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Abstract

We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest neighbour interac-
tions, acting on a periodic three-state spin chain, and solvable through (generalization
of) the coordinate Bethe ansatz (CBA). We obtain in this way four multi-parametric
extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-
Korepin, Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exists
17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex
ones. In the case of 17-vertex Hamiltonian, we get a generalization of the genus 5 special
branch found by Martins, plus three new ones. We get also two 14-vertex Hamiltonians.

We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions
and Bethe equations. A special attention is made to provide the specifications of our
multi-parametric Hamiltonians that give back known Hamiltonians.
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1 Introduction

In his seminal paper [1], Bethe provided a method, called now coordinate Bethe ansatz
(CBA), to compute the eigenvalues and the eigenfunctions for the Heisenberg (or XXX 1/2-
spin) models [2]. The same idea has been also used intensively in the context of the Bose gas
with δ-interaction when the particles have no spin and with periodic boundary condition [3].
When they carry a spin [4, 5], the famous Yang-Baxter equation shows up through the same
techniques, and actually it appeared for the first time in this context. When open boundaries
are imposed, the procedure needs to be modified but still applies [6,7], even when the boundaries
are not diagonal [8]. The Hubbard model [9] is another example where the CBA has been used
successfully [10]. Remark also that, depending on the context, different generalizations of CBA
have been considered, see e.g. [11–14].

However this method has been considered as deprecated in the eighties in favor of the
quantum inverse scattering method (QISM) [15, 16]. This latter method is more algebraic and
provides a full set of commuting Hamiltonians. It lies on the explicit numerical solution of the
Yang-Baxter equation and on representations of the underlying algebra. Nevertheless, to the
best of our knowledge, one does not know, in general, if the set of models solved by QISM and
the ones solved by CBA are equivalent.

In this paper, we classify the most general Hamiltonians with nearest neighbourg interaction
and acting on a three-state spin chain with rank 1 symmetry (i.e. the nineteen-vertex models)
that can be solved by the CBA. We also compare our results with the classification of the
solutions of the Yang-Baxter equation for the nineteen vertex model [17–19]. To solve this type
of models by CBA, the historical method must be generalized following the lines of [11,20] where
particular 19-vertex models1 (the Izergin-Korepin and the Zamolodchikov-Fateev models) or
of [13] where higher spin chain have been solved. This type of computation has been initiated
in [21] but the huge algebraic equations the authors got did not allow them to provide a
classification. Here, with the use of formal mathematical software, we succeed in obtaining a
complete classification. We recover as subcases all the models discovered by solving the Yang-
Baxter equation and, as an important by-product, we get the eigenvalues and eigenfunctions,
which were not known previously, for the models obtained in [19] (see section 4.1). We also
obtain four 17-vertex models, one of them being a generalization of the special branch found
in [19], and two new 14-vertex models. These 17-vertex and 14-vertex Hamiltonians, are not

subcases of 19-vertex Hamiltonians.
The paper is organized as follows. In section 2, we present the general Hamiltonian we

want to solve and the symmetries one may consider. We give the outlines of the coordinate
Bethe ansatz in section 3: we derive the Bethe ansatz equations (BAE) and determine sets of
constraint equations to be satisfied by the parameters entering the Hamiltonian. Our results
are collected in the proposition 3.1. In section 4, we provide the complete classification of the
Hamiltonians we can solve by CBA and give in each case the eigenvalues and the eigenfunctions.
Finally, in section 5, we present simplified versions of the Hamiltonians, including explicit 9×9
matricial expressions with physically relevant parameters, and, when possible, connect them
with known models.

Associated to this classification, we constructed an interactive web page [22] that can test
any 19-vertex Hamiltonian to determine if it is solvable by the coordinate Bethe ansatz. If so,

1See remark 4.2 for the name “19-vertex”.
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it provides also the connection with the models we present in this paper, as well as the physical
data of the model.

2 General settings

2.1 Hamiltonian

We consider a U(1)-invariant Hamiltonian H acting on a spin chain of length L, where
each site carries a C3 vector space (i.e. we deal with three-state models). We assume nearest
neighbor interactions, that is

H =
L∑

j=1

Hj,j+1, (2.1)

and periodic conditions, i.e. the site L + 1 is identified with the site 1. As usual in such
presentations the indices (j, j+1) indicate where Hj,j+1 acts non trivially. The U(1) generator

corresponds to the Sz component of the total spin2, Sz =
∑L

j=1 s
z
j . On each site, we choose as

basis vectors

|0〉 =




1
0
0



 , |1〉 =




0
1
0



 , |2〉 =




0
0
1



 , with sz|j〉 = j |j〉. (2.2)

Under these requirements, the most general two-site Hamiltonian takes the form

H12 =
∑

i1,i2,j1,j2∈{0,1,2}
hj1 j2
i1 i2

Ei1,j1 ⊗Ei2,j2

= pE01 ⊗ E10 + qE10 ⊗E01 + t1E21 ⊗ E01 + s1E12 ⊗ E10 + t2E01 ⊗E21 + s2E10 ⊗ E12

+ t3E12 ⊗ E21 + s3E21 ⊗ E12 + tpE02 ⊗E20 + spE20 ⊗ E02 +
∑

i,j

vijEii ⊗Ejj, (2.3)

where Eij denote the elementary 3×3 matrices with entry 1 in position (i, j) and zero elsewhere.
In matricial form, it reads

H12 =




v00 0 0 0 0 0 0 0 0
0 v01 0 p 0 0 0 0 0
0 0 v02 0 t2 0 tp 0 0
0 q 0 v10 0 0 0 0 0
0 0 s2 0 v11 0 s1 0 0
0 0 0 0 0 v12 0 t3 0
0 0 sp 0 t1 0 v20 0 0
0 0 0 0 0 s3 0 v21 0
0 0 0 0 0 0 0 0 v22




. (2.4)

We aim at finding the most general Hamiltonian of the form (2.4) that is solvable by
generalized coordinate Bethe ansatz (CBA). This will lead to an exhaustive classification of the
possible sets of constraints on the parameters entering H , see section 4.

2Strictly speaking, the spin is L− Sz.
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Before performing this calculation, we use the symmetries of the problem to keep only
physically relevant parameters.

2.2 Symmetries and transformations

The Hamiltonian (2.4) exhibits some symmetries that allow us to simplify it.

• Telescopic terms. For any matrix A, let us consider the following transformation of the
local Hamiltonian:

H ′
j,j+1 = Hj,j+1 + Aj −Aj+1. (2.5)

Then the periodicity condition implies that

H ′ =
L∑

j=1

H ′
j,j+1 =

L∑

j=1

Hj,j+1 = H. (2.6)

Demanding the U(1) invariance to be preserved forces the matrix A to be diagonal:
A = diag(a1, a2, a3).

The transformation (2.5) for diagonal matrix, which involves only two independent pa-
rameters, say a1 − a2 and a1 − a3, leads to the following invariant combinations of the
parameters:

V = v01 + v10 − 2v00 , X11 = v11 − v00 − V , Y = v02 + v20 − 2v00 − 2V ,

X12 = v12 + v20 − v10 − v00 − 2V , X21 = v21 + v02 − v01 − v00 − 2V ,

X22 = v22 − v00 − 2V.

(2.7)

Note that this choice is not unique: in fact, the combinations above appear naturally
when dealing with the coordinate Bethe ansatz, see section 3.

• As already mentioned, we are considering U(1)-invariant Hamiltonians. This implies
in particular that the entries of H12 satisfy hj1 j2

i1 i2
= 0 if i1 + i2 6= j1 + j2, as it can be

checked from eq. (2.4). In order to get a symmetry of rank one only, one has to impose
(t1, t2, s1, s2) 6= (0, 0, 0, 0), condition that we assume to be satisfied in the whole paper.
Indeed, the rank of the symmetry algebra determines the form of the CBA one should
use. Hence, it is necessary to fix this rank. The only diagonal generators that commute
with the Hamiltonian are then the identity matrix I and the Sz component of the total
spin given in section 2.1. This property can be used to set the zero of the energy for
example. A particular interesting choice is to consider H12 − 1

2
V (sz1 + sz2).

Of course, a further diagonal element can be removed from the Hamiltonian using the
identity. In the following we choose v00 = 0.

One can then consider the following transformations:

• Parity transformation (P): hj1 j2
i1 i2

→ hj2 j1
i2 i1

(that is H12 → H21), which corresponds to
the following correspondence between the parameters (X11, Y,X22 are invariant):

p ↔ q, t1 ↔ t2, s1 ↔ s2, t3 ↔ s3, tp ↔ sp, X12 ↔ X21 (2.8)

3



The Hamiltonians H12 and H21 lead to systems where the chain is oriented from right to
left instead of left to right. Therefore, the set of solutions that lead to solvable Hamiltonian
has therefore to be invariant under the correspondence (2.8).

• Time reversal (T): hj1 j2
i1 i2

→ hi1 i2
j1 j2

(that is H12 → H t
12), which corresponds to the

following correspondence between the parameters (all diagonal terms are invariant):

p ↔ q, t1 ↔ s1, t2 ↔ s2, t3 ↔ s3, tp ↔ sp (2.9)

• Charge conjugation (C): hj1 j2
i1 i2

→ h2−j1 2−j2
2−i1 2−i2

(i.e. indices 0 and 2 are exchanged and
index 1 is invariant), which corresponds to the following correspondence between the
parameters:

p ↔ s3, q ↔ t3, t1 ↔ t2, s1 ↔ s2, tp ↔ sp,

V ↔ −V − Y − 2X22 +X12 +X21, X11 ↔ X11 + Y +X22 −X12 −X21,

Y +X22 ↔ 5(Y +X22)− 4(X12 +X21), Y −X22 ↔ Y −X22,

X12 +X21 ↔ 6(Y +X22)− 5(X12 +X21), X12 −X21 ↔ X21 −X12

(2.10)

The action of the charge conjugation is equivalent to choose as pseudo-vacuum |Ω̃〉 =⊗L
i=1 |2〉 instead of |Ω〉 =⊗L

i=1 |0〉, exchanging the roles of the vectors |0〉 and |2〉. The
solution to the problem obtained thanks to the coordinate Bethe ansatz can be reproduced
mutatis mutandis, but taking into account the correspondence (2.10). We will use this
property in section 4.3.

Action of these three transformations on solvable Hamiltonians is displayed in table 1, see
appendix A. In the following we will work modulo these transformations.

3 Coordinate Bethe ansatz

We construct Hamiltonian eigenvectors using a generalization of the original coordinate
Bethe ansatz, following the techniques developed in [11, 13].

3.1 Results

Since the Sz component of the total spin commutes with the Hamiltonian, one can decom-
pose the space of states H into subspaces with fixed Sz-eigenvalue

H =
2L⊕

M=0

VM , Sz ϕM = M ϕM , ∀ϕM ∈ VM ,

and look for eigenvectors of H in a given subspace VM .
For M = 0, we have a one-dimensional subspace corresponding to a particular eigenvector

of the Hamiltonian, called the pseudo-vacuum, defined here as |Ω〉 =⊗L
i=1 |0〉. It is easy to see

that, since we made the choice v00 = 0, |Ω〉 is an eigenvector of H with eigenvalue zero.
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Then, in VM , one considers states with M pseudo-excitations obtained by acting with the
raising operator on the pseudo-vacuum. More precisely, an elementary state with M pseudo-
excitations is given by

|x1, . . . , xM〉 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
x1−1

⊗|m1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
xm1+1−xm1−1

⊗|m2〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
xm1+m2+1−xm1+m2−1

⊗|m3〉 ⊗ . . .

(3.1)
where 1 ≤ x1 ≤ x2 ≤ ... ≤ xM ≤ L.

The xj ’s are the locations of the pseudo-excitations along the chain, and mk ∈ {1, 2} such
that

∑
mk = M . For j = 1 + m1 + · · · + mk−1, one has mk = 2 if xj+1 = xj and mk = 1

otherwise.
These states form a basis of the subspace VM of states with a given number M of pseudo-
excitations.

An eigenstate ΨM for the Hamiltonian in a given sector with M pseudo-excitations is ob-
tained as a linear combination of the elementary states (3.1) with coefficients a(x1, . . . , xM),
which are complex-valued functions to be determined:

ΨM =
∑

1≤x1≤···≤xM≤L

a(x1, . . . , xM )|x1, . . . , xM〉. (3.2)

We assume a plane wave decomposition for the functions a(x1, . . . , xM):

a(x1, . . . , xM ) =
∑

σ∈SM

A(j1,...,jP )
σ (k1, . . . , kM) exp

(
M∑

n=1

ikσ(n)xn

)
=
∑

σ∈SM

A(j1,...,jP )
σ (~k)ei

~kσ ·~x.

(3.3)

Here SM is the permutation group of M elements and A
(j1,...,jP )
σ (k1, . . . , kM) are functions on

the symmetric group algebra depending on some parameters k to be determined later (these
are solutions of the so-called Bethe ansatz equations). The indices (j1, . . . , jP ) correspond to
double excitations, i.e. indices such that xjk+1 = xjk for k = 1, . . . , P . When there are no
double excitations, the indices (j1, . . . , jP ) are of course omitted.

Proposition 3.1 The Hamiltonian H given in (2.4) is solvable by CBA provided its parameters

obey the constraints given in (3.18), (3.21) and (3.24). The complete set of solutions to these

equations is given in section 4, modulo the symmetries mentioned in section 2.2 and displayed

in table 1.

For CBA-solvable Hamiltonians H, the state (3.2) is an eigenvector of H, with energy

EM = MV +

M∑

n=1

(q eikn + p e−ikn) (3.4)

5



provided the coefficients Aσ and A
(j1,...,jP )
σ , P = 1, ...,

[
M
2

]
, are related by

AσTj
(~k)

Aσ(~k)
≡ S(kσ(j), kσ(j+1)) = −Λ(kσ(j), kσ(j+1))

Λ(kσ(j+1), kσ(j))
, (3.5)

A
(j)
σ (~k)

Aσ(~k)
≡ N(kσ(j), kσ(j+1)) =

(eikσ(j) − eikσ(j+1))(p+ qeikσ(j)+ikσ(j+1))(t2 + t1e
ikσ(j)+ikσ(j+1))

2 Λ(kσ(j+1), kσ(j))
,

(3.6)

A
(j1,...,jP )
σ (~k)

Aσ(~k)
=

P∏

n=1

N(kσ(jn), kσ(jn+1)), (3.7)

where Tj ∈ SM denotes the transposition (j, j + 1) and

Λ(kj, kn) = eikn(s1 + s2e
ikj+ikn)(t2 + t1e

ikj+ikn) (3.8)

−
(
Y eikj+ikn − qeikj+ikn(eikj + eikn)− p(eikj + eikn) + spe

2ikj+2ikn + tp

)(
X11e

ikn − qeikj+ikn − p
)
.

The momenta kj must also obey the Bethe equations

eikjL =
∏

n 6=j

S(kn, kj) , j = 1, ...,M. (3.9)

Remark that when p = q = 0, the energy depends only on the number of pseudo-excitations.
In this case, one needs to consider another vacuum to get a complete spectrum, see section 4.3.
When p and q are both non vanishing, the energy can be rewritten as

EM = MV +
√
pq

M∑

n=1

(zn
√
θ +

1

zn
√
θ
) where θ = q/p and zn = eikn . (3.10)

In this case, after eliminating the constant term MV thanks to the Sz operator and rescaling
of the Hamiltonian by

√
pq, the energy clearly depends only on the parameter θ (and those of

the S-matrix through the Bethe equations).

3.2 Proofs

Since H is a sum of two-site operators Hj,j+1, one has to single out only the following
configurations:

1. Configurations leading to the determination of eigenvalues and eigenvectors:
� the xj ’s are far from each other (“generic case”),
� xj+1 = xj + 1 for some j and the other xn’s are far from each other,
� xj+1 = xj for some j and the other xn’s are far from each other,
� xjk+1 = xjk , xjk + 1 < xjk+2 for k = 1, ..., P , and the other xn’s are far from each other,

2. Configurations leading to constraints on the parameters of the models:
� xj+1 = xj and xj+2 = xj + 1 for a given j , the other xn’s are far from each other,
� xj+1 = xj and xj−1 = xj − 1 for a given j, the other xn’s are far from each other,
� xj−1 = xj and xj+1 = xj+2 = xj + 1, the other xn’s are far from each other.

6



3. Configurations leading to Bethe equations and/or already known eqs:
� x1 = 1 and the other xn’s are far from each other,
� xM = L and the other xn’s are far from each other,
� x1 = 1, xM = L and the other xn’s are far from each other,
� x1 = x2 = 1 (or equivalently xM−1 = xM = L) and the other xn’s are far from each
other,
� x1 = x2 = 1 and xM = L (or equivalently x1 = 1 and xM−1 = xM = L), and the other
xn’s are far from each other,
� x1 = x2 = 1 and xM−1 = xM = L, and the other xn’s are far from each other.

3.2.1 Configurations leading to energy and eigenstates

• Configuration where the xj’s are generic, i.e. are far from each other and from the
edges: 1 < x1 ≪ ... ≪ xn ≪ xn+1 ≪ ... ≪ xM < L. Projecting the Schrödinger equation on it,
we get

∑

σ∈SM

Aσ(~k)e
i ~kσ·~x

(
MV +

M∑

n=1

(qeikσ(n) + pe−ikσ(n))

)
= EM

∑

σ∈SM

Aσ(~k)e
i ~kσ ·~x (3.11)

which leads to the value (3.4) of the energy of the state ΨM .

• Configuration where xj+1 = xj +1 for a given j (not on the edges), the other xn’s
being far from each other and from the edges. Then one gets

∑

σ∈SM

ei
~kσ ·~x
(
Aσ(~k)

(
X11 − qeikσ(j) − pe−ikσ(j+1)

)
+ A(j)

σ (~k)
(
s2e

ikσ(j) + s1e
−ikσ(j+1)

))
= 0 (3.12)

Note that, since xj+1 = xj + 1, one has here

ei
~kσ·~x = eikσ(j+1) exp

(
i(kσ(j) + kσ(j+1))xj +

∑

n 6=j,j+1

ikσ(n)xn

)
,

which implies a symmetrization in the exchange j ↔ j + 1 before projecting onto the indepen-
dent states (3.1). Hence one gets, where Tj ∈ SM denotes the transposition (j, j + 1),

Aσ(~k)e
ikσ(j+1)

(
X11 − qeikσ(j) − pe−ikσ(j+1)

)
+ AσTj

(~k)eikσ(j)
(
X11 − qeikσ(j+1) − pe−ikσ(j)

)
+

(
A

(j)
σTj

(~k) + A(j)
σ (~k)

)(
s2e

ikσ(j+1)+ikσ(j) + s1

)
= 0. (3.13)

• Configuration where xj+1 = xj for a given j (not on the edges), the other xn’s
being far from each other and from the edges. Then one has

∑

σ∈SM

ei
~kσ·~x
(
A(j)

σ (~k)
(
Y − qeikσ(j) − qeikσ(j+1) − pe−ikσ(j) − pe−ikσ(j+1)

+ spe
ikσ(j)+ikσ(j+1) + tpe

−ikσ(j)−ikσ(j+1)
)
+ Aσ(~k)

(
t1e

ikσ(j+1) + t2e
−ikσ(j)

))
= 0. (3.14)

7



After symmetrization in (j, j + 1) as above, one obtains

(
A(j)

σ (~k) + A
(j)
σTj

(~k)
)(
Y − qeikσ(j) − qeikσ(j+1) − pe−ikσ(j) − pe−ikσ(j+1) + spe

ikσ(j)+ikσ(j+1)

+ tpe
−ikσ(j)−ikσ(j+1)

)
+ Aσ(~k)

(
t1e

ikσ(j+1) + t2e
−ikσ(j)

)
+ AσTj

(~k)
(
t1e

ikσ(j) + t2e
−ikσ(j+1)

)
= 0.
(3.15)

Without any loss of generality, we choose3 to impose A
(j)
σTj

(~k) = A
(j)
σ (~k). Then, using eqs. (3.13)

and (3.15), one gets relations (3.5) and (3.6).

• Configuration where xjk+1 = xjk for k = 1, ..., P and the other xn’s being far from
each other and from the edges. One gets

∑

σ∈SM

ei
~kσ ·~x
{
A(j1,...,jP )

σ (~k)
(
PY +

P∑

k=1

tpe
−ikσ(jk)−ikσ(jk+1) − pe−ikσ(jk) − pe−ikσ(jk+1)

+ spe
ikσ(jk)+ikσ(jk+1) − qeikσ(jk) − qeikσ(jk+1)

)
+

P∑

k=1

A(j1...̌k...jP )
σ (~k)(t2e

−ikσ(jk) + t1e
ikσ(jk+1))

}
= 0

(3.16)

where A
(j1...̌k...jP )
σ (~k) means that xjn+1 = xjn for n = 1, ..., P and n 6= k.

Morevover, after projection onto the states (3.1), one needs to symmetrize (independently) on

each pair (jn, jn + 1). One is led to a recursion relation linking A
(j1,...,jP )
σ (~k) and A

(j1,...,jP−1)
σ (~k)

that can be solved, and one gets (3.7).

3.2.2 Configurations leading to constraints on parameters

• Configuration where xj+1 = xj and xj+2 = xj+1 for a given j (not on the edges),
the other xn’s being far from each other and from the edges. One obtains

∑

σ∈SM

ei
~kσ ·~x
(
A(j)

σ (~k)
(
X21 − qeikσ(j) − qeikσ(j+1) − pe−ikσ(j) − pe−ikσ(j+1) − pe−ikσ(j+2)

+ tpe
−ikσ(j)−ikσ(j+1)

)
+ A(j+1)

σ (~k)s3e
ikσ(j+1) + Aσ(~k)t2e

−ikσ(j)

)
= 0. (3.17)

Here one has ei
~kσ·~x = eikσ(j+2) exp

( ∑

n 6=j,j+1,j+2

ikσ(n)xn +
∑

n=j,j+1,j+2

ikσ(n)xj

)
given the config-

uration. Therefore, projecting onto the states (3.1), it is now necessary to symmetrize on
(j, j + 1, j + 2). Taking into account the relations (3.5) and (3.6) that allow one to express all

A functions in terms of Aσ(~k) only, one gets now

∑

σ∈S3

E21(kσ(j), kσ(j+1), kσ(j+2)) = 0, (3.18)

3Another possible choice [21] is to impose A
(j)
σTj

(~k) = S(kσ(j), kσ(j+1))A
(j)
σ (~k). One goes from one choice to

another through the renormalisation A
(j)
σ (~k) → (kσ(j) − kσ(j+1))Λ(kσ(j), kσ(j+1))A

(j)
σ (~k).
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where

E21(kσ(j), kσ(j+1), kσ(j+2)) = Aσ(~k) e
ikσ(j+2)

(
N(kσ(j), kσ(j+1))

(
X21 − qeikσ(j) − qeikσ(j+1) − pe−ikσ(j)

− pe−ikσ(j+1) − pe−ikσ(j+2) + tpe
−ikσ(j)−ikσ(j+1)

)
+N(kσ(j+1), kσ(j+2)) s3e

ikσ(j+1) + t2e
−ikσ(j)

)
.

(3.19)

Then projecting the above constraint onto the monomials in the variables eikσ(ℓ), ℓ = j, j +
1, j + 2, one gets a first set of 32 constraint equations. For sake of simplicity, we avoid writing
these equations here.

• Configuration where xj+1 = xj and xj−1 = xj−1 for a given j (not on the edges),
the other xn’s being far from each other and from the edges. In the same way, when one
considers such a configuration, one obtains

∑

σ∈SM

ei
~kσ ·~x
(
A(j)

σ (~k)
(
X12 − qeikσ(j−1) − qeikσ(j) − qeikσ(j+1) − pe−ikσ(j) − pe−ikσ(j+1)

+ spe
ikσ(j)+ikσ(j+1)

)
+ A(j−1)

σ (~k) t3e
−ikσ(j) + Aσ(~k) t1e

ikσ(j+1)

)
= 0. (3.20)

Again, after projection onto the states (3.1), one is left to symmetrize on (j − 1, j, j + 1),

∑

σ∈S3

E12(kσ(j−1), kσ(j), kσ(j+1)) = 0 (3.21)

where the expression E12 is given by

E12(kσ(j−1), kσ(j), kσ(j+1)) = e−ikσ(j)

(
N(kσ(j), kσ(j+1))

(
X12 − qeikσ(j−1) − qeikσ(j) − qeikσ(j+1)

− pe−ikσ(j) − pe−ikσ(j+1) + spe
ikσ(j)+ikσ(j+1)

)
+N(kσ(j−1), kσ(j))t3e

−ikσ(j) + t1e
ikσ(j+1)

)
. (3.22)

The projection of the constraint equation onto the monomials in the variables eikσ(ℓ), ℓ =
j − 1, j, j + 1 leads to a second set of 32 constraint equations.

• Configuration where xj−1 = xj and xj+1 = xj+2 = xj + 1, the other xn’s being far
from each other and from the edges. One gets

∑

σ∈SM

ei
~kσ ·~x
(
A(j−1,j+1)

σ (~k)
(
X22 + tpe

−ikσ(j−1)−ikσ(j) − qeikσ(j−1) − qeikσ(j) − qeikσ(j+1) − qeikσ(j+2)

+ spe
ikσ(j+1)+ikσ(j+2) − pe−ikσ(j−1) − pe−ikσ(j) − pe−ikσ(j+1) − pe−ikσ(j+2)

)

+ A(j+1)
σ (~k) t2e

−ikσ(j−1) + A(j−1)
σ (~k) t1e

ikσ(j+2)

)
= 0. (3.23)

Since now ei
~kσ ·~x = eikσ(j+1)+ikσ(j+2) exp

( ∑

n 6=j−1,j,j+1,j+2

ikσ(n)xn +
∑

n=j−1,j,j+1,j+2

ikσ(n)xj

)
, one

symmetrizes on (j − 1, j, j + 1, j + 2), and gets

∑

σ∈S4

E22(kσ(j−1), kσ(j), kσ(j+1), kσ(j+2)) = 0, (3.24)
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where

E22 = Aσ(~k) e
ikσ(j+1)+ikσ(j+2)

(
N(kσ(j−1), kσ(j))N(kσ(j+1), kσ(j+2))

(
X22 + tpe

−ikσ(j−1)−ikσ(j)

− qeikσ(j−1) − qeikσ(j) − qeikσ(j+1) − qeikσ(j+2) + spe
ikσ(j+1)+ikσ(j+2) − pe−ikσ(j−1) − pe−ikσ(j)

− pe−ikσ(j+1) − pe−ikσ(j+2)
)
+N(kσ(j+1), kσ(j+2)) t2e

−ikσ(j−1) +N(kσ(j−1), kσ(j)) t1e
ikσ(j+2)

)
.

(3.25)

The projection of the constraint equation onto the monomials in the variables eikσ(ℓ), ℓ =
j − 1, j, j + 1, j + 2 finally leads to a third set of constraint equations.

The solutions to the sets of equations (3.18), (3.21) and (3.24) give necessary conditions
to be satisfied among the parameters defining the two-site Hamiltonian (2.4) to ensure the
solvability of the chain. This leads to a classification of three-state integrable models as shown
in the next section.

3.2.3 Configurations leading to the Bethe equations

We now concentrate on configurations with at least one excitation lying on the chain edges
1 and/or L. Using the periodicity condition of the chain, this will allow us to derive the
equations that determine the admissible values of the parameters k entering into the definition
of the plane wave (3.3), i.e. the Bethe ansatz equations.

• Configuration where x1 = 1 and the other xn’s are far from each other and from the
edges: 1 = x1 ≪ ... ≪ xn ≪ xn+1 ≪ ... ≪ xM < L. Then one gets provided that p 6= 0,

∑

σ∈SM

Aσ(~k)

(
exp

( M∑

n=2

ikσ(n)xn

)
− exp

(
ikσ(M)L+

M∑

n=2

ikσ(n−1)xn

))
= 0. (3.26)

Performing the transformation σ → σT1 . . . TM−1 in the second term, one gets AσT1...TM−1
(~k) =

e−ikσ(1)LAσ(~k). Taking into account (3.5), we finally obtain the Bethe ansatz equations (3.9).
In the same way, one can consider a configuration where xM = L and the other xn’s are far

from each other and from the edges: 1 < x1 ≪ ... ≪ xn ≪ xn+1 ≪ ... ≪ xM = L. Then one
gets provided that q 6= 0,

∑

σ∈SM

Aσ(~k)

(
exp

(
ikσ(M)(L+ 1) +

M−1∑

n=1

ikσ(n)xn

)
− exp

(
ikσ(1) +

M−1∑

n=1

ikσ(n+1)xn

))
= 0.

(3.27)
Now, performing the transformation σ → σTM−1 . . . T1 in the second term, one gets

AσTM−1...T1(
~k) = eikσ(M)LAσ(~k),

which leads also to equation (3.9).
Note that since we excluded the values p = q = 0, the BAE (3.9) holds in any case.
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• Configuration where x1 = 1, xM = L and the other xn’s are far from each other:
1 = x1 ≪ ... ≪ xn ≪ xn+1 ≪ ... ≪ xM = L. One obtains

∑

σ∈SM

Aσ(~k) exp
(
ikσ(1) + ikσ(M)L+

M−1∑

n=2

ikσ(n)xn

)(
X11 − qeikσ(M) − pe−ikσ(1)

)

+ A(M−1)
σ (~k) exp

(
ikσ(M−1)L+ ikσ(M)L+

M−1∑

n=2

ikσ(n−1)xn

)

+ A(1)
σ (~k) exp

(
ikσ(1) + ikσ(2) +

M−1∑

n=2

ikσ(n+1)xn

)
= 0. (3.28)

One then performs the transformations σ → σT1 . . . TM−1 (second term) and σ → σTM−1 . . . T1

(third term) and uses the relations (3.5) and (3.6). After the necessary symmetrization on the
pair (1,M) and projection onto the states (3.1), one is left with an equation expressed in terms

of Aσ(~k) only, the S-matrix and the decay coefficient N . Plugging the BAE (3.9) into the
obtained equation, it appears that no further condition is required.

• Other “edge configurations”. They correspond to the following cases:

(i) x1 = x2 = 1 (or equivalently xM−1 = xM = L),

(ii) x1 = x2 = 1 and xM = L (or equivalently x1 = 1 and xM−1 = xM = L),

(iii) x1 = x2 = 1 and xM−1 = xM = L, and the other xn’s are far from each other.

The approach is similar to the previous case. After obtaining the Schrödinger equation for
the particular configuration under consideration using the periodicity conditions, one performs
the suitable transformations on the permutations and write all functions A(~k) in terms of the

running Aσ(~k) only, products of S-matrices and decay coefficients N . If necessary, symmetrize
on the indices which are left after the projection on the elementary states (3.1). In each case,
plugging the BAE (3.9) into the equation that is finally obtained leads to some constraint
equation belonging to one of the sets (3.18), (3.21) or (3.24). No further condition is eventually
needed.

4 Solutions of the constraint equations

In this section, we present all the non trivial solutions to equations (3.18), (3.21) and
(3.24), described in section 3. It provides a classification of three-state models solvable by
CBA. We used a formal calculation software to solve completely these equations, and found
4 nineteen-vertex, 4 seventeen-vertex and 2 fourteen-vertex models, up to the transformations
under parity, time reversal and charge conjugation, see section 2.2. If one includes the images
of the irreducible solutions under these transformations, one gets 22 solutions, see table 1.

Remark 4.1 Of course, when directly solving the equations (3.18), (3.21) and (3.24), one finds
many more solutions, but most of them are subcases of these 10 “irreducible” solutions. We
developed a sofware that, starting from any given Halmiltonian of the form (2.4), can analyze
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whether the Hamiltonian is solvable by CBA, and, if so, to which one of the 10 irreducible
solutions it corresponds. This program is freely accessible on our web page [22]. Let us stress
that the correspondence may be sensitive to the choice of free parameters that is used. This is
taken into account by the software. However, in this article we made (arbitrarily) one specific
choice. The other ones are found through the image under parity, charge conjugation and/or
time reversal transformations of the choice we present here. We illustrate this in a particular
case, see section 4.1.4.

In the following, we classify the models that have (t1, t2, s1, s2) 6= (0, 0, 0, 0) and (p, q, t3, s3) 6=
(0, 0, 0, 0). Because we work modulo P , C, T transformation, it is enough to present the solu-

tions with (p, q) 6= (0, 0) and (t1, t2) 6= (0, 0):
(i) since we are considering U(1) invariant models, to get a symmetry of rank 1 only (not
rank 2), we are led to (t1, t2, s1, s2) 6= (0, 0, 0, 0). Now suppose that we get a solution with
(t1, t2) = (0, 0). Then, this solution has (s1, s2) 6= (0, 0). But the image of this solution under
time reversal is also a solution and has (t1, t2) 6= (0, 0) and (s1, s2) = (0, 0): since we are working
modulo this transformation, we can choose to present solutions with (t1, t2) 6= (0, 0);
(ii) to be able to construct the CBA on the vacuum |Ω〉 or |Ω̃〉, one needs to have (p, q, t3, s3) 6=
(0, 0, 0, 0). Now, since charge conjugation (2.10) exchanges (p, q) and (t3, s3), we can suppose
(p, q) 6= (0, 0).

These requirements exclude all the cases obtained in [17], but models 7 and 10: the remaining
ones are models with rank 2 symmetry, or diagonal Hamiltonians, or not solvable through CBA.
They exclude also the model based on Temperley-Lieb algebra [23], for which another type of
CBA is needed [12].

We introduce the following reduced parameters:

τp = tp/p , τ2 = t2/p , τ3 = t3/p , θ = q/p , Υ = Y/p , σ = s1t2/p
2 , µ = t1/t2. (4.1)

These reduced parameters are the only ones that are part of the physical data of the models:
scattering matrix S, decay coefficient N , energy E and BAEs. Hence the other ones can be
eliminated from the model through gauge transformations and/or telescoping terms, as it is
done in section 5. We chose to present here our “raw” Hamiltonians to be easily compared
with any given Hamiltonian.

These “raw” Hamiltonians are defined whatever the values of the free parameters, provided
they lead to well-defined expressions for the other parameters. The reduced parameters are
valid for generic values of the free parameters and can be ill-defined for some specific values,
see remark 5.1 in section 5.

We define J as one solution of the equation J2 + J + 1 = 0.

4.1 Nineteen vertices

In this subsection, we focus on the solutions for which all off-diagonal parameters entering
in the Hamiltonian are non zero.

Remark 4.2 We will call the corresponding Hamiltonian a “19-vertex” one, since we get 19
non-vanishing entries forH12 when adding the 9 diagonal parameters to the 10 off-diagonal ones.
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Note however that one can always cancel some of the diagonal entries using the symmetries as
discussed in section 2.2.

We would like to stress also that this name 19-vertex is not related to the terminology used
for R-matrix formalism.

4.1.1 Generalized Zamolodchikov-Fateev model (gZF)

The parameters which are left free are p, tp, t2, s1. The remaining parameters entering the
off-diagonal part of the Hamiltonian are given by

q = s3 =
p3

t2p
, t1 =

p2t2
t2p

, t3 = p , s2 =
p2s1
t2p

, sp =
p4

t3p
, (4.2)

while on the diagonal we get:

X11 = 0 , Y =
2p2

tp
, X12 = X21 =

3p2 − s1t2
tp

, X22 =
4p2 − 2s1t2

tp
. (4.3)

The S-matrix depends only on the reduced parameters τp and σ:

S(z1, z2) = −z1z2 − τp(z1 + z2 − σz2) + τ 2p
z1z2 − τp(z1 + z2 − σz1) + τ 2p

(4.4)

and the decay coefficient N reads

N(z1, z2) =
τ2τp(z1 − z2)

2(z1z2 − τp(z1 + z2 − σz1) + τ 2p )
. (4.5)

Remark 4.3 The PT-invariant models of ref. [18], branch 1A, are obtained as particular cases
of this one. More precisely, setting

p =
2k2

k4 − 1
, tp =

−2ǫ1k
2

k4 − 1
, t2 = s1 = ±e−

iπ
4
(1−ǫ1)

2k

k2 − 1
, (4.6)

one recovers the branch 1A Hamiltonians H±
1A(k, ǫ1) of ref. [18] which is associated to the

Zamolodchikov-Fateev model [24].

4.1.2 Generalized Izergin-Korepin model (gIK)

The parameters which are left free are p, tp, t2. The remaining parameters entering the
off-diagonal part of the Hamiltonian are given by

sp = v4
p4

t3p
, s3 = q = v2

p3

t2p
, t3 = p , t1 = u−1

±
p2t2
t2p

(4.7)

s1 = v(v − 1)
p2

t2
, s2 = u−1

∓ v(v − 1)
p4

t2t2p
, (4.8)
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while on the diagonal we get:

X11 = v(v + 1)
p2

tp
, Y = (v2 + 1)

p2

tp
, X22 = 2(v + 1)

p2

tp
, (4.9)

X12 = (v2 + 1− u−1
∓ )

p2

tp
, X21 = (v2 + 1− u−1

± )
p2

tp
, (4.10)

where v is a free parameter and u± are the two solutions of the equation

v4Z2 + (1 + 2v − v2)Z + 1 = 0. (4.11)

The S-matrix depends only on the reduced parameter τp and v:

S(z1, z2) = −(v2z1z2 − τp(z1 + vz2) + τ 2p )(v
2z1z2 − τp(1 + v)z2 + τ 2p )

(v2z1z2 − τp(z2 + vz1) + τ 2p )(v
2z1z2 − τp(1 + v)z1 + τ 2p )

(4.12)

and the decay coefficient N reads

N(z1, z2) =
τ2τp(z1 − z2)(u

−1
± z1z2 + τ 2p )

2(v2z1z2 − τp(z2 + vz1) + τ 2p )(v
2z1z2 − τp(1 + v)z1 + τ 2p )

. (4.13)

Remark 4.4 The PT-invariant models of ref. [18], branch 2A, which is also linked to the
Izergin-Korepin model [25], are obtained as particular cases of this one. More precisely, setting

p =
2k2

k4 − 1
, tp =

2k4

(k6 + ǫ1)(k2 − ǫ1)
, t2 = ∓e−

iπ
4
(1−ǫ1)

2k

k6 + ǫ1
, (4.14)

one recovers the branch 2A Hamiltonians H±
2A(k, ǫ1, ǫ2) of ref. [18]. Note that each branch 2A

Hamiltonian is related to the two models corresponding to the choices u± with d = ǫ1k
−2ǫ2 or

d = ǫ1k
2ǫ2 through the following parametrization

v =
d

d2 − d+ 1
, u− = −(d2 − d+ 1)2 , u+ = −(d2 − d+ 1)2

d4
. (4.15)

4.1.3 Generalization of the Bariev model (gB)

This models appears to be a multi-parametric interpolation of three known models, one of
them being the Bariev model, see remarks 4.5 and 4.6.

The parameters which are left free are p, q, t1, t2, tp. The remaining parameters entering the
off-diagonal part of the Hamiltonian are given by

s1 = J
Jt21t

2
p − pqt22
t1t22

, s2 = J2
Jt21t

2
p − pqt22
t32

, s3 = −J2 pt1
t2

, t3 = −J
qt2
t1

, sp = J
t21tp
t22

,

(4.16)
while on the diagonal we get:

Y =
p2t21t2 + Jpqt1t

2
2 + J2q2t32 − J2t31t

2
p

t21t2tp
, X22 =

p2t21t2 + Jpqt1t
2
2 + J2q2t32

t21t2tp
, X11 = J2 t1tp

t2
,

(4.17)

X12 =
p2t21t2 + Jpqt1t

2
2 + J2q2t32 + t31t

2
p

t21t2tp
, X21 =

p2t21t2 + Jpqt1t
2
2 + J2q2t32 + Jt31t

2
p

t21t2tp
. (4.18)
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The S-matrix depends only on the reduced parameters τp, θ and µ:

S(z1, z2) = −Λ(z1, z2)

Λ(z2, z1)

where

Λ(z1, z2) = Jµ4τ 2p z
2
1z

2
2 − µ2τpθz1z2(z1 + z2)− J2µ3τpz1z

2
2 + (µ− θ)(µ− J2θ)z1z2

+ J2µ3τ 2p z
2
2 − µ2τp(z1 + z2)− Jµτpθz2 + µ2τ 2p (4.19)

and the decay coefficient N reads

N(z1, z2) =
τ2τpµ

2(z1 − z2)(1 + µz1z2)

2Λ(z2, z1)
. (4.20)

When q = J
t21t

2
p

pt22
(i.e. θ = Jµ2τ 2p ), the S-matrix and the decay coefficient N simplify and

one gets

S(z1, z2) = −Jµ2τ 2p z1z2 − J2µτpz2 + 1

Jµ2τ 2p z1z2 − J2µτpz1 + 1
(4.21)

and

N(z1, z2) =
τ2τp(z1 − z2)(1 + µz1z2)

2(z1 − τp)(z2 − τp)(Jµ2τ 2p z1z2 − J2µτpz1 + 1)
. (4.22)

Remark 4.5 The Bariev model [21, 26] is obtained as a particular case of this one. More

precisely, setting p = q = 1, J = , t1 = −2
√

t2p − 1, t2 = 
√
t2p − 1, where  = exp(2iπ

3
), one

gets for the other parameters t3 = s3 = 1, sp = tp, X11 = −tp, Y = tp +
1

tp
, X12 = −tp +

1

tp
,

X21 = −2tp +
1

tp
, X22 =

1

tp
which are the values of ref. [26]. In that case, the S-matrix reads

S(z1, z2) = −τ 2p z
2
1z

2
2 − τpz

2
1z2 + z1z2 − τ 2p z

2
2 − τpz1 + τ 2p

τ 2p z
2
1z

2
2 − τpz1z

2
2 + z1z2 − τ 2p z

2
1 − τpz2 + τ 2p

(4.23)

and the decay coefficient N takes the form

N(z1, z2) =
τ2τp(z1 − z2)(1− z1z2)

2(τ 2p z
2
1z

2
2 − τpz1z22 + z1z2 − τ 2p z

2
1 − τpz2 + τ 2p )

. (4.24)

Remark 4.6 The PT-invariant models of ref. [18], branch 2B, are obtained as particular cases
of this one. More precisely, setting

p = q = −2i , t1 = ±ǫ1ǫ2e
−2iǫ2π/3 , t2 = ±ǫ1ǫ2e

2iǫ2π/3 , tp = −iǫ1
√
3 (4.25)

one recovers the branch 2B Hamiltonians H±
2B(ǫ1, ǫ2) of ref. [18] (with ǫ1, ǫ2 ∈ {−1,+1}).

The main branch genus 5 model of ref. [19] is also a particular case of this one. More
precisely, setting

p = −ǫ2 , q = −ǫ1 , t1 =

√
3∓ i

2

√
ǫ1ǫ2 − 1 , t2 =

√
3± i

2

√
ǫ1ǫ2 − 1 (4.26)

one recovers the main branch genus 5 Hamiltonians H±
MB5(ǫ1, ǫ2) of ref. [19] (we remind that

here ǫ1 and ǫ2 are free parameters).
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4.1.4 Generalization of the Hamiltonian built on Uq(sl(2)) special representation
at roots of unity (SpR)

The parameters which are left free are p, q, tp, t2, t3. The remaining parameters entering the
off-diagonal part of the Hamiltonian are given by

t1 =
qt2
p

, s1 =
pt3
t2

, s2 =
qt3
t2

, s3 =
qt3
p

, sp =
q(t23 − t3p + p2)

ptp
, (4.27)

while on the diagonal we get:

X11 = 0 , Y = X12 = X21 = X22 =
t23 − t3p+ p2

tp
+

qtp
p
. (4.28)

Remark 4.7 Note that eqs (4.27) and (4.28) look as if some of the free parameters, say tp,
cannot be set to zero. This is due to the choice of parametrization we made. However, one can
choose alternative presentations. For instance, we could use as free parameters p, q, sp, t1, s3.
In that case, the remaining parameters take the form

t2 =
pt1
q

, s1 =
ps3
t1

, s2 =
qs3
t1

, t3 =
ps3
q

, tp =
p(s23 − s3q + q2)

qsp
, (4.29)

and

X11 = 0 , Y = X12 = X21 = X22 =
s23 − s3q + q2

sp
+

psp
q

. (4.30)

Clearly, (4.29) shows that we can now set tp = 0 without any problem. This new choice of
parametrization is in fact the image under parity of the previous choice.

The S-matrix depends only on the reduced parameters τp and τ3:

S(z1, z2) = −(τ 23 − τ3 + 1)z1z2 − τp(z1 + z2 − τ3z2) + τ 2p
(τ 23 − τ3 + 1)z1z2 − τp(z1 + z2 − τ3z1) + τ 2p

(4.31)

and the decay coefficient N reads

N(z1, z2) =
τ2τp(z1 − z2)

2((τ 23 − τ3 + 1)z1z2 − τp(z1 + z2 − τ3z1) + τ 2p )
. (4.32)

Remark 4.8 The PT-invariant models of ref. [18], branch 1B, which are linked to the models
associated to special representation of Uq(sl(2)) at roots of unity [27–29], are obtained as
particular cases of this one. More precisely, setting

p = q = −2i , t2 = ±2 , t3 = 2i , tp = −2iǫ1
√
3 (4.33)

one recovers the branch 1B Hamiltonians H±
1B(ǫ1) of ref. [18].
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4.2 Generalization of the special branch genus 5 model (SB5)

The parameters which are left free are p, q, t2, Y . The remaining parameters entering the
off-diagonal part of the Hamiltonian are given by

tp = sp = 0 , t1 =
qt2
p

, s1 = −J2 p
2

t2
, s2 = −J

pq

t2
, t3 = −J2p , s3 = −Jq (4.34)

while on the diagonal we get:

X11 = 0 , X12 = X21 = X22 = Y. (4.35)

The S-matrix depends only on the reduced parameters θ and Υ:

S(z1, z2) = −θz1z2(z1 − J2z2)−Υz1z2 + z1 − Jz2
θz1z2(z2 − J2z1)−Υz1z2 + z2 − Jz1

(4.36)

and the decay coefficient N reads

N(z1, z2) = − τ2(z1 − z2)(θz1z2 + 1)

2(θz1z2(z2 − J2z1)−Υz1z2 + z2 − Jz1)
. (4.37)

Remark 4.9 The special branch genus 5 model of ref. [19] is also a particular case of this one.
More precisely, setting

p = t2 = e∓2iπ/3 , q = −1 , Y = 4Λ (4.38)

one recovers the special branch genus 5 Hamiltonians H±
SB5(Λ) of ref. [19].

4.3 Other models (17- and 14- vertex models)

The terminology “17-vertex” and “14-vertex” follows the one used for 19-vertex, see expla-
nation in remark 4.2.

As explained above, eqs. (3.18), (3.21) and (3.24) provide a set of constraints (denoted C|Ω〉
hereafter) on the parameters entering the Hamiltonian. Solving these equations, we get a set
of solutions, each of them determining an Hamiltonian solvable through CBA. Then, the BAE
(3.9) allows us to compute the eigenvalues (3.4) and eigenvectors (3.2) of the model using the
S matrix and the decay coefficient N . The construction is based on the choice of a particular
eigenvector of H : the pseudo-vacuum.

Since we perform a classification, one shall get the same set of solutions whatever the choice
of the pseudo-vacuum. In the case of the three-state Hamiltonian we are studying, there are
two pseudo-vacua |Ω〉 =⊗L

i=1 |0〉 and |Ω̃〉 =⊗L
i=1 |2〉. Deploying the CBA machinery for each

pseudo-vacuum leads to two distinct sets of constraint equations, C|Ω〉 and C|Ω̃〉, the latter being

obtained by applying the charge conjugation4 (2.10) to the former. It follows in light of the
foregoing that each solution of C|Ω〉 should satisfy the equations coming from C|Ω̃〉. As it can be
checked in Table A, it is indeed the case for the previous models.

However, there are cases where a solution to C|Ω〉 does not solve identically C|Ω̃〉, but rather
leads to additional constraints on the parameters. At this stage, the additional constraints could

4In fact, (2.10) is just the gauge transformation relating |Ω〉 to |Ω̃〉.
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be interpreted as a failure in the CBA method: eigenvectors built on C|Ω̃〉 are not eigenvectors
of the Hamiltonian based on a solution of C|Ω〉. In fact, it just indicates that the eigenvectors
obtained by CBA on C|Ω〉 do not provide a complete basis of eigenvectors. One needs to consider

a second pseudo-vacuum |Ω̃〉 to get a (tentatively) complete basis. Thus, it is the full sets of
constraints C|Ω〉 and C|Ω̃〉 that need to be considered. That is what we did for the class of models
presented in this section. In practice, it is simpler, but equivalent, to apply the transformation
(2.10) to a given solution to the initial constraints C|Ω〉, to impose the transformed solution to
be also a solution of C|Ω〉 (hence leading to more constraints on the parameters) and then to
pull back the charge conjugation transformation (2.10) on the result to get the final answer.

4.3.1 Model 17V1

Solving the constraints C|Ω〉, the parameters which are left free are p, q, tp, t2, t3, s3, X22 and
the constraints on the parameters are given by

s1 = s2 = 0 , sp =
pq

tp
, t1 =

qt2
p

(4.39)

and

X11 = 0 , Y =
p2

tp
+

qtp
p

, X12 =
p2

tp
+

qtp
p

+
pt3
tp

, X21 =
p2

tp
+

qtp
p

+
tps3
p

. (4.40)

Solving now the constraints C|Ω̃〉, one gets two inequivalent possibilities:

• Model 17V1a: The additional conditions are

s3 = ǫq , t3 = ǫp , X22 = (1 + ǫ)Y, with ǫ = ±1, (4.41)

the diagonal terms reading now

X12 = Y + ǫ
p2

tp
, X21 = Y + ǫ

qtp
p
. (4.42)

• Model 17V1b: The additional conditions are

q =
Ip3

t2p
, t3 = Ip , s3 =

p3

t2p
, X22 = (1 + I)

p2

tp
, (4.43)

where I is one solution of I2 + 1 = 0. It leads to a redefinition of the parameters:

sp =
Ip4

t3p
, t1 =

Ip2t2
t2p

, Y = (1 + I)
p2

tp
, X12 = (2I + 1)

p2

tp
, X21 = (I + 2)

p2

tp
.

(4.44)

For both models 17V1a and 17V1b the S-matrix is trivial, S(z1, z2) = −1, and the decay
coefficient N reads

N(z1, z2) =
τ2τp(z1 − z2)

2(z1 − τp)(z2 − τp)
. (4.45)
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4.3.2 Model 17V2

Solving the constraints C|Ω〉, the parameters which are left free are p, q, tp, t2, t3, s3 and the
constraints on the parameters are given by

s1 = s2 = 0 , sp =
pq

tp
, t1 = −p2t2

t2p
(4.46)

and

X11 = Y =
p2

tp
+

qtp
p

, X12 = 2Y − qtpt3
p2

, X21 = 2Y − p2s3
qtp

, X22 = 2Y. (4.47)

Solving now the constraints C|Ω̃〉, the additional conditions are

s3 = q , t3 = p , (4.48)

the diagonal terms reading now

X12 =
2p2

tp
+

qtp
p

, X21 =
p2

tp
+

2qtp
p

. (4.49)

The S-matrix depends only on the reduced parameters τp and θ:

S(z1, z2) = −θτpz1z2 − (θτ 2p + 1)z2 + τp

θτpz1z2 − (θτ 2p + 1)z1 + τp
(4.50)

and the decay coefficient N reads

N(z1, z2) =
−τ2(z1 − z2)(z1z2 − τ 2p )

2(θτpz1z2 − (θτ 2p + 1)z1 + τp)(z1 − τp)(z2 − τp)
. (4.51)

4.3.3 Model 14V1

Solving the constraints C|Ω〉, the parameters which are left free are p, tp, t2, t3, X21, X22 and
the constraints on the parameters are given by

q = s1 = s2 = s3 = sp = 0 , t1 = −p2t2
t2p

, X11 = Y =
p2

tp
, X12 =

2p2

tp
. (4.52)

Solving now the constraints C|Ω̃〉, the additional conditions are

t3 = ǫp , X21 = X22 −
p2

tp
with ǫ = ±1 . (4.53)

The S-matrix and the decay coefficient N read:

S(z1, z2) = −z2 − τp
z1 − τp

, N(z1, z2) =
τ2(z1 − z2)(z1z2 − τ 2p )

2(z1 − τp)2(z2 − τp)
. (4.54)
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4.3.4 Model 14V2

Solving the constraints C|Ω〉, the parameters which are left free are p, tp, t1, t2 and the con-
straints on the parameters are given by

q = s1 = s2 = s3 = sp = 0 , t3 = −t2pt1

pt2
(4.55)

and

X11 = 0 , X12 = Y =
p2

tp
, X21 = X22 =

p2t2 − t2pt1

tpt2
. (4.56)

Solving now the constraints C|Ω̃〉, leads to one additional condition

t1 =
p2t2
t2p

(4.57)

which gives t3 = −p and X21 = X22 = 0.
The S-matrix is trivial, S(z1, z2) = −1, and the decay coefficient N reads:

N(z1, z2) =
τ2(z1 − z2)(z1z2 + τ 2p )

2τp(z1 − τp)(z2 − τp)
. (4.58)

5 Reduced Hamiltonians

In this section, we use telescoping terms and gauge transformations (see section 2.2) to get

a simple expression H̃ for the Hamiltonians described in section 4. For all Hamiltonians, in a
first step, we change the normalization and perform a gauge transformation:

Hred = N0 G⊗G
(
H − V

2
(sz1 + sz2)

)
G−1 ⊗G−1 , (5.1)

where N0 is a constant, and G a 3×3 diagonal matrix. Their exact form depends on the model
we consider. We get in this way Hamiltonians that depend only on the physical parameters.
The transformation is valid only for generic values of the free parameters, see remark 5.1 below.

5.1 Nineteen vertices

5.1.1 Generalized Zamolodchikov-Fateev model

From the Hamiltonian H given in section 4.1.1, we perform the transformation (5.1) with

N0 =
tp
p2

and G = diag
(
1,

(
t2 t

2
p

s1 p2

)1/4

, 1
)
. (5.2)

It leads to an Hamiltonian Hred depending on τp and σ only.

Remark 5.1 Note that this transformation is not valid for s1 = 0, although the “raw” Hamil-
tonian is well-defined in this case, see section 4.1.1. This is due to the fact that the physical
parameter σ vanishes for this particular value of s1. One can however work on the raw Hamil-
tonian to get then a reduced Hamiltonian containing only the physical parameter τp.
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To compare with existing models, we furthermore modify it to

H̃ =
−2k2

k4 − 1
Hred −

k4 + 1

k4 − 1
(sz1 + sz2) with σ =

(
k2 + 1

k

)2

(5.3)

we get

H̃ =




0 0 0 0 0 0 0 0 0

0 k4+1
1−k4

0 2τp k2

1−k4
0 0 0 0 0

0 0 2 k4+2 k2+2
1−k4

0 2k
1−k2

0 2τp2k2

1−k4
0 0

0 2k2

(1−k4)τp
0 k4+1

1−k4
0 0 0 0 0

0 0 2k
1−k2

0 2 k4+2
1−k4

0 2kτp2

1−k2
0 0

0 0 0 0 0 k4+1
1−k4

0 2τp k2

1−k4
0

0 0 2k2

(1−k4)τp2
0 2k

τp2(1−k2)
0 2 k4+2 k2+2

1−k4
0 0

0 0 0 0 0 2k2

(1−k4)τp
0 k4+1

1−k4
0

0 0 0 0 0 0 0 0 0




. (5.4)

When τp = −1, we recover the Zamolodchikov-Fateev model [24] (or spin-1 XXZ spin chain).
When τp = −ǫ1, k = exp(γ

2
+ iπ

4
(1 − ǫ1)) and ǫ1 = ±1 is left free, we get the models “branch

1A” described in [18]. The models 7 and 10 of [17] are also obtained in the same way.
To be complete, let us add that for τp = −1, the Hamiltonian (5.4) is related to the one based

on Uq(B
(1)
1 ) given in [30] by HUq(B

(1)
1 )(1/k2) = H̃(k) + (I ⊗ e22 − e22 ⊗ I) + 2(I⊗ e33 − e33 ⊗ I)

(the R-matrix of Uq(B
(1)
1 ) we consider is normalized such that R11

11 = 1).

5.1.2 Generalized Izergin-Korepin model

From the Hamiltonian H given in section 4.1.2, the transformation (5.1) with

N0 =
tp
p2

and G = diag
(
1,

√
t2
p

(
vu−
v − 1

)1/4

, 1
)

(5.5)

leads to an Hamiltonian Hred depending on τp and v only. To compare with existing model, we

first make a change of variable v =
k

k2 − k + 1
, u− = −(k2 − k + 1)2 and define

H̃ =
1

(k2 − 1)(k2 − k + 1)

(
− (k2 − k + 1)2Hred +

1
2
(k2 + 1)(k2 − k + 1) (sz1 + sz2)

+ 1
2
(k2 − 1)(k2 − k + 1) (I⊗ e22 − e22 ⊗ I) + 1

2
(k − 1)3(k + 1) (I⊗ e33 − e33 ⊗ I)

) (5.6)
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that is, with τ ′p = τp/v,

H̃ =




0 0 0 0 0 0 0 0 0

0 k2

k2−1
0

−kτ ′p
k2−1

0 0 0 0 0

0 0 (k3−k2+1)k
(k3+1)(k−1)

0
−τ ′p

√
k

k3+1
0

−k2τ ′p
2

(k3+1)(k−1)
0 0

0 −k
(k2−1)τ ′p

0 1
k2−1

0 0 0 0 0

0 0 −
√
k

τ ′p (k3+1)
0 k3−k2+k−1

k3+1
0

k5/2τ ′p
k3+1

0 0

0 0 0 0 0 k2

k2−1
0

−kτ ′p
k2−1

0

0 0 −k2

τ ′p
2(k3+1)(k−1)

0 k5/2

τ ′p (k3+1)
0 k3−k+1

(k3+1)(k−1)
0 0

0 0 0 0 0 −k
(k2−1)τ ′p

0 1
k2−1

0

0 0 0 0 0 0 0 0 0




. (5.7)

For generic values of k and τp, the Hamiltonian H̃ is conjugated to the one based on Uq(A
(2)
2 ),

and given in [30] (the R-matrix of Uq(A
(2)
2 ) we consider is normalized such that R11

11 = 1):

H̃(k) = F̃ HA
(2)
2 (k) F̃−1 with F̃ = diag

(
u1,

√
u1u3, u3

)
⊗ diag

(
u1

v

τp
,
√
u1u3, u3

τp
v

)
. (5.8)

Note that the Hamiltonian HA
(2)
2 (k) is related to the Izergin-Korepin model [25] through a

constant gauge transformation and constant telescopic terms.

To be complete, let us add that the Hamiltonian HA
(2)
2 is related to the Branch 2A of [18]

through the following transformation5:

− 2HA
(2)
2 (ǫ1k

2) + (I⊗ e22 − e22 ⊗ I) + 2 (I⊗ e33 − e33 ⊗ I) = F H2A(k)F−1 (5.9)

with

F = diag
(
1,

1√
ǫ1
,
√−ǫ2ǫ3,

√
ǫ1,

1√−ǫ2ǫ3
,
√
ǫ1,

√−ǫ2ǫ3,
1√
ǫ1
, 1
)
. (5.10)

Note that in the correspondence (5.9), H2A corresponds to the branch 2A Hamiltonian H12 of
ref. [18] for ǫ2 = 1, while it corresponds to H21 when ǫ2 = −1.

5.1.3 Generalized Bariev model

From the Hamiltonian H given in section 4.1.3, we perform the transformation (5.1) with

N0 =
1

p

√
t2
t1

and G = diag
(
1,

√
t2
p
, 1
)
. (5.11)

We get an Hamiltonian Hred depending on τp, θ and µ only.

5We remind the correspondence with the notation of [18]: u = exp(λ), k = exp(γ/2 + iπ
4 (1− ǫ1)).
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This Hamiltonian can be related to the one of the Main Branch of ref. [19], HMB5 . One

defines, with δ =
µ2 + Jθµ+ J2θ2

4J2τ 2pµ
3

,

H̃ = − J

τp
√
µ
Hred + δ (sz1 + sz2 − I) + 1

2
(J − J−1) (I⊗ e33 − e33 ⊗ I) (5.12)

that is,

H̃ =




−δ 0 0 0 0 0 0 0 0

0 0 0 − J
τpµ

0 0 0 0 0

0 0 −δ − J2 0 − J
τpµ

0 −Jµ−1 0 0

0 − Jθ
τpµ

0 0 0 0 0 0 0

0 0
θ−Jτ2pµ

2

τpµ
0 δ − 1 0

θ−Jτ2pµ
2

Jτpµ2 0 0

0 0 0 0 0 0 0 J2θ
τpµ2 0

0 0 −J2µ 0 − J
τp

0 −δ − J 0 0

0 0 0 0 0 τ−1
p 0 0 0

0 0 0 0 0 0 0 0 −δ




. (5.13)

Then one gets
H̃ = F HMB5 F−1 (5.14)

with F = U ⊗ U ′ where U and U ′ are expressed in terms of the free parameters u1, u3:

U = diag
(
u1, Z

(
θ − Jτ 2pµ

2

µ

)1/4 √
u1u3, u3) (5.15)

and

U ′ = diag
(
− iJ

√
µu1,

1

Z

(
θ − Jτ 2pµ

2

µ

)1/4 √
u1u3,−

u3

iJ
√
µ

)
. (5.16)

The parameters (ǫ1, ǫ2) entering into the definition of HMB5 are given by one of these relations:

ǫ1 =
iθ

τpµ3/2
, ǫ2 = − iJ2

τpµ1/2
with the choice Z = 1

ǫ1 = − iJ2

τpµ1/2
, ǫ2 =

iθ

τpµ3/2
with the choice Z =

(
−Jθ

µ

)1/2 (5.17)

and J is related to the parameter γ0 = ǫ iπ
6
(ǫ = ±1) of HMB5 by J = −e−2γ0 .

5.1.4 Generalization of the Hamiltonian associated to special representation of
Uq(sl(2)) at roots of unity

From the Hamiltonian H given in section 4.1.4, the transformation (5.1) with

N0 =
tp
p2

and G = diag
(
1,

√
t2
p
, 1
)

(5.18)
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produces an Hamiltonian Hred depending on τp, θ and τ3 only, that is, with δ = τ 23 −τ3+1+τ 2p θ,

Hred =




0 0 0 0 0 0 0 0 0

0 0 0 τp 0 0 0 0 0

0 0 1
2
δ 0 τp 0 τ 2p 0 0

0 τpθ 0 0 0 0 0 0 0

0 0 τpτ3θ 0 0 0 τpτ3 0 0

0 0 0 0 0 1
2
δ 0 τpτ3 0

0 0 θ(τ 23 − τ3 + 1) 0 τpθ 0 1
2
δ 0 0

0 0 0 0 0 τpτ3θ 0 1
2
δ 0

0 0 0 0 0 0 0 0 δ




. (5.19)

The Branch 1B Hamiltonians of ref. [18] can be related to the Hamiltonian (5.18) through the
following transformation:

2(k2 − e2γ0)

(k2 − 1)(1− e2γ0)
Hred −

k2 + 1

k2 − 1
(sz1 + sz2) = F H1B(k, ǫ1, ǫ2)F

−1 (5.20)

with γ0 = ǫ1
iπ
3
, (ǫ1, ǫ2) ∈ {−1,+1}, and F = U ⊗ U ′ where U and U ′ are expressed in terms of

the free parameters u1, u3:

U = diag
(
u1,

√
u1u3

∆
, u3) and U ′ = diag

(
u1

√
θ,

√
u1u3

∆
,
u3√
θ

)
, (5.21)

∆ =
ǫ2

eγ0/2
√
τ3
, and the parameters θ, τp and τ3 are linked to k by the relations

τ3 =
eγ0(k2 − 1)

k2 − e2γ0
and τp

√
θ =

k(1− e2γ0)

k2 − e2γ0
. (5.22)

Note that the transformation (5.20) only holds when the parameters θ, τp and τ3 are related to
k by (5.22). Hence this model appears as a generalization of the Branch 1B models of [18].

5.2 Generalization of the special branch genus 5 model

From the Hamiltonian H given in section 4.2, we perform the transformation (5.1) with

N0 =
1

Y
and G = diag

(
1,

√
t2
p
, 1
)

(5.23)

that leads to an Hamiltonian Hred depending on θ and Υ only.
The genus 5 Special Branch Hamiltonian of ref. [19] can be related to the Hamiltonian

(5.23). Indeed, one defines

H̃ =
Υ

4J
√
−θ

(
4Hred − (sz1 + sz2) + I

)
(5.24)
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with γ0 = ± iπ
3
, J = e−2γ0 , that is

H̃ =




Υ
4J

√
−θ

0 0 0 0 0 0 0 0

0 0 0 1
J
√
−θ

0 0 0 0 0

0 0 Υ
4J

√
−θ

0 1
J
√
−θ

0 0 0 0

0 −
√
−θ
J

0 0 0 0 0 0 0

0 0
√
−θ 0 − Υ

4J
√
−θ

0 −J√
−θ

0 0

0 0 0 0 0 0 0 −J√
−θ

0

0 0 0 0 −
√
−θ
J

0 Υ
4J

√
−θ

0 0

0 0 0 0 0
√
−θ 0 0 0

0 0 0 0 0 0 0 0 Υ
4J

√
−θ




. (5.25)

Then one gets
ǫH̃ = F HSB5(Λ, eγ0)F−1 (5.26)

with F = U ⊗ U ′ where U and U ′ are expressed in terms of the free parameters u1, u3:

U = diag
(
u1,

√
u1u3, u3) and U ′ = diag

(
ǫJ2

√
−θ u1,

√
u1u3,

ǫu3

J2
√
−θ

)
, (5.27)

the parameter Λ being linked to Υ and θ by Λ =
ǫΥ

4J
√
−θ

(with ǫ = ±1).

5.3 Other models

5.3.1 Model 17V1a

From the Hamiltonian H given in section 4.3.1 (case 1a), we perform the transformation
(5.1)

N0 =
tp
p2

and G = diag
(
1,

√
t2
p
, 1
)

(5.28)
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that leads to an Hamiltonian Hred depending on θ and τp only, that is,

Hred =




0 0 0 0 0 0 0 0 0

0 0 0 τp 0 0 0 0 0

0 0
1+θτ2p

2
0 τp 0 τ 2p 0 0

0 θτp 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0
1+θτ2p

2
+ ǫ 0 ǫτp 0

0 0 θ 0 θτp 0
1+θτ2p

2
0 0

0 0 0 0 0 ǫθτp 0
1+θτ2p

2
+ ǫθτ 2p 0

0 0 0 0 0 0 0 0 (1 + ǫ)(1 + θτ 2p )




. (5.29)

5.3.2 Model 17V1b

From the Hamiltonian H given in section 4.3.1 (case 1b), we perform the transformation
(5.1) with

N0 =
tp
p2

and G = diag
(
1,

√
t2
p
, 1
)

(5.30)

that leads to an Hamiltonian Hred depending on τp only, that is

Hred =




0 0 0 0 0 0 0 0 0

0 0 0 τp 0 0 0 0 0

0 0 1
2
(1 + I) 0 τp 0 τ 2p 0 0

0 Iτ−1
p 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2
(1 + 3I) 0 Iτp 0

0 0 Iτ−2
p 0 Iτ−1

p 0 1
2
(1 + I) 0 0

0 0 0 0 0 τ−1
p 0 1

2
(3 + I) 0

0 0 0 0 0 0 0 0 1 + I




. (5.31)

5.3.3 Model 17V2

From the Hamiltonian H given in section 4.3.2, we perform the transformation (5.1) with

N0 =
tp
p2

and G = diag
(
1,

√
t2
p
, 1
)

(5.32)
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that leads to an Hamiltonian Hred depending on θ and τp only, that is

Hred =




0 0 0 0 0 0 0 0 0

0 0 0 τp 0 0 0 0 0

0 0
1+θτ2p

2
0 τp 0 τ 2p 0 0

0 τpθ 0 0 0 0 0 0 0

0 0 0 0 1 + θτ 2p 0 0 0 0

0 0 0 0 0
3+θτ2p

2
0 τp 0

0 0 θ 0 −τ−1
p 0

1+θτ2p
2

0 0

0 0 0 0 0 τpθ 0
1+3θτ2p

2
0

0 0 0 0 0 0 0 0 2(1 + θτ 2p )




. (5.33)

5.3.4 Model 14V1

From the Hamiltonian H given in section 4.3.3, we perform the transformation (5.1) with

N0 =
tp
p2

and G = diag
(
1,

√
t2
p
, 1
)

(5.34)

that leads to an Hamiltonian Hred depending on τp, ξ = X22/p and ǫ = ±1 only, that is

Hred =




0 0 0 0 0 0 0 0 0

0 0 0 τp 0 0 0 0 0

0 0 1
2

0 τp 0 τ 2p 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 3
2

0 ǫτp 0

0 0 0 0 −τ−1
p 0 1

2
0 0

0 0 0 0 0 0 0 τp ξ − 3
2

0

0 0 0 0 0 0 0 0 τp ξ




. (5.35)

5.3.5 Model 14V2

From the Hamiltonian H given in section 4.3.4, we perform the transformation (5.1) with

N0 =
tp
p2

and G = diag
(
1,

√
t2
p
, 1
)

(5.36)
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that leads to an Hamiltonian Hred depending on τp only, that is

Hred =




0 0 0 0 0 0 0 0 0

0 0 0 τp 0 0 0 0 0

0 0 1
2

0 τp 0 τ 2p 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

0 −τp 0

0 0 0 0 τ−1
p 0 1

2
0 0

0 0 0 0 0 0 0 −1
2

0

0 0 0 0 0 0 0 0 0




. (5.37)

6 Conclusion

In this paper we have provided a classification of ‘all’ the Hamiltonians with rank 1 symmetry
and nearest neighbour interactions, acting on a periodic three-state spin chain, and solvable
through (a generalization of) the coordinate Bethe ansatz (CBA).

Of course, the search for an R-matrix formulation of the new models presented here should
be done, but many directions of generalizations can also be planed. First of all, the case with
rank 2 symmetry algebra can also be easily done using the same method. Next, the integrable
Hamiltonians that are not solvable through CBA, such as the ones obtained from Temperley-
Lieb algebras, should be classified too. Finally, a similar classification for models solvable
through algebraic Bethe ansatz would help to give a better understanding of the connection
between these two approaches.

There is also a natural question that arises from this classification: what possible extensions
of this work can be envisioned for n-state Hamiltonians? A priori, the method becomes rather
intricate when increasing the number of states on each site, so that there is few hope that
this can be done in the same way. However, increasing the rank of the symmetry algebra
at the same time could provide some simplification. This question is of relevance to recent
developments in ultracold gases in optical lattices, such as the achievement of cooling down to
quantum degeneracy five Ytterbium isotopes [31] which exhibit an enlarged SU(6) symmetry.
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A P,C, T transformations

Model # vertices P action C action T action Invariances

gZF 19 gZF gZF gZF P , C, T

gIK 19 gIK
∣∣
u±→u∓

gIK
∣∣
u±→u∓

gIK PC, T

gB 19 gB
∣∣
J→J2 gB

∣∣
J→J2 gB PC, T

SpR 19 SpR SpR SpR P , C, T

SB5 17 SB5

∣∣
J→J2 C(SB5) = T (SB5)

∣∣
J→J2 T (SB5) PCT

17V1a 17 17V1a 17V1a T (17V1a) P , C

17V1b 17 17V1b

∣∣
I→−I

C(17V1b) T (17V1b) −
17V2 17 17V2 17V2 T (17V2) P , C

14V1 14 P (14V1) C(14V1) = P (14V1) T (14V1) PC

14V2 14 P (14V2) C(14V2) = P (14V2) T (14V2) PC

Table 1: Actions of P,C, T on the Hamiltonians
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