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SUMMARY 

 

Obstacle detection is a pre-requisite for collision-free motion of robots and UAVs 

in three dimensional (3D) space.   Vision based obstacle detection and avoidance has 

been an active area of research in the recent past.  Most research has been done for two 

dimensional planar motion of ground robots and using some kind of active sensors e.g. 

laser range finders, sonar, radar etc.  Passive camera based research has mostly been 

done, either using stereo vision (multiple cameras) or, by developing a prior expectation 

map of the world and its comparison with the new image data. 

In this work, an attempt has been made to find a 3D solution of the obstacle 

detection problem using a single camera, in an unknown world, i.e. finding size and 

location of the objects in the 3D world by generating a 3D scene model from the 2D 

information received from the camera.  Once such a 3D model of the scene is obtained, 

an obstacle avoidance maneuver could be based on this knowledge of the size and 

location of obstacles.  The motivation behind such an endeavor is the fact that a single 

camera would be carried by almost all robots or UAVs anyway, so why not use the same 

camera for obstacle detection and avoidance tasks as well?  The attempted work would in 

turn facilitate building low cost, light weight miniature robots and UAVs and would 

obviate the requirement of additional equipment for the task. 

An algorithm has been proposed in this work which uses equations of motion of 

the camera to track flight path, Z-test for correspondence between estimated feature 

points and new measurements, and Extended Kalman Filter for estimation.  It finally 
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comes up with the 3D representation of the scene.   The proposed algorithm has been 

applied on two categories of problems.   

First is the 3D detection of obstacles while following a lateral flight path around 

the obstacles.  Simulation results show that the proposed algorithm can successfully 

generate a 3D model of the scene from 2D images from a single camera,  in an unknown 

world.   Further,  this has been achieved by flying through a very small arc as compared 

to capturing full side, rear or top views, as in a typical ‘Structure from Motion’ problem. 

The second case where the proposed algorithm has been applied is that of a 

forward flight path towards the obstacles in the scene.  Accuracy of 3D information from 

forward motion was earlier considered to be unusable for all practical fields of view.   

However, the simulation results from the proposed algorithm indicate that successful 3D 

scene modeling is possible even with a forward flight towards the obstacle,  provided that 

the obstacles do not lie entirely and exactly on the focus of expansion.  This is the most 

significant contribution of this work. 
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CHAPTER 1 

INTRODUCTION 

 

Vision Systems in General 

 A vision system (as defined by Marr)[1] is a “Process that creates, given a set of 

images, a complete and accurate representation of the scene and its properties”.  This 

definition is considered ‘general vision’, as the extracted representation of the scene has 

to be as general as possible.   There are two approaches to scene representation.   First is 

an accurate and complete representation of an observed world.  This requires large 

amount of computational power, but gives much more information utilizable for a large 

range of problems, as compared to the second approach:  i.e. knowing only the 

information specific to the problem being solved.   For example, specifically for obstacle 

avoidance task of an indoor ground robot, the robot may only need to know which 

regions of its way ahead are occupied by the obstacles.  Information like the shape of 

objects, their absolute positioning in the world, or the understanding of the relationships 

between these objects may not be required for this specific problem.   However, if we are 

talking of three dimensional (3D) space of a flying robot,  all such information may be 

relevant, in order to utilize the third dimension of altitude and to join back the planned 

optimal trajectory safely, past the obstacle.   

 Typically (Figure 1.1), a vision system includes (but is not limited to) an image 

acquisition mechanism, followed by an image processor and an image segmentation 

system.  This may be followed by some kind of image reasoning, which ultimately 

culminates into scene modeling, comprising of desired attributes of the scene.  Once the 

desired scene model is obtained or updated, decisions may be taken on how to achieve 

the vision system perceived goals. 
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VISION SYS (Overview)VISION SYS (Overview)

Camera / StereoCamera / Stereo

UV / IR
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⇒⇒⇒⇒ 2D/3D Image 
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⇒⇒⇒⇒ Improved Image
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SurfacesExtraction / Feature Detection

IMAGE IMAGE IMAGE IMAGE 
PROCESSINGPROCESSINGPROCESSINGPROCESSING

Reduce Noise

Change Contrast

Compress

VISION BASED GOALSVISION BASED GOALS

MOTION / TRACKING / RVMOTION / TRACKING / RV

GUIDANCE & NAVIGATIONGUIDANCE & NAVIGATION

OBSTACLE AVOIDANCEOBSTACLE AVOIDANCE

FORMATION FLIGHTFORMATION FLIGHT
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⇒⇒⇒⇒ Object 
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““The process that creates, given a set of images, a The process that creates, given a set of images, a 

complete and accurate representation of the scene and complete and accurate representation of the scene and 

its propertiesits properties””

Recognition without 
Reconstruction

(e.g Optical Flows, 
FFD, Motion 

estimation etc)

IMAGE ACQUISITIONIMAGE ACQUISITION

 

Figure 1.1: Overview of A Typical Computer Vision Problem 

 

Why Vision-Based Obstacle Detection 

 Successful motion through 3D space requires that any objects in the flight path be 

avoided.   This is not a prominent issue, when motion is at high altitudes.  (Even birds are 

rarely seen above 8000ft.)  On the contrary, however, if the motion is close to the ground, 

e.g. within 1000ft above ground level, obstacle avoidance is a very serious consideration.   

The various perceived roles for unmanned air vehicles fall within this flight altitude 

range.   Such roles include (but are not limited to) Disaster Management (e.g. in fires, 

earthquakes, floods, landslides, volcano eruptions, storms etc) and Military or similar 

applications (e.g. reconnaissance, target identification, rendezvous, and nuclear, 
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chemical, biological and conventional warfare) [26].  Such perceived roles and tasks for 

UAVs require various capabilities like Navigation and Control, Tracking, Terrain 

mapping, Formation Flying, Guidance etc, none of which is possible unless a collision 

free motion through the 3D space is ensured.  Further, for all such roles, the robot/UAV 

essentially requires some kind of environment or scene sensing,  which directly leads us 

to the requirement of vision-based systems.   

 In fact, vision systems are one of the most general sensors for robots and UAVs, 

since these deliver richer and more complete information than other sensors.  For 

navigation in an unknown world, obstacle detection and avoidance is a fundamental 

behavior, which is a pre-requisite to build more complex navigational abilities.  Hence 

the Vision-Based Obstacle detection and avoidance directly contributes to a safe 

operation of a robot/UAV. 

 Vision based obstacle detection is also motivated by nature.  Most animals 

employ some kind of vision systems for obstacle detection and avoidance.   Humans for 

example, use two eyes which are remarkable stereo vision sensors, giving us sufficient 

3D scene information.   Optical flows are employed by flying insects, which give them 

incredible navigational capabilities.  Vision systems for ants and bees are known to gain 

the compass direction to important places from polarization patterns of the blue sky [2]. 
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CHAPTER 2 

PROBLEM DESCRIPTION 

 

 The overall problem of 3D Obstacle Detection may be broken down into 

following sub-problems.  

Sensor Calibration and Image Acquisition 

 An image acquisition system generally comprises of one or more digital cameras.  

However, other sensors, aiming at specific attributes of the objects in the scene are also 

common.  Examples include thermal imaging sensors, optical flow sensors, sonar, radar, 

laser range finders, infra-red sensors, ultraviolet sensors, etc.   Camera or other Sensors in 

almost all cases require calibration (finding out intrinsic and extrinsic parameters for the 

sensor), before these could be effectively utilized for the problem at hand [3]. As the 

approach in this thesis specifically targets the GeorgiaTech GTMax UAV (figure 2.1), 

which already is equipped with the requisite system (hardware & software) [4], hence, 

this sub-problem has not been addressed in this thesis.   The video images acquired on the 

GTMax are being digitized using a Frame Grabber. 

Image Processing and Segmentation 

 The Image processing aims at improving images by attempting to reduce noise as 

far as possible, enhance contrast to a desired level, and even do data compression if 

required.  This is followed by Image Segmentation, which extracts useful features from 

the output images of an Image Processor.  Hence, various features points, edges, corners, 

surfaces, blobs, etc. are identified and located, as a result of image segmentation.   For 

this thesis, image processing and segmentation have been taken from earlier work [4][5].  
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Figure 2.1 : GeorgiaTech GTMax UAV – Potential test vehicle for approach 

developed here 

 

Correspondence 

 The next step after image segmentation is that of image reasoning, which involves 

collecting identified features into object shapes.  Subjects of Pattern recognition, 

size/motion recognition, feature tracking and feature correspondence, all can be viewed 

as various forms of Image reasoning.   Z-test [6] has been used in this work,  to solve the 

problem of feature correspondence as was proposed in Ref [7].   Z-test is a statistical test 

used in inference to determine if the difference between a sample mean and the 

population mean is large enough to be statistically significant, that is, if it is unlikely to 

have occurred.   In order for Z-test to be reliable, certain conditions must be met, most 
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important of which, is that the population standard deviation must be known.  Further, the 

sample must be a random sample, with a normal distribution of population sampling.   In 

actuality, knowing the true standard deviation of a population is unrealistic (in which case 

a t-test must be used).  However, in the case here, as the entire population of segmented 

feature points is known exactly, Z-test is the preferred choice. 

Noise and Non-Linearities 

 Noise in the image data is generally modeled as some random variations in 

brightness information.   Such noise can originate in film grain, or in electronic noise in 

the input device (digital camera or other image acquisition media) sensor and circuitry,  

or in the unavoidable shot noise of an ideal photon detector[8].   For all the simulations in 

this thesis, random Gaussian noise has been added so as to bring the simulations close to 

real scenarios.   Further, due to the non-linear system equations (see Chapter 4), Extended 

Kalman Filter has been chosen, which can treat this noise explicitly. 

3D versus 2D 

 Solving a two dimensional problem of obstacle detection and avoidance, (which is 

the case for most ground robots) is relatively simpler than solving a 3D problem.   The 

2D problem deals with the intensity map at each pixel on an image, in which, obstacles 

are identified that need to be avoided.  Subsequent images indicate changes in the scene, 

which update this information for obstacle avoidance.  The 2D obstacle detection hence 

generally solves only the problem of ‘directions to avoid’ and need not generate a scene 

model.  For the specific case of obstacle avoidance, the robot may only need to know the 

regions of its way ahead that are occupied by obstacles.  No information like shape of the 

objects, their absolute positioning in the world or the understanding of the relationships 

between these objects is required.  Consequently the image data may be directly used 

without a reconstruction of the three-dimensional world of motion.  Therefore, no explicit 
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knowledge about the camera parameters, ego-motion, and camera-to-ground coordinate 

transformations is required [9].   On the contrary, a general 3D obstacle detection 

problem solves for all such attributes of world, and this is what has been addressed in this 

thesis. 

Avoidance Maneuver in 3D 

 Once the problem of locating feature points in the 3D world is solved, we get the 

3D coordinate information for all identified object features in the scene, from which we 

generate a 3D model of the environment of the UAV.   This is obviously far more 

computationally expensive, than a 2D case, but still is a preferred choice in this thesis, 

due to the detailed information of the environment, we obtain. 

 The knowledge of the 3D environment then enables an Obstacle avoidance 

maneuver to be generated.   This involves leaving the previous trajectory to avoid the 

unexpected obstacle,  and then joining back the original trajectory in 3D space when past 

the obstacle, with minimum effort.   This problem has been addressed in references [10] 

& [24]. 
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CHAPTER 3 

APPROACHES TO OBSTACLE DETECTION 

 

 There has been an extensive literature addressing obstacle detection and 

avoidance, particularly for ground robots.  Various approaches to obstacle detection are 

roughly categorized here, under the following headings (refer Figure 3.1 also).  

Multiple Sensor Based Obstacle Detection & Avoidance 

 The most common approach to obstacle detection & avoidance is that of use of 

multiple sensors.  Thus for example, David Coombs and Karen Roberts [11] propose two 

cameras looking obliquely to steer between objects.  The left and right proximities have 

been compared to steer through the gap.   

 Another similar development is a vision system capable of guiding a robot 

through corridor-like environments by Argyros and Bergholm [12].  It uses three 

cameras, one for central forward vision and the other two for peripheral vision.  The main 

principle is to implement a honey-bee-like reactive centering behavior by controlling the 

movement in a way that the optical flow on both sideward-looking cameras is equal.  The 

normal flow for all three cameras is computed by an intensity-based algorithm, after 

which, the depth to obstacles visible in the periphery cameras is extracted by using the 

central camera to compensate for the rotational component of the ego-motion.   It may be 

seen that the hardware requirements for this approach are that of three cameras and two 

workstations in order to compute the three optical flows. 

 Analogous approaches have been proposed and successfully applied for various 

robotic platforms.   Representative examples are Ref [13] for Stereo Vision (most 

common for ground robots) and Ref [14] for fusing Radar and Vision for obstacle 

avoidance on cars.  
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Single Sensor Based Approaches 

 In his PhD thesis [18] and relevant published work [19] [20], Randal C Nelson 

proposes the use of certain measures of flow field divergence as a qualitative cue for 

obstacle avoidance.  It has been shown that directional divergence of the 2D motion field 

indicates the presence of obstacles in the visual field of an observer, undergoing 

generalized rotational and translational motion.   Divergence information has been 

calculated from image sequences, based on the directional separation of optical flow 

components and the temporal accumulation of information.  The use of the system to 

navigate between obstacles has been demonstrated by experimental results.  This 

approach essentially does not do obstacle detection in 3D space, but instead comes up 

with a ‘No-Go’ direction, skipping directly to the obstacle avoidance part. 

 In their paper [21], Young et. Al. present an approach to obstacle detection, using 

optical flow without recovering range information.  A linear relationship, plotted as a line 

called reference flow line, has been used to detect discrete obstacles above or below the 

reference terrain.  The parameters of the reference flow line are estimated using the 

optical flow of a specific part of the picture that is assumed to be obstacle-free.   Slopes 

of surface regions have also been computed.  Objects that intersect with the reference 

space line and occlude it cause different flow values than the reference line and can thus 

be detected.   It may be seen that this approach may work effectively for ground robots in 

general, and for UAVs during landing, but does not seem very useful in normal 3D flight 

of a robotic UAV, primarily because of absence of any reference or obstacle free terrain 

data in completely unknown flying environments. 

 Nicholas Hatsopoulos and James Anderson [22] also use optical flow, but instead 

calculate time to contact, which is an optical property.  However, they themselves 

describe in the paper that this approach, which has been proposed for collision avoidance 

in cars, is not effective in realistic driving environments, when the surfaces are not very 

flat and are not perpendicular to the center of camera axis. 
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Three Dimensional Approaches 

 Nakao et al [23] present a method of 3D shape reconstruction of objects for a 

camera mounted on a robotic arm and the object being modeled on the turn table.  This 

paper does not seem to address the correspondence problem in detail, (probably because 

there are very few feature points in the scene in such structured environment).  Further,  

this approach effectively uses a single camera and an Extended Kalman Filter for 3D 

shape reconstruction.   Besides, there had been a lot of literature under the heading of 

‘Structure from Motion’ problem.   The problem at hand may be considered as one case 

of such a problem. 

Obstacle Detection & Avoidance in Structured Environment 

 Ilic et al [15], present a monocular ground plane obstacle detection method using 

optical flow anomalies.   The optical flow is computed on a single image row and 

compared to a model for ground point optical flow, obtained by direct calibration.   This 

approach seems efficient for ground robots but may not be suitable for UAVs,  as the 

model for ground point optical flow may not be obtained for a completely unknown / 

unstructured 3D environment,  which a UAV is expected to fly into.   Ref [16] and [17] 

also present approaches for obstacle detection and avoidance in either structured or 

partially known environments. 

Proposed Approach 

 The problem attempted in this thesis is that of a single sensor, which is a camera 

and the solution being sought here in this thesis is that for a 3 dimensional problem in 

perfectly unknown world.  The details of the proposed approach are described in the 

following chapter. 
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Figure 3.1 : Classification of Related Work
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CHAPTER 4 

PROPOSED 3D OBSTACLE DETECTION: LATERAL FLIGHT 

 

Equations of Camera Motion 

 For the present problem,  it is supposed that a camera is capturing 2D images and 

is mounted on a UAV.   Immediately after the detection of feature points in the scene,  

UAV stops its forward flight and instead starts flying around the object, following a 

circular path,  where the flight path is tangent to the radial vector to the object.   UAV 

flies in a radius of flight ‘r’,  with angular velocity ‘ω’ at a constant altitude ‘h’ .  The 

relative position of the camera in 3D space is ‘x’, ‘y’, ‘z’ and its orientation is ‘φ’, ‘θ’ and 

‘ψ’  (Refer Figure 4.1 below).   This is an extreme case of obstacle avoidance maneuver 

selected to maximize predicted ability to generate the 3D map. 

 

 

Initial Flight Path 
(obstacle free) at 
altitude ‘h’ above 
ground level 

Lateral Flight Path after 
detection of some 
features in the image 
plane.  The UAV flies  
with angular velocity    
‘ω’,  in an arc of radius   
r’’ at a constant altitude  
‘h’. 

Radius of flight ‘r’ 

An obstacle in 3D space. 
Each of its corners has 
coordinates X,Y,Z in 
inertial frame 

Image plane of camera. 
The obstacle in 3D space is 
projected on 2D image plane with 
every corner having two 
coordinates each (yk and zk). 

The relative position 
between camera and 
the object is x,y,z.   
The orientation of the 
camera in inertial frame 
is φ,θ,ψ 

Constant altitude 
‘h’ above ground 
level is maintained 
throughout the 
simulation 

North 

East 

Down 

Figure 4.1:   Camera Mounted on a UAV with a Detected Object in the Scene 
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With the vehicle frame of reference as North-East-Down (NED), the following states 

and their rates are obtained for the camera 

 

 

           (4.1) 

where x,y,z are the position states, with dot notation specifying the rate and ∆Position and 

∆Velocity are the error values for position and velocity vectors modeled as Gaussian 

noise vector of size 3x1, respectively.   (Values of the noise covariances have been 

chosen keeping in view similar calculations e.g. in Ref [24]). 

The orientation and orientation rates of the camera are given by 

 

 

           (4.2) 

where φ, θ, ψ define the orientation of the camera on the UAV, φc is the installation angle 

of camera on UAV, dot notation specifies the rate and ∆Orientation & ∆AngVelocity are 

the noise values for Orientation and orientation rate modeled as Gaussian noise vectors of 

size 3x1, respectively. 

 For conversion between body frame and vehicle frame, the rotation matrix is as 

follows 

 

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

bv
L

θ θ ψ ψ

φ φ ψ ψ

φ φ θ θ

−     
     = −     
     −     

  (4.3) 

and  
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     T

vb bvL L=      (4.4) 

Z-test for Correspondence 

 Statistical Z-test method has been used to solve the correspondence problem 

between the estimated corners from database and the measurements.   The Z-test has been 

taken for a certain error index (J) and is the square of this index divided by its variance 

(C) i.e Zvalue=J
2
/C.   Both the estimation error covariance (matrix P) and the 

measurement error covariance (matrix R) have been taken into account while calculating 

C.   Then the Z-test value is inversely related to the likelihood of an event that a given 

measurement corresponds to the corner point chosen.   Thus for example, if there is a 

large error between the measurement and the image data, but the measurement also has a 

large uncertainty, then the probability of its correspondence should be higher than the 

case in which, the measurement has a small uncertainty.   Thus each corner point is to be 

assigned to a point, which attains the least Z-test value, meaning thereby, the highest 

likelihood. 

 In the Figure 4.1, Z is the projected measurement vector onto image plane and xk 

is the projected database corner vector onto the image plane.  Hence 

     2 2J dx dy= +  

    T T

X X Z ZC C PC C RC= +     (4.5) 

where  

    
X

v

J
C

X

∂
=

∂
 and 

Z

J
C

Z

∂
=

∂
   (4.6) 

are the two components of the variance C of the error index J 

It may be noted from Fig 4.2, that the residual vector is 

     d = Z - xk     (4.7) 
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Pin-Hole Camera Model 

 Assuming that the camera is mounted at the center of gravity of the vehicle, let 

Lbv denote a known camera attitude represented by a rotation matrix from inertial to the 

camera frame.   A camera frame is taken so that the camera’s optical axis aligns with its 

Xc axis.   Then the relative position in camera frame will be 

    X = Xv – Xp (in inertial frame)   (4.8) 

    Xc = Lbv X (in camera frame)   (4.9) 

where     Xc = [Xc(t)   Yc(t)   Zc(t)]
T 

   (4.10) 

and the subscript ‘t’ is used for the target or the object to be modeled, subscript ‘c’ is 

used for the camera and upper case bold X indicates a 3x1 vector. 

 Assuming a pin-hole camera model as shown in the Figure 4.2, the object position 

in the image at a time step tk is given by (xk is a 2x1 vector) 

 
           (4.11) 

This equation is non-linear with respect to the relative state.   (Hence an Extended 

Kalman Filter has been used here). 

 

 

 

 

 

 

 

 

 

 

 

xk dx 

 dy 

Z 
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Figure 4.2: The Residual Vector 
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Figure 4.3:   A Standard Pin-Hole Camera Model [24] 

 

 

 

 In the implementation, focal length ‘f’ of the camera has been assumed to be unity 

without loss of generality. 

Extended Kalman Filter 

 Following Eqns 4.5, 4.6 and 4.7, we first write expressions for the components of 

Variance matrix C as Cx and Cz, using chain rule as follows 

  . . k

X

v k v

xJ J d
C

X d x X

∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
 and .Z

J J d
C

Z d Z

∂ ∂ ∂
= =

∂ ∂ ∂
  (4.12) 

The ‘predict’ and ‘update’ stages of Extended Kalman Filter are given as follows. 

Predict Stage (before new measurement) 

For an Extended Kalman Filter, the predicted state is defined by 
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1( , )k k kX f X U
− −

−=  

which, for this case of no dynamics and no input for the feature point being modeled,  (in 

the predict stage before the new measurement),  simplifies to 

1k kX X
− −

−=       (4.13) 

The estimation covariance matrix for predict stage (before measurement) is defined by 

    
1

T

k k k k kP F P F Q
− −

−= +  

which for predict stage of no dynamics case, simplifies to 

1k k kP P Q
− −

−= +      (4.14) 

(since 
k

f
F I

X

∂
= =

∂
 here,  for no dynamics case) 

Update Stage (after new measurement) 

    ( )T T T

k k k k k k kK P H H P H R
− −= +    (4.15) 

k k kX X K d
−= +∑      (4.16) 

k k k k kP P K H P
− −= −∑      (4.17) 

where Rk is the measurement error covariance matrix and the observation matrix Jacobian 

Hk , which is defined as partial derivative of the residual (d) with respect to partial 

derivative of the state (X) is calculated here as 

. k

k

k

xd d
H

X x X

∂∂ ∂
= =

∂ ∂ ∂
     (4.18) 

For the vectors d, X and xk defined above, this is evaluated as follows (for detailed 

derivation of this result,  please see Appendix A) 

2

k

d
I

x

∂
= −

∂
 and    (4.19) 

where I2 denotes a 2x2 identity matrix. 
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Thus Hk turns out to be 

 
       (4.20) 

Similarly, the covariance matrix Rk (measurement error covariance) is defined as 

 
       (4.21) 

which is evaluated as (for detailed derivation of this result please see Appendix A) 

 
       (4.22) 

where R is the measurement noise covariance. 

It may be seen now that the components of Variance matrix C, as Cx and Cz given above, 

may be evaluated as (for details, see Appendix A) 

 
       (4.23) 

and 

 

           (4.24) 

3D Modeling Algorithm 

 The above equations have been implemented in the 3D scene modeling algorithm 

as shown in Fig 4.3.   The algorithm starts when a feature point is detected in the scene.  

This information is being fed to the program by the frame grabber after image processing 

and segmentation.   Further, the camera calibration information is also being fed to the 

program by GTMax onboard systems, which includes its location in 3D space and 
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installation angle on the UAV, besides the knowledge of its FOV (Field of View) and its 

image plane size.   The UAV then starts flying in a circular path in radius ‘r’.  Equations 

4.1 – 4.4 give the position, orientation and respective rates for the camera and equations 

4.8, 4.9 and 4.10 position information in camera and inertial frame.  For the first iteration,  

as the estimation database is empty,  all the feature points as measured in the image 

frame,  go into the estimation database without establishing any correspondence.   Since 

this was only 2D information from the image plane, the third dimension is unknown and 

is supposed to be zero i.e. all points are supposed to lie on the ground plane initially.   

When the subsequent image information is received,  the estimation points in the 

database are projected onto image plane (via equation 4.11) and the residual vector is 

calculated between the new measurement and the estimated points on image plane 

(equation 4.7).   Z-test correspondence is done to establish which measurement 

corresponds to which estimated value and the new values are updated with the extended 

Kalman filter (equations 4.13 to 4.24).   If correspondence is not established between a 

measured feature points in the image, with any of the estimated feature points, this 

feature point is recognized as a new point.  Conversely if an estimated feature point 

existed, for which there was no corresponding measurement in the new image, this point 

is marked for deletion.  However, it is actually not deleted unless it remains without 

correspondence for next consecutive N images.  This has been done to ensure, that if a 

feature point temporarily goes out of view, it is not deleted immediately, otherwise the 

whole simulation time would increase, if it came back into the view later on and was 

instead recognized as a new feature requiring new estimation starting from ground plane.   
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Figure 4.4:   The Proposed Algorithm
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Simulation Results (Lateral Flight) 

 As a first case, a cube was selected with eight corners (or eight feature points).   

This known model of the cube was used to verify the ability of the algorithm to 

successfully generate a 3D model of this cube using the 2D image information captured 

from a single camera.   The simulation results are as presented in fig 4.4.   In this figure, 

the solid (magenta) lines indicate the object to be modeled, the blue diamonds indicate 

the progressive outcome of corner estimation from the proposed algorithm, whereas the 

wavy black arcs indicate the flight path of the camera.   The final figure (at 60 sec) shows 

that the blue diamonds approach the actual corners of the object being modeled, 

indicating a successful 3D obstacle detection for this case.    

 As a next case, a scene comprising of 35 feature points was chosen, as various 

corners of high-risers in a typical urban scenario.  The simulation results for lateral flight 

path are shown in Fig 4.5.   In this figure also, the solid (magenta) lines indicate the 

object to be modeled, the blue diamonds indicate the progressive outcome of corner 

estimation from the proposed algorithm, whereas the wavy black arcs indicate the flight 

path of the camera.   The final figure (at 100 sec) shows that the blue diamonds approach 

the actual corners of the object being modeled, indicating a successful 3D obstacle 

detection for this case as well.   

 The table on the next page gives the values used for the simulation: 
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Table 4.1:   Values used for simulation : Lateral Flight 

Flight altitude above ground level 140 ft 

Radius of flight about the object 140 ft 

Angular velocity around the object 0.36 deg/sec 

Camera field of view 30 deg 

Position error in all three states each 1% 

Velocity error in all three states each 1% 

Orientation error in all three states each 0.01% 

Angular velocity error in all three states each 0.01% 

 

 The simulation results show that 

• The proposed algorithm can successfully generate a 3D model of the scene, from 

2D image information. 

• This modeling only requires one camera as the sensor. 

• The results have been achieved for an unknown world and no constraints were put 

on the environment being modeled.  No attributes of the environments were 

provided to the system, except for the 2D images being captured by the camera. 
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• The scene modeling has been achieved (to within +3% of actual 3D locations of 

the feature points) in 60 seconds of flight for 8 feature points, and 100 seconds of 

flight for 35 feature points.  

• The successful 3D scene modeling required flying through a very small arc of 

lateral flight as compared to the size of object being modeled.   There had been no 

need to capture images from all sides of the objects being modeled.  Thus the 

approach is more practical than a typical ‘Structure from Motion’ problem, which 

requires right, left, top or other views of the object, in order to generate its 3D 

model. 

• The algorithm does require some feature points in the scene.   Hence if no feature 

points are detected in the scene, the algorithm implies that there are no obstacles 

to be avoided and the initial flight path of the UAV may be continued without any 

disruption. This is almost always true in real world scenarios.  However, there 

could be one exception of that of a flat wall in front, which is discussed as ‘Future 

Work’ in Chapter 7. 
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Figure 4.5:   Lateral Flight Simulation Results with 8 Feature Points.  Image processing is 

updated at 10 frames / sec.  Convergence is good at 60 sec, traveling 25 deg around the object 
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Figure 4.6: Lateral Flight Simulation results with 35 feature points.  Image processing is 

updated at 10 frames / sec.  Convergence is good at 100 sec, traveling 40 deg around the object 
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CHAPTER 5 

3D OBSTACLE DETECTION : FORWARD FLIGHT  

 

Introduction 

 In their research paper[25],  Matthies, Kanade and Szeliski present Kalman Filter-

based Algorithms for Estimated Depth from Image Sequences.   Besides other 

conclusions, they have shown that 

1. For a translating camera, the accuracy of depth estimates increases with increasing 

distance of image features from the focus of expansion (FOE, which is a point in 

the image where translation vector pierces the image). 

2. Best translations are parallel to the image plane and the worst are forward along the 

camera axis. 

3. For practical fields of view, the accuracy of depth extracted from forward motion 

will be effectively unusable for a large part of the image.   Thus for practical depth 

estimation,  forward motion is effectively unusable compared with lateral motion. 

Proposed Approach 

 Chapter 4 of this thesis demonstrated that Lateral flight gives good 3D scene 

modeling of objects from 2D image data.  (In fact depth is just one coordinate of any 

feature point in 3D space).  This substantiates deduction 2 above.   This however, is 

apparently an awkward flight maneuver form a practical perspective in the sense that a 

UAV,  which was supposed to fly forward,  has to start flying laterally,  as soon as some 

object is detected in the scene,  in order to estimate its depth or 3D location in space.   

Hence, here an attempt was made to do depth estimation while flying forward, which is 

in conflict to what was recommended in conclusion 3 above.   However, two facts are 

important here. 
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 Firstly, estimation of 3D positions of those objects is attempted, which do not lie 

exactly at focus of expansion, because if the features exactly lie at FOE, there is no 

solution to the problem.   This is in accordance with the first deduction mentioned above.   

We propose that if the features are not at FOE, even flying forward could give reasonable 

depth estimation.  Of course the accuracy would improve with increasing distance of 

features from FOE, as stated in Ref [25] above. 

 Secondly, it may be noted that the conclusions in the above-referred paper were 

arrived at by linearizing the system equations and using a Kalman Filter.  In this thesis 

however, it is investigated, whether the use of non-linear Extended Kalman Filter instead 

of a regular Kalman Filter, can provide good results for forward flight of a UAV. 

 Accordingly it is proposed in this work that, subject to the two considerations just 

mentioned above, flying forward will give depth estimation, which is of practical use,  as 

opposed to deduction 3 of above referred paper. 

 Implementation of this 3D obstacle detection in forward flight, changes only the 

equations of motion of camera i.e. equations 4.1 and 4.2 of Chapter 4 above.   All other 

equations presented for Lateral flight in Chapter 4 above, remain valid in this forward 

flight case as well.   This also applies to fig 4.1 (Residual Vector), fig 4.2 (Pin-hole 

Camera Model) and fig 4.3 (Proposed Algorithm).   The changes required in equations 

(4.1) and (4.2) for this case are:  ω=0 (for no lateral flight),  2nd (forward) component of 

position vector added with a factor ‘a x t’, where ‘a’ is forward velocity and t is time.  

Also second component of velocity vector is added with this constant factor ‘a’ (forward 

velocity). 

 To avoid the obstacles in FOE, the speed of flight is a critical factor.   If it is too 

high, the images of the objects, which are enlarging, in this case as the motion is towards 

them, will quickly occupy almost whole of the image, including FOE as well.  Hence the 

3D scene modeling would not be possible.  On the contrary if the speed of flight is too 

low, there is less variation in the subsequent images, and hence less new information in 
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those images.  This will in turn prolong the simulation time to an unacceptable extent.   In 

this case of 35 feature points, the optimum speed of flight was found by iterations in 

repeated simulations, so as to achieve the correct 3D modeling at a relatively high speed. 

Forward Flight Simulation Results 

 The simulation results for 3D obstacle detection in forward flight are presented in 

figure 5.1.    In this figure, the solid (magenta) lines indicate the object to be modeled, the 

blue diamonds indicate the progressive outcome of corner estimation from the proposed 

algorithm, whereas the wavy black line indicates the forward flight path of the camera.   

The final figure (at 125 sec) shows that the blue diamonds approach the actual corners of 

the object being modeled, indicating a successful 3D obstacle detection for this case. 

 The table below gives the values used for the simulation: 

Table 5.1:   Values used for simulation : Forward Flight 

Flight altitude above ground level 140 ft 

Forward Velocity 1.4 ft/sec 

Camera field of view 30 deg 

Position error in all three states each 1% 

Velocity error in all three states each 1% 

Orientation error in all three states each 0.01% 

Angular velocity error in all three states each 0.01% 
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Figure 5.1: Forward Flight Simulation Results With 35 Feature Points.  Image processing is 

updated at 10 frames/sec and UAV is flying forward at 1.4ft/sec.  Convergence is good at 125 sec. 



30 

Hence, the results have shown that 

• The proposed algorithm can successfully generate a 3D model of the scene, from 

2D image information while flying forward towards the obstacle. 

• The speed of flight is critical, as with too high a speed, obstacles will overlap the 

FOE.  Too low a speed, on the contrary, will give very less new information for 

the update.  Successful 3D modeling will not be possible in both such cases. 

• Comparing the results of lateral flight simulations (Chapter 4) and the results 

presented here, it can be said that, flight duration required to generate a 3D model 

of the scene while flying forward, was 25% more than the duration of flight 

required for lateral flight case.  

• Subject to the two conditions of features not exactly at FOE and using EKF for 

non-linearities, the simulation results show that for practical fields of view, the 

depth extracted from forward motion is indeed usable for a large part of the 

image. 
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CHAPTER 6 

ANALYSIS OF RESULTS 

 

Computational Effort 

 It may be realized that for detecting ‘NX’ number of feature points (in 3D space), 

we have NX* NZ correspondences to be established, where the NZ is the number of 

feature points picked up (observed) in every image.   This holds for every iteration except 

the first one, when the database is empty and there is no correspondence to be done.  So if 

the frame rate is ‘f’ frames per second and the simulation gives satisfactory results after 

‘t’ seconds, then the total number of images we use in the simulation are 

Number of images utilized: NI = f*t 

Hence the total number of correspondences, the algorithm has to establish is given by 

No of Correspondences = NX*NZ*NI – 1 

It may be realized that as the number of feature points in the scene increases (i.e. as NZ 

increases),  the number of points in the database NX also increases accordingly (as the 

scene feature points eventually end up as points in the database,  once the correspondence 

is established and 3D coordinates are found).  Hence the computational effort increases 

tremendously, which in turn results in a need for much more simulation time, as well as, 

many more number of images required, in order to satisfactorily do the 3D obstacle 

detection/modeling.  For the simulations above, the computational effort increased by 

about 14.7 times with an increase in number of feature points by 4.4 times (precisely 

from 4.054 seconds required to simulate 8 feature points vis-à-vis 60.201 seconds 

required to detect 35 feature points to within 2.5% of accuracy) for later flight.   This 

further increased by yet another 25% for forward flight. 

 



32 

Image Acquisition / Frame rate 

 For the above analysis,  a frame rate of 10 frames per second was supposed.   

Hence if the simulation ran for 60 seconds, 600 images were used (case of Fig 4 above).   

If a better frame grabber / image processor is available so that,  about 30 frames per 

second frame rate is available,  the simulation time will reduce to 20 seconds,  which in 

turn means,  lesser duration of lateral flight required, to correctly model the scene. 

Error Analysis 

 Figure 6.1 presents with error analysis, for the simulation results presented in 

Figures 4.5, 4.6 and 5.1.   One sample point randomly has been chosen for each of the 

three cases.   All the three estimated coordinates of the selected feature points in the 

database has been compared with the actual value of coordinates.   The results in fig 6.1 

show that all cases converge to the actual point locations,  to within about +3%.   This 

indicates successful convergence of features points to their actual locations in 3D space. 

 In the algorithm however, simulation is stopped when the average error from each 

of the three coordinates from all the feature points in the scene are successfully modeled 

(to within about +3% of the actual locations in 3D space).   This means that for a case of 

35 feature points, there are 35x3=105 coordinates to be estimated correctly. 

Merits & Constraints of proposed Approach 

 It may be said that the obvious merit of this approach in both lateral and forward 

flight,  is that of providing a capability of 3D obstacle detection and modeling by using 

only one camera.  This is of significant importance for future miniature UAVs,  which 

might not be capable of carrying any other sensor,  except for a single camera.   The 

information that is obtained as a result of this algorithm,  is that of a full scale 3D model 

of the scene,  which may be directly utilized for any mission planning, as desired.   On 
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the contrary,  the algorithm has an obvious constraint of tremendous increase in 

computational effort with an increase in number of feature points. 

Further,  the lateral flight pattern for such obstacle detection may also seem as a 

constraint,  at least to a mission,  which was that of moving forward towards the 

goal/target.   The forward flight does overcome this constraint but increases 

computational effort by another 25%. 

Yet another constraint is that of at least having some feature points at all,  in the 

scene.  If the UAV takes-off e.g in front of a flat wall,  there are hardly any feature points 

to be detected and modeled,  even with a lateral flight path.  Such a problem,  in fact,  is a 

recommended subject of future work,  as discussed in Chapter 7. 
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Figure 6.1: Error percentage versus Time, for Sample Points.   Plots a), b) and c) show 

estimation error progression in X, Y & Z coordinates, respectively,  for a sample point from 

figure 4.5.   Plots d), e) & f) are similar plots for a sample point from figure 4.6,  whereas 

plots g), h) & i) are for figure 5.1 upto 100seconds. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

Conclusion 

From the proposed algorithm and associated simulations it is concluded that, 

• The proposed algorithm can successfully generate a 3D model of the scene, from 

2D image information. 

• This modeling only requires one camera as the sensor. 

• The results have been achieved for an unknown world and no constraints were put 

on the environment being modeled.  No attributes of the environments were 

provided to the system, except for the 2D images being captured by the camera. 

• The 3D scene model gives information of size and location of all obstacles in the 

scene.  This information is sufficient to initiate an obstacle avoidance maneuver in 

3D space. 

• In the case of lateral flight the scene modeling has been achieved (to within +3% 

of actual 3D locations of the feature points) in 60 seconds of flight for 8 feature 

points,  and 100 seconds of flight for 35 feature points.  

• The successful 3D scene modeling required flying through a very small arc of 

lateral flight as compared to the size of object being modeled.   There had been no 

need to capture images from all sides of the objects being modeled.  Thus the 

approach is much better as compared to a typical ‘Structure from Motion’ 
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problem, which requires right, left, top or other views of the object, in order to 

generate its 3D model. 

• The algorithm does require some feature points in the scene.   Hence if no feature 

points are detected in the scene, the algorithm implies that there are no obstacles 

to be avoided and the initial flight path of the UAV may be continued without any 

disruption.  This is almost always true in real world scenarios.  However, there 

could be one exception of that of a flat wall in front, which is discussed as part of 

the future work. 

Future Work 

 In future, it is planned to integrate some of the single sensor based approaches 

similar to Flow Field Divergence concept and/or Optical flow concept (as referred in 

Chapter 3 above) with the algorithm proposed in this paper.  This is because each of the 

individual single sensor based approaches, has some constraints (e.g. of feature points, 

texture, flight path etc).   Also some approaches tend to be computationally very heavy.  

Hence integration of more than one approaches, would be investigated for real time 

implementation.    

An extreme case, that may be unsolvable by any of the approaches above, could 

be that of a flat wall in front.   Since this would have no feature points, textures, optical 

flows or motion flow vectors, such a problem would not be handelable by any of such 

single sensor based approaches.  For such a case a non-scanning (and hence a low 

weight) laser range finder may also be integrated with this set-up.  The final approach is 

planned to be implemented on GTMax UAV. 
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APPENDIX A 

DERIVATION OF EQUATIONS USED IN CHAPTER 4 

 

Derivation of Equation 4.19 

Referring equations 4.7 and 4.11, the residual vector on 2D image plane is given by 

    
1

2

k

k

k

yzdx
d Z x

dy z z

   
= = − = −    
     

   (A.1) 

where Z is observed feature point on image plane and xk is the projected feature point 

from 3D space on 2D image plane. 

Hence, 
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y z

∂ ∂ 
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1 0

0 1

− 
=  − 

   = – I2 

This is one of the results as used in Equation 4.19.   

 

The second result is derived as follows. 

 

Referring equation 4.8, the relative position vector of the camera is  

 

X = Xv – Xp 

 

 

ck v p

ck v p

ck v p

X X X

X Y Y Y

Z Z Z

    
    = = −     
         

 

Referring equation 4.11, the corner feature projected onto 2D image place from 3D space 

is given by 
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where unit focal length is supposed without loss of generality,  the small letters indicate 

2D coordinates in image plane and capital letters indicate coordinates in 3D world. 

Hence, 
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which is the required result as used in equation 4.19. 
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Derivation for Equations 4.21 and 4.22 

Referring equation A.1 given above, 
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which is the required result. 

 

 

Derivation for Equations 4.23 and 4.24 

Referring equations 4.5 and equation A.1 
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which is the required result as used in equations 4.23 and 4.24 
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