ωmax.

When two waves are injected into the domain, the dynamics is similar to the single
wave case. However, with two waves the nonlinear effects become even more apparent (see
Figure 3).

In a certain range of wave periods (ω ∈ (0.01, 0.05)), the so-called dispersive shock

waves are formed [41, 40]. This particular type of solution has been extensively studied
theoretically and numerically in [15]. When the second wave impinges on the first reflected
wave, a dispersive shock wave forms and propagates towards the wall. As shown in the
last panel of Figure 3 the maximal amplification is achieved when the second wave hits the
wall due to nonlinear interactions between two counter-propagating waves. However, we
underline that with only two waves one can achieve a maximal run-up on the wall Rmax of
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Figure 2. Time evolution of the free surface elevation as a function of space, at
three different times t

∗ (first three top panels) reported on the figure.
The figure refers to the single-wave case with frequency ω = 0.145.

The lower panel reports the maximal elevation at the wall RL/a0 as a
function of time.

almost four incident wave amplitudes a0:

Rmax/a0 ≃ 3.8, for ω = 0.021. (2.2)

Such high run-up values are possible due to the energy transfer between the first reflected
wave and the second incoming wave. The dependence of the maximal run-up Rmax on the
incident wave frequency ω and the number Nw of incident waves is shown in Figure 4. One
can see from this figure that the optimal energy transfer due to dispersive shocks happens
for three incident waves (see Figure 6). In this case the maximal run-up is observed around
ωmax = 0.035 and the amplification is equal to Rmax/a0 ≃ 5.43. However, the energy transfer
process is saturated for three waves.

We performed similar computations with four incident waves (also shown on Figure 4)
and the maximal run-up is not higher than with three waves. Consequently, we focus
now only on the optimal three-wave case. The three regimes (hyperbolic, equilibrium
and dispersive) are illustrated on Figure 7, where we show the space-time dynamics of the
three-wave system. The left panel shows the hyperbolic regime. On the central panel strong



Extreme wave run-up on a vertical cliff 7 / 13

−100 0 100 200 300 400 500 600

−0.05

0

0.05

η
(x

,t
* )

 

 

t
*
 = 615.25

−100 0 100 200 300 400 500 600
−0.05

0

0.05

η
(x

,t
* )

 

 

t
*
 = 760

−100 0 100 200 300 400 500 600

−0.05

0

0.05

x

η
(x

,t
* )

 

 

t
*
 = 915.12

600 700 800 900 1000 1100 1200 1300
−2

0

2

4

R
L
(t

) 
/ 

a
0

Time

 

 

ω = 0.021

Figure 3. Time evolution of the free surface elevation as a function of space,
at three different times t

∗ (first three top panels) reported on the fig-
ure. The figure refers to the two-wave case with frequency ω = 0.021.

The lower panel reports the maximal elevation at the wall RL/a0 as a
function of time.

dispersive shocks can be observed, while on the right panel the dynamics is smoothed by the
dispersion. In the last case the amplification is mainly produced by the linear superposition
of the incident and reflected waves. The reflection and interaction are clearly observed by
smooth secondary peaks in the space time plots (see Figure 7, but also Figure 5).

The wave interactions described above strongly depend on the frequency ω of the im-
pinging waves as can be seen in Figure 5, where we show the wave records on the wall for
several values of the frequency ω. As the wave frequency increases, the wavelength shortens
and the dispersive effects become gradually more important. Around ωmax the dispersive
effects are balanced with nonlinearities to produce the most pronounced dispersive shock
waves. Starting from ω ≃ 0.11 we enter into the dispersive regimes where the waves become
regularized.
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3. Conclusions and perspectives

In the present study we investigated numerically the interaction between a wave and a
vertical wall in the framework of the Serre–Green–Naghdi (SGN) equations. These equa-
tions combine strong nonlinear and weak dispersive effects. We explored the whole range
of wavelengths from the hyperbolic regime (including shock waves) to smooth dispersive
waves (ω ≳ 0.1). More importantly, we showed that the wave run-up on the wall is strongly
dependent on the incident wave frequency, the dependence not being monotonic. In par-
ticular, there is a fixed frequency ωmax which provides the maximum long wave run-up
on the vertical wall. The function Rmax(ω) is monotonically increasing up to ωmax and
monotonically decreasing for ω > ωmax (at least within the range of considered numerical
parameters). The dynamics can be conventionally divided into three main stages:

(1) Propagation of the wave group towards the wall along with the front steepening
and other nonlinear deformations

(2) First wave run-up and its reflection from the wall
(3) Projection of the reflected energy again onto the wall by subsequent incident waves

The maximal observed amplification ≈ 5.5a0 is achieved with only three incident waves. For
example, on a 10 m water depth the critical period is equal approximatively to Tmax ≈ 180
s (ωmax ≡ 2π/Tmax). Such a wave period can be generated by small underwater landslides.

The results presented in this study shed light onto extreme wave run-ups on vertical
cliffs and similar coastal structures. Moreover, in view of these results, the definition of
the design wave has to be revisited. Our suggestion would be to take at least 3H1/3 or even
3H1/10. The present results also shed some new light on the mysterious accumulations of
large boulders on cliff tops up to 50 m high on the deep water coasts, especially on the west
coast of Ireland [21, 42, 30]. The emplacement of these megaclasts is usually attributed
to extreme storm waves, but there are also those who believe that tsunamis are the most
probable explanation of boulder ridges in these areas [22, 34, 33].

In future investigations, more general wave groups have to be studied to unveil their
potential for focussing on the walls. We recall that so far we considered only simple
idealized monochromatic waves. In addition, we are going to investigate the effect of
the forces exerted by incident waves on vertical obstacles, which can be different from
the purely kinematic amplitude focussing presented in this study. In other words, it is not
clear whether the highest wave will produce the highest dynamic pressure spike on the wall.
The effect of the wave amplitude is to be investigated as well since all the processes under
consideration are highly nonlinear. Some theoretical explanation of these phenomena is also
desirable. However, the difficulty is rather high again because of important nonlinearities
mentioned hereinabove. We claim that no linear theory is sufficient to provide a satisfactory
explanation.
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[35] F. Serre. Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille

blanche, 8:374–388, 1953. 2

[36] L. F. Shampine. ODE solvers and the method of lines. Numerical Methods for Partial Differential

Equations, 10(6):739–755, 1994. 4

[37] L. F. Shampine and M. W. Reichelt. The MATLAB ODE Suite. SIAM Journal on Scientific Com-

puting, 18:1–22, 1997. 4

[38] J. J. Stoker. Water Waves: The mathematical theory with applications. Interscience, New York, 1957.

2

[39] C. H. Su and R. M. Mirie. On head-on collisions between two solitary waves. J. Fluid Mech., 98:509–

525, 1980. 4

[40] M. Tissier, P. Bonneton, F. Marche, F. Chazel, and D. Lannes. Nearshore Dynamics of Tsunami-like

Undular Bores using a Fully Nonlinear Boussinesq Model. Journal of Coastal Research, 64:603–607,

2011. 2, 5

[41] G. Wei, J. T. Kirby, S. T. Grilli, and R. Subramanya. A fully nonlinear Boussinesq model for surface

waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech., 294:71–92, 1995. 2, 5

[42] D. M. Williams. Mechanisms of wave transport of megaclasts on elevated cliff-top platforms: examples

from western Ireland relevant to the storm-wave versus tsunami controversy. Irish Journal of Earth

Sciences, 28:13–23, 2010. 10

[43] N. J. Zabusky and M. D. Kruskal. Interaction of solitons in a collisionless plasma and the recurrence

of initial states. Phys. Rev. Lett, 15:240–243, 1965. 3

[44] M. I. Zheleznyak and E. N. Pelinovsky. Physical and mathematical models of the tsunami climbing a

beach. In E. N. Pelinovsky, editor, Tsunami Climbing a Beach, pages 8–34. Applied Physics Institute

Press, Gorky, 1985. 2



Extreme wave run-up on a vertical cliff 13 / 13

University College Dublin, School of Mathematical Sciences, Belfield, Dublin 4, Ire-

land

E-mail address : Francesco.Carbone@ucd.ie

University College Dublin, School of Mathematical Sciences, Belfield, Dublin 4, Ire-
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