
ENHANCING AVAILABILITY IN LARGE SCALE
STORAGE SYSTEMS AND SERVICES:
ARCHITECTURES AND TECHNIQUES

A Thesis
Presented to

The Academic Faculty

by

Sangeetha Seshadri

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
August 2009

Copyright c© 2009 by Sangeetha Seshadri

ENHANCING AVAILABILITY IN LARGE SCALE
STORAGE SYSTEMS AND SERVICES:
ARCHITECTURES AND TECHNIQUES

Approved by:

Professor Ling Liu, Committee Chair
College of Computing
Georgia Institute of Technology

Professor Karsten Schwan
College of Computing
Georgia Institute of Technology

Professor Ling Liu, Advisor
College of Computing
Georgia Institute of Technology

Professor Calton Pu
College of Computing
Georgia Institute of Technology

Dr Brian Cooper
Yahoo! Research
Georgia Institute of Technology

Professor Douglas Blough
College of Computing
Georgia Institute of Technology

Date Approved: August 2009

To my family

Kaayena Vaachaa Manasendriyairvaa

Buddhyaatmanaa Vaa Prakriteh Svabhaavaatah

Karomi Yadhyadh Sakalam Parasmai

Naaraayanaayeti Samarpayaami

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the motivation, guidance, support

and blessings of a number of individuals. Next to these, my contributions stand

dwarfed. I take this opportunity to express my sincere thanks to all of them.

First, I would like to thank my advisor Prof. Ling Liu. Incredibly energetic and

versatile, Ling has been a great source of inspiration and an awesome advisor. Her

constant support, guidance and feedback have been crucial not only in shaping my

dissertation, but also in helping me make the right career choices. The flexibility she

afforded me, both in choosing my research topics and making working arrangements,

has made this a smooth journey. To me, she is not only a guide but also a good friend.

Next, I express my sincere thanks to Dr. Brian Cooper. Brian helped me jump-start

my PhD, showing me how to approach problems and how to conduct systematic

research. I have always admired his clarity of thought and elegance of expression. I

hope some of it has rubbed on to me. I am also very grateful to Prof. Karsten Schwan

for his patience, guidance and encouragement. Karsten always gave me sound advice

and new perspectives on my research. I consider myself lucky for having worked

with such talented and prolific researchers. I also thank my dissertation committee

members Prof. Calton Pu and Prof. Douglas Blough for their encouragement and

insightful comments and also for accommodating me, sometimes on very short notice.

I would also like to thank Susie McClain for her administrative help throughout my

time at Georgia Tech.

A significant portion of my dissertation research evolved during my summer intern-

ships at the IBM Almaden Research Center. I thank IBM for the generous financial

support through the IBM PhD fellowship. My heartfelt thanks to Lawrence Chiu and

iv

the entire Storage Systems group. Larry has been one of my strongest supporters and

a very trusted guide. The four summers that I spent with him and his group have been

some of the most productive times during my PhD. An astute researcher and a great

manager, working with him has been both a tremendous learning experience and a

great pleasure. I have also had the opportunity to collaborate with and learn from

other great researchers at IBM. Many thanks to Paul Muench, Karan Gupta, Cornel

Constantinescu, Clem Dickey, Subashini Balachandran and many others. Much work

in this dissertation was possible due to the time and resources provided by KK Rao,

Bruce Hillsberg, David Whitworth, Andrew Lin, Juan Ruiz, Brian Hatfield, Chiahong

Chen, Joseph Hyde and David Chambliss.

I thank Bhuvan, Aameek, Mudhakar, James, Ting, Gong, Sankaran, Peter, Balaji

and all present and past members of the DiSL lab for making the group meetings fun

and something that I always looked forward to. Ramya made my internships in San

Jose a pleasure and without Raji, I would not have been able to complete the last

year of my PhD. I thank Anusha, Anitha, Sujatha, Sunitha, Nandita, Smita, Vib-

hore, Oneza, Adithya, Gayathri, Ellen, Deepthi, Rani, Sundar, Santhanam, Mayura,

Vidyaraman, Charanya, Vijay, Anitha, Anupama, Karthik, all my wingies and many

others for their support and the great times we had together. A very special thanks

to Maha for being there always and to Subbu for always being on the same mobile

network as me. I am extremely fortunate for having such a great set of friends.

Without the love and support of my family, all this would neither have been possi-

ble nor meaningful. I dedicate this work to my family. My brother Vijay has patiently

endured my rants and raves and has always been there to tell me the right thing to

do. Of course, it is a whole other story that I usually realize that only a few months

later. My heartfelt thanks to Vijay, Prabha, Bhargavi and Ravishankar. I also thank

my grandparents for their blessings and encouragement. Special thanks to my aunt

v

Meena for her prayers and belief in me. The constant prayers and blessings of my par-

ents Vaidehi and Seshadri and my parents-in-law Lalitha and Rajaraman have been

my biggest source of strength throughout this dissertation. At every turn they have

been there to cheer me, inspire me and literally carry me through. Finally, I dedicate

this dissertation to my dear husband Shankar for his patience, love and support. I

am deeply indebted to him for his unconditional love and the many sacrifices that he

has had to make along the way.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

SUMMARY . xviii

I INTRODUCTION . 1

1.1 Technical Challenges . 5

1.1.1 Scalable Storage Controller Failure Recovery 5

1.1.2 Storage Middleware Fault Tolerance 6

1.1.3 Fault Tolerance Through Data Reuse 7

1.2 Thesis Statement . 8

1.3 Thesis Contributions . 8

1.3.1 Improving Storage Firmware Availability 8

1.3.2 Improving Storage Middleware Availability 12

1.3.3 High Availability Through Data Reuse 13

1.4 Organization of this Dissertation 14

II A RECOVERY-CONSCIOUS FRAMEWORK 16

2.1 Background . 16

2.1.1 System Overview . 16

2.1.2 Taxonomy of Failures . 19

2.1.3 Recovery Models . 21

2.2 Recovery Conscious Framework . 22

2.2.1 Overview . 23

2.3 Tier 1: Fine Grained Recovery . 24

2.3.1 Task-level Recovery Mechanism 25

2.3.2 Recovery Scopes . 28

vii

2.4 Tier 2: Mapping Tasks to Recovery Groups 30

2.5 Tier 3: Recovery Conscious Scheduling (RCS) 31

2.6 Discussion . 33

2.7 Related Work . 35

2.8 Summary . 37

III STATE RESTORATION DURING MICRO-RECOVERY 38

3.1 Introduction . 38

3.2 Log(Lock): Design Overview . 39

3.2.1 Technical Challenges . 40

3.2.2 Examples . 42

3.2.3 System Architecture . 44

3.3 State Space Exploration . 46

3.3.1 Modeling Thread Dependencies 47

3.3.2 Restoration Protocols . 49

3.4 Log(Lock) Execution Model . 51

3.4.1 Tracking State Changes . 52

3.4.2 Recovery Using Restoration Protocols 53

3.4.3 Implementation Details . 56

3.5 Experiments . 57

3.5.1 Experimental Setup . 58

3.5.2 Metrics . 59

3.5.3 Methodology . 60

3.5.4 Efficiency of Log(Lock) . 62

3.5.5 Effectiveness of Log(Lock) 67

3.6 Related Work . 69

3.7 Summary . 70

IV RECOVERY-CONSCIOUS SCHEDULING 72

4.1 Recovery-Conscious Scheduling . 72

viii

4.1.1 Performance-Oriented Scheduling 72

4.1.2 Recovery Groups and Resource Pools 73

4.1.3 Mapping of Resource Pools to Recovery-Groups 74

4.1.4 System Considerations . 76

4.2 Classification of RCS Algorithms 78

4.2.1 Static RCS . 80

4.2.2 Partial dynamic RCS . 81

4.2.3 Dynamic RCS . 84

4.3 Mapping Recovery Scopes to Recovery Groups 85

4.3.1 Impact of Recovery Groups on System Resilience 86

4.3.2 Impact of RCS Queues on System Performance 88

4.4 Experiments . 91

4.4.1 Workload . 92

4.4.2 Methodology . 93

4.4.3 Prototype Experimental Setup 94

4.4.4 Prototype Experimental Results 95

4.4.5 Simulation Experiments Setup 103

4.4.6 Simulation Experimental Results 104

4.5 Discussion . 114

4.6 Related Work . 116

4.7 Summary . 117

V FAULT-TOLERANT MIDDLEWARE OVERLAYS 119

5.1 Introduction . 119

5.2 Overview . 121

5.2.1 Conventional Approach . 121

5.2.2 Hierarchical Middleware Architectures: Our Approach . . . 123

5.2.3 Example Application: Data Migration 125

5.2.4 Example Application: Virtualization 126

ix

5.3 Availability and Reliability Analysis 127

5.3.1 Availability Modeling . 129

5.3.2 Reliability Modeling . 130

5.4 Evaluation of Clustering Architectures 131

5.4.1 Baseline Availability Analysis 132

5.4.2 Baseline Reliability Analysis 134

5.4.3 Modeling the Middleware Workload 136

5.5 Comparison of Clustering Architectures 144

5.6 Related Work . 145

5.7 Summary . 146

VI DATA AVAILABILITY THROUGH OPERATOR REUSE 147

6.1 Introduction . 147

6.2 StreamReuse System Overview 150

6.2.1 Motivating Examples . 150

6.2.2 StreamReuse System Architecture 153

6.2.3 Basic Concepts and Notations 157

6.3 Identifying Reuse Candidates . 158

6.3.1 Base Conditions . 158

6.3.2 Relaxation and Compensation 160

6.3.3 Example . 165

6.4 Searching for Reuse Candidates using Reuse Lattice 166

6.4.1 Encoding Operator Containment 167

6.4.2 Encoding Network Location 168

6.4.3 Lattice Operations: Insert, Delete, Search 169

6.5 Putting the Pieces Together . 172

6.5.1 Cost Model . 172

6.5.2 Runtime Plan Migration . 175

6.6 Experimental Evaluation . 177

x

6.6.1 Workloads . 177

6.6.2 Experimental Setup . 179

6.6.3 Efficiency of Deployments 182

6.6.4 Evaluation of Computation Costs 185

6.6.5 Effect of Grouping on Latency 187

6.6.6 Prototype Experiment: Deployment Time 188

6.7 Related Work . 189

6.8 Summary . 191

VII NETWORK-AWARE OPERATOR REUSE 193

7.1 Introduction . 193

7.2 System Overview . 197

7.2.1 Motivating Application Scenario 198

7.2.2 System Definition . 201

7.2.3 Optimization Problem . 202

7.3 Query Optimization Algorithms . 202

7.3.1 Optimization infrastructure 203

7.3.2 The Top-Down Algorithm 207

7.3.3 The Bottom-Up Algorithm 210

7.3.4 The NPC Algorithm . 214

7.4 Experiments . 216

7.4.1 Experimental Setup . 216

7.4.2 Tuning Cluster Size: Trade-off between Sub-Optimality and
Search Space . 220

7.4.3 Efficiency of NPC Algorithm 223

7.4.4 Comparison with existing approaches 224

7.4.5 Scalability with Network Size 229

7.4.6 Deployment Time . 231

7.5 Related Work and Discussion . 232

7.6 Summary . 234

xi

VIII CONCLUSION . 236

8.1 Future Work . 239

REFERENCES . 243

VITA . 255

xii

LIST OF TABLES

1 Valid States for Thread Ti . 46

2 State and Resource Access over a 75 minute run with varying workloads 58

3 % Duration of Tracking vs Latency (100% Writes) 65

4 % Overhead (other workloads) . 66

5 Recovery Success with the 100% Write Workload 67

6 Recovery constraints . 79

7 Static mapping . 80

8 Partial Dynamic RCS: Alternative mapping 81

9 List of Terms . 127

10 Component failure and repair rates 131

11 Deployment times . 187

xiii

LIST OF FIGURES

1 Storage Subsystem Architecture . 2

2 Scale-out storage cluster. 3

3 Recovery-Conscious Framework . 9

4 Storage Subsystem Architecture . 17

5 Recovery-Conscious Framework . 24

6 Framework for Task Level Recovery 25

7 Example 1: Lost Update Conflict . 42

8 Example 2: Resource Ownership Conflict 43

9 Example 3: Dirty Read Conflict . 43

10 Log(Lock) Architecture Overview . 45

11 State Recovery with Dirty Reads . 50

12 Resource Recovery . 50

13 State Restoration Using Log(Lock) 54

14 Rate vs Throughput (100% Writes) 61

15 Rate vs Latency (100% Writes) . 62

16 Latency . 63

17 Duration of Tracking vs Throughput (100% Writes) 64

18 Throughput with Error Injection . 68

19 Latency with Error Injection . 69

20 Current Scheduler . 73

21 Recovery Oriented Scheduling . 75

22 Qos-based scheduling . 77

23 Recovery conscious scheduling . 77

24 Partial Dynamic RCS . 82

25 Variation of Service Rate . 89

26 Cache-Standard . 91

27 Efficiency vs Recovery groups . 92

xiv

28 Impact of ♯Recovery Groups . 96

29 Good path throughput . 97

30 Good path latency . 98

31 CPU utilization . 99

32 Bad path throughput . 100

33 Bad path latency . 102

34 Variation with ♯ Groups (or Queues) 103

35 Variation with ♯ Cores (16 Groups or Queues) 104

36 Comparison with Bad-path performance 105

37 Bad-path performance: 4 queues . 106

38 Bad-path performance: 16 queues . 107

39 Bad-path performance: 32 queues . 108

40 System MTTR . 111

41 Variation with Recovery Rate . 112

42 Variation with Failure Rate . 113

43 Traditional flat storage cluster. 122

44 Hierarchical cluster. 123

45 Availability of a 2 node cluster. 128

46 Reliability models: (a) Flat clusters (b) Virtual Node 130

47 Baseline availability. 132

48 Sensitivity analysis of availability. 133

49 Sensitivity analysis of availability in a flat cluster. 134

50 Baseline reliability. 135

51 Sensitivity analysis of reliability in a flat cluster. 136

52 Sensitivity analysis of reliability. 137

53 Availability with linear function. 138

54 Reliability with linear function. 139

55 Availability with square-root function. 140

56 Availability with exponential function. 141

xv

57 Reliability with square-root function. 143

58 Reliability with exponential function. 144

59 An example network N . 151

60 System Design . 154

61 A single leaf lattice node. 170

62 Inserting operator into lattice node 171

63 Search with network restriction. 172

64 Runtime Migration Steps . 174

65 Classification of workloads . 178

66 Enterprise Workload . 178

67 RFID Workload . 178

68 EW: Network usage . 180

69 10% Overlap . 181

70 25% Overlap . 182

71 50% Overlap . 183

72 RW: Network usage . 184

73 EW: Deployed operators . 185

74 EW: Join operators . 186

75 RW: Deployed operators . 187

76 EW: Latency . 188

77 RW: Latency . 189

78 Total Planning Time . 190

79 Approaches . 195

80 Comparison with typical approaches 196

81 An example network N . 199

82 Hierarchical network clusters . 200

83 Enterprise Workload . 219

84 Bottom-Up: Plans . 219

85 Top-Down: Plans . 220

xvi

86 Bottom-Up: Cost . 222

87 Top-Down: Cost . 223

88 NPC algorithm: Cost . 224

89 NPC Algorithm: Plans . 225

90 Comparison with existing approaches 226

91 Enterprise Workload: Cost . 227

92 Enterprise Workload: # Operators 228

93 Scalability with Network Size . 229

94 Query deployment time . 230

xvii

SUMMARY

Enterprises today are dealing with extremely large amounts of digital information

that continues to grow at an astonishing rate. Online business models, regulatory

compliance and business intelligence requirements have not only mandated enterprises

to retain large amounts of data for significant lengths of time but have also increased

the reliance on anytime and anywhere access to this information. Consequently, the

storage systems that serve as repositories for these huge volumes of critical data are

the foundations of today’s data centers. Unavailability of these systems results in

losses amounting to millions of dollars per hour and could bring organizations to

a grinding halt. On the other hand, storage software (firmware, middleware) and

systems are becoming much more complex and existing failure recovery mechanisms

are insufficient to handle the scale of these systems while meeting high availability

and service quality expectations. In addition, the concurrent development and quality

assurance processes, the large number of possible test scenarios and the large scale

of these systems and services imply that failures will be the norm rather than the

exception. Therefore achieving high availability and reliability in storage systems

remains a major concern and an open research challenge.

Most existing work in the domain of storage system availability addresses failures

of the storage media (such as disks) and recoverability from these failures. However,

failures at the firmware and middleware layers remain largely unaddressed. Achiev-

ing high-availability in these layers poses unique challenges. At the firmware layer,

fine-grained recovery is an effective approach to reduce recovery-time. However, com-

plex recovery semantics, dynamic interactions, recovery dependencies between large

xviii

volumes of concurrent tasks and legacy architectures pose serious challenges. At the

middleware layer, a widely recognized open problem is how to provide fault-isolation

and improve system availability without disrupting the system’s functionality or lim-

iting its scalability. Over the past few years, storage clusters consisting of thousands

of commodity machines built specifically to serve the needs of large scale distributed

data intensive applications where decentralization, high availability, and autonomy

are key design principles have become common, exemplified by Amazon S3 (Simple

Storage Service) [4], Google File System [69] and IBM System S [34, 76]. Another class

of functionality rich dedicated storage middlewares also offer storage management and

resource virtualization capabilities. While the scale of these systems result in new

challenges [3], the nature of the applications present new opportunities. We can try to

utilize application semantics, failure characteristics, access patterns and consistency

models to define novel application-specific availability enhancing techniques at the

middleware layer which go beyond traditional techniques such as replication [46] and

process-pairs [72, 48].

This dissertation research addresses these challenges in depth across different stor-

age architectures. We make the following contributions: First, we develop a recovery

conscious framework for multi-core architectures and a suite of techniques for per-

forming efficient fine-grained recovery (micro-recovery) in storage controller firmware

that can be retrofitted into legacy code. The framework includes a task-level recovery

mechanism, the Log(Lock) architecture that allows system state restoration during

micro-recovery, and recovery-conscious scheduling algorithms that are designed to

reduce the ripple effect of failure and improve recovery efficiency and system avail-

ability. Our framework also provides guidelines for system developers to perform

effective mappings of system tasks to critical framework parameters aiming at im-

proving availability by serializing dependent tasks and enhancing recovery efficiency,

while sustaining high performance and system throughput.

xix

Our second technical contribution addresses the storage middleware availability.

We first develop the notion of hierarchical middleware architectures by organizing

critical cluster management services into a hierarchical overlay network, which sepa-

rates persistent application state from global system control state. We demonstrate

that by trading some symmetry for better fault isolation, hierarchical storage middle-

ware architectures can significantly improve availability and reliability of enterprise

scale storage systems. In addition, we develop the notion of operator reuse and a

suite of reuse techniques to improve data availability. The key idea of operator reuse

is to efficiently utilize system resources by exploiting reuse opportunities in both op-

erators and persistent state of computing nodes. We demonstrate our design through

STREAMREUSE, a reuse-conscious store-forward network of storage nodes, which

offers distributed stream query processing services. By ‘reuse-conscious’, we mean

that the system is provided with the ability to modify operators and migrate services

at runtime to maximize reuse opportunity. Our analytical and experimental results

show our storage middleware solutions are efficient and effective in enhancing data

availability and system availability of large scale storage systems.

xx

CHAPTER I

INTRODUCTION

Enterprise storage systems are the foundations of most modern data centers and ex-

tremely high availability is expected as a basic requirement from these systems. With

the rapid and exponential growth of both personal and enterprise digital informa-

tion [9, 43, 8, 16, 13, 108], online business models [127] and service architectures [2, 4]

there is increased reliance on anytime and anywhere access to this information. Con-

sequently, the demand for large scale storage systems of extremely high availability

(moving close to 7 nines) continues to grow [127]. On the other hand, storage software

(firmware, middleware) and systems are becoming much more complex and existing

failure recovery mechanisms are insufficient to handle the scale of these systems while

meeting high availability and service quality expectations.

Although a variety of online storage alternatives exist for storing these vast quan-

tities of data, ranging from high-end disk arrays with snapshot and remote mirroring

capabilities, to scale-out storage clusters that combine smaller units of storage, to

small disk appliances (e.g. RAID), achieving high availability and reliability in storage

systems remains a major concern for a number of reasons. First, the storage system

software is becoming much more complex, especially given the increasing function-

alities of these systems and the fact that legacy systems are being adapted to new

hardware platforms like multi-core architectures [112, 23, 24]. Second, the concurrent

development and quality assurance processes along with the large number of possible

test scenarios makes it extremely difficult to test these systems. Third, the size and

functionalities of storage systems and services in modern, large scale IT installations

have grown to an unprecedented scale with thousands of storage components [69, 126]

1

�

���������� �����

���	
����
��

��
���
���

���	
����
�

��
���
���

���	
����
��

��
���
���

��������
����������
��

��	��
��

���	�
���	�

���	�

Figure 1: Storage Subsystem Architecture

and complex interacting applications. As a result, failures are the norm rather than

the exception.

A storage system is composed of multiple layers. Figure 1 shows the different

layers of a typical storage system architecture. First, we have the storage media

(disks) with its electrical and mechanical components where the data is actually

stored. Next, the embedded storage controller firmware performs most of the storage

subsystem’s higher level functionality such as RAID, I/O routing, error-handling and

caching [70]. Storage middleware provides both management [70, 14, 21, 103] and

resource virtualization capabilities [18, 10]. Finally, hosts perform I/O over this

2

�

��������

	
����

���
����
��
������

�
��
�������
��
�������
��
�������
��
������

�����������
�
	�������

	������� 	�������

	�������

	
����
�

�
������

	
����
�

�
������

	
����
�

�
������

	
����
�

�
������

Figure 2: Scale-out storage cluster.

storage system utilizing the bandwidth provided by a shared or dedicated network

[123, 17]. Each of these layers is susceptible to failures which could result in data or

service loss [107, 87, 111]. Therefore, in order to build highly-available and resilient

storage systems we must address the availability concerns in each layer of this system.

Most existing work in the domain of storage system availability addresses failures

of the storage media (such as disks) and recoverability from these failures [139, 152,

107]. Traditionally, these studies address the problem of durability and data loss due

to media failures or corruption [42, 33, 125, 41, 125]. Many mechanisms, adopted by

the industry such as various levels of RAID [107], erasure coding [120] and continu-

ous data protection [25], have emerged to address these storage media failures [31].

However, failures at the firmware and middleware layers that result in service loss

remain largely unaddressed. At the same time, the firmware and middleware layers

of a storage system have evolved tremendously in terms of functionality.

Modern storage controllers are highly concurrent embedded systems with millions

3

of lines of code of firmware [112, 129]. As a result, these systems are extremely com-

plex and recovering from controller failures is both difficult and expensive. Similarly

functionality-rich storage middleware, especially in scale-out storage systems, not

only perform sophisticated storage tasks, but also support offloading of application

tasks onto to the storage layer [18, 10]. Figure 2 shows an example of such a vir-

tualization middleware which runs over a cluster of nodes, managing the underlying

storage, providing a single system image (SSI) and providing storage virtualization

services to the applications running above it. Such middleware may also support

offloading of application tasks to the storage subsystem in order to run close to the

data and utilize spare processing capabilities. The middleware provides high avail-

ability and survives node failures, utilizing a replicated state machine model [124].

Consequently, storage system middleware is susceptible to large simultaneous failures

as well as application-induced failures due to its symmetric architecture and exposed

interfaces [47, 52].

Over the past few years, storage clusters consisting of 1000s of commodity ma-

chines built specifically to serve the needs of a class of large scale distributed data

intensive applications have become common. Systems such as Amazon S3 (Simple

Storage Service) [4], Google File System [69] and System S [34, 76] where decentraliza-

tion, high availability and autonomy are key design principles consist of thousands of

commodity machines that manage hundreds of terabytes of shared storage and serve

thousands of clients. While the scale of these systems result in new challenges [3], the

nature of the applications present new opportunities. We can try to utilize application

semantics, access patterns and consistency models to define novel application-specific

availability enhancing techniques at the middleware layer which go beyond traditional

techniques such as replication [46] and process-pairs [72, 48]. For example, text search

can deal with non-determinism and the user may not notice a few missing results.

Then, techniques such as failure-oblivious computing [119] which overlook failures

4

and return arbitrary values can be used. Likewise, in the case of applications such as

data stream processing systems, the well-defined semantics of queries and intermedi-

ate data can be utilized to improve data and service availability as well as resource

utilization of these systems [128].

Next we discuss the specific research challenges in different layers of the storage

system stack in detail .

1.1 Technical Challenges

In this dissertation we aim to address the following broad challenges across different

storage system architectures.

1.1.1 Scalable Storage Controller Failure Recovery

With software failures and bugs becoming an accepted fact, focusing on recovery and

reducing time to recovery has become essential in many modern storage systems today.

In current system architectures, even with redundant controllers, most microcode i.e.

firmware failures trigger system-wide recovery [75, 77] causing the system to lose

availability for at least a few seconds, and then wait for higher layers to redrive the

operation. This unavailability is visible to customers as service outage and will only

increase as the platform continues to grow in size (number of cores) using the legacy

architecture.

How can failure recovery be made scalable? Partitioning the system into smaller

components with independent failure modes can reduce recovery time. However, it

also increases management cost and decreases flexibility, while still being susceptible

to sympathetic failures. On the other hand, refactoring the software into smaller

independent components, in order to use techniques such as micro-reboots [49] or

software rejuvenation [85], may require sizable investments in terms of development

and testing effort and cost. In the case of legacy systems, this can be unacceptable.

5

An alternative approach is to be able to perform fine-granularity recovery or micro-

recovery, without re-architecting the system. Under this approach, failure recovery is

targeted at a small subset of tasks/threads that need to undergo recovery while the

rest of the system continues uninterrupted.

However, due to fuzzy component interfaces, complex dependencies and involved

operational semantics of the system, implementing such fine-grained recovery is chal-

lenging. Therefore, firstly we must develop a mechanism to perform fine-grained

recovery taking into consideration interactions between components and recovery se-

mantics. Secondly, since localized recovery spans multiple dependent threads in real-

ity, we must bound this localized recovery process in time and resource consumption

in order to ensure that resources are available for other normally operating tasks even

during recovery. Finally, in the case of storage firmware, most often we are dealing

with a large legacy architecture (> 2M lines of code). Therefore, in order to ensure

feasibility in terms of development time and cost we should minimize changes to the

architecture.

1.1.2 Storage Middleware Fault Tolerance

High-availability scale-out storage clusters such as shown in Figure 2 combine smaller

units of storage to provide a scalable and cost-effective storage solution [14, 21, 70].

Current scale-out storage systems use active replication [124] based middleware to

ensure consistent access to shared resources in the absence of centralized control and

at the same time provide high throughput and a single system image (SSI). In order to

guarantee high-availability to applications, the middleware typically maintains critical

application state and check-point information persistently across nodes through active

replication.

6

However, though the use of symmetric active replication models removes hard-

ware as both single-points-of-control and single-points-of-failure, it causes the stor-

age middleware itself to now become a single-point-of-failure. Moreover, the current

scale-out storage architecture is also vulnerable to application-induced failures of the

middleware, in addition to other issues like application-level non-determinism [141]

and middleware bugs themselves. In order to achieve a truly high-availability storage

system, the challenge lies in eliminating middleware as a single-point-of-failure and

providing fault-isolation from application induced failures without loss of functional-

ity or ease-of-management.

1.1.3 Fault Tolerance Through Data Reuse

An emerging class of distributed stream systems such as enterprise applications [34,

4, 104, 2, 12], scientific collaborations across wide area networks [19], and large-scale

distributed sensor systems [156, 97] are placing growing demands on storage nodes to

provide capabilities beyond basic data storage such as persistent state management

and continuous and opportunistic processing [12]. These applications are popular

across diverse domains ranging from financial management [11] to scientific comput-

ing [48].

The new challenges in systems of this scale require us to go beyond generic process-

pairs [72] and checkpointing mechanisms [73] to achieve high-availability. In this

dissertation we focus on distributed data stream systems, a particular class of large

scale distributed storage system that offer continual query processing services using

a distributed storage infrastructure. The underlying storage nodes support store and

forward services acting as a store for both incoming data and intermediate results.

In order to improve the availability of such a system it is essential to deal with

failures as well as ensure that results are delivered to end-users in a timely manner

while using resources efficiently. An effective approach to achieve both high data

7

availability and efficient use of resources is to minimize the amount of persistent state

in the system by sharing and reusing state as much as possible. Then the challenge

is to find effective reuse opportunities given the dynamic and distributed nature of

applications, semantics of user requests and the variations in the underlying execution

environment.

1.2 Thesis Statement

In order to effectively scale a system while retaining high availability the

system must support a scalable failure recovery mechanism.

1.3 Thesis Contributions

In this dissertation we make the following contributions to address each of the chal-

lenges described in the previous section.

1.3.1 Improving Storage Firmware Availability

We develop a recovery conscious framework and a suite of techniques for improving

the failure resiliency and recovery efficiency of storage firmware. The overarching

goal of our framework is to enable the system to perform fine-grained recovery or

micro-recovery, thereby reducing the recovery time and improving availability. The

framework tracks recovery dependencies between concurrent threads, decides recov-

ery actions at runtime, ensures availability of resources to normally operating tasks

even during localized recovery and is designed to allow micro-recovery to be easily

retrofitted into legacy systems. The framework (shown in Figure 3) achieves these

goals through the three stages. The three tiers of the framework progressively answer

the following questions: (1) How to we perform fine-grained recovery and restore the

system state while accounting for dependencies between concurrent threads? (2) How

do we map dependent tasks into groups in order to enforce scheduling constraints that

can improve recovery efficiency while still delivering high performance? (3) How do

8

����������	
���
�	
���
�����
��

������
����
������ �
�
���
	��� ������
���������

���������������
����
��	�����������	
��

���������������
���������� �������
���
����������������

���	�� 	�	�����
��
�	
��� ��
!	��
��	�
� "�
!�
#�
���

����	��"�
�	�������$�
�#	��$�
�#	��

Figure 3: Recovery-Conscious Framework

we schedule these groups of dependent tasks while ensuring availability of resources

to normally operating tasks during failure recovery and reducing the ripple effect of

failure? The shaded boxes in Figure 3 represent the parameters under consideration

at each tier of the framework which are detailed below.

• Recovery Strategy and Scope : In order to perform fine-grained recovery

in response to storage controller failures, we must first understand recovery-

dependencies between tasks i.e. concurrent threads in the firmware. When a

single task encounters an exception, more than one task may need to initiate

recovery procedures in order to avoid deadlocks and return the system to a

consistent state. The purpose of tracking recovery dependencies between con-

current threads is two-fold. First, it allows us to perform efficient and effective

state restoration, while accounting for dynamic dependencies between multi-

ple threads in a highly concurrent environment. Next, it allows us to classify

dependent threads into disjoint ‘recovery scopes’ over which serialization and

recovery-conscious scheduling constraints can be enforced.

9

Our first contribution is Log(Lock), a practical and flexible architecture for

tracking dynamic dependencies and performing state restoration, without re-

architecting legacy code. We use a systematic approach to address the problem

of system state restoration during micro-recovery, by developing state space

exploration methods and the Log(Lock) execution model. In the state space

exploration phase, we formally model thread dependencies based on both state

and shared resources, capturing failure contexts through different ‘restoration

levels’. We develop recovery strategies by deriving restoration protocols in

terms of recovery procedures and restoration levels. The Log(Lock) execution

model tracks state changes using Log(Lock) primitives and implements state

restoration based on restoration protocols. We have implemented Log(Lock)

in a real enterprise storage controller. Our experimental evaluation shows that

Log(Lock)-enabled micro-recovery is both efficient (<10% impact on perfor-

mance) and effective (reduces a 4 second downtime to only a 35% performance

impact) [130].

Our framework also allows explicit dependencies to be specified by the program-

mer. However, explicit dependencies specified by the programmer may be very

coarse. Likewise, some dependencies may have been overlooked due to their

dynamic nature and the immense complexity of the system. The dependency

information identified using the Log(Lock) architecture can be used to refine

explicit dependencies and classify firmware tasks into “recovery scopes”.

• Efficient Mappings of Recovery Scopes to System Resources : The

“recovery scopes” identified from the previous step are purely based on recov-

ery dependencies. However, in order to improve system availability without

serious performance impacts, we need to develop effective mappings of recovery

scopes to system resources. Specifically, we need to realign “recovery scopes”

10

into “recovery groups” while taking into consideration performance and avail-

ability parameters such as: the system size, failure rates of individual recovery

scopes, time required to complete recovery, scheduler overhead and performance

constraints for the given workload. Each of these factors dictate the reorgani-

zation of recovery scopes into actual “recovery groups” and the right choice

for the scheduling strategy and recoverability constraints. A recoverability

constraint is specified for each group and prescribes the maximum number of

concurrently executing tasks permissible for that group. The middle tier of the

framework [134] is dedicated to the development of highly effective mapping of

dependent tasks to system resources (processing resources in our work) in order

to ensure system availability through reduced recovery time while meeting the

performance requirements.

• Recovery-Conscious Scheduling : In spite of identifying fine-grained re-

covery groups and recovery dependencies between tasks, without careful design,

it is possible that more dependent tasks are dispatched before a recovery pro-

cess can complete. This results in an expansion of the recovery scope or an

inconsistent system state. Also a dangerous situation may arise where it is

possible that many or all of the threads that are concurrently executing are

dependent, especially since tasks often arrive in batches. Then the recovery

process could consume all system resources, essentially, stalling the entire sys-

tem. In [129] we present recovery-conscious scheduling (RCS) that enforces

serializability of failure dependent tasks thereby reducing the ripple effect of

software failure and improving system availability. The key idea of recovery-

conscious scheduling (RCS) is to ensure bounded recovery time and provide fault

resiliency by optimal allocation of resources to recovery dependent tasks. We

propose three alternative recovery-conscious scheduling algorithms [129]; each

represents one way to trade-off between recovery time and system performance.

11

We have implemented and evaluated these recovery-conscious scheduling algo-

rithms on a real industry-standard storage system. Our experimental evaluation

results show that the proposed recovery conscious scheduling algorithms are

non-intrusive and can significantly improve (throughput by 16.3% and response

time by 22.9%) the performance of the system during failure recovery.

1.3.2 Improving Storage Middleware Availability

One obvious approach to improving availability and reliability in storage system mid-

dleware is to partition a single storage cluster into smaller independent clusters [30, 26]

in order to provide application fault isolation and eliminate storage middleware as a

single-point-of-failure. While application fault isolation can be achieved through this

approach, without care, one may lose the SSI and the flexibility to access storage

from anywhere within the system. The key challenge, therefore, is to eliminate the

middleware as a single-point-of-failure and provide fault-boundaries while continuing

to deliver SSI and flexible accessibility.

• Hierarchical Middleware Architectures : In order to address the issue

of middleware availability, we introduce the notion of hierarchical middleware

architectures [135]. We organize critical cluster management services into a

hierarchical overlay network, which separates persistent application state from

global system control state. This clean separation, on one hand, allows the

cluster to maintain SSI by communicating control state to all nodes in the net-

work, and on the other hand, provides fault isolation by replicating application

state within only a subset of nodes. We demonstrate [135] that by trading some

symmetry for better fault isolation, hierarchical overlay storage architectures

can significantly improve system availability and reliability. We also show that

such hierarchical architectures significantly reduce the number of system states

for testing.

12

1.3.3 High Availability Through Data Reuse

One approach to effectively improve data and service availability in large scale data

stream processing systems is to make efficient use of system resources and improve

system recovery time in the event of failures by sharing and reusing intermediate data

represented by ‘operators’ between multiple concurrent service requests. However in

order to reuse operators, we must first scalably locate reuse opportunities and also

deal with dynamic workloads, semantic differences between existing operators and

new requests and variations in the underlying execution environment. To address

these challenges we make the following contributions:

• Dynamic Grouping of Similar Operators : We present the design and

evaluation of STREAMREUSE, a reuse-conscious store-forward style network

of storage nodes that offer distributed stream query processing services. We

develop a suite of reuse-conscious stream query grouping techniques that dy-

namically find cost-effective reuse opportunities based on multiple factors, such

as network locality, data rates, and operator lifetime. By dynamically group-

ing operators based on reuse possibilities identified at runtime, our techniques

enable intermediate data and persistent state to be shared between multiple

concurrent operators in the system.

• Network-Aware Operator Reuse : We show that a static query optimiza-

tion approach of plan, then deployment is inadequate for handling distributed

queries involving multiple streams and node dynamics faced in distributed data

stream systems and applications [131]. We propose to use hierarchical network

partitions to exploit various opportunities for operator level reuse while utilizing

network characteristics to maintain a manageable search space during opera-

tor placement and deployment. We develop top-down, bottom-up and hybrid

13

algorithms for exploiting operator-level reuse through hierarchical network par-

titions. Through simulations and experiments using a prototype deployed on

Emulab [7] we demonstrate the effectiveness of our framework and our algo-

rithms [132].

1.4 Organization of this Dissertation

The chapters of this dissertation are organized as follows. The first three chapters

(Chapters 2, 3 and 4) address firmware availability issues. The next three chapters

(Chapter 5, 6 and 7) deal with middleware and data availability issues. Below, we

present a brief overview of each chapter.

Chapter 2: We present an overview of the storage controller architecture and

our recovery-conscious framework for enabling micro-recovery in legacy controller

microcode. We describe the mechanism to perform task-level recovery and the role

of each tier of the framework. The chapter also presents a taxonomy of failure and

recovery models and a discussion of related work. This chapter is intended to serve as

an overview of our recovery-conscious framework with each research problem discussed

in detail in subsequent chapters.

Chapter 3: In this Chapter, we present the Log(Lock) architecture for tracking

dynamic dependencies and performing state restoration.

Chapter 4: We present recovery-conscious scheduling (RCS) and guidelines to

effectively map dependent tasks into ‘recovery groups’ to ensure that the effect of

fine-grained recovery percolates to the level of system availability while sustaining

high performance.

Chapter 5: In this Chapter, we propose hierarchical middleware architectures

that improve availability and reliability in scale-out storage systems while continuing

to deliver the cost and performance advantages and a single system image (SSI).

Chapter 6: We present the STREAMREUSE system that explores operator

14

reuse techniques to share persistent data between multiple service requests and im-

prove data availability. The chapter addresses the challenge of identifying similar

operators and modifying operators at runtime in order to facilitate sharing of data

and presents the implementation and evaluation of these techniques in a distributed

stream query processing system.

Chapter 7: In this chapter we present algorithms that use hierarchical middle-

ware overlays to scalably and efficiently identify operator placements while taking

into account the dynamic nature of the system and the availability of operator reuse

opportunities.

Chapter 8: We summarize the work presented in this thesis and discuss open

issues and possible avenues for future work.

15

CHAPTER II

A RECOVERY-CONSCIOUS FRAMEWORK

This chapter presents an overview of our recovery-conscious framework for retrofitting

fine-grained recovery into a highly concurrent legacy storage system. We present an

overview of the storage controller architecture, failure and recovery models. The infor-

mation presented in this chapter also serves as a common background for Chapters 3

and 4.

2.1 Background

We motivate this research and illustrate the problem we address by considering the

storage controllers of some representative storage system architecture. We focus on

system recoverability from transient software failures. Storage controllers are em-

bedded systems that add intelligence to storage and provide functionalities such as

RAID, I/O routing, error detection and recovery. Failures in storage controllers are

typically more complex and more expensive to recover if not handled appropriately.

2.1.1 System Overview

Figure 4 gives a conceptual representation of a storage subsystem. This is a single

storage subsystem node consisting of hosts, devices, a processor complex and the

interconnects. In practice, storage systems may be composed of one or more such

nodes in order to avoid single-points-of-failure. The processor complex provides the

management functionalities for the storage subsystem. The system memory available

within the processor complex serves as program memory and may also serve as the

data cache. The memory is accessible to all the processors within the complex and

holds the job queues through which functional components dispatch work. As shown

16

�

�

���

������������	
����

����

����
����������

����������
�����

������

���������������

������	���	����

����������������� ���

�������
�����

����
����

�������������������

Figure 4: Storage Subsystem Architecture

in Figure 4, this processor complex has a single job queue and is an N-way SMP node.

Any of the N processors may execute the jobs available in the queue. Some storage

systems may have more than one job queue (e.g. multiple priority queues).

The storage controller software typically consists of a number of interacting com-

ponents each of which performs work through a large number of asynchronous, short-

running threads (∼ µsecs). We refer to each of these threads as a ‘task’. Examples of

components include SCSI command processor, cache manager and device manager.

Tasks (e.g., processing a SCSI command, reading data into cache memory, discarding

data from cache etc.) are enqueued onto the job queues by the components and then

dispatched to run on one of the many available processors each of which runs an in-

dependent scheduler. Tasks interact both through shared data-structures in memory

as well as through message passing.

With this architecture, when one thread encounters an exception that causes the

system to enter an unknown or incorrect state, the common way to return the system

17

to an acceptable, functional state is by restarting and reinitializing the entire system.

Since the system state may either be lost, or cannot be trusted to be consistent,

some higher layer must now redrive operations after the system has performed basic

consistency checks of non-volatile metadata and data. While the system reinitializes

and waits for the operations to be redriven by a host, access to the system is lost

contributing to the downtime. This recovery process is widely recognized as a barrier

to achieving high(er) availability. Moreover, as the system scales to larger number of

cores and as the size of the in-memory structures increase, such system-wide recovery

will no longer scale.

The necessity to embark on system-wide recovery to deal with software failures

is mainly due to the complex interactions between the tasks which may belong to

different components. Due to the high volume of tasks (more than 20 million/minute

in a typical workload), their short-running nature and the involved semantics of each

task, it becomes infeasible to maintain logs or perform database-style recovery actions

in the presence of software failures. Often such software failures need to be explicitly

handled by the developer. However, the number of scenarios are so large, especially in

embedded systems, that the programmer cannot realistically anticipate every possible

failure. Also, an individual developer may only be aware of the clean-up routines for

the limited scope being handled by them. This knowledge is insufficient to recover the

entire system from failures, given that often interactions among tasks and execution

paths are determined dynamically.

The discussion above highlights some key problems that need to be addressed

in order to improve system availability and provide scalable recovery from software

failures. Concretely, we must answer the following questions:

• How do we implement fine-grained recovery in a highly concurrent system?

• How do we identify recovery dependencies across tasks?

• How do we ensure availability of the system during a recovery process?

18

• What are important factors that will impact the recovery efficiency?

In addition to maintaining system performance while reducing the time to recovery,

another key challenge in developing a scalable solution is to ensure that the recovery-

conscious framework is non-intrusive i.e., does not affect performance during normal

operation and minimize re-architecting of the legacy application code.

2.1.2 Taxonomy of Failures

Studies classify software faults as both permanent and transient. Gray [72] classifies

software faults into Bohrbugs and Heisenbugs. Bohrbugs are essentially determin-

istic bugs that may be caused due to permanent design failures. Such bugs are

usually easily identified during the testing phases and are weeded out early in the

software life cycle. On the other hand, ‘heisenbugs’ which are transient or intermit-

tent faults that occur only under certain conditions are not easily identifiable and may

not even be reproducible. Such faults are often due to reasons such as the system

entering an unexpected state, insufficient exception handling, boundary conditions,

timing/concurrency issues or due to other external factors. Many studies have shown

that most software failures occurring in production systems are due to transient faults

that disappear when the system is restarted [72, 49, 94].

Our work is targeted at dealing with such transient failures in a storage software

system and in particular the embedded storage controller’s microcode. Below, we

provide a classification of transient failures which we intend to deal with through

localized recovery.

In complex systems, often code paths are dynamic and input parameters are

determined at runtime. As a result many faults are not caught at compile time.

On pure functions, faults may be classified as:

• Domain errors: are caused by bad input arguments, such as a divide by zero

error or when each individual input is correct, but the combination is wrong (e.g.

19

negative number raised to a non-integral power in a real arithmetic system).

• Range errors: are caused when input arguments are correct, but the result

cannot be computed (such as a result which would cause an overflow).

With actions based on system state there are additional complexities. For exam-

ple, a configuration issue that appeared early in the installation process may have

been fixed by trying various combinations of actions that were not correctly undone.

As a result the system finds itself in an unknown state that manifests as a failure af-

ter some period of normal operation. Such errors are difficult to trace, and although

transient may continue to appear every so often. We classify such system state based

errors as:

• State error: where the input arguments are wrong for the current state of the

object.

• Internal logic error: where the system has unexpectedly entered an incorrect

or unknown state. Such an error often triggers further state errors.

Each of the above error types can lead to transient failures. Some transient failures

can be fixed through appropriate recovery actions that may range from dropping the

current request to retrying the operation or performing a set of actions that take the

system to a known consistent state. For example, some of such transient faults that

occur in storage controller code are:

• Unsolicited response from adapter: An adapter (a hardware component not con-

trolled by our microcode) sends a response to a message which we did not send -

or do not remember sending. This is an example of a state error.

• Incorrect Linear Redundancy Code (LRC): A control block has the wrong LRC

check bytes, for instance, due to an undetected memory error; an example of an

internal logic error.

• Queue full: An adapter refuses to accept more work due to a queue full condition;

20

an example of both an internal logic error and state error.

In addition, there are other error scenarios such as violation of a storage system or

application service level agreements. The ‘time-out’ conditions are also common in

large scale embedded storage systems. While the legacy system grows along multiple

dimensions, the growth is not proportional along all dimensions. As a result hard-

coded constant timeout values distributed in the code base often create unexpected

artificial violations.

2.1.3 Recovery Models

Intuitively we can see that localized recovery may be possible for many of the failure

scenarios outlined above, and thus system-wide software reboots can be avoided.

Sometimes even for situations of resolving deadlock or livelock, it may be sufficient

if a minimal subset of tasks or components of the system undergo restarts (e.g.,

deadlock resolution in transactional databases [73]). Of course there are scenarios,

such as severe memory corruption, where the only high-confidence way of repairing

the fault is to perform system-wide clean-up.

In production environments, techniques for fault-tolerance, i.e., coping with the

existence and manifestation of software faults can be classified into two primary cate-

gories with respect to the fault repairing methods: (1) those that provide fault treat-

ment, such as restarts of the software, rebooting of the system and utilizing process

pair redundancy; and (2) those that provide error recovery, such as check-pointing

and log-based recovery. Alternatively, one can categorize the recovery models based

on the granularity of the recovery scopes. All the above-mentioned techniques could

be applied to any recovery scope. In our context, we consider the following three

types of recovery scopes:

• System level: Performing fault treatment at this level has proven to be an effec-

tive high-confidence way of recovering the system from transient faults [50], but

21

has a high cost in terms of recovery time and the resulting system downtime. On

the other hand performing error recovery at the system level through checkpoint-

ing and recovery can be prohibitively expensive for systems with high volumes of

workload and complex semantics.

• Component level: Both fault treatment and error recovery are more scalable

and cost effective at this granularity. For fault treatment, the main challenge is

identifying these ‘component boundaries’ especially in systems that do not have

well defined interfaces. Again, the difficult hurdle to performing checkpoint/log-

based error recovery at this level is understanding the semantics of operations.

• Task level: At this fine-grained level, the issue of operational semantics still

remains. However, performing fault treatment at this level is efficient both in

terms of cost and system availability.

The main advantage of performing error recovery or fault-treatment at the task-

level as compared to the component-level, is that it allows us to accommodate cross-

component interactions and define ‘recovery boundaries’ in place of ‘component bound-

aries’. Our goal is to handle most of the failures and exceptions through task-level

(localized) recovery, and avoid resorting to system-wide recovery unless it is absolutely

necessary.

2.2 Recovery Conscious Framework

Transactional recovery in relational DBMSs is a success story of fine-grained error

recovery, where the set of operations, their corresponding recovery actions and their

recovery scopes are well-defined in the context of database transactions. However,

this is not the case in many legacy storage systems. For example, consider the em-

bedded storage controller in which tasks executed by the system are involved in more

complex operational semantics, such as dynamic execution paths and complex inter-

actions with other tasks. Under these circumstances, in order to implement task-level

22

recovery, we have to deal with both the semantics of recovery and the identification

of recovery scopes.

Recovery from a software failure involves choosing an appropriate strategy to

treat/recover from the failure. The choice of recovery strategy depends on the nature

of the task, the context of the failure, and the type of failure. For example, within

a single system, the recovery strategy could range from continuing the operations

(ignoring the error), retrying the operation (fault treatment using environmental di-

versity) or propagating the fault to a higher layer. In general, with every failure

context and type, we could associate a recovery action. In addition, to ensure that

the system will return to a consistent state, we must also avoid deadlock or resource

hold-up situations by relinquishing resources such as hardware or software locks, de-

vices or data sets that are in the possession of the task.

2.2.1 Overview

With these observations in mind, we develop a recovery conscious framework for

multi-core architectures and a suite of techniques for improving the failure resiliency

and recovery efficiency of highly concurrent embedded storage software systems. The

main contributions of our recovery conscious framework include:

1. A task-level recovery model, which consists of mechanisms for classifying storage

tasks into ‘recovery scopes’ based on both programmer specified and system-

defined recovery dependencies; all tasks that must undergo recovery simultane-

ously fall into the same recovery scope;

2. A recovery-conscious mapping and realignment of ‘recovery scopes’ (identified

from the previous step) into ‘recovery groups’. Recovery groups additionally

take into consideration, parameters such as, system size, failure rates, recov-

ery rates, workload distribution, performance overhead and availability require-

ments.

23

����������	
���
�	
���
�����
��

������
����
������ �
�
���
	��� ������
���������

���������������
����
��	�����������	
��

���������������
���������� �������
���
����������������

���	�� 	�	�����
��
�	
��� ��
!	��
��	�
� "�
!�
#�
���

����	��"�
�	�������$�
�#	��$�
�#	��

Figure 5: Recovery-Conscious Framework

3. A recovery-conscious scheduling, which enforces some serializability of failure-

dependent tasks, i.e., tasks belonging to the same recovery group, in order to

reduce the ripple effect of software failures and improve the availability of the

system.

In this chapter we give an overview of our recovery-conscious framework, which

is designed for improving recovery efficiency and system fault resilience. Here, fault-

resilience refers to the ability to reduce system recovery time and sustain good per-

formance even during failure recovery. Figure 5 provides a schematic representation

of our framework. The shaded boxes in each tier represent the parameters to be

considered at that tier. The framework achieves its goals progressively through three

consecutive stages detailed next.

2.3 Tier 1: Fine Grained Recovery

The first tier of the framework addresses the issue of identifying recovery depen-

dencies between concurrent tasks and defining a task-level recovery mechanism which

24

��WriteToCache

•� startSCSICmd()

•� processRead()

• getTrack()

• getTempResource()

….

PANIC(error_code)

….

CB-0sets

sets CB-1 Clean -up func�

User-�specified �context�

sets� CB-2
RB�

(error_code)�

CB Clean-�Up Block

RB Resource Block

RB� RB

Figure 6: Framework for Task Level Recovery

allows recovery strategies to be determined dynamically based on failure and recovery

context.

2.3.1 Task-level Recovery Mechanism

In our framework, we refer to the execution point to which control is returned after

recovery is completed as a recovery point. The framework provides mechanisms for

developers to define clean-up blocks which are recovery handlers. Each recovery

point is associated with a clean-up block. The clean-up block encapsulates failure

codes, the associated recovery actions, and resource information. The specification of

the actual recovery actions in each of the clean-up blocks is left to the developers due

to their task-specific semantics. We defer the discussion of the structure and contents

of clean-up blocks and the state restoration actions to Chapter 3.

Example : We describe the selection of recovery strategy and design of clean-

up blocks using an example from our storage controller implementation. Consider

the error described in Figure6 which depicts relevant portions of the call stack. The

failure situation described in this example is similar to the commonly used ‘assert’

programming construct. The error is encountered when a task has run out of a

25

temporary cache data structure known as a ‘control block’ which is not expected to

occur normally and hence results in a ‘panic’.

The Figure 6 shows the schematic diagram of the recovery framework using the

call stack of a single task that performs a write to cache. The developer explicitly

specifies the corresponding clean-up block for an identified recovery point in the code.

At runtime the framework takes care of chaining clean-up blocks dynamically as the

code passes through various recovery points. As the task moves through its execution

path, it passes through multiple recovery points and accumulates clean-up blocks.

When the task leaves a context, the clean-up actions associated with the context go

out of scope. On the other hand, nesting of contexts results in the nesting of the

corresponding clean-up blocks and the framework keeps track of necessary clean-up

blocks.

The clean-up blocks are gathered and carried along during task execution but

are not invoked unless a failure occurs. Resource information can also be gathered

passively. Such a framework allows a choice of recovery strategy based on task re-

quirements and requires minimal rearchitecting of the system.

In this particular situation, ignoring the error is not a possible recovery strategy

since the task would be unable to complete until a control block is available. One

possible strategy is to search the list of control blocks to identify any instances that are

not currently in use, but have not been freed correctly (for example, due to incorrect

flags). If any such instances exist, they could be made available to the stalled task. An

alternative strategy would be to retry the operation beginning at the ‘WriteToCache’

routine at a later time in order to work around concurrency issues. Retrying the

operation may involve rolling back the resource and state setup along this call path

to their original state. Resource blocks are used to carry the information required to

successfully execute this strategy. Finally, in the case of less critical tasks, aborting

the task may also be an option. Alternatively, consider a situation where an error is

26

encountered due to a component releasing access to a track to which it did not have

access in the first place. The error was caused due to a mismatch in the number of

active users as perceived by the component. In this case, a possible recovery strategy

would be to correctly set the count for the number of active users and proceed with

the execution, effectively ignoring the error.

Note that, it is important we ensure that the interfaces with the recovery code and

the recovery code itself are reliable. In our implementation, the recovery-conscious

scheduler alone was implemented in approximately 1000 lines of code. A naive coding

and the design effort for task level recovery would be directly proportional to the

number of “panics” or failures in the code that are intended to be handled using

our framework. In general, the coding effort for a single recovery action is small

and is estimated to be around a few tens of lines of code (using semicolons as the

definition of lines of code) per recovery action on average [15]. Note that, the clean-up

block does not involve any logging or complex book-keeping and is intended to be

light-weight. A more efficient handling of clean-up blocks would involve classifying

common error/failure situations and then addressing the handling of the errors in a

hierarchical fashion. For example, recoveries may be nested and we could re-throw

an error and recover with the next higher clean-up block defined in the stack. This

would involve design effort toward the classification of error codes into classes and

sub-classes and identification of common error handling situations. Finally, if we are

unable to address an error using our framework, existing error handling mechanisms

would be used as default. The point of recovery in the stack may be determined by

factors such as access to data structures and possibilities of recovery strategies such

as retrying, termination or ignoring the error.

27

2.3.2 Recovery Scopes

Performing fine-grained recovery in response to storage controller failures, first re-

quires an understanding of recovery-dependencies between tasks i.e. concurrent threads

in the firmware. We refer to the scope of a recovery action as a ‘recovery scope’. Tasks

interact with each other in complex ways. When a single task encounters an exception,

more than one task may need to initiate recovery procedures in order to avoid dead-

locks and return the system to a consistent state. Explicit recovery-dependencies can

be specified by the programmer. However, explicit dependencies specified by the pro-

grammer may be very coarse. Likewise, some dependencies may have been overlooked

due to their dynamic nature and the immense complexity of the system. Therefore

one way to refine explicit dependencies is to identify implicit dependencies continu-

ously and utilize them to refine the developer-defined recovery scopes over time. The

criteria for classification of tasks into recovery scopes depends on the nature of the

application and failures that are intended to be handled. In our work, we identify the

following three classifications of tasks into recovery scopes.

2.3.2.1 Resource-based

Tasks accessing the same resources (such as device drivers or metadata) may be

classified under the same recovery scope. This classification would be effective to

deal with resource-based failures. For example, consider a ‘queue full condition’ that

occurs in storage controllers. This error occurs when an adapter refuses to accept

more work due to a queue full condition. Under these circumstances, the error and the

subsequent recovery action would probably affect only the tasks attempting to write to

the faulty adapter. One method to identify resource-based recovery dependencies is to

observe the pattern of lock acquisitions. The intuition here is that, tasks that access

the same resource are likely to acquire common locks. Lock acquisitions patterns

can potentially be used to further refine resource-based dependencies at runtime by

28

utilizing the temporal aspect of dependencies apart from the spatial aspect (discussed

in Chapter 3).

Resource-based dependencies can be identified in two ways - static code analysis

or through analysis of traces collected from actual workload execution. An alterna-

tive method would be to dynamically discover these dependencies during runtime.

However, the disadvantage of a dynamic approach is that the dependencies (lock ac-

quisitions) manifest only after the thread has been dispatched. Assigning recovery

scopes after dispatch would be meaningless, unless the tasks can be immediately sus-

pended and again enqueued in the appropriate recovery group queue. However, this

results in a performance penalty due to the high amount of context switching. We

therefore recommend an initial static assignment of tasks into recovery scopes which

can then be continuously refined at runtime based on dependencies observed from

locking patterns. Logging lock acquisitions at runtime is also essential in order to

keep track of resource ownership and perform clean-up of resources in the event of a

failure. The disadvantage of a static approach compared to a dynamic approach is

the possibility of an inaccurate recovery scope assignment. However, a wrong clas-

sification of tasks into recovery scopes will not affect the consistency of results, but

only the recovery efficiency and performance during failure recovery. We show in

Chapter 4 that our framework can tolerate some inaccuracy.

2.3.2.2 Component-based

Even in the absence of well-defined operational boundaries between functional com-

ponents certain failures may require resetting state or performing recovery actions for

tasks belonging to a particular functional component. Recall the example described in

Section 2.3.1 which illustrated an error encountered when a ‘WriteToCache’ task fails

due to the unavailability of a data structure. One recovery strategy in this situation

is to search the list of control blocks to identify instances that have not been freed up

29

correctly. Another strategy is to retry the operation at a later time, in order to work

around concurrency issues. However, it is very likely that other tasks belonging to the

cache component are likely to encounter the same error if executed before the issue is

resolved. Moreover, modifying the data structures or checking them for consistency

may require suspension of dispatch of tasks belonging to the cache component until

recovery completes. In such scenarios, a functional component based classification of

tasks may be effective in identifying recovery dependencies. With component-based

recovery scopes, all tasks belonging to the same functional component are classified

under the same recovery scope.

2.3.2.3 Request-based

To deal with errors that require aborting or recursively recovering a user-request,

it may be beneficial to classify tasks on the basis of user requests or workflows; for

instance, consider a situation where a read/write request fails due to an invalid address

specification. In this situation we may choose a recovery strategy of performing

necessary clean-up actions and then aborting the request. Then the scope of recovery

is all tasks across all components that are a part of this user request.

Depending upon the nature of failures that fine-grained recovery is expected to

handle, one class or a valid combination of the above classifications may be used to

define recovery-scopes. The top-tier of the framework identifies recovery scopes based

on such explicitly specified (as in the case of component or request based grouping)

and implicitly discovered (as in the case of resource based grouping) recovery depen-

dencies.

2.4 Tier 2: Mapping Tasks to Recovery Groups

The second tier of the framework maps the recovery scopes identified from the pre-

vious tier into recovery groups on which the scheduling of tasks during the recovery

process is based.

30

Experiments with a state-of-the-art enterprise storage controller have shown that

the clustering of tasks into recovery scopes (dependent tasks belonging to the same

scope) leads to a large number of scopes over which tasks are unevenly distributed;

most scopes contain a small number of tasks whereas a small number of scopes contain

large number of tasks. Clearly, tracking dependencies at a coarse granularity may

result in a recovery scope with many tasks whose activations have to be serialized.

This is likely to decrease the opportunities for parallel execution on the multi-core

architecture and also likely to increase processing overhead during recovery. At the

same time, tracking dependencies at too fine a granularity increases the overhead

of managing a large number of recovery scopes resulting in a performance penalty.

Mapping of recovery scopes to recovery groups is intended to trade-off the performance

penalty for tracking fine-granularity recovery scopes versus the recovery efficiency

penalty for tracking coarse granularity recovery scopes.

In Chapter 4, based on our analysis we present guidelines for determining the

recovery scopes, the recovery groups, and the mapping of recovery scopes to recovery

groups for use in scheduling. We implemented this approach in a realistic environment

by using an enterprise-class storage controller with minimal changes to its software.

Handling of various failures in the system can be implemented incrementally. We show

that by selecting appropriate values for the recovery-sensitive system parameters it

may be possible to speed up the recovery of storage controllers and achieve good

performance at the same time.

2.5 Tier 3: Recovery Conscious Scheduling (RCS)

An important goal for providing fine-grained recovery (task or component level) is to

improve recoverability and make efficient use of resources on the multi-core architec-

tures. This ensures that resources are available for normal system operation in spite

of some localized recovery being underway and that the recovery process is bounded

31

both in time and in resource consumption. Without careful design, it is possible that

more dependent tasks are dispatched before a recovery process can complete, resulting

in an expansion of the recovery scope or an inconsistent system state. This problem is

aggravated by the fact that recovery takes orders of magnitude longer (ranging from

milliseconds to seconds) compared to normal operation (∼ µ secs). Also a danger-

ous situation may arise where it is possible that many or all of the threads that are

concurrently executing are dependent, especially since tasks often arrive in batches.

Then the recovery process could consume all system resources essentially stalling the

entire system.

Ideally we would like to “fence” the failed and recovering tasks until the recovery

is complete. In order to do so we must control the number of dependent tasks that

are scheduled concurrently, both during normal operation and during recovery. In

Chapter 4 we discuss how to design a recovery conscious scheduler that can control

how many dependent tasks are dispatched concurrently and what measures should

be taken in the event of a failure.

Chapter 4 presents three RCS algorithms, each using a different methods of map-

ping recovery groups to processing resources: static, partially dynamic, and dynamic.

Each mapping technique represents different trade-offs between system availability

and system performance under normal operation.

Static scheduling of recovery groups determines the mapping of recovery groups

to processors at compile time and is effective in situations where task dependen-

cies during recovery are well understood and the workloads are stable. With this

scheme, tasks are dispatched only on processors associated with the recovery group

they belong to. Dynamic scheduling of recovery groups to processing resource pools

represents the other end of the spectrum. This scheme works effectively, even in the

presence of frequently changing workloads. With dynamic RCS, all processors are

mapped to all recovery groups. The scheduler then uses a starvation-avoiding scheme

32

such as round-robin to iterate through the groups and dispatch work. However, a

recoverability constraint is specified for each group. A recoverability constraint pre-

scribes the maximum number of concurrently executing tasks permissible for that

group. In order to achieve acceptable utilization, the constraint is selectively violated

when no task satisfying the constraint is found while resources are idle. Between the

two ends of the spectrum is the partially dynamic scheduling, which involves partially

static scheduling for those recovery groups whose resource demand is stable and well

understood and dynamic scheduling for the remaining recovery groups.

RCS incorporates two countermeasures, one proactive and one reactive. The

proactive measures comes into play during normal operation when RAS attempts

to minimize the number of dependent tasks executing concurrently by dispatching

tasks from different recovery groups using one of the static, dynamic and partially-

dynamic algorithms. The reactive technique comes into play during failure recovery,

when based on recovery dependencies information afforded by recovery groups, RAS

suspends the dispatching of tasks from those recovery groups whose tasks are cur-

rently undergoing recovery.

2.6 Discussion

One of the requirements of our recovery-conscious framework is the need for the pro-

grammer to specify the recovery handler. We acknowledge that writing error-recovery

code is a complex task. However, there are a number of reasons for this requirement.

As a first step, our framework provides guidance for identifying dependencies (dis-

cussed in Chapter 3) and also ensures that recovery handlers are non-intrusive and

have minimal impact on good-path execution.

Second, our analysis of the software shows that due to the complexity of the

system, not all failures can be recovered using fine-grained recovery. The recovery

strategies are often determined by the semantics of the failure and the nature of the

33

tasks that encountered the failure. For example, a straightforward recovery strategy

for a failure during a back-ground task that is not critical, can be to simply ignore

the failure, while the strategy may be different for a critical task that must complete

on time. Such task specific semantic based recovery handlers are best defined by the

developers of these tasks. Due to the complex semantics involved, a fully automated

approach to determining the recovery strategies, without programmer assistance, is

difficult and less effective. In the event that the developer specifies an ineffective recov-

ery strategy, such that the problem causing the failure is not resolved, our framework

recommends setting a recovery threshold which specifies the number of times that the

micro-recovery should be attempted before falling back to system-level recovery. If

the failure is not prevented by the micro recovery mechanism and the failure threshold

has been reached, then system-level recovery will be performed.

Finally, we would like to point out that, in the case of identifying recovery depen-

dencies, our framework combines the programmer assistance with system initiated

learning. While the programmer is given the facility to provide explicit dependencies

based on experience, the system uses the programmer’s specification of dependencies

as a starting point and continues to refine these dependencies throughout the life

cycle of the system. In other words, the recovery conscious framework does not rely

on the completeness or the correctness of developer’s specified dependencies. In the

next chapter we describe an access-log based architecture that utilizes the informa-

tion provided by lock accesses as a guideline to understanding system state changes.

Based on such interactions between concurrent tasks, the architecture dynamically

identifies dependencies at runtime and alerts the developer to events like dirty reads

of shared state. This log-based architecture will relieve the developer from the burden

of tracking resources such as shared buffers and locks and tracking read-write conflicts

on shared state.

34

2.7 Related Work

Techniques that improve dependability of software can be classified into those that

are applied during the construction of the software and those that are applied during

verification and validation of the software [113, 98]. Fault avoidance techniques aim

at avoiding faults through appropriate design and development processes. Fault toler-

ance techniques improve dependability through appropriate construction that allows

the software to tolerate or avoid faults during operation. Other techniques like fault

removal, for example software testing [102], are used during the validation stage of

the software (usually after completion of development).

Clear specification of system requirements, good design and software engineering

processes [113, 142, 65] are critical in avoiding design faults that result in software

failures. Besides these, mathematical and formal methods [58, 113] are used to verify

and validate the software design and specification. However, such methodologies are

complex, at least as large as the software itself and often prohibitively expensive for

large software projects, especially since the methodologies are themselves susceptible

to error. Both fault avoidance and fault removal techniques are orthogonal to our

approach and are required at different stages of the software life cycle in order to

develop robust software.

There is a large body of existing work that addresses the issue of fault tolerance

in general. Techniques for fault tolerance can be classified into fault treatment and

error processing. Fault treatment aims at avoiding the activation of faults through

environmental diversity, for example by rebooting the entire system [72, 148], micro-

rebooting sub-components of the system [50], through periodic rejuvenation [85, 68]

of the software, or by retrying the operation in a different environment [114]. Er-

ror processing techniques are primarily checkpointing and recovery techniques [73],

application-specific techniques like exception handling [137] and recovery blocks [116]

or more recent techniques like failure-oblivious computing [119].

35

However we are faced with several unique challenges in the context of storage

firmware and middleware. First, at the storage controller layer, the software being

legacy code rules out re-architecting the system. Second, system-level reboots are ex-

pensive and this method of recovery would not scale with system size. On the other

hand, the tight coupling between components makes both micro-reboots and periodic

rejuvenation tricky. Many software systems, especially legacy systems, do not satisfy

the conditions outlined as essential for micro-rebootable software [49]. For instance,

even though the storage software may be reasonably modular, component bound-

aries, if they exist, are loosely defined. In addition, the scenario where components

are stateful and interact with other components through globally shared structures

(data-structures, metadata), often leads to components modifying each other’s state

irreversibly. Moreover, resources such as hardware and software locks, devices and

metadata are shared across components. Under these circumstances, the scope of a

recovery action is not limited to a single component.

Checkpointing for fault-tolerance is a well known technique [62, 63, 117, 91, 114]

that has also been applied to deterministic replay for software debugging [143, 121,

122]. However, checkpointing techniques are mostly targeted at long-running appli-

cations [62] such as scientific workloads [63], or applications where the memory foot-

print and the system performance requirements can tolerate the overhead imposed

by checkpointing [114, 91]. A number of unique challenges in the case of storage

controller software make checkpointing infeasible: Unlike long-running applications,

storage controllers have a high rate of short (< 500µsecs) concurrent threads and are

designed to support extremely high throughput and low response times. Given the

highly concurrent nature of controllers, both quiescing the system in order to take the

checkpoint, as well as logging the tasks in order to redrive work beyond the check-

point is expensive in terms of time and space - especially since system state includes

large amounts of metadata and cached data. Next, communication with OWPs such

36

as hosts and media cannot be rolled back and hence invalidates checkpoints. Finally,

due to the complexity of the code, not all failures will be amenable to micro-recovery,

making checkpointing too heavy weight.

Failure-oblivious computing [119] introduces a novel method to handle failures

- by ignoring them and returning possibly arbitrary values. This technique may

be applicable to systems like search engines where a few missing results may go

unnoticed, but is not an option in storage controllers.

2.8 Summary

This chapter presented an overview of storage controller architectures and our recov-

ery conscious framework which divides the task of retrofitting fine-grained recovery

into highly concurrent legacy storage software into three stages. The stages progres-

sively identify recovery dependencies and strategies, organize dependent tasks into

groups for enforcing scheduling constraints and finally maps these groups to process-

ing resources through recovery conscious scheduling. The next chapter is dedicated

to tier 1 issues while chapter 4 discusses tier 2 and tier 3 issues.

37

CHAPTER III

STATE RESTORATION DURING MICRO-RECOVERY

3.1 Introduction

Enabling fine grained recovery can be challenging, especially in legacy systems, and

to perform micro-recovery, the following issues must be addressed:

• Evaluating recovery success: What are the failures that can effectively and

efficiently be recovered from, using micro-recovery?

• Determining recovery actions: What are the recovery strategies and recovery

actions that must be performed in order to restore the system from an error state

to an error-free state?

• Identifying dependencies: Given the large number of dynamic dependencies

possible in a highly concurrent system, what is the scope of fine-granularity re-

covery?

• Enhancing recovery success and efficiency: How can we enhance the sys-

tem to facilitate better recovery success and efficiency?

In this Chapter, we address the first three questions, focusing on the challenges of

tracking and restoring system state during micro-recovery, evaluating the possibility of

recovery success and determining recovery actions based on system state. The fourth

challenge, i.e. ensuring resource availability during failure recovery and improving

recovery efficiency and the probability of recovery success is addressed in the next

Chapter (Chapter 3).

We make two unique contributions in terms of effective state restoration during

micro-recovery. First, by analyzing the system state space, we identify the set of

38

events and system states that affect state restoration from the perspective of micro-

recovery. We introduce the concepts of Restoration levels and Recovery points to

capture failure and recovery context and describe how to flexibly evaluate the pos-

sibility of recovery success. Based on the restoration levels and recovery points, we

introduce Resource Recovery Protocol (RRP) and State Recovery Protocol (SRP),

which provide rules to guide state restoration.

Our second contribution is Log(Lock), a practical and lightweight architecture to

track dependencies and perform state restoration in complex, legacy software sys-

tems. Log(Lock) passively logs system state changes to help identify dependencies

between multiple threads in a concurrent environment. Utilizing this record of state

changes and resource ownership, Log(Lock) provides the developer with the failure

context necessary to perform micro-recovery. Recovery points and their associated

recovery handlers are specified by the developer. Log(Lock) is responsible for tracking

dependencies and computing restoration levels at runtime.

We have implemented and evaluated Log(Lock) in a real enterprise storage con-

troller. Our experimental evaluation shows that Log(Lock)-enabled micro-recovery

is both efficient (<10% impact on performance) and effective (reduces a four sec-

ond downtime to only a 35% performance impact lasting six seconds). In summary,

micro-recovery with Log(Lock) presents a promising approach to improving storage

software robustness and overall storage system availability.

3.2 Log(Lock): Design Overview

The key challenges in performing micro-recovery are identifying dependencies based

on failure and recovery context, determining recovery actions and restoring the system

to a consistent state after a failure. In this section we outline the technical challenges

for systematic state restoration during micro-recovery and present an overview of

the Log(Lock) architecture for state restoration. Using examples, we highlight the

39

unique characteristics of storage software recovery in terms of state consistency and

state restoration efficiency. Finally, we briefly describe the system architecture of

Log(Lock).

3.2.1 Technical Challenges

With software recovery, the actions that achieve state restoration depend on the

actions of the failed thread and its interactions with state and shared resources.

Threads in the system interact in two fundamental ways: (1) reading/writing

shared data and (2) acquiring and releasing resources from/to a common pool. Threads

also interact with the outside world through actions such as positioning a disk head

or sending a response to an I/O. Often these actions cannot be rolled back and are

referred to as outside world processes (OWP) [62]. In such a system, state restora-

tion and micro-recovery must consider the sequence and interleaving of the actions of

concurrent threads that gives rise to the following conflicts:

• Dirty Reads (Write-Read Conflict): Data written by the failed thread has

already been consumed by another thread.

• Lost Updates (Write-Write Conflict): Rolling back the failed thread may

cause the updates of other threads to be overwritten or lost.

• Unrepeatable Reads (Read-Write Conflict): The value of the shared state

variable required by the failed thread has already been overwritten.

• Resource Ownership : The failed thread may continue to be in the possession

of resources from a shared pool or may be holding a lock resulting in resource

leaks or starvation issues.

The above taxonomy is derived from that used to describe concurrency control con-

cepts in transaction processing systems [73]. For a given failure, the set of recovery

actions that need to be performed to return the system to a consistent state may vary

depending upon the failure and the occurrence of one or more of the above conflicts.

40

Note that for application state, the intention is not to deterministically replay the

events before the failure, or recover the application state to exactly as it was at the

instant of failure. Rather, the goal is to restore the system to an error-free state. In

fact, the recovery strategy may itself explicitly rely on non-determinism to remove

transient failures. For example, Rx [114] demonstrates an interesting approach to

recovery by retrying operations in a modified environment using checkpointed system

states for rollbacks.

Recall that checkpointing techniques are mostly targeted at long-running appli-

cations [62] such as scientific workloads [63], or applications where the memory foot-

print and the system performance requirements can tolerate the overhead imposed

by checkpointing [114, 91]. Given the highly concurrent nature of controllers, both

quiescing the system in order to take the checkpoint, as well as logging the tasks in

order to re-execute work beyond the checkpoint is expensive in terms of time and

space - especially since system state includes large amounts of metadata and cached

data. Next, communication with OWPs such as hosts and media cannot be rolled

back and hence invalidate checkpoints. Finally, due to the complexity of the code,

not all failures will be amenable to micro-recovery, making checkpointing too heavy

weight.

System state restoration and conflict serialization is also of interest to transac-

tional systems [100]. Transactional databases use schemes like strict 2-phase locking

(2PL) to guarantee conflict serializability [45]. However, such techniques can increase

the length of critical sections (i.e. durations of locks) and are inefficient for storage

controllers that execute in a highly concurrent environment. Moreover, we show in

Section 3.2.2 that, recovery actions are determined based on both the context and

semantics of failure and a “one size fits all” serializability, while simplifying recovery

procedures, can constrain the recovery process.

41

�

�������������	��
���	����
�����������

��������
�����
������	��
���������
�����

���������	��
�������������

����������
�����
������	��
���������
�����

�����������

�����������

��������������	��
���	����
�����������

�������
�����
������	��
���������
�����

��������	��
�������������

���������
�����
������	��
���������
�����
�

�������
!�
��!��"�
��#�
!��������
�������!�
�������

��������
��$�!#������	��
���������
�����

��������������	��
���������%%�&���'�

�
!�
�(���
�	��"��!��"�
��#�
!�����

�������)�

����������
��$�!#�����	��
���������
�����
�

Figure 7: Example 1: Lost Update Conflict

3.2.2 Examples

We present three real examples from a storage controller software. We demonstrate

how the semantics and success of fine-grained recovery are determined by failure

context and the interactions of threads.

Figure 7 shows two code snippets: R1 increments the number of active users before

performing work and in R2, a background job is triggered when there are no active

users in the system. When a panic (user defined or system failure/exception) occurs

during the execution of region R1, then assume that the micro-recovery strategy is to

reattempt execution of region R1. The recovery action must ensure clean relinquishing

of resources such as the lock numActiveUsersLock. It is important to ensure that

the system state is consistent since corruption of the counter can either cause the

42

��������������	���
�������

������������

�������	�����

���������
������������

������ ��
�������������

������������	��
�������

� � ������������������
�������

������� �

������� !"#���
�

Figure 8: Example 2: Resource Ownership Conflict

������������	�
	���������
���������

��������
�����	���
	��������
�������
����

������
	��������
������������

����������
�����	���
	��������
�������
����

� ��
�

Figure 9: Example 3: Dirty Read Conflict

background jobs to never be triggered or to be triggered in the presence of active

users. In Example-1, the system can tolerate dirty reads or unrepeatable reads of

the numActiveUsers count but must ensure that no updates are lost. On the other

hand, if the failure was caused during the execution of region R2, an idempotent

background task that is not critical, the recovery strategy may be to just abort the

current execution of the background task. However, recovery must ensure that the

lock numActiveUsersLock has been released.

Figure 8 shows the processing of a write command. In the event of encountering

a failure, state restoration must ensure that temporary resources obtained from a

shared pool are freed correctly in order to avoid resource leaks or starvation. It may

also require that certain cache tracks are checked for consistency, depending upon

the point of failure. However, for a resource such as a buffer or empty cache track

43

obtained from a shared pool for exclusive use, dirty reads, unrepeatable reads and

lost updates can be tolerated.

Figure 9 shows a thread that updates a global variable indicating the metadata

location, such as for checkpoint activity. In the event of a failure caused due to a

failed location, the thread may have the opportunity to modify the location without

notifying other threads in the system or causing inconsistency, provided there have

been no dirty reads. However, in the event of a dirty read, the system may have to

resort to recovery at a higher level.

These examples highlight the fact that consistency requirements for state restora-

tion vary with failure context. For example, in the case of a counter generating

unique numbers, the only requirement may be that modifications are monotonous.

For a shared resource, the state remains consistent as long as there are no resource

leaks that could eventually lead to starvation and system unavailability. Unlike a

transactional system, where similar problems are addressed, the semantics of the

state and failure may render certain types of conflicts irrelevant from the perspective

of system availability and fault tolerance. This emphasizes the need for a flexible

state restoration architecture that is also lightweight and efficient, there by allowing

the system to sustain high performance.

3.2.3 System Architecture

The Log(Lock) architecture provides support for state restoration during micro-

recovery. To achieve this goal, Log(Lock) tracks resources and state dependencies

relevant to a thread that has incorporated recovery handlers for micro-recovery.

Figure 10 presents an overview of our system architecture and describes the roles

played by the Log(Lock) execution model and restoration protocols. The figure shows

a system with concurrently executing threads where the thread depicted by a solid

line incorporates micro-recovery mechanisms. In order to facilitate micro-recovery, the

44

�

����������	
���
����

������

�������������
�

������������
������

�
�
���������������

������������������

��������

 �

���������!�������

���������	�
�������
�����
���

��
���������������
�
�
����
�
���

��������������

�

����������	�������������
��
�

���������������� �	���
��
����

���!�
��	"�������#

�����������
��

���
���
�������
������

�
�
�����
���
�������
�����

������������
���
�������
�����

��
��

"��#������$�
����#����
���
����
��

���������������#�������������

�������%�

�����

Figure 10: Log(Lock) Architecture Overview

thread sets recovery points during execution, where each recovery point is associated

with a recovery criterion. The recovery criterion specifies the conditions that must

be satisfied by the failure context in order to use the recovery point as a starting

point for recovery. Using the Log(Lock) architecture, the thread (depicted by a

solid line) enabled with micro-recovery mechanisms indicates state and resources that

are relevant to recovery. Log(Lock) then begins logging all relevant changes and

dependencies, based on the actions of both this thread and other concurrent threads

(depicted by dotted lines).

In the event of a failure, control transfers to a developer-specified recovery handler.

The handler performs state restoration actions by utilizing the resource tracking and

state dependency information provided by the Log(Lock) execution model, in con-

sultation with the restoration protocols. It also decides on an appropriate recovery

strategy such as rollback, error compensation or system-level recovery. The imple-

mentation of the Log(Lock) dependency tracking component must ensure efficiency

during normal operation while the recovery protocols ensure consistency of state

45

Table 1: Valid States for Thread Ti

Notation Description

TiS Ti initial state

TiR Ti holds a read lock

TiW Ti holds an exclusive write lock

TiU Ti has released the lock

TiF Ti is in failed state

TiA Ti acquired a resource

TiRe Ti released a resource

TiE Ti performed an externally visible action

restoration during failure recovery.

In the next two sections, we first describe the concepts of ‘restoration levels’

and ‘recovery points’ and present the restoration protocols. Then, we present the

Log(Lock) execution model and illustrate application of the protocols through exam-

ple scenarios.

3.3 State Space Exploration

In this section, we model failure scenarios and recovery contexts using a state space

analysis approach. Our approach is based on the intuition that in a concurrent

system, global state and shared system resources are often protected by locks or

similar primitives.

This section is divided into two parts. In the first part, we model system events,

state transitions and interleaving of concurrent threads and demonstrate the discrete

state space and recovery scenarios. We introduce the concepts of Restoration Level

and Recovery Criterion, that help match a failure context to a recovery strategy. In

the second part, we systematically identify the set of recovery strategies that can

be applied to each failure scenario and present two protocols for state restoration.

The Resource Recovery Protocol (RRP) defines the steps to handle resource

ownership conditions and the State Recovery Protocol (SRP) sets forth the rules

to perform state restoration.

46

3.3.1 Modeling Thread Dependencies

Let T = {Ti|1 ≤ i ≤ n} define a system with n concurrent threads. Let Xi(t) denote

the sequence of states of thread Ti up to time t. The schedule S(t) for the system

T at time t is the interleaving of the sequence of actions in Xi(t) for each thread Ti.

Let v denote a globally shared structure protected by a lock. Table 1 shows the list

of valid states for a thread.

The system implements micro-recovery at a thread granularity. Any failure that

cannot be handled by micro-recovery is resolved using a system-level recovery mech-

anism (e.g. software reboots).

The state space for system execution consists of all legitimate schedules S(t). Sys-

tem states that represent the failed state of one of the executing threads are relevant

from the perspective of micro-recovery. To simplify the subsequent discussion, we

apply the following rules to reduce the state space:

• We consider the interactions between only two threads T1 and T2.

• We only consider system states where the last state of thread T1 is T1F .

• Only T1 encounters a failure. Failures of thread T2 are symmetric and can be

treated similarly.

• Read or write actions performed by T2 before any such actions by T1 are ignored.

• We assume that the system can recover from only a single failure. Failure during

recovery results in system-level failure recovery.

• The “end” event is equivalent to a commit or externally visible action that cannot

be rolled back.

From the perspective of state restoration for micro-recovery, the occurrences of

the following patterns in the schedule S(t) are of interest and relevant to the se-

lection of a recovery strategy by thread T1. Let → denote the “happened before”

relation [93].

47

• Dirty Read (DR): T1W→T2R→T1F .

• Lost Update (LU): T1W→T2W→T1F .

• Unrepeatable Read (UR): T1R→T2W→T1F .

• Residual Resources (RR): (T1R→T1F)∧(T1U9T1F) or (T1W→T1F)∧(T1U9T1F) or

(T1A→T1F)∧(T1Re9T1F).

• Committed Dependency (CD): T1W→T2R→T2E→T1F or T1W→T2W→T2E→T1F or

T1R→T2W→T2E→T1F .

To determine the right strategy for recovery, it is important to determine which

of the above conflicts have occurred and are relevant to recovery.

Restoration Level: The restoration level Ri(t) of a thread Ti at instant t, is a 5-

tuple 〈DR, LU,UR, RR, CD〉 indicating the occurrence of dirty reads, lost updates,

unrepeatable reads, residual resources and committed dependencies in S(t).

Recovery Point: A recovery point pi in thread Ti represents an execution point to

which control is transferred at the end of a recovery procedure. A default recovery

point defined for all threads is the initial system state.

Recovery Criterion: Each recovery point pi is associated with a recovery criterion

Ci which is a 4-tuple 〈DR, LU,UR, RR〉 that represents the set of criteria for dirty

reads, lost updates, unrepeatable reads and residual resources, that the system state

should satisfy before recovery can be attempted using pi. For the default recovery

point, all elements of the recovery criterion are defined as “don’t care”.

CD does not figure in the recovery criterion since this information is used only to

choose between alternate recovery strategies in the recovery handler. We discuss the

use of CD conditions during recovery in the state recovery protocol in Section 3.3.2.

In our current design, recovery points and their associated recovery handlers are iden-

tified by developers and are associated to an execution context. When a thread leaves

48

a context, the associated recovery points go out of scope. Within a single execution

context, multiple recovery points may be defined, any of which could potentially be

used during recovery. Then the appropriate recovery point for the current failure

scenario is chosen by the logic in the recovery handler. In the developer-specified

recovery handler, the feasibility and correctness of restoring the failed system state

using a recovery point, is determined using the resource and state recovery protocols

described next. Once the valid recovery points have been identified from the avail-

able choices, the selection of an appropriate recovery point and recovery strategy may

be a decision depending upon factors such as the amount of resources available for

recovery and the time required to complete recovery.

3.3.2 Restoration Protocols

In this discussion, we consider the following possible recovery strategies: (1) Rollback;

(2) Roll-forward style recovery or error compensation; (3) System-level recovery [113].

Of these the rollback and error compensation strategies may be applied to the failed

thread only (single-thread recovery) or to multiple threads including the failed thread

(multi-thread recovery). The following protocols are based on the assumption that

committed dependencies cannot be rolled-back.

Resource Recovery Protocol (RRP): System state can be restored to recovery

point pi only if Ri(t) meets Ci on the RR criterion. Otherwise, the thread must first

attempt to release or acquire resources to meet the criterion.

The state recovery protocol (SRP) specifies the recovery strategies applicable for

different failure and recovery contexts. The rationale behind the SRP rules is that an

occurrence of DR, LU or UR events imply that an interaction with other concurrent

threads in the system have occurred. When the restoration level does not meet

the recovery criterion and interactions with other threads have occurred, then single

thread recovery is no longer sufficient. Next, the success of multi-thread recovery

49

���

���

����	��
	��	��
���

��

��

��

��

��

��

��� ���

�
	�������

�
	���������

����
������

����
��������

���

���

���

���

���

���

Figure 11: State Recovery with Dirty Reads

���

�����	��

��
��
��
������

��

��

��

��

��

���

��
���

��������
���

��
���

���
���

���

���

���

���

���

�����������

��
�����

���������

��
�����

Figure 12: Resource Recovery

depends on the occurrence of an externally visible action and whether the dependency

has already been committed. Concretely, the rules of state recovery are:

State Recovery Protocol (SRP): 1. To perform single-thread recovery and re-

store state to recovery point pi, Ri(t) should meet Ci on every element of Ci.

2. If Ri(t) does not meet Ci on DR, LU, UR conditions and CD occurs in S(t), then

only error compensation or system-level recovery can be attempted.

3. If Ri(t) does not meet Ci on DR, LU, UR conditions and CD has not been observed

in S(t), then only multi-thread rollback, error compensation or system-level recovery

is possible.

Figure 11 and 12 show example scenarios with the schedule of execution of T1 and

T2 and the timing of the write, read and lock actions of the threads over the shared

variable v in 11 and over a shared pool of resources in 12. P1 and P2 represent two

recovery points and F1-F6 represents possible positions of failures during the thread

50

execution. In both figures, recovery point P1 is defined for the entire duration of

thread execution and in Figure 11 recovery point P2 is defined only in the case of

failures F4, F5 and F6. Assume that in the case of Figure 11 the recovery criterion

for both P1 and P2 forbid dirty reads. Then in accordance with RRP and SRP,

besides system-level recovery, the choice of recovery strategies for each of the failures

in Figure 11 are as follows: (a) F1 and F3: Rollback to P1; (b) F2: Release lock and

Rollback to P1; (c) F4: Rollback to P1 or P2; (d) F5 or F6: Neither P1 or P2 due to

dirty read.

Assume that the only recovery criterion for P1 in Figure 12 is that T1 should

not own any resources acquired after the recovery point. Then besides system-level

recovery, the choice of recovery strategies for each of the failures in Figure 12 are

as follows: (a) F1 and F5: Rollback to P1; (b) F2: Release lock, free resource and

Rollback to R1; (c) F3 and F4: Free resource and Rollback to R1.

3.4 Log(Lock) Execution Model

In this section, we present a concrete execution model of Log(Lock), that utilizes

the state space analysis presented in the previous section. We show how to decide

recovery strategies and how restoration levels can be tracked practically. Although

the discussion in this research focuses on a thread-level recovery granularity, the

Log(Lock) architecture can easily be extended to a more coarse granularity of micro-

recovery such as at a task or component level.

In a complex legacy system such as a storage controller, not all failures can be han-

dled efficiently through fine-grained recovery - either because the failure and recovery

code may be too complex, or system-level recovery may be a more effective recovery

technique, or simply because there may be insufficient development and testing re-

sources. Therefore, our approach first involves identifying candidates for fine-grained

recovery based on the analysis of failure logs and the software itself. The executing

51

instance of each candidate is known as a recoverable thread. Recall that, for each

recoverable thread multiple recovery points and associated recovery criterion may

be defined. In the event of a failure, control is transferred to the recovery handler

(Section 3.2.3).

3.4.1 Tracking State Changes

Log(Lock) is based on the intuition that all shared state and resources are protected

by locks or similar synchronization primitives. Tracking lock/unlock calls can there-

fore guide the understanding of system state changes and provide the information

required to identify the restoration level at the instant of failure. At the same time,

by tracking these calls on resources and applying the resource recovery protocol, we

can prevent deadlocks or resource starvation issues. In order to compute restoration

levels and perform system state restoration, Log(Lock) maintains the following:

Undo Logs: Undo logs are local logs maintained by each recoverable thread primar-

ily for the following purposes: (1) Track the sequence of state changes within a single

thread; (2) Track the creation of recovery points and (3)Track resource ownership. In

general, the Undo logs can be used to encode any information required by a thread’s

recovery handler. In our implementation, information to be added to the Undo logs

are explicitly specified by the developer. Other possible implementations are using

regular checkpoints or copy on write techniques that can maintain Undo logs trans-

parently.

Change Track Logs: In order to track conflicts between concurrent threads, Log(Lock)

maintains Change Track Logs for each lock. The Change Track Log is used to: (1)

Track concurrent changes to shared structures and (2) Track commit actions.

Both the Undo Log and Change Track Logs are maintained only in main memory

and are verified for integrity using checksums. In our implementation, the change

52

track log is implemented as a hashtable indexed using the pointer to the lock as key.

Unlike database logs or checkpoints for state restoration, these logs do not need to

be flushed to stable storage. If a failure crashes the system causing it to lose or

corrupt the logs, then we must perform a system-level restart to restore the system

to a consistent, functional state and no longer require the software’s state restoration

logs from before the failure.

Log(Lock) provides four basic primitives to a recoverable thread:

• startTracking(lock): Start tracking changes to the structure protected by lock.

• stopTracking(lock): Stop tracking changes to the structure protected by lock.

• getRestorationLevel(lock): Compute the restoration level for the structure pro-

tected by lock.

• getResourceOwnership(lock): Get ownership information (including lock owner-

ship) for the structure protected by lock.

All the above primitives are explicitly inserted into the code by the developer. The

startTracking call is used to trigger change tracking for shared state and resources pro-

tected by the lock parameter. These accesses are identified by trapping lock/unlock

calls. When the recoverable thread determines that the logs for a particular struc-

ture are no longer required, it explicitly issues a stopTracking call. In the event of a

failure, the system transfers control to the designated recovery handler. The recovery

handler can utilize the getRestorationLevel and getResourceOwnership primitives to

determine the current restoration level and resource ownership and then invoke re-

covery procedures appropriately. The restoration level is determined by examining

the undo and change track logs.

3.4.2 Recovery Using Restoration Protocols

The goal of our state restoration approach is to return the system to a correct, func-

tional and known state by performing localized recovery and state restoration actions.

53

���������	
��	�
�	������	��������	��������	����	�������

����������������	�����
�����	������	�������� !�
���"��	�#��$%&�

���!�'��	������	���������	�
�� ������	�������
��
�	�����	
���

��������������������	��������(���%�)�

�����������������������������$�������� !�
���"��	�#��$%&�

� � �������$*	�
����� !�
���"��	�#��$%&��

������������+���������,����	%�

� � �������$*	�
����� !�
���"��	�#��$%&�

����������������������
���
�	�
���#�������� !�
���"��	�#��$%&����������

�������������������������������� � �

�����������������������������
�����	

�	������	����
�����
���%�)�

���������������������������-�����
����	�
���� ���
�������

� � ������ !�
���"��	��..�&�

������������+������)�

�������������
��	����	�
������	��	�
�� �
���
�������� ���
������

��
���"�������&��

������������+�

�����������������$*	�
������ !�
���"��	�#��$%&�

���/
�
��	��
�	���� ���
�0�1� ��
�������2���
��������
����

1� ��
����&��
�

Figure 13: State Restoration Using Log(Lock)

The recovery actions are targeted at only a small subset of the threads in the system

and a small region of the total system state that has been identified as affected by

failure-recovery. Figure 13 shows pseudo code for state restoration using the restora-

tion protocols and the Log(Lock) architecture for the scenario shown in Figure 7.

Assume that, the recovery criterion associated with recovery point R1 specifies that

resources (numActiveUsersLock) acquired after the recovery point should be released

and does not care about occurrences of DR, LU or UR events. As shown in the

Figure 13, the getResourceOwnership primitive is used to determine ownership of the

numActiveUsersLock resource. Then, if the restoration level indicates that a DR or

LU event has occurred, that would imply that the thread has successfully completed

54

incrementing numActiveUsers in the first place. Then in order to rollback the failed

thread execution correctly to recovery point R1 without losing the work done by other

threads, a matching decrement operation would need to be performed. If however

the change track logs indicate that no other thread has consumed data written by

the failed thread, it could imply that the failed thread either did not complete its

increment operation or was the last thread to update the value of numActiveUsers.

In that case, the recoverable thread could use its undo log to undo its changes, if any.

The developer of this recovery handler is expected to have used the Undo log inter-

faces to store the old value prior to modification. Once state restoration is complete,

execution is transferred to recovery point R1.

Similarly, in the case of the example in Figure 8, assume that the recovery criterion

only specifies the constraint on releasing the temporary resource acquired after the

recovery point. Therefore, the getResourceOwnership primitive is used to obtain

the current ownership status of the temporary resource. If the resource is held by

the thread, in order to rollback to recovery point R3, the resource must be cleanly

relinquished. The pseudo code for this example and the next is not shown due to lack

of space.

In the case of the failure scenario shown in Figure 9, the recovery criterion for

recovery point R4 would be that no resources acquired after the recovery point (such

as lock MetadataLocationLock) should be held by the thread and that no DR or LU

events should have occurred. If the restoration level indicates that no other thread

has already consumed this value (i.e., no DR or LU events have occurred), then the

changes of the failed thread can be undone safely by replacing with the values in the

Undo log. However, if the value is likely to have been consumed by another thread (i.e.

DR or LU occurred), then the restoration level does not meet the recovery criterion

for R4. So, in accordance with SRP, the error cannot be handled using single-thread

recovery. Depending upon the support for multi-thread recovery (provided the CD

55

event has not occurred) recovery may require rollbacks of multiple threads. If however,

CD has occurred, then system-level recovery or error-compensation is performed.

3.4.3 Implementation Details

We now discuss some implementation issues involved in the purging algorithm, the

decision on recovery success, and the lock granularity, which are critical components

in the Log(Lock) execution model.

Purging Algorithm : Undo logs go out of scope i.e., can be purged when a

recoverable thread completes execution. Similarly, change track logs for a lock are

purged when the recoverable thread issues a stopTracking call. However, unlike undo

logs, change track logs cannot be purged immediately since these centralized logs may

be shared by multiple recoverable threads. In that case, the log entries corresponding

to the purging thread are only marked for purging and are actually purged when the

last recoverable thread using the log issues a stopTracking call on that lock.

Ensuring Recovery Success: Multi-thread recovery i.e., applying state restora-

tion and recovery to more than one thread, can typically handle more failure scenarios

compared to single-thread recovery. However, multi-thread recovery is complex to im-

plement. Moreover, multi-thread recovery may result in a domino effect [116] (also

referred to as cascading aborts) potentially resulting in unavailability of resources and

unbounded recovery time[129].

A simpler and more effective technique would be to limit recovery to a single

thread and ensure recovery success through other mechanisms such as dependency

tracking and scheduling. Recovery conscious scheduling [129] describes an approach

where dependencies between concurrent threads are identified and dependent threads

serialized. This approach can help limit the number of concurrent dependent threads

and increase single-thread recovery success.

Lock Granularity: Another aspect of the system that affects recovery success

56

is the granularity of locks - i.e., the coupling between a synchronization primitive such

as a lock or mutex and the structure it protects. For example, consider a large shared

state protected by a single lock that synchronizes access to disjoint portions of the

structure. Such a design could adversely affect both the performance and recovery

success of the system since it could artificially increase the number of dependencies

between threads. Besides rewriting code, another possible workaround would be to

explicitly specify the sub-structure protected by the lock in the startTracking call and

log both value and access in the change track logs. Shared resource pools are often

protected by such coarse-grained locks. However, the lock granularity may not be a

problem in the case of resources since recovery handlers are mostly concerned only

about ownership of resources.

3.5 Experiments

We have implemented the Log(Lock) architecture for system state restoration and

micro-recovery on an industry standard, high-performance storage controller and ap-

plied Log(Lock) to a variety of state and resource locks. In this section we present our

evaluation of Log(Lock) with respect to performance, failure recovery and scalability.

We first describe our experimental setup and evaluation metrics. Then we present

our experimentation methodology and results.

We identified state and resource instances that are changed or accessed rapidly

through the observation periods, based on instrumenting the system (Table 2). We

also identified representative failure scenarios by analyzing bug reports, failure logs

and code. Using these scenarios as candidates for micro-recovery and state restora-

tion, we evaluate Log(Lock) efficiency and effectiveness. In summary, our results show

that:

• The Log(Lock) architecture imposes negligible overhead and sustains high perfor-

mance (< 10% impact) under a variety of workloads, even while tracking rapidly

57

Table 2: State and Resource Access over a 75 minute run with varying workloads

Lock Contention Contention Number of % contention Locks/IO

CPU Cycles Counter locks

Fiber channel 2654991 578 137196747 4.21293E-06 10.33500111

IO state 219969 76 90122610 8.43296E-07 6.788916609

Resource pool 608103 100 63482290 1.57524E-06 4.782107098

Resource pool state 124965 52 30040757 1.73098E-06 2.262963691

Throttle timer 79848 11 113316 9.7E-05 0.00853607

changing state (nearly 15K times/second) for significant durations.

• We observe an extremely high rate of recovery success (>99%), i.e., percentage of

time restoration levels meet recovery criterion. This high rate of recovery success

makes it evident that micro-recovery with Log(Lock) can be a promising approach

to system recovery from transient failures.

• The Log(Lock) approach exhibits significant improvement in availability, replacing

a four second downtime without micro-recovery with only a 35% performance

impact lasting six seconds with Log(Lock).

3.5.1 Experimental Setup

We implemented the Log(Lock)-based state restoration architecture in an enterprise-

class high performance, highly concurrent embedded storage controller. The system

consists of a 4-way processor complex (4 3.00 GHz Xeon 5160 processors with 12 GB

memory running IBM MCP Linux) running the controller software over a simulated

backend. The controller implements persistent memory (non-volatile storage) for

write caching. Simulating the backend allows flexibility in terms of experimenting

with different configurations such as read/write latencies and error injection. The

back end configuration varied between 50-250 LUNS of 100GB each with read and

write latencies of the disk set to 20 ms. The host functionality was performed from

a different system (2 1.133 GHz Pentium III processor with 1 GB memory, RHLinux

58

9) connected to the storage complex through a high-bandwidth (2 GB) fiber channel

interconnect.

Our workload was generated using a randomized synthetic workload generator

which took as inputs the following parameters: read/write ratio, block size and queue

depth (i.e. maximum number of outstanding requests from the host). The experi-

ments presented in this work utilized three distinct read/write ratios: 100% writes,

50%-50% mix of reads and writes and 100% reads. Block size was set to 4 KB and

queue depth varied between 16 and 256.

3.5.2 Metrics

Our experiments evaluate efficiency and effectiveness of the Log(Lock) architecture.

Efficiency and effectiveness depend on the following parameters: (1) rate of access to

shared state or resources and (2) duration of a recoverable thread. Increasing each

of these parameters results in a corresponding increase in the log size and logging

overhead. Likewise, increase in each of these parameters increases the probability of

conflicts.

Efficiency refers to the impact of Log(Lock) on system performance. To measure

performance, we utilize two metrics: throughput (IOs per second or IOps) and latency

(seconds/IO).

Effectiveness refers to the ability of the state restoration architecture to reduce

the recovery time and positively impact the availability of the system. It refers to

the probability of recovery success with the Log(Lock) architecture and the impact

on system recovery time.

Effectiveness is measured using the following metrics: (1) recovery success, i.e.

the percentage of time the restoration level meets the recovery criterion for single

thread recovery, and (2) recovery time, i.e. the time required to restore the system

to a consistent state after encountering a failure. While our Log(Lock) approach can

59

also be applied to multi-thread recovery, as described in Section 3.4.3, multi-thread

recovery can be costly in terms of coding effort, resource consumption and recovery

time. Instead, we assume that a technique such as recovery conscious scheduling [129]

can help reduce the need for multi-thread recovery and improve the success of single

thread recovery.

3.5.3 Methodology

In order to study the efficiency and effectiveness of Log(Lock), we first identify state

and resource instances in the software for tracking. We instrumented the system

to identify top locks in terms of access and contention. Table 2 shows the top five

locks in the system in terms of number of accesses and contention. The table shows

the semantics of the lock (i.e. the state or resource protected), the number of CPU

cycles lost to contention, number of occurrences of contention (> 2000 CPU cycles),

number of accesses to the lock and the average number of lock acquisitions per IO.

Frequently acquired locks are indicative of state that is accessed or modified often.

For example, Table 2 shows that the fiber channel lock is accessed nearly 10 times per

IO, indicating that this is a good candidate for evaluating the efficiency Log(Lock).

Contention, while indicative of longer durations of holding locks, also shows a higher

probability of accesses by concurrent threads. As Table 2 shows, the percentage of

accesses resulting in lock contention is low as a result of the highly concurrent design of

the controller. Thus, for short durations of tracking we expect high recovery success.

To evaluate effectiveness, we first measure the recovery success for the candidates

identified from Table 2. We measure recovery success across locks with different rates

of access and varying duration of tracking. To evaluate the impact on recovery time,

we identify candidates for state restoration based on analysis of failure logs, defects

and the software itself.

We present evaluation of the efficiency of our Log(Lock) architecture as compared

60

�

���

���

���

���

����

����

�� �� �� ��� ���

	

��

�

�

��
��

�
�

��

�
�
������

��#��� $��%��� ������� $��%��� ����&�� $��%���

�����#����� $��%��� '(��) ��

Figure 14: Rate vs Throughput (100% Writes)

to the original system, henceforth referred to as baseline. The baseline implementation

does not perform state restoration or fine-grained recovery. Instead, it uses a highly

efficient system level recovery mechanism (SLR) that checks all persistent system

structures such as non-volatile data in the write cache for consistency, reinitializes

software state and redrives lost tasks. Note that no hardware reboot is involved.

An alternative approach to Log(Lock) is to implement schemes such as strict

2-phase locking (2PL), commonly used in transactional systems. Essentially, these

protocols require locks to be held for the entire duration of a recoverable thread.

However, due to the high degree of concurrency in the system and the implementation

of lock timeouts, such a scheme when implemented in our storage controller software

caused lock timeouts and failed to bring up the system. Therefore, throughout this

evaluation section, we primarily use the baseline system for comparison.

61

����

����

����

����

����

����

����

�� �� �� ��	 ���

�
�

�
��
��
��
��

��
�
�
��

��
�
��
���

�������%
�&�
� ��������%
�&�
� ����'���%
�&�
�

�������	����%
�&�
� (��
)��

Figure 15: Rate vs Latency (100% Writes)

3.5.4 Efficiency of Log(Lock)

In order to measure efficiency, we compare the performance of the Log(Lock) archi-

tecture with the baseline system during failure-free operation.

3.5.4.1 Effect of Frequency of State Change

As described in Section 3.5.2, as the rate of accesses to a state variable or resource

being tracked increases, the logging overhead increases. The workloads used for this

experiment consisted of 100% write IOs and the data is averaged over a 10 minute

run. The queue depth is represented on the x-axis. For this experiment we chose

four locks from Table 2, representative of a range of access rates, ranging from 12.5

times/second to 15244 times/second. The duration of tracking was 2600 CPU cycles

on average (and standard deviation 265 CPU cycles).

Figure 14 shows the throughput with varying access rates under different queue

depths. The numbers show that even for high access rates, the Log(Lock) approach

62

�

�����

�����

�����

�����

����

����� ����� ����	 ��������
��
���

��
�

�
��
��
��
��

��
�
�
��

���
�������
�������
���
�����

�

�!
"�#���

Figure 16: Latency

has negligible impact on performance. The lock with access rate 14107 times/sec

(the resource pool lock) was tracked for 2429 CPU cycles and results in a 4.5% drop

in throughput. We attribute this to the possibility of nested lock conditions in that

particular code path, causing the system to be sensitive to even the small delay

introduced by Log(Lock).

Figure 15 shows the variation of latency with queue depth for different access

rates. The curves for the various access rates almost completely overlap showing

that across configurations, the impact of Log(Lock) on latency, even for high access

rates, is negligible. The observation that the latency increases with queue depth is

a trend commonly observed in systems and is independent of Log(Lock). Figure 16

zooms into the points for queue depth 16 to give the reader a closer look at the data.

As in the case of throughput, latency increases by 4% for the resource pool lock

and is attributed to the occurrence of nested lock situations in the code path. The

important message from Figures 14 and 15 is that Log(Lock) tracking can sustain

63

�

���

���

���

���

����

����

�� �� �� ��� ���

	

��

�

�

��
��

�
�

��

�
�
������

��#��$%&��'�(��)����$%&��'�(�� ������$%&��'�(��

������$%&��'�(�� �#����$%&��'�(�� *+��(��

Figure 17: Duration of Tracking vs Throughput (100% Writes)

high performance even while tracking rapidly modified/accessed state or resources.

3.5.4.2 Effect of Duration of Tracking

Figures 17 and Table 3 show the variation of system performance with different du-

rations of tracking. The durations were measured in terms of number of CPU cycles

between the startTracking and stopTracking calls, averaged over a 10 minute run.

The independent parameter queue depth is shown on the x-axis. The figures repre-

sents the performance for candidate locks from Table 2 that were tracked for different

durations ranging from 2894 CPU cycles to 69830 CPU cycles (IO state for 2894 and

69830 CPU cycles, timer, fiber channel and resource pool for 7258, 20228 and 34642

CPU cycles respectively). The numbers were chosen to be representative of a range

of tracking durations. Since no functional code was modified, rather than varying the

duration of a single lock, different locks were instrumented to obtain this range. The

rate of access of each lock varied as shown in Table 5.

64

Table 3: % Duration of Tracking vs Latency (100% Writes)

Queue (Duration of tracking in CPU Cycles)

Depth 2894 7258 20228 34642 69830

% Increase in latency over baseline

16 2.03% 0.68% 0.00% 4.05% 9.46%
32 1.69% 0.34% 0.34% 4.39% 10.47%
64 2.72% 0.34% 0.51% 4.76% 10.71%
128 2.54% 0.85% 0.00% 5.08% 9.32%
256 2.10% 0.00% 0.42% 2.94% 8.82%

From Figures 17 and Table 3 we observe that, the performance of the system with

Log(Lock) is comparable to the baseline system across various queue depths. For the

IO state lock (a lock in the IO path), when the duration of tracking was increased

from 2894 CPU cycles to 69830 CPU cycles, the throughput dropped by 8.85% and

response time increased by 9.75%. This drop in performance can be attributed to two

factors: (1) occurrence of more conflicts with increase in duration of tracking and (2)

increased possibility of encountering nested lock conditions, which are sensitive to the

delay introduced by tracking. In the case of the resource lock, a tracking duration

to 34642 CPU cycles resulted in a drop of only 4%, which is nearly identical to

the performance with a tracking duration of only 2429 CPU cycles, as shown in the

experiment in Section 3.5.4.1. We conclude that, though the overhead of tracking

is a function of both the frequency and duration of tracking, it is more significantly

impacted by the semantics of the lock being tracked and the efficiency of the code

path involving the lock.

3.5.4.3 Performance with Other Workloads

Table 4 shows the throughput and latency with four other workloads. The figures

compare the performance of a system powered by Log(Lock) and the baseline sys-

tem under varying queue depths for the following workloads: Workload-1 (100%

read, disk latency 20ms), Workload-2 (100% read, disk latency 1ms), Workload-3

65

Table 4: % Overhead (other workloads)

Queue Workload 1 Workload 2

Depth Throughput Latency Throughput Latency

16 0.43% 0.47% 0.08% ∼0.00%
32 0.25% ∼0.00% 0.78% 0.75%
64 0.24% 0.39% 0.13% ∼0.00%
128 0.29% 0.39% 0.79% 0.75%
256 0.25% 0.00% 0.12% 0.19%

(50%Read, disk latency 20ms) and Workload-4 (50% read, disk latency 1ms). Data

from tracking the fiber channel lock (15244 times/sec for 20228 CPU cycles each) is

shown. Overall, the impact on performance was < 0.5% in all cases. These results

reiterate the observation that the Log(Lock) architecture is lightweight and sustains

high performance for a range of workloads.

Examining the object code for our implementation showed that in the event of

a lock being tracked, fewer than 200 assembly instructions were added to the code

path. Assuming one instruction executes per CPU cycle, even at a frequency of 15244

times/second, on a 3.00 GHz processor, this amounts to a time overhead of less than

1% (assuming that the size of the state being saved to undo logs is small). Also, note

that the code for a storage controller by itself is aggressively optimized to sustain

high throughput, minimize the duration of locks in the I/O path and avoid nesting

of locks to a large extent. Unlike checkpoints, which require a large amount of state

to be copied to stable storage, our techniques copy small amounts of relevant state

and information in memory only. The combination of all these factors results in

the Log(Lock) system being able to sustain high performance despite an extremely

high frequency of access to shared state and resources. In conclusion, we believe

that the scenarios where performance will be impacted by tracking are when there

are multiple levels of nesting with frequently accessed locks, increasing sensitivity to

delay introduced by tracking. However, we expect that these situations are uncommon

66

Table 5: Recovery Success with the 100% Write Workload

Lock Recovery Tracking Calls #Access Duration Recovery

Criterion (times/sec) (times/sec) CPU cycles Success

Fiber channel No Residual Resources 3666 15244 20228 100%

IO state No DR, LU or UR 2500 10266 2894 99.88%

Resource pool No Residual Resources 10 14107 34642 100%

Resource state No Residual Resources 5 6675 4806 100%

Throttle timer No Residual Resources 10 12.59 7258 100%

IO state No DR, LU or UR 2444 10045 69830 99.38%

in well-designed concurrent systems.

3.5.5 Effectiveness of Log(Lock)

The next set of experiments are focused on evaluating the effectiveness of a micro-

recovery framework with Log(Lock) in improving system recovery.

3.5.5.1 Recovery Success

The first metric of effectiveness is recovery success i.e., the percentage of time the

restoration level meets the recovery criterion at the end of execution of a recoverable

thread. This metric demonstrates the opportunity for micro-recovery in the system

and evaluates if the system can effectively utilize Log(Lock)-based state restoration.

Table 5 shows the recovery success for locks of varying semantics, rates of access and

duration of tracking. For each lock, the recovery criterion, the number of tracking

threads per second, the rate of access, duration of tracking and recovery success are

shown. The restoration level in each case was obtained by calling the getRestora-

tionLevel method before stopTracking, and recovery success was computed as the

percentage of time the restoration level met the recovery criterion. As Table 5 shows,

our storage controller exhibits a high rate of recovery success for a range of locks, even

with high rates of access. We conclude that, for failures involving the restoration of

these instances of state and resources, fine-grained recovery presents an effective re-

covery strategy.

67

���

���

���

����

����
�
	

�
�
�

�
��
��

��

�

���

� �� �� �� �� ��� ��� ��� ��� ��� ���

�
�
	

������������
� ��

������
���
��� !"�������#�$�%��
#�	"

&'�$�	��� &'�$�	���

Figure 18: Throughput with Error Injection

3.5.5.2 Recovery Time

To illustrate the impact of Log(Lock)-based micro-recovery on the overall recovery

time and availability of the controller software, we injected transient failures that

disappeared on retry. The failures required restoration of the IO state to its previous

value and a retry of the function. For the Log(Lock) system, the recovery criterion

for IO state was set as shown in Table 5. Once the failure was injected, the thread

verified if the restoration level at the time of recovery met the recovery criterion,

before attempting state restoration and retry. The tracking duration was equivalent

to the set up with 69830 CPU cycles.

Figures 18 and 19 show the variation of throughput and latency respectively over

time. The points of failure injection are marked in the figures. The throughput and

latency shown are for a workload with 100% write IOs, queue depth 64 and disk la-

tency 20 ms. The Log(Lock) architecture is compared to system-level recovery (SLR)

in the case of the baseline system. Recall that SLR is implemented entirely in soft-

ware and involves restarting the controller process and verifying data structures and

68

�

���

���

���

���

�

� �� �� �� �� ��� ��� ��� ��� ���

�	

�
�

�
��
��
��
�

�

�
�
��

��������
�����

������
�� ��
��!��"�#�$�
�"����� �$�

%	�#&���� %	�#&����

Figure 19: Latency with Error Injection

cache data for consistency before redriving IO transactions. Overall, during failure-

free operation, the average throughput and latency respectively with Log(Lock) is

708IOps, 0.0946 sec/IO and 710IOps, 0.0912 sec/IO for the baseline system.

Log(Lock)-enabled micro-recovery imposes a 35% performance overhead lasting

six seconds during recovery. However, system-level recovery results in 4 seconds

downtime and it takes an additional 2 seconds to begin sustaining high performance.

It is important to remember that as the size of the system and in-memory data struc-

tures increase, the recovery time for SLR is bound to increase. This, along with the

opportunity for micro-recovery illustrated by the high recovery success shown in the

previous experiment, further promote the case for micro-recovery in high performance

systems like the storage controller.

3.6 Related Work

In this section we only briefly discuss related work that has not been discussed in

previous sections. Our work is largely inspired by previous work in the area of trans-

actional systems, software fault tolerance and storage system availability.

69

Hardware redundancy and software redundancy [72], rejuvenation [85] or fault

isolation approaches such as isolating VMs from the failure of other VMs [115, 91]

are complementary to our techniques and are already deployed in our setups. Since

these approaches are targeted at handling failures at a different level they focus on a

coarser granularity of recovery compared to our techniques.

Application-specific recovery mechanisms such as recovery blocks [116], and ex-

ception handling [137] are used in many software systems. However, to the best of

our knowledge, fine-grained, localized recovery, in the presence of multiple interact-

ing tasks executing concurrently, has not been well studied in the past both in terms

of identifying dynamic dependencies and its impact on performance and availabil-

ity. Constructs such as try/throw/catch [147] can be used to transfer control to an

exception handler and a similar exception model is used by our implementation. How-

ever such exception handling constructs alone are insufficient for performing micro-

recovery which requires richer failure context information. The goal of the Log(Lock)

architecture is to provide this context information and provide the developer with a

set of guidelines to decide the precise way in which the system should be restored

given the failure context.

Logging of access patterns has been used for deterministic replay [121, 122, 143]

and bug detection [96]. However, in micro-recovery, there is no requirement to perform

deterministic replay. Also, the purpose of logging access patterns in Log(Lock) is to

identify recovery dependencies between concurrent threads.

3.7 Summary

We have presented Log(Lock), a practical and flexible architecture for tracking dy-

namic dependencies and performing state restoration without rearchitecting legacy

code. By exploring system state space, we formally model thread dependencies

70

based on both state and shared resources, capturing failure contexts through dif-

ferent ‘restoration levels’. We develop recovery strategies in the form of restoration

protocols based on recovery points and restoration levels. A comprehensive experi-

mental evaluation shows that Log(Lock)-enabled micro-recovery is both efficient and

effective in reducing system recovery time.

71

CHAPTER IV

RECOVERY-CONSCIOUS SCHEDULING

This chapter addresses issues at the second and third tier of our recovery conscious

framework described in Chapter 2. Specifically we address the question of effectively

mapping dependent tasks to system resources in order to achieve high recovery effi-

ciency while sustaining good performance. We first introduce the concept of recovery

conscious scheduling (RCS) in Section 4.1 and describe recovery conscious scheduling

algorithms in Section 4.2. Next, Section 4.3 describes the consideration for mapping

recovery scopes identified in tier 1 to recovery groups over which scheduling con-

straints are imposed. Through prototype and simulation experiments we find that

(1) the performance of RCS is critically dependent on the values of recovery-related

parameters and (2) RCS promises to enhance storage system availability while keeping

the additional overhead and the resulting degradation in performance under control.

4.1 Recovery-Conscious Scheduling

The goal of recovery-conscious scheduling (RCS) is to ensure system availability even

during localized recovery. By recovery-consciousness, we mean that the scheduler

must assure availability of resources for normal operation even during a localized

recovery process. One way to achieve this objective is to intelligently isolate the

recovery process by bounding the amount of resources that will be consumed by the

recovering tasks.

4.1.1 Performance-Oriented Scheduling

Figure 20 shows a performance-oriented scheduling algorithm that does not take re-

covery dependencies into consideration while scheduling tasks. The diagram shows

72

Job Queue

R1

R1 R2 R2 R3 R3 R3R2 R2R2

R1R1 R1

CPU1� CPU2 CPU3 CPU4�

� �������� � 	�
����
�

Figure 20: Current Scheduler

a 4-way SMP system where each processor independently schedules tasks from the

same job queue. This scheduling algorithm aims at maximizing the throughput and

minimizing the response time of user requests, which are internally translated by the

system into numerous tasks of three types R1, R2, R3. The ovals represent tasks

and the same shading scheme is used to denote tasks that are dependent in terms of

recoverability. As shown in Figure 20, when all CPU resources are utilized for concur-

rently executing the tasks that have failure/recovery dependencies, then failure and

subsequent recovery can consume all the resources of the system, stalling other tasks

that could have proceeded with normal operation. Moreover, continuing to dispatch

additional dependent tasks before the localized recovery process can be completed

only further aggravates the problem of unavailability.

4.1.2 Recovery Groups and Resource Pools

In order to deal with the problem illustrated in Figure 20, we infuse “recovery con-

sciousness” into the scheduler. Our recovery-conscious scheduler will enforce some

73

serialization of dependent tasks thereby controlling the extent of a localized recov-

ery operation that may occur at any time. To formally describe recovery conscious

scheduling, we first define two important concepts: recovery groups and resource

pools.

Recovery Groups: A recovery group is defined as the unit of a localized recovery

operation i.e., the set of tasks that will undergo recovery concurrently. When clean-

up procedures are initiated for any task within a recovery group, all other tasks

belonging to the same recovery group that are executing concurrently will also initiate

appropriate clean-up procedures in order to maintain the system in a consistent state.

Recovery groups are formed at the second tier of the framework based on recovery

scopes identified in the first tier and additional system considerations such as the

performance overhead of tracking and the number of cores in the system. We defer

the discussion of mapping of recovery scopes to recovery groups to Section 4.3. By

definition, every task belongs to a single recovery group. Thus tasks in the system

can be partitioned into multiple disjoint recovery groups.

Resource Pools: The concept of resource pools is used as a method to partition

the overall processing resources into smaller independent resource units, called re-

source pools. Although we restrict resource pools in our current work to processors,

the concept can be extended to any pool of identical resources such as replicas of

metadata or data. Recovery conscious scheduling maps resource pools to recovery

groups, thereby confining a recovery operation to the resources available within the

resource pool assigned to it.

4.1.3 Mapping of Resource Pools to Recovery-Groups

The recovery-conscious scheduling (RCS) algorithms implement the mapping between

recovery groups and resource pools. There are different ways that one can map

recovery groups to resource pools. The choice of decision depends on the type of

74

Job Queue

R1

R2 R2

R3 R3

R3R2

R2R2

R1 R1

R1 R1

CPU1 CPU2 CPU3� CPU4�

� �������� � 	�
����
�

Figure 21: Recovery Oriented Scheduling

trade-offs one would like to make between recovery time and system availability and

performance. Static scheduling of resource pools to recovery groups is one end of

the spectrum and is only effective in situations where task level dependencies with

respect to recoverability are well understood and the workloads of the system is stable.

Dynamic scheduling of recovery groups to resource pools represents another end of

the spectrum and may better adapt to the changing workload and more effectively

utilize resources, but it is more costly in terms of scheduling management. Between

the two ends of the spectrum are the partially dynamic scheduling algorithms.

Figure 21 depicts a recovery-conscious scheduler for the same set up as the one

used for the performance-oriented scheduler, where tasks are organized into recovery

groups − R1 (shaded as fill), R2 (horizontal lines) and R3 (downward diagonal). The

processing resources (four CPUs in this example) are organized into three resource

pools such that recovery group R1 is mapped to a pool consisting of two processors

and recovery groups R2 and R3 are each mapped to a pool consisting of one processor.

75

In case of a failure within group R1, the recovering tasks are now restricted to two

of the available four processors so that the other two processors remain available for

normal operation. Additionally, the scheduler suspends further dispatching of tasks

belonging to group R1 until the localized recovery process completes. This example

highlights two aspects of a recovery-conscious scheduler: proactive and reactive.

Proactive RCS comes into play during normal operation and enhances availability

by enforcing some degree of serialization of dependent tasks. The goal of proactive

scheduling is to reduce the impact of a failure by trying to bound the number of

outstanding tasks per recovery group. Then in the event of a failure within any re-

covery group, the number of tasks belonging to that recovery group that are currently

executing and need to undergo recovery are also controlled. By limiting the extent of

a recovery process, proactive scheduling can help the system recover sooner, and at

the same time, it controls the amount of resources dedicated to the recovery process.

Proactive RCS thereby ensures resource availability to normal operation even during

a localized recovery process.

The reactive aspect of recovery conscious scheduling takes over after a failure has

occurred. When localized recovery is in progress, reactive RCS suspends the dispatch

of tasks belonging to the group undergoing recovery until the recovery completes.

This ensures quick completion of recovery by preventing transitive expansion of the

recovery scope and avoiding deadlocks.

4.1.4 System Considerations

The deployment of recovery conscious scheduling in practice requires the design and

implementation of the scheduler to meet the stringent performance requirements of

the storage system, sustaining the desired high throughput and low response time.

Put differently, recovery-conscious scheduling should offer comparable efficiency in

throughput and latency as those provided by performance oriented scheduling.

76

while true do
repeat

repeat
ScanDispatch(HighPriorityQueue)

until HighPriorityLoopCount
ScanDispatch(MediumPriorityQueue)

until MediumPriorityLoopCount
ScanDispatch(LowPriorityQueue)

end while

Figure 22: Qos-based scheduling

while true do
repeat

repeat
ScanDispatch(HighPriorityQueue for ρ1)

until HighPriorityLoopCount
ScanDispatch(MediumPriorityQueue for ρ1)

until MediumPriorityLoopCount
ScanDispatch(LowPriorityQueue for ρ1)

end while

Figure 23: Recovery conscious scheduling

We outline below some factors that must be taken into consideration while com-

paring recovery conscious scheduling with performance oriented scheduling in a multi-

core/SMP environment.

Note that our scheduling algorithms are concerned with partitioning resources

between tasks belonging to different “components” of the same system which adds a

second orthogonal level to the scheduling problem. We continue to respect the QoS

or priority considerations specified by the designer at the level of user requests. For

example, Figure 22 shows an existing QoS based scheduler using high, medium and

low priority queues. Figure 23 shows how recovery-conscious scheduling used by a

pool ρ1 dispatches jobs based on both priority and recovery-consciousness (by picking

jobs only from the recovery groups assigned to it).

77

We use good-path and bad-path performance as the two main metrics for compar-

ison of the recovery-conscious schedulers with performance oriented schedulers. By

‘good-path’ performance we mean the performance of the system during normal op-

eration. We use the term ‘bad-path’ performance to refer to the performance of the

system under localized failure/recovery.

Both good path and bad path performance can be measured using end-to-end

performance metrics such as throughput and response time. In addition, we can

also measure the performance of a scheduler from system-level factors, including cpu

utilization, number of tasks dispatched over time, queue lengths, the overall utilization

of other resources such as memory, and the ability to meet service level agreements

and QoS specifications.

4.2 Classification of RCS Algorithms

We classify recovery conscious scheduling (RCS) algorithms based on the method

in which resource pools are distributed across recovery groups. As discussed in the

previous section, we categorize recovery-conscious scheduling algorithms into three

classes: static, partially dynamic, and fully dynamic. This classification represents

varying degrees of trade-offs between fault isolation and performance, ranging from

static mappings which emphasize recoverability over performance, to different ways of

balancing between recoverability and performance, to a completely dynamic mapping

of resources to recovery groups, which maximizes the utilization of resources while

trying to meet recovery constraints.

In order to provide a better understanding of the design philosophy of our recovery-

conscious scheduling, we devise a running example scenario that is used to illustrate

the design of all three classes of RCS algorithms. This running example has five

resource pools: ρ1, ρ2, ρ3, ρ4 and ρ5 and four recovery groups: γ1, γ2, γ3 and γ4. We

use σi to denote the recoverability constraint for the recovery group γi. Constraint

78

Recovery Groups γ1 γ2 γ3 γ4

% of Workload 40% 20% 20% 20%
Recoverability 2 1 1 1
constraints (σi)

Table 6: Recovery constraints

σi specifies the upper limit on the amount of resources (processors in this case) that

can be dedicated to the recovery group γi (1 ≤ i ≤ 4 in our running example). Since

we are concerned with processing resources in this work, it also indicates the number

of tasks belonging to a recovery group that can be dispatched concurrently. The

recoverability constraint σi is determined based on both the recovery group workload

i.e., the number of tasks dispatched, and the observed task-level recovery time. Al-

though recoverability constraints are specified from the availability standpoint, they

must take performance requirements into consideration in order to be acceptable.

Recoverability constraints are primarily used for proactive RCS.

For ease of exposition we assume that all resource pools are of equal size (1 pro-

cessor each). Table 6 shows the workload distribution between the recovery groups

and the recoverability constraint per group, where two processors are assigned to the

recovery group γ1 and one processor is assigned to each of the remaining three groups.

In contrast to the scenario in Table 6 where no resource pools are shared by

two or more recovery groups, when more than one recovery group is mapped to a

resource pool the scheduler must ensure that the dispatching scheme does not result

in starvation. By avoiding starvation, it ensures that the functional interactions

between the components are not disrupted. For example in our implementation we

used a simple round-robin scheme for each scheduler to choose the next task from

different recovery groups sharing the same resource pool. Other schemes such as those

based on queue lengths or task arrival time are also appropriate as long as they avoid

starvation.

79

Recovery Groups γ1 γ2 γ3 γ4

Resource Pools ρ1, ρ2 ρ3 ρ4 ρ5

Table 7: Static mapping

4.2.1 Static RCS

Static recovery conscious scheduling algorithms construct static mappings between

recovery groups and resource pools. The initial mapping is provided to the system

based on the observations of the workload and known recoverability constraints, such

as previously observed localized recovery times. The mappings are static in the sense

that they do not continuously adapt to changes in resource demands and workload

distribution. Table 7 shows a mapping between the pools ρ1 . . . ρ5 and the recovery

groups γ1 . . . γ4. This mapping assigns resource pools to recovery groups based on

the workload distribution and the recoverability constraints given in Table 6. In this

mapping recovery group γ1 is mapped to two pools ρ1 and ρ2. Similarly groups γ2,

γ3 and γ4 are each assigned a single resource pool. Each processor dispatches work

only from its assigned recovery group.

This approach aims at achieving strict recovery isolation. As a result, it loses

out on utilization of resources, which in turn impacts both throughput and response

time. Although this is a naive approach to performing recovery-conscious scheduling

it helps us in understanding issues related to the performance and recoverability

trade-off. Note that all our RCS algorithms avoid starvation by using a round-robin

scheme to cycle between recovery groups sharing the same resource pool. In systems

where the workload is well understood and sparse in terms of resource utilization,

static mappings offer a simple means of achieving serialization of recovery dependent

tasks.

Implementation Considerations: There are two main data structures that

are common to all RCS algorithms: (1) the mapping tables and (2) the job queues.

Mapping table implementations keep track of the list of recovery groups assigned to

80

Recovery Groups γ1 γ2 γ3 γ4

Resource Pools All All ρ4 ρ5

Table 8: Partial Dynamic RCS: Alternative mapping

each resource pool. They also keep track of groups that are currently undergoing

recovery for the purpose of reactive scheduling. In our system we used a simple

array-based implementation for mapping tables.

There are a couple of options for implementing job queues. Recall that recovery-

consciousness is built on top of the QoS or priority based scheduling. We could use

multiple QoS based job queues (for example, high, medium and low priority queues)

for each pool or for each group. In our first prototype, we chose the latter option and

implemented multiple QoS based job queues for each recovery group for a number

of reasons. Firstly, this choice easily fits into the scenario where a single recovery

group is assigned to multiple resource pools. Secondly, it offers greater flexibility to

modify mappings at runtime. Finally, reactive scheduling (i.e., suspending dispatch of

tasks belonging to a group undergoing localized recovery) can be implemented more

elegantly as the resource scheduler can simply skip the job queues for the recovering

group. Enqueue and dequeue operations on each queue are protected by a lock. An

additional advantage of a mapping implemented using multiple independent queues

is that it reduces the degree of contention for queue locks.

4.2.2 Partial dynamic RCS

The second class of algorithms are partially dynamic and allow the recovery-conscious

scheduler to react (in a constrained fashion though) to sudden spikes or bursty work-

load of a recovery group.

The main drawback of static RCS is that it results in poor utilization of resources

due to the strictly fixed mapping. Partial dynamic RCS attempts to alleviate this

problem by using a relatively more flexible mapping of resources to recovery groups,

81

. . .
repeat

workFound := false
for γi in current mapping do

workFound := ScanDispatch(HighQueue for γi)
if workFound then

break
end if

end for
if !workFound then

AcquireLease()
for γj in alternative mapping do

workFound := ScanDispatch(HighQueue for γj)
if leaseExpired() OR workFound then

break
end if

end for
end if

until HighPriorityLoopCount
//Similarly for Medium and Low Priority tasks

Figure 24: Partial Dynamic RCS

allowing groups to utilize spare resources. Partially dynamic RCS algorithms begin

with a static mapping. However, when the utilization is low, the system switches to

an alternative mapping that redistributes resources across recovery groups.

For example, with the static mapping of Table 7 with changing distribution of

workloads, resources allocated to recovery groups γ3 and γ4 may be under utilized

while groups γ1 and γ2 may be swamped with work. Under these circumstances, the

system switches to an alternative mapping shown in Table 8. Now groups γ1 and

γ2 can utilize spare resources across the system even if this may mean potentially

violating their recoverability constraints specified in Table 6. Note that γ3 and γ4

still obey their recoverability constraints. In summary, partially dynamic mappings

allows the flexibility of selectively violating the recoverability constraints when there

are spare resources to be utilized, whereas static mappings strictly obey recoverability

constraints.

82

The aim of the partial dynamic mapping is to improve utilization over static

schemes by opening up spare resources to recovery groups with heavy workloads.

With the above example although there is a danger of a single recovery group (for

e.g., γ1) running concurrently across all resource pools, note that this is highly un-

likely if other groups have any tasks enqueued for dispatching. There are multiple

combinatorial possibilities in designing alternative mappings for partially-dynamic

schemes. The choice of which components should continue to stay within their recov-

erability bounds is to be made by the system designer using prior information about

individual component vulnerabilities to failures.

Implementation Considerations: There are two implementation considera-

tions that are specific to the partially dynamic scheduling schemes: (1) the mechanism

to switch between initial schedule and an alternative schedule, and (2) the mapping

of recovery group tasks to the shared resource pools.

We use a lease expiry methodology to flexibly switch between alternative map-

pings. Note that the pool schedulers switch to the alternative mapping based on

the resource utilization of the current pool. With the partially dynamic scheme,

the alternative mappings are acquired under a lease, which upon expiry causes the

scheduler to switch back to the original schedule. The lease-timer is set based on

observed component workload trends (such as duration of a burst or spike) and the

cost of switching. For example, since our implementation had a low cost of switching

between mappings, we set the lease-timer to a single dispatch cycle. Figure 24 shows

the pseudo-code for a partial dynamic scheduling scheme using a lease expiry method-

ology. For the sake of simplicity we do not show the tracking method (round-robin)

used to avoid starvation in the scheduler.

Recall from the implementation considerations for the static mapping case that we

chose to implement job queues on a per recovery group basis. This allowed for easy

switching between the current and alternative mapping which only involves consulting

83

a different mapping table. Task enqueue operations are unaffected by the switching

between mappings.

4.2.3 Dynamic RCS

Dynamic recovery-conscious scheduling algorithms assign recovery groups to resource

pools at runtime. In dynamic RCS, tasks are still organized into recovery groups

with recoverability bounds specified for each group. However, all resource pools are

mapped to all recovery groups. The schedulers cycle through all groups giving prefer-

ence to groups that are still within their recoverability bounds, i.e., occupying fewer

resources than specified by the bound. If no such group is found, then tasks are dis-

patched while trying to minimize the resource consumption by any individual recovery

group.

This class of algorithms aim at maximizing utilization of resources at the cost of

selectively violating the recoverability constraints. Note that all recovery-conscious

algorithms are still designed to perform reactive scheduling, i.e., suspend the dis-

patching of tasks whose group is currently undergoing localized recovery. The aspect

that differentiates the various mapping schemes is the proactive handling of tasks to

improve system availability. The dynamic scheme can be thought of as trying to use

load balancing among recovery groups in order to achieve both recovery isolation and

good resource utilization.

Implementation Considerations: A key implementation consideration specific

to dynamic RCS is the problem of keeping track of the number of outstanding tasks

belonging to each recovery group. We maintain this information in a per-processor

data structure that keeps track of the current job.

Recall that implementing job queues on the per recovery-group basis helps us im-

plement dynamic mappings efficiently and flexibly. One of the critical optimizations

for dynamic RCS algorithms involves understanding and mitigating the scheduling

84

overhead imposed by the dynamic dequeuing process. In on going work we are con-

ducting experiments with different setups to characterize this overhead. However our

results show that even with the additional scheduling cost dynamic RCS schemes

perform well both under good-path and bad-path conditions.

4.3 Mapping Recovery Scopes to Recovery Groups

The number of recovery groups in the system and the constraints on these recovery

groups are critical factors in determining the system recovery time and thus the fault

resiliency of the storage system (a system is resilient if it can continue to operate when

a failure occurs and if it can recover from such failures quickly). A large number of

recovery groups allows fine-grained dispatching of work and thus the opportunity of

improved recovery performance through higher level use of multiprocessing in the

multi-core processor. Depending on how tasks are assigned to recovery groups, the

performance during normal operation may also be impacted. In general, increas-

ing the number of recovery groups beyond a system-dependent threshold, may cause

scheduling overhead that may outweigh the benefit of decreased lock contention. In

order to effectively enforce recoverability constraints, we must map scopes appropri-

ately to groups. The simple approach is to make each recovery scope a recovery group.

Given the uneven distribution of tasks over recovery scopes, this may result in higher

scheduling overhead as the scheduler polls the large number of recovery groups for

work and most groups have no pending work. It may also offer little benefit in terms

of shorter recovery time. In this section we develop mathematical models that cap-

ture the way in which various system parameter values affect recovery performance.

Our analysis focuses on the degree of multiprocessing, scheduling discipline, failure

and recovery rates, and workload characteristics.

85

4.3.1 Impact of Recovery Groups on System Resilience

The number of outstanding tasks belonging to a single recovery group and hence the

degree of serialization has a direct bearing on the time-to-recovery of the system.

For example, in the worst case where all tasks running at the time of failure belong

to the same recovery group, massive system-wide recovery will have to be initiated.

Intuitively, the recovery time increases with increasing size of the system and with

decreasing number of recovery groups.

Based on the definition of recovery groups, we assume that when a task t belonging

to the kth recovery scope fails, all tasks belonging to the scope that are executing

concurrently with the failed task t need to undergo recovery.

Let λk represent the failure rate and µk represent the repair rate for failures in the

kth recovery scope. The number of processors or cores in the system is represented by

variable m and let αk(i) represent that probability that i outstanding tasks belonging

to the kth recovery scope are executing concurrently at the time of failure.

We assume that the recovery process executes serially even for concurrently ex-

ecuting threads in order to restore the system to a consistent state. As a result,

the time to complete system recovery is a product of the number of recovering pro-

cesses and the individual task recovery time. Then the mean time to complete system

recovery is given by:

µ = αk(1) × 1

µk

+ αk(2) × 2

µk

+ . . . + αk(m) × m

µk

Let γk represent the probability that a task belongs to recovery scope k. Then

using the Poisson approximation for the binomial probability mass function, the prob-

ability that there are i outstanding tasks belonging to the kth recovery scope is given

by:

αk(i) = b(i; m, γk) =
e−γkm(γkm)i

i!

With performance-oriented scheduling (POS), there is no notion of bounding the

86

recovery process. Interdependent tasks belonging to the same recovery scope can

potentially be executing on all processors. As a result up to m dependent tasks

may be executing concurrently at the time of failure. Under these circumstances the

system mean-time-to-recovery (MTTR) for POS given that the failure occurred in

the kth recovery group denoted by MTTRPOS|k is:

MTTRPOS|k =
m

∑

i=1

e−γkm(γkm)i

i!
× i

µk

On the other hand, RCS enforces constraints on recovery groups there by ensuring

some degree of serialization of dependent tasks. Let us assume that the constraint on

the maximum number of concurrent tasks of the recovery group containing the kth

recovery scope is given by ck. Then the system mean-time-to-recovery (MTTR) for

RCS given that the failure occurred in the kth recovery group denoted by MTTRRCS|k

is:

MTTRRCS|k =

ck
∑

i=1

e−γkck(γkck)
i

i!
× i

µk

However, with dynamic RCS, a more flexible mapping of resources to recovery

groups is employed in order to reduce resource idling and improve utilization. Under

this scheme in the event that there are spare idle resources even after all tasks have

been dispatched according to recoverability constraints, keeping in mind the high-

performance requirements of the system, the constraints are selectively violated. Let

the number of active recovery groups in the system be denoted by R. Let ck be

the constraint specified on the maximum number of concurrent tasks for the group

containing the kth recovery scope. Without loss of generality we assume that there

are idle resources only when
∑R

i=1 ci < m. For the sake of simplicity let us assume

that the available spare resources m−∑R
i=1 ci is allocated evenly amongst all groups.

Then in the worst case violation of a constraint ck, denoted as ck is given by:

ck = ck + ⌈(m − ∑R
i=1 ci)

R
⌉

87

Thus, the system recovery time with dynamic RCS is obtained by replacing the

constraint ck by ck in the expression for system recovery time for RCS (MTTRRCS|k).

Clearly, the system availability under POS is affected by the failure rate λk, the

repair rate µk for failures in the kth recovery scope, the number m of processors or

cores in the system, and the probability γk that a task belongs to recovery scope k.

In contrast, with RCS, availability is also influenced by additional parameters such

as the number R of active recovery groups in the system and the constraint ck on

the maximum number of concurrent tasks of the group containing the kth recovery

scope.

4.3.2 Impact of RCS Queues on System Performance

In this section we present analysis that shows the impact of recovery groups on the

system performance and based on these results we describe criteria for the selection

of number of recovery groups for efficient scheduling. Each recovery group is mapped

to a single scheduler queue and the serialization constraint imposed on the group

applies to all scopes that are mapped to the group.

While evaluating system performance, we must take into consideration both the

good-path (i.e. normal operation) and bad-path (during failure recovery) perfor-

mance. Good path performance is primarily impacted by the efficiency of the sched-

uler. On the other hand, bad-path performance will be impacted by the extent of

failure and recovery (i.e. the degree of serialization) and the availability of resources

for normal operation during local recovery.

Variation of service rate with RCS queues : We model the variation of

service rate with the number of queues as a hypoexponential distribution with 2

phases where the first phase describes the scenario where the service rate increases

with the number of queues due to reduced lock contention. The second phase models

the scenario where the increase in the number of queues causes the service rate to

88

50 100 150 200
#RCS Queues

1.5 ´ 106
2 ´ 106

2.5 ´ 106
3 ´ 106

3.5 ´ 106
Service Rate as tasks per second

Number of Scheduler Queues

Figure 25: Variation of Service Rate

drop due to the additional scheduling overhead. Figure 25 shows an example of this

model for variation of service rate with the number of queues.

In order to study the impact of recovery-consciousness on the performance of the

system, we model both POS and RCS with varying system size and during good-path

and bad-path operation. In order to model utilization, response time and throughput

we adopt the models for M/M/m queuing systems [150].

Consider a system where tasks arrive as a Poisson process with rate λa and service

times for all cores are independent, identically distributed random variables. Let the

mean service rate as a function of the number of scheduler queues (groups in the case

of RCS), for performance oriented scheduling be denoted by µpos and for recovery

conscious scheduling be denoted by µrcs. We assume that the service times include

the time required to dequeue tasks from the job queue(s) and iterate through queues

(for RCS). Let m denote the total number of cores in the system.

Good-path Performance : During good-path operation, all system resources are

available and storage controller performance is limited only be scheduler efficiency.

Accordingly, the average number of jobs, N, in the system is given by:

E [N] = mρ + ρ
(mρ)m

m!

p0

(1 − ρ)2

where p0, the steady state probability that there are no jobs in the system is given

89

by:

p0 =

[

m−1
∑

k=0

(mρ)k

k!
+

(mρ)m

m!

1

(1 − ρ)

]−1

For POS, the value ρ, the traffic intensity, is given by, ρpos = λa

mµpos
and that for

RCS is given by ρrcs = λa

mµrcs
. EPOS [N] and ERCS [N] are obtained by substituting

ρ by ρpos and ρrcs respectively in the expressions for E [N] and p0. In each case,

based on Little’s formula [145] the average response time for performance -oriented

scheduling (EPOS[R]) and RCS (ERCS[R]) is given by:

EPOS [R] = EPOS [N]
λa

and ERCS [R] = ERCS [N]
λa

Assuming that our system utilizes a non-preemptive model where individual tasks

complete execution within the service time allocated to them on system cores, the

system throughput T can be modeled as follows:

EPOS [T] = µposU
pos
0 and ERCS [T] = µrcsU

rcs
0

where U0 the utilization of the system is given by U0 = 1 − p0 and the values for

utilization with POS (Upos
0) and RCS (U rcs

0) are obtained by substituting appropriate

values for p0.

Bad-path Performance : In order to model system performance during bad-

path operation we assume that the amount of system resources consumed by the

recovery process is proportional to the extent (i.e. the number of outstanding tasks

undergoing recovery) of the recovery process.

As described in the Section 4.3.1, with POS, the extent of the recovery process is

unbounded and can potentially span all the available cores in the system. As with

the analysis of system availability, assume that a task t belonging to the kth recovery

scope encounters a failure causing in all executing tasks belonging to the kth recovery

group to under go recovery. Let fpos
k and f rcs

k denote the extent of the failure-recovery

90

�

�

�

�

�

�

�

�
�
�

�
�
��
�
��
�
�
��
�

��

��
�
��

��
��
�
�
��
�

�

�

 � � � � � � �� �� ��

!��
�� !��
��� !��
��� !��
���

!��
��� !��
��� !��
��� !��
�� �

	

�
�

��
�

"��
���� ���
�
��

Figure 26: Cache-Standard

for POS and RCS respectively. Let, mpos and mrcs denote the expected number of

cores available for normal operation during failure recovery. Then, as explained in

Section 4.3.1

mpos = m − fpos
k = m −

m
∑

i=0

e−γkm(γkm)i

i!
× i

mrcs = m − f rcs
k = m − ck

Then the expected response time and throughput during bad-path: E ′
POS[R], E ′

POS[T]

and E ′
RCS[R], E ′

RCS[T] for POS and RCS respectively can be computed by substitut-

ing m in the original expressions with mpos and mrcs respectively.

4.4 Experiments

In this section we present results from experiments conducted using both simulations

and a prototype. The experimental results illustrate the complex dynamics between

the various factors that affect performance and recovery efficiency. Our results provide

91

�

�

��

��

��

��

��

��

� � � �� �� �� �	 �� �� �

���
��� ���
���� ����
����

�����������������

�
�
�
�
�

�
�
��
�
��
�
�
��

�
��

��
�
�!

�"
"�
�
�
��

Figure 27: Efficiency vs Recovery groups

valuable insights into the implications and trade-offs associated with an implementa-

tion of fine-grained recovery and the effectiveness of our proposed framework. We have

implemented our recovery-conscious scheduling algorithms on an industry-standard

enterprise storage system with architecture similar to that discussed in Chapter 2.

Our implementation involved no changes to the functional architecture. Our results

show that dynamic RCS can match performance oriented scheduling under good path

conditions while significantly improving performance under failure recovery.

4.4.1 Workload

We use the z/OS Cache-Standard workload [22, 92] to evaluate our algorithms. The

z/OS Cache-standard workload is considered comparable to typical online transaction

processing in a z/OS environment. The workload has a read/write ratio of 3, read

hit ratio of 0.735, destage rate of 11.6% and a 4K average transfer size. The setup for

92

the cache-standard workload was CPU-bound. Figure 26 shows the number of tasks

dispatched per-recovery group under the workload over 30 minutes. Group 4 has the

highest task workload (∼6.5M tasks/min) followed by group 5 (∼ 5M/min). Eight

of the groups which have nearly negligible workload are not visible in the graph. We

use this workload to measure throughput and response times. While measuring cpu

utilization we only count time actually spent in task execution and do not include

time spent acquiring queue locks, dequeuing jobs or polling for work.

4.4.2 Methodology

We use our workload to measure throughput and response times in our prototype

experiments and scheduler efficiency (as measured by the number of task dispatches

per unit time) in the simulation experiments. For the prototype experiments we

identified 16 component-based recovery scopes. Each recovery scope corresponded to

a functional component such as a host adapter, device manager or cache manager.

We measure the effectiveness of RCS against traditional performance-oriented

scheduling (POS). POS, either with a single, global queue or multiple load-balanced

queues, does not include recovery-dependency in its criteria for resource allocation.

In order to understand the impact on system performance when localized recovery

is underway, we inject faults into the workload. We choose a candidate task belonging

to recovery scope 5 and introduce faults at a fixed rate. The time required for recovery

is specified by the recovery rate. During localized recovery, all tasks belonging to

the same recovery scope that are currently executing in the system and that are

dispatched during the recovery process also experience a delay for the duration of

the recovery time. For example, in our implementation, a recovery time of 20 ms

and a failure rate of 1 in every 10K dispatches, for tasks belonging to component 5,

introduces an overhead of 5% to aggregate execution time per minute of component

5 execution on average. The recoverability constraint for dynamic RCS was set to 1.

93

Note that in the case of dynamic RCS, the constraint would selectively be violated

only if no task satisfying the constraint was found.

4.4.3 Prototype Experimental Setup

We prototyped our approach to fine-grained recovery by modifying the firmware of

a commercial enterprise-class storage system (sensitive information is left out). The

storage system consists of a storage controller with two 8-way server processor com-

plexes, memory for I/O caching, persistent memory (NVS) for write caching, multi-

ple fiber channel protocol (FCP), Fiber Connectivity (FICON*) or Enterprise System

Connection (ESCON*) adapters connected by a redundant high bandwidth (2 Gbyte)

interconnect, fiber channel disk drives, and management consoles. The system is de-

signed to achieve both response time and throughput objectives. The embedded

storage controller software is similar to the model presented in Chapter 2. The sys-

tem has a number of interacting components which dispatch a large number of short

running tasks. The system is designed to optimize both response time and through-

put. The basic strategy employed to support continuous availability is the use of

redundancy and highly reliable components.

The embedded storage controller software is similar to the model presented in

Chapter 2. The software is also highly-reliable with provisions for quick recov-

ery(under ∼6 seconds) at the system-level. The system has a number of interacting

components which dispatch a large number of short running tasks. For the proto-

type experiments presented in this thesis we identify 16 recovery scopes based on

component-based explicit recovery dependency specifications. However, some recov-

ery groups may perform no work in certain workloads possibly due to features being

turned off. We chose a pool size of 1 CPU which resulted in 8 pools of equal size. The

system already implements high, medium and low priority job queues. Our recovery-

conscious scheduling implementation therefore uses three priority based queues per

94

recovery group. For the partially dynamic case, based on the workload we have iden-

tified two candidates for strict isolation - groups 4 and 5. For the static mapping case

each recovery group is mapped to resource pools proportional to its ratio of the total

task workload.

Our framework was implemented in the storage-controller firmware micro-code. In

our implementation, the recovery-conscious scheduler alone was implemented in ap-

proximately 1000 lines of code. Task-level recovery can be implemented incrementally

for each failure situation that we intend to handle. Currently, our implementation

specifies system-level recovery as the default action, except for cases for which task-

level recovery has been implemented. A naive coding and the design effort for task

level recovery would be directly proportional to the number of “panics” or failures in

the code that are intended to be handled using our framework. In general, the coding

effort for a single recovery action is small and is estimated to be around a few tens of

lines of code (using semicolons as the definition of lines of code) per recovery action

on average.

4.4.4 Prototype Experimental Results

We compare RCS and performance oriented scheduling algorithms using good-path

(i.e. normal condition) and bad-path (under failure recovery) performance.

4.4.4.1 Effect of additional job queues

We first performed some benchmarking experiments to understand the effect of ad-

ditional job queues on the efficiency of the scheduler. Using the cache-standard

workload, we measured the aggregate number of dispatches per minute with varying

number of recovery groups - 16, 4 and 1 (which is identical to performance-oriented

scheduling) to measure scheduler efficiency with dynamic RCS. The four and one re-

covery group cases were implemented by collapsing multiple groups into a single larger

group. Recall that each recovery group results in three job queues for high, medium

95

��������

��������

��������

��������

	�������

	�������

� � �� �� 	� 	�

��
��
������� �
��
������� �
��
�������

��
����������� �
����������� �
�����������

������������������

�

�
!
�
�"
#
��
�
�
�$
%
�
��
��
��
��

��
��
�
�
��
�

Figure 28: Impact of ♯Recovery Groups

and low priority jobs. Figure 27 shows the aggregate number of tasks dispatched per

minute with 1, 4 and 16 recovery groups. As the figure shows the number of dis-

patches are almost identical in the three cases (+/- 2%). Although more job queues

imply having to cycle through more queue locks while dispatching work, increasing

the number of job queues reduces contention for queue locks both when enqueuing

and dequeuing tasks. For most of the experiments in this chapter we choose a con-

figuration with 16 recovery groups.

Figure 28 shows the average number of task dispatches per minute over 30 minutes

with varying number of recovery groups under the Cache-standard workload. The

figure also shows the scheduler performance for the same configuration using the

simulation. As the figure shows, the number of dispatches initially increases (although

modestly) with the increase in the number of groups. For instance, when the number

of groups increase from 1 to 16, the number of dispatches increase by nearly 13% (9%

in the simulation) and from 1 to 4, the number of dispatches increases by 10% (8%

96

�

��

��

��

��

���

���

��	
��

	������

��������

��������

�	����

��������

�������

�	����

��	���!!��

��������

���

����������

"
#
	�

�
$
#
�
�
��

��
�

%
�&

�
�

Figure 29: Good path throughput

in the simulation). This experiment was used to validate the simulator and establish

the preferred number of recovery groups as 16 for further experimentation with the

prototype.

4.4.4.2 Good-path Performance

Recovery-conscious scheduling can be an acceptable solution only if it is able to meet

the stringent performance requirements of a high-end system. In this experiment

we compare the good-path (i.e. under normal operation) performance of our RCS

algorithms with the existing performance-oriented scheduler.

Figure 29 shows the good-path throughput for the performance-oriented and

recovery-conscious scheduling algorithms. The average throughput for the dynamic

RCS case with 16 groups (105 KIOps) and 4 groups (106 KIOps) was close to that for

the performance-oriented scheduler (107 KIOps). On the other hand, with partially

97

��

��

��

��

��

��

	

�
�
	�

�
��

�

�
��
��
	�
��

�
�
	�

�

�

��

��

�����

��������

�������

��
��!

"��#
	�

�������

��
��

"��#
	�

���������

�������

��

 �����
��

�
�
	

�

��
�

�

��

Figure 30: Good path latency

dynamic RCS, the system throughput drops by nearly 34% (∼ 69.9 KIOps), and

with static RCS by nearly 58% (∼ 44.6 KIOps) compared to performance oriented

scheduling.

Figure 30 compares the response time with different RCS schemes and performance-

oriented scheduling. Again, the average response-time for the dynamic RCS case

with 16 recovery groups (13.5 ms) and 4 recovery groups (13.6 ms) is close to the

performance-oriented case (13.3 ms). However, with the partially-dynamic RCS

scheduling, the response time increases by nearly 63% (21.7 ms) and by 156% with

static RCS (34.1ms).

Both the throughput and response time numbers can be explained using the next

chart, Figure 31. The radar plot shows the relationship between throughput, response

time and cpu-utilization for each of the cases. As the figure shows, the cpu utiliza-

tion has dropped by about 19% with partially dynamic RCS and by 63% with static

98

��

���

����

����

����

����

���	�
����

��

�����
�����������������

����������
��� ��
��� ��!"�#�$�%�����&

��
��� ��!"�#'�%�����& ������		����
��� ��!"

"���� ��!"

Figure 31: CPU utilization

RCS. The reduction in cpu utilization eventually translates to reduced throughput

and increased response time in a cpu-bound workload intensive environment. These

numbers seem to indicate that in such an environment schemes that reduce the uti-

lization can result in significant degradation of the overall performance. However

note that the normal operating range of many customers may be only around 6-7000

IOps [138]. If that be the case, then partially-dynamic schemes can more than meet

the system requirement even while ensuring some recovery isolation.

4.4.4.3 Bad-path Performance

Next, we compare RCS algorithms with performance-oriented scheduling under bad-

path or failure conditions. In order to understand the impact on system throughput

and response time when localized recovery is underway, we inject faults into the cache

standard workload. We choose a candidate task belonging to recovery group 5 and

99

��

��

��

���

���

�
	

�
�
�

�
�

�
��
�

��

�

��

��

��	���

�	������

������ �

!"#�

������ �

!"#�$��%��

	
� ��&��

��	���%%��

������ �

!"#

#���� �!"#

�
�
	

$�
�

Figure 32: Bad path throughput

introduce faults at a fixed rate (1 for each 10000 dispatches). Recovery was emulated

and recovery from each fault was set to take approximately 20 ms. On an average

this introduces an overhead of 5% to aggregate execution time per minute of the

task. During localized recovery, all tasks belonging to the same recovery group that

are currently executing in the system and that are dispatched during the recovery

process also experience a recovery time of 20 ms each. We measured performance

(throughput and latency) averaged over a 30 minute run.

In the case of recovery-conscious scheduling algorithms, reactive scheduling kicks

in when any group is undergoing recovery. Under those circumstances, tasks belonging

to that recovery group already under execution are allowed to finish, but further

dispatch from that group is suspended until recovery completes.

Figure 32 shows the average system throughput with fault injection. The average

throughput using only performance oriented scheduling (87.8 KIOps) drops by nearly

100

16.3% when compared to dynamic RCS (105 KIOps) that also uses reactive policies.

On the other hand dynamic RCS continues to deliver the same throughput as under

normal conditions. Note that this is still not the worst case for performance oriented

scheduling. In the worst case, all resources may be held up by the recovering tasks

resulting in actual service outage and the problem would only worsen with increasing

localized recovery time and system size.

The figure also compares proactive and reactive policies in dynamic RCS. The

results show that with only proactive scheduling we are able to sustain a throughput

(104 KIOps) which is just ∼ 1% less than that using both proactive and reactive

policies (105 KIOps).

The graph also compares partially dynamic RCS (69.9 KIOps) and static RCS

(40.4 KIOps). While these schemes are able to sustain almost the same throughput

as they do under good path, overall, the performance of these schemes results in

20% and 54% drop in throughput respectively compared to performance oriented

scheduling.

Figure 33 compares the latency under bad-path code with different scheduling

schemes. Compared to dynamic RCS (13.5 ms), performance oriented scheduling

(16.6 ms) results in a 22.9% increase in response time. At the same time, even

without reactive scheduling, dynamic RCS (13.6 ms with only proactive) increases

response time by only 0.7%. Again, partially dynamic RCS (21.7ms) and static RCS

(37.1 ms) result in latency close to their good path performance but which is still too

high when compared to dynamic RCS.

We performed experiments with other configurations of dynamic, partially dy-

namic and static schemes and using other workloads too. However due to space

constraints we only present key findings from those experiments. In particular we

used a disk-bound internal workload (and hence low cpu utilization of about ∼25%)

to study the effect of our scheduling algorithms under a sparse workload. We used

101

�

�

��

��

��

��

��

��

��

��	
��

	������

��������

����

��������

�����
����

�	��������

��	�������

��������

���

����������

�
�
 �

�
�
 �

�!
��

�
�

��
�
��

��
��
 �

��
�
�
 �

Figure 33: Bad path latency

the number of task dispatches as a metric of scheduler efficiency. The fault injection

mechanism was similar to the cache-standard workload, however due to the workload

being sparse, we introduced an overhead of only 0.3% to the aggregate execution

time of the faulty recovery group. Our results showed that dynamic RCS was able to

achieve as many dispatches as performance oriented scheduling under good path oper-

ation and increase the number of dispatches by 0.7% under bad-path execution. With

partial dynamic RCS dispatches dropped by 20% during good path operation and by

only 3.9% during bad path operation compared to performance oriented scheduling.

The same static mapping used in the cache standard workload when run in this new

environment resulted in the system not coming up. While this may be due to setup

issues, it is also likely that insufficient resources were available to the platform tasks

during start-up. We are investigating further on a more appropriate static mapping

for this environment.

102

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07
 1.6e+07
 1.8e+07

 0 64 128 192 256 320 384 448 512

A
ve

ra
ge

 #
di

sp
at

ch
es

 p
er

 m
in

ut
e

#Recovery groups

Dynamic RCS (2 cores)
Dynamic RCS (4 cores)
Dynamic RCS (8 cores)

POS (8 cores)

Figure 34: Variation with ♯ Groups (or Queues)

4.4.5 Simulation Experiments Setup

Our simulation studies allowed us to experiment with different system configurations,

failure scenarios, recovery parameters and scheduling strategies and various combi-

nations of these factors. The simulator written in C allows configuration of system

specifications (such as number of processors and scheduling policy), recovery strate-

gies (proactive/reactive, recovery scope specification) and fault injection parameters

(failure rate, failure type, recovery rate). The simulator is driven by an externally

provided workload trace specifying individual task descriptions, lock acquisition pat-

terns, task arrival times and execution times. For the simulation experiments de-

scribed next, we utilized traces of the cache-standard workload described next. Note

that, the simulator models the performance behavior of the storage controller but

103

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 #
di

sp
at

ch
es

 p
er

 m
in

ut
e

#Cores

RCS - with 16 groups
POS - with 16 queues

Figure 35: Variation with ♯ Cores (16 Groups or Queues)

does not actually execute the underlying tasks.

4.4.6 Simulation Experimental Results

Based on our simulation results we present guidelines for determining the recovery

scopes, the recovery groups, and the mapping of recovery scopes to recovery groups

for use in RCS. We show that by selecting appropriate values for the recovery-sensitive

system parameters it may be possible to speed up the recovery of storage controllers

and achieve good performance at the same time. In summary, the conclusions from

our simulation results are:

104

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 20 40 60 80 100 120

A
ve

ra
ge

 #
di

sp
at

ch
es

 p
er

 m
in

ut
e

#Recovery Groups

Dynamic RCS (Good-Path)
POS (Good-Path)

Dynamic RCS , Recovery = 100ms
POS , Recovery = 100ms

Figure 36: Comparison with Bad-path performance

• The higher the level of multi-threading (number of cores in the processor) the

higher the number of recovery groups for effective recovery. Thus, as the multi-

threading capability increases, it is beneficial to track finer-granularity recovery

scopes through more recovery groups.

• Under operating conditions, in which failure rates (mean time between failures)

and recovery rates (mean time to recovery) make it very unlikely that the re-

covery mechanism has to deal with more than one error at the time, the number

of recovery groups does not depend on those rates.

• When mapping recovery scopes to recovery groups it is beneficial to distribute

the workload as evenly as possible among the groups.

105

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 5 10 15 20 25 30

N
um

be
r

of
 ta

sk
 d

is
pa

tc
he

s

Time (in minutes)

Dynamic RCS (4 Groups)
POS (4 Queues)

Figure 37: Bad-path performance: 4 queues

• Even if the number of recovery groups and the mapping of recovery scopes to

these groups are not optimal, the performance during recovery of the storage

system with RCS surpasses the performance of the system with the standard

(performance-oriented) scheduling.

4.4.6.1 Effect of Fine-Grained Recovery on System Performance

In order to infuse recovery-consciousness into the allocation of resources, we need

to keep track of recovery-dependencies. However, when recovery dependencies are

tracked at a fine granularity, the overhead of managing a large number of recovery

scopes may induce a severe performance penalty. Therefore, we need to first under-

stand the performance impact of tracking fine-grained recovery scopes. For this set of

106

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 5 10 15 20 25 30

N
um

be
r

of
 ta

sk
 d

is
pa

tc
he

s

Time (in minutes)

Dynamic RCS (16 Groups)
POS (16 Queues)

Figure 38: Bad-path performance: 16 queues

experiments, recovery dependency tracking and resource allocation is done through

a 1-1 mapping of recovery scopes to recovery groups. Using this mapping, we study

the performance impact of fine-grained recovery under different system sizes, and

scheduling policies. We measure scheduler performance during normal operation and

failure recovery using the number of task dispatches per unit time as a metric.

Figure 34 shows the average number of dispatches per minute during normal

operation with varying number of recovery groups. The plot shows the curves for 2,

4 and 8 cores with the dynamic RCS scheduling scheme and that of performance-

oriented scheduling with 8 cores. In the case of POS, the workload is uniformly

distributed between the queues. Recall that each recovery group is managed using

a separate scheduler queue. With RCS, in all three cases, the number of dispatches

107

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 5 10 15 20 25 30

N
um

be
r

of
 ta

sk
 d

is
pa

tc
he

s

Time (in minutes)

Dynamic RCS (32 Groups)
POS (32 Queues)

Figure 39: Bad-path performance: 32 queues

initially increase (as much as 16%, 14% and 65% in the case of 8, 4 and 2 cores

respectively) and then decreases (as much as 21%, 30% and 45% in the case of 8, 4

and 2 cores respectively). The high performance peak is achieved with 64 groups in

the case of 8 cores, 32 groups with 4 cores and 8 groups with 2 cores.

• This shows that the decision on the best choice of number of recovery groups

depends on the system size.

Next, although the scheduler initially benefits from the increased concurrency afforded

by additional scheduling queues, as the number of queues increases, due to the uneven

distribution of workload between recovery groups, scheduling efficiency decreases.

• Depending upon system size, beyond a certain granularity, recovery-consciousness

108

and keeping track of fine-grained recovery scopes may degrade system perfor-

mance.

On the other hand, while performance oriented scheduling also exhibits decreasing

efficiency with a large number of queues, the degradation in scheduler performance is

more graceful due to the uniform distribution of workload.

• The choice of number of recovery groups and mapping of tasks to recovery

groups should take into consideration workload distribution between the groups

and try to achieve load-balancing.

In order to emphasize the importance of right choice of number of recovery groups

on performance, we next compare scheduler performance under dynamic RCS and

a load-balanced performance-oriented scheduler with varying system size. We use

16 recovery groups for the dynamic RCS scheduler and 16 queues, with uniform

workload distribution for the performance oriented scheduler. Figure 35 shows the

average number of dispatches per minute in both cases with varying system size.

With this hand-picked choice of number of recovery groups, we see that the system

can achieve performance that is close to a performance-oriented architecture, even

while tracking recovery dependencies across varying system sizes.

4.4.6.2 Effect of Fine-Grained Recovery on System Availability

The benefit from tracking recovery dependencies is realized during failure recovery.

Figure 36 compares scheduler performance during normal operation with that during

failure recovery for a system with 8 cores. By availability, we refer to service avail-

ability and also the ability of the service to meet performance expectations during

failure-recovery. We measure this using scheduler performance during failure-recovery.

Failure was emulated by injecting faults into a chosen component at the rate of once

in every 10K dispatches of the tasks belonging to that component.

109

First, the graph shows that, during failure-recovery, for low number of recovery

groups, i.e. a coarse granularity of recovery tracking, the benefit from recovery con-

sciousness is low - although still higher than the performance-oriented case. However,

at the right granularity, recovery consciousness can make a significant improvement

in scheduler performance. In this case, at a group size of 16, recovery-consciousness

can effect a 23% improvement in scheduler performance.

Next, consider the group sizes 4 and 32 where POS almost matches the perfor-

mance of RCS. Figure 37, 38 and 39 represent the number of dispatches per minute

over a duration of 30 minutes. The graphs show that even at group sizes of 4 and 32

where POS matches RCS in average number of task dispatches per minute, POS re-

sults in serious fluctuations of scheduler performance. At some instances, the number

of dispatches with POS drops to as low as 65% of that with RCS. Recall that, POS

distributes workload equally amongst all processors without considering recovery de-

pendencies. Therefore, during failure, many tasks dependent on the failing task may

be executing concurrently. As a result, in spite of fine-grained recovery, the entire

recovery process takes longer, resulting in a drop in performance due to unavailability

of resources for normally operating tasks.

• We can argue that even with some inaccuracy in the selection of number of recov-

ery groups, there is a conclusive advantage over performance oriented scheduling

during failure recovery by being able to track recovery dependencies.

• Also, in spite of implementing fine-grained recovery, it is crucial to track recovery-

dependencies to improve performance during failure recovery.

Figure 40 shows the variation in system recovery time by varying individual task

recovery time, the number of cores, and the distribution of tasks between groups.

The figure is generated based on the model for MTTRPOS and MTTRRCS described

in Section 4.3.1. The lower surface (in red) depicts the recovery time variation for

110

�

��� �

�

Figure 40: System MTTR

RCS and the upper surface (in gray) depicts the recovery time variation under POS.

The x-axis represents the variable mγk where m represents the number of cores in the

system and γk represents the probability that a task belongs to the failing recovery

group k. Intuitively the x-axis can be thought of as the number of cores per recovery

group. The y-axis represents individual task recovery time in seconds and the z-axis

represents the total system recovery time in seconds. The constraint for RCS is set

as ck = 10. As the graph shows, for POS, the system recovery time increases rapidly

with increasing task recovery time and mγk. The extent of recovery may increase

either due to increase in system size or due to a large proportion of tasks belonging to

the failing recovery group. On the other hand, with RCS, the recoverability constraint

ensures that the system recovery time remains low by restricting the number of cores

111

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 20 40 60 80 100 120

A
ve

ra
ge

 #
di

sp
at

ch
es

 p
er

 m
in

ut
e

#Recovery Groups

Dynamic RCS (Good-Path)
Bad-Path, recovery time = 20ms
Bad-Path, recovery time = 40ms
Bad-Path, recovery time = 80ms

Bad-Path, recovery time = 100ms

Figure 41: Variation with Recovery Rate

assigned per recovery group.

4.4.6.3 Sensitivity to Recovery and Failure Rate

Figure 41 shows the variation of scheduler performance for different recovery rates

for tasks belonging to component 5. The failure rate was fixed at 1 in every 10K

dispatches of tasks belonging to component 5. The figures tells us that the choice

of number of recovery groups is nearly independent of the recovery rate, since if ‘x’

number of recovery groups is a better choice than ‘y’ for a certain recovery rate, it is

112

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 20 40 60 80 100 120

A
ve

ra
ge

 #
di

sp
at

ch
es

 p
er

 m
in

ut
e

#Recovery Groups

Dynamic RCS (Good-Path)
Failure rate = 1 in 5K

Failure rate = 1 in 10K
Failure rate = 1 in 15K
Failure rate = 1 in 20K

Figure 42: Variation with Failure Rate

almost true for all other recovery rates also.

Figure 42 shows the variation of scheduler performance with different failure rates.

The recovery time for a single failed task was set to 100 ms and failure injected into

tasks belonging to component 5. As with the case of recovery rate, the figure shows

that the choice of number of recovery groups is nearly independent of failure rate.

113

4.5 Discussion

The fact that recovery-conscious scheduling requires minimal change to the software

allows for it to be easily incorporated even in legacy systems.

Dynamic RCS can match good path performance of performance oriented schedul-

ing and at the same time significantly improve performance under localized recovery.

Even for the small 5% recovery overhead introduced by us, we could witness a 16.3%

improvement in throughput and a 22.9% improvement in response time with dynamic

RCS. Moreover, the qualitative benefits of RCS in enhancing availability and ensuring

that localized recovery is scalable with system size makes it an interesting possibil-

ity as systems are moving toward more parallel architectures. Our experiments with

various scheduling schemes have given us some insights into the overhead costs such

as lock spin times imposed by RCS algorithms. In ongoing work we are continuing

to characterize and investigate further optimizations to RCS schemes.

Our results also seem to indicate that for small localized recovery time and system

sizes, proactive policies i.e. mapping resource pools to recovery groups, can deliver

the advantage of recovery-consciousness. However as system size increases or localized

recovery time increases, we believe that the actual benefits of reactive policies such as

suspending dispatch from groups undergoing recovery may become more pronounced.

In ongoing research we are experimenting with larger setups and longer localized

recovery times.

Static and partial dynamic RCS schemes are limited by their poor resource utiliza-

tion in workload intensive environments. Hence we do not recommend these schemes

in an environment where the system is expected to run at maximum throughput.

However, the tighter qualitative control that these schemes offer may make them, es-

pecially partially dynamic RCS, more desirable in less intensive environments where

there is a possibility to over-provision resources, or when the workload is well un-

derstood. Besides in environments where it ‘pays’ to isolate some components of the

114

system from the rest such mappings may be useful. We are continuing research on

optimizing these algorithms and understanding properties that would prescribe the

use of such static or partially dynamic schemes.

While our experiments provide some insights into the selection of parameters such

as recovery groups, clearly these decisions are largely impacted by the nature of the

software. Below, we present certain guidelines for the selection of these parameters

which must be validated for the particular instance of software and system configu-

ration. A possible procedure to perform this validation is to evaluate the impact of

various parameters using simulation based studies and workload traces as shown in

our paper [134]. The number of recovery scopes in the system is a characteristic of

the software and the dependencies between tasks. Once the granularity of recovery

has been identified, and the dependency information has been specified (with explicit

dependencies being specified initially and the system identifying implicit dependen-

cies over certain duration of observation), the recovery scopes are specified. During

runtime, tasks are enqueued based on the recovery scope that has been identified for

the task. The scheduler efficiency now depends on the number of recovery groups that

need to be iterated through at runtime. This choice of recovery groups, depends on

the degree of multiprocessing (number of cores) and the mapping of recovery scopes to

recovery groups depends on the distribution of tasks among recovery scopes. Thus the

guidelines for selection of recovery-aware parameters can be summarized as follows:

• The optimal number of recovery groups depends on the degree of multiprocess-

ing. However, choosing the number of groups to be more than the number of

cores can help improve performance by reducing contention for job queue locks,

for example.

• The choice of the number of recovery groups and the mapping of tasks to re-

covery groups should take into consideration workload distribution between the

groups and try to achieve load-balancing and avoid idle cycling of the scheduler

115

through empty queues looking for work. The information required to perform

load-balancing can be acquired by studying the workload for distribution of

tasks between recovery scopes and their arrival rates.

• Even with some inaccuracy in the selection of number of recovery groups, there

is a conclusive advantage of RCS over POS during failure recovery by being

able to track recovery dependencies. This gives the developer some flexibility

in choosing the number of recovery groups.

4.6 Related Work

Our work is largely inspired by previous work in the area of software fault tolerance

and storage system availability. Techniques for software fault tolerance can be classi-

fied into fault treatment and error processing. Fault treatment aims at avoiding the

activation of faults through environmental diversity, for example by rebooting the

entire system [72, 148], micro-rebooting sub-components of the system [50], through

periodic rejuvenation [85, 68] of the software, or by retrying the operation in a differ-

ent environment [114]. Error processing techniques are primarily checkpointing and

recovery techniques [73], application-specific techniques like exception handling [137]

and recovery blocks [116] or more recent techniques like failure-oblivious comput-

ing [119].

In general our recovery conscious approaches are complementary to the above

techniques. However we are faced with several unique challenges in the context

of embedded storage software. First, the software being legacy code rules out re-

architecting the system. Second, the tight coupling between components makes both

micro-reboots and periodic rejuvenation tricky. Rx [114] demonstrates an interesting

approach to recovery by retrying operations in a modified environment but it requires

checkpointing of the system state in order to allow ‘rollbacks’. However given the high

volume of requests (tasks) experienced by the embedded storage controller and their

116

complex operational semantics, such a solution may not be feasible in this setup.

The idea of localized recovery has been exercised by many. Transactional recovery

using checkpointing/logging methods is a classic topic in DBMSs [100] and is a suc-

cessful implementation of fine-grained recovery. In fact application-specific recovery

mechanisms such as recovery blocks [116], and exception handling [137] are used in

almost every software system. However, few have made an effort on understanding

the implications of localized recovery on system availability and performance in a

multi-core environment where interacting tasks are executing concurrently. Likewise,

the idea of recovery-conscious scheduling is to raise the awareness about localized

recovery in the resource scheduling algorithms to ensure that the benefits of localized

recovery actually percolate to the level of system availability and performance visible

to the user. Although vast amounts of prior work have been dedicated to resource

scheduling, to the best of our knowledge, such work has mainly focused on perfor-

mance [161, 81, 83, 74, 57]. Also much work in the virtualization context has been

focused on improving system reliability [115] by isolating VMs from failures at other

VMs. In contrast, our development focuses more on improving system availability

by distributing resources within an embedded storage software system by identifying

fine-grained recovery scopes. Compared to earlier work on improving storage system

availability at the RAID level [140], we are concerned with the embedded storage

software reliability. These techniques are at different levels of the storage system and

are complementary.

4.7 Summary

In this chapter we addressed the issues in the second and third tier of our recovery-

conscious framework. Our main contributions include the development of recovery-

conscious scheduling, a non-intrusive technique to reduce the ripple effect of software

failure and improve the availability of the system and guidelines for effective mappings

117

of dependent tasks to recovery groups over which recovery-conscious scheduling is per-

formed. We presented a suite of RCS algorithms and quantitatively evaluated them

against performance oriented scheduling. We focused on developing effective map-

pings of dependent tasks to processor resources through careful tuning of recovery-

sensitive parameters. Through our analysis and experimentation we have shown that

through careful tuning of the system configuration and the recovery-sensitive param-

eters, RCS can significantly improve system performance during failure recovery and

thus improve system resiliency to faults while continuing to sustain high performance

during normal operation.

118

CHAPTER V

FAULT-TOLERANT MIDDLEWARE OVERLAYS

5.1 Introduction

With rapid advances in network computing and communication technology and the

continued decrease in digital storage cost, the amount of digital information continues

to grow at an astonishing pace. Many organizations and enterprises today are fac-

ing the challenge of dealing with data storage ranging from terabytes and petabytes

to exabytes, zettabytes, yottabytes and beyond. Such trends create continuous high

demands for massive storage and storage services. High-availability scale-out stor-

age clusters combine smaller units of storage to provide a scalable and cost-effective

storage solution [14, 21, 70]. The scale-out clustered storage architectures allow en-

terprises to gain significantly in terms of cost, scalability and performance.

Current scale-out storage systems use active replication [124] based middleware

to ensure consistent access to shared resources in the absence of centralized control

and at the same time provide high throughput and a single system image (SSI). In

order to guarantee high-availability to applications, the middleware typically main-

tains critical application state and check-point information persistently across nodes

through active replication. Active replication based models are not only used in clus-

tered storage systems, but are also common in distributed locking services [47] and

high-performance computing [64].

However, though the use of symmetric active replication models removes hard-

ware as both single-points-of-control and single-points-of-failure, it causes the stor-

age middleware itself to now become a single-point-of-failure. In some instances,

unavailability of a highly-available, active replication based service due to network

119

outages and software errors can cause as much as 0.0326% unavailability [47, 52].

This is equivalent to three days of downtime over a period of 100 days and intolera-

ble for many applications that demand above 99.99% uptime from storage services.

Moreover, the current scale-out storage architecture is also vulnerable to application-

induced failures of the middleware, in addition to other issues like application-level

non-determinism [141] and middleware bugs themselves. By application-induced mid-

dleware failure, we mean that a single cluster application can cause an error which

leads to unavailability of the cluster middleware for all other applications concurrently

running over the cluster. For example, the highly available Chubby locking service

reports that the failure of application developers to take availability into considera-

tion “magnified the consequence of a single failure by a factor of a hundred, both in

time and the number of machines affected” [47].

One obvious approach to improving availability and reliability in such systems is to

provide application fault isolation and eliminate symmetric clustering middleware as a

single-point-of-failure. While application fault isolation can be achieved through par-

titioning of a single storage cluster into smaller independent clusters [30, 26], without

care, one may lose the SSI and the flexibility to access storage from anywhere within

the system. The key challenge, therefore, is to provide fault-boundaries while contin-

uing to deliver SSI and flexible accessibility. In this chapter we introduce the notion

of hierarchical middleware architectures. We organize critical cluster management

services into a hierarchical overlay network, which separates persistent application

state from global system control state. This clean separation, on one hand, allows

the cluster to maintain SSI by communicating control state to all nodes in the net-

work, and on the other hand, provides fault isolation by replicating application state

within only a subset of nodes.

We present baseline availability analysis in flat and hierarchical clusters with vary-

ing storage nodes. Our analysis shows two important results. First, we show that

120

simply increasing the number of hardware nodes in a symmetric system will not im-

prove availability or reliability as long as the middleware is vulnerable to simultaneous

failures. Second, we show that by trading some symmetry for better fault isolation,

hierarchical overlay storage architectures can significantly improve system availability

and reliability.

We conducted a thorough experimental evaluation of the availability and reliabil-

ity of our proposed solution. Utilizing the relationship between workload and software

failure rate [149, 160, 80], we quantitatively show that hierarchical middleware archi-

tectures can provide significant improvements in reliability and availability of mass

storage systems. For example, organizing a 32 node system into a hierarchical cluster

can reduce downtime by nearly 94% and improve Mean-time-to-failure (MTTF) by

approximately 16 times.

The rest of this chapter is organized as follows. We first present the problem

statement and describe our approach in Section 5.2. We develop probabilistic markov

models for analyzing the availability and reliability of the proposed architectures

in Section 5.3. In Section 5.4 we present an in-depth experimental evaluation of

availability and reliability in both flat and hierarchical architectures. We compare

and contrast the two models in Section 5.5, and conclude in Section 5.7 with related

work and a summary.

5.2 Overview

Before presenting an overview of the proposed hierarchical overlay architecture, we

first describe the conventional approach, its flat cluster architecture, and the potential

problems with respect to application-induced failures.

5.2.1 Conventional Approach

High availability scale-out storage clusters are composed of nodes, a network that

connects the nodes, and middleware that provides a highly available environment

121

H/W

H/W

H/W …

Replicated State-m/c Middleware

Database

Storage

E-mail Web

Server

Figure 43: Traditional flat storage cluster.

for applications that operate in the cluster. The back-end storage is shared by all

nodes in the cluster. All nodes within the cluster are peers with no single-point-

of-control. In this thesis, we will refer to this ubiquitous form of clusters as a flat

cluster (Figure 43). Examples of such systems exist in both research [30, 155, 64] and

commercial [70, 14] settings.

In such systems, the middleware must ensure consistent access to the shared stor-

age and provide a highly available environment to applications in the absence of

centralized control. Typically this is achieved through active replication based on

replicated state machines (RSMs) [124]. RSMs maintain consistent state on every

node by applying an identical ordered set of requests, referred to as events, on each

instance of the state machine. Since consistent state is maintained on all nodes, ap-

plications may failover to any node when the node currently serving the application

fails.

Events belong to two categories - global or setup events used for liveness, node

joins, departures, resource allocations etc., and application events that are used to

122

Replicated State-m/c

Middleware

Super-clusters

Database

Storage

Replicated State-m/c Middleware

Virtual

Node

Replicated State-m/c

Middleware

Replicated State-m/c

Middleware

Sub-clusters

Bridge

mw

Virtual

Node

Bridge

mw

Virtual

Node

Bridge

mw E-mail Web Server

HW …

HW

HW

HW

HW

HW … … … …

… …

Figure 44: Hierarchical cluster.

maintain application state globally. Typically, middleware generated setup events be-

long to a (usually well-tested) pre-defined set. On the other hand, application events

such as check-points and persistent state are generated by the applications and passed

on to the middleware through interfaces provided by the middleware. This poten-

tially opens up the middleware to faulty application generated events which when

processed synchronously will cause all instances of the middleware to fail simultane-

ously, bringing down the whole cluster. The goal of this work is to eliminate or reduce

such application-induced dependent middleware failures in scale-out storage systems

while maintaining the provision of SSI, scalability and high-availability of scale-out

storage systems and services.

5.2.2 Hierarchical Middleware Architectures: Our Approach

We first present an outline of the design of hierarchical middleware architectures. The

key idea for improving system availability and reliability is to define application-fault

123

boundaries by separating global control state from persistent application state. In

order to prevent the symmetric middleware from becoming a single-point-of-failure,

hierarchical architectures organize cluster management services into an overlay such

that global control events are communicated to all nodes and application generated

events are processed by only a subset of nodes. Note that, the hierarchy is only used

to regulate control messages and does not interfere with the actual data path.

Figure 44 shows a two level hierarchical cluster that utilizes a hierarchical middle-

ware architecture. Clusters at the upper level are called super-clusters and clusters at

the lower level are called sub-clusters. Sub-clusters and super-clusters are flat clusters

connected together by a bridging middleware. The bridging middleware is a cluster

application that runs over a sub-cluster. It is essentially stateless and serves two main

purposes: first, it creates a virtual node environment which emulates a hardware node

by utilizing underlying resources; second, it provides a channel between sub-clusters

and super-clusters for communicating global events. It also serves as a channel for

communicating application-specific processing requests from super-clusters to sub-

clusters.

Nodes in the super-cluster are called virtual nodes. Each virtual node represents

a sub-cluster. Super-clusters provide SSI and manage the communication of global

control state across sub-clusters. The construction of such a hierarchical model and

the decision on critical hierarchical parameters such as sub-cluster size and number

of hierarchical levels will rely on a number of system-supplied parameters, such as

known or historical failure rates, lease timers (heartbeats required among the nodes

for better response times), load skew per node and load skew per sub-cluster or per

application category. Due to space constraints, we delay the discussion on issues

regarding hierarchical cluster overlay construction to Section 5.5. Below, we focus

more on the availability and reliability properties of our hierarchical organization.

Since the bridging middleware is a cluster application that runs over a sub-cluster,

124

if the underlying node fails, the bridge application itself would instantaneously failover

to another node within the sub-cluster. In the event of either a virtual node dropping

out of the super-cluster or the corresponding node dropping out of the underlying sub-

cluster, the bridge middleware will instantiate another virtual node over its underlying

sub-cluster to participate in the super-cluster. The bridge middleware relies on the

underlying sub-clusters to provide actual storage services.

In the hierarchical clustering paradigm, applications may be deployed on a cluster

at any level in the hierarchy. Applications that are deployed at the higher levels

distribute work to sub-clusters at the lower level according to the current system

state. Typically, load balancing and resource management applications are placed

at upper levels as they are shared across a number of sub-clusters. While global

events are communicated to all nodes in the hierarchical cluster through the bridge

middleware and super-clusters, application events are processed only by the nodes

within the current sub-cluster in which the application is processed. As a result, the

total application-generated middleware workload is partitioned amongst sub-clusters.

Storage cluster applications may have global or local access points for accepting

external requests. Global access points will be owned by a virtual node at the top

of the hierarchical cluster. External requests received at the global access point

are decomposed and propagated along the cluster hierarchy to the appropriate sub-

clusters at the lowest level. Local access points are provided for services specific to

a part of the hierarchical cluster. This allows some cluster services to continue even

if the hierarchical cluster is not fully connected momentarily. We next illustrate the

partitioning of middleware workload in a hierarchical cluster.

5.2.3 Example Application: Data Migration

Moving data from one location to another to change its retention cost, availability,

or performance is a well known strategy for managing data. With clustered storage

125

it is possible for data movement to be managed internally to the cluster. The cluster

middleware provides the persistent storage to track a data movement operation, which

would at least include the source data location, the target data location, and a current

copy location. The current copy location is kept to minimize the amount of duplicate

data copied after recovery from a cluster transition.

For example, if the current copy location is updated for every 1GB of data moved,

moving 300GB of data results in 300 application-generated update events to the

cluster middleware. In a flat cluster the middleware workload (number of events)

per node for this data movement request would include the setup (control) events

in addition to 300 application-generated events. In a hierarchical cluster a data

movement operation can be initiated between any two storage nodes in the cluster

at the expense of a setup cost. Also since super-clusters distribute work among

its underlying sub-clusters, not all sub-clusters perform work per hierarchical cluster

request. Thus for a two level hierarchy, while the setup messages would be propagated

to and processed by all instances of the middleware, the actual application-generated

requests will only be processed in the sub-cluster(s) handling the application.

5.2.4 Example Application: Virtualization

Virtualization tools for storage have been deployed for storage consolidation, flexi-

bility in management, better utilization and availability. With the increase in the

processing ability of storage controllers, spare processing capacity can be utilized

for data intensive applications [10, 18] which can also exploit the proximity to data,

resulting in significant performance improvement. Thus, sub-components of applica-

tions such as databases, webserver and management applications can run over the

storage controller while the rest of the applications continue to execute at higher lay-

ers. Since the virtualization layer is built over the cluster middleware infrastructure,

application sub-components can directly exploit the high availability and replication

126

Availability Fraction of time an application provides
service to its users.

Reliability Probability of failure-free operation
over a specified period of time.

MTTF Mean-time-to-failure
MTTR Mean-time-to-restore
λhw Hardware failure rate = 1/MTTFhw

µhw Hardware repair rate = 1/MTTRhw

λmw -Middleware failure rate = 1/MTTFmw

µmw Middleware repair rate = 1/MTTRmw

λvn Virtual node failure rate = 1/MTTFvn

µvn Virtual node repair rate = 1/MTTRvn

λvn app Bridge middleware failure rate = 1/MTTFvn app

µvn app Bridge middleware repair rate = 1/MTTRvn app

Table 9: List of Terms

services offered by the clustering middleware. In order to improve both availability

and performance, applications can maintain critical state persistently and globally

through interfaces offered by the middleware. However, this opens up the middleware

to possible application-induced failures due to carelessness on the part of application

developers or unexpected use of interfaces. Additionally policy constraints might dic-

tate keeping different application sub-components on different storage servers. Thus

partitioning of the storage cluster is necessary to ensure not only performance benefits

but also fault domains. Hierarchical middleware architectures help retain the benefits

of virtualization while guaranteeing availability and fault-isolation.

5.3 Availability and Reliability Analysis

In this section we develop probabilistic markov models [150] for the analysis of avail-

ability and reliability of flat and hierarchical clustering architectures. Our models

were generated using an automated tool developed by us. System states are repre-

sented as states in a Markov chain and failure and repair rates are represented by the

transition rates between the states in a Markov chain. Failure and repair are treated

as stochastic processes and Markov chains are the standard way to model stochastic

127

0, 0

Down

2�hw

µhw

2µhw

2, 1

Up

2, 0

Down

1, 1

Up

1, 0

Down

�hw

µhw

2�hw

 �mw

µmw

 �hw

2µhw

µmw

 �mw

 - Unavailable

 - Available

Figure 45: Availability of a 2 node cluster.

processes in order to determine the average probability of being in a particular state.

We assume that the time to failure and repair are exponentially distributed.

An application becomes unavailable when failure of the hardware or middleware

occurs in a combination such that the application is no longer running and has to

be restarted after restoration of the underlying components. We assume that there

is sufficient redundancy in network connectivity and that it is not a limiting factor.

Each node runs an identical instance of the middleware.

We assume that hardware failures are independent while middleware failures are

correlated. Our aim is to concentrate on the effect of correlated middleware failures

and study the effectiveness of our proposed hierarchical architectures in eliminating

such failures. Therefore, without loss of generality, we do not consider indepen-

dent middleware failures or correlated hardware failures in this study. Note that

independent middleware failures typically will not cause a marked difference in our

comparison.

Dependent middleware failures cause all instances of the middleware to crash si-

multaneously. Middleware repair is also assumed to be simultaneous. Middleware

128

repair involves restarting of the failed components, synchronization of state and iso-

lation of the failure inducing request (most often, the last event processed by the

cluster). Since the middleware already makes critical application state available to

all nodes within a single cluster, we assume that failover of an application, when it

occurs, is instantaneous.

Table 9 gives a list of important parameters and terms used in the chapter and their

definitions, including Mean-time-to-failure (MTTF), mean-time-to-restore (MTTR),

failure rate (λ) and repair rate (µ) of hardware, middleware, virtual node, and bridge

middleware. Each state in the Markov diagram is given by a pair of values indicating

the number of instances of hardware and middleware that are functional, and the

status of the application. The transitions between states represent failure and repair

rates. We illustrate our modeling methodology on two node flat clusters, sub-clusters

and super-clusters. Extending this model to an N node cluster is straightforward.

5.3.1 Availability Modeling

Figure 45 shows the Markov model for availability of a flat two node cluster. Note

that, since we consider only dependent failures of the middleware, only a single in-

stance of the middleware is considered to be running on the entire cluster. The system

is considered available if at least one instance of the hardware and the middleware

are functional.

For the hierarchical system, the model in Figure 45 now represents the Markov

model for applications deployed over the sub-clusters at the lowest level. At that level,

the middleware instances are run over the actual hardware nodes. At higher levels,

middleware instances are run over virtual nodes. In order to simplify our analysis,

we consider the same middleware to be running at all levels in the hierarchy. We

can represent the availability at a level running over virtual nodes by replacing λhw

and µhw with λvn and µvn respectively in Figure 45. We next describe the reliability

129

Down

2�hw

µhw +µmw

2, 1

Up

1, 1

Up

�hw

 �mw

 �mw

(a)

 �vn_app

Down

2�hw

µhw + µmw

2, 1

Up

1, 1

Up

�hw

 �mw

 �mw

 �vn_app

 - Unavailable

 - Available

(b)

Figure 46: Reliability models: (a) Flat clusters (b) Virtual Node

modeling and computation of virtual node failure rates.

5.3.2 Reliability Modeling

We analyze the reliability of clustering architectures using Markov models with ab-

sorbing states [150]. Figure 46(a) shows the Markov model for a two node system.

The model for the flat architecture shown in Figure 46(a) also represents the reliabil-

ity model for the lowest level sub-clusters in the hierarchical architecture. Again, the

model can be extended to a sub-cluster of any size. As in the case of availability, we

can obtain the Markov model for reliability of virtual node clusters (super-clusters),

by replacing hardware failure and repair rates in Figure 46(a) by virtual node failure

and repair rates.

The reliability of the virtual node presented by a lowest level cluster that di-

rectly runs over the hardware is computed using the model shown in Figure 46(b).

The model shows that a virtual node failure may be caused either due to failure of

all instances of the underlying hardware, the middleware or the bridge middleware.

Restoring a virtual node at a given level involves restoring the underlying hardware

and virtual nodes up to that level (for clusters that may be running at a level > 2).

130

MTTFhw 2 years
MTTRhw 4 hours
MTTFmw 3 years
MTTRmw 15 minutes
MTTFvn app 3 years (expected)
MTTRvn app 15 minutes (expected)

Table 10: Component failure and repair rates

We approximate virtual node repair rates to be the same as that of the hardware

since hardware repair is orders of magnitude slower than that of software.

5.4 Evaluation of Clustering Architectures

In this section we evaluate the flat and hierarchical architectures based on the models

presented in the previous section. We use failure and repair rates based on our

experiences with real deployments of commercial storage systems. Since actual failure

and recovery rates are sensitive information and held closely by vendors, we are

unable to disclose the identity of the system and can only state that the numbers

are representative of current deployments. Table 10 represents the failure and repair

rates for the various components in the system. Note that the middleware failure

rate is for the occurrence of correlated failures. Independent middleware failures are

expected to occur more frequently [151]. We expect the bridge middleware to have

failure and repair rates close to that of the clustering middleware. We validated our

availability and reliability models against numbers reported for current deployments.

Accordingly, the error in the availability model is less than 0.00004% while that for

the reliability model is around 1.5%.

We have developed an automated tool to compose Markov models from specifi-

cations and compute availability and reliability. The tool, written in C++, uses the

Mathematica package [154] for computations. The experiments reported in this work

are based on a system with a cluster size of up to 32 nodes. With the failure and

repair rates presented in Table 10, when considering only independent failures of the

131

0.99995

0.999955

0.99996

0.999965

0.99997

0.999975

0.99998

0.999985

0.99999

0.999995

4 8 16 32

Number of Nodes

 A
v
a
il

a
b

il
it

y

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 47: Baseline availability.

components, a 2 node cluster was able to achieve 6 nines of availability. Based on this

we choose a sub-cluster size of 2 for our experiments. Results with other sub-cluster

sizes and other configurations have been briefly summarized in Section 5.4.3.3.

Our analysis reveals two interesting phenomena. First, although it is common to

focus on hardware solutions to availability and reliability, our analysis (Section 5.4.1

and 5.4.2) show that middleware (software) failure rates are a far bigger contributor

to unavailability. Second, we show that in the common case where increasing workload

leads to more software failures, the hierarchical approach provides significantly higher

robustness by isolating applications from middleware failures.

5.4.1 Baseline Availability Analysis

Figure 47 shows the baseline availability in flat and hierarchical clusters with 4-32

storage nodes. In order to present an apples-apples comparison, we compare only 2

level hierarchical organizations of the nodes with the sub-cluster size set to 2 nodes. As

the graph shows, availability in the two levels of hierarchical clusters are comparable

132

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006

VN_App MTTR

VN_App MTTF

H/W MTTR

H/W MTTF

M/W MTTR

M/W MTTF

P
a
ra

m
e
te

rs

Change in % availability

 50% Decrease 25% Decrease Base Line Value

25% Increase 50% Increase

Figure 48: Sensitivity analysis of availability.

to that of the corresponding flat clusters. However, note that applications are now

isolated from middleware failures in other sub-clusters. Also note that, just increasing

cluster size has little effect on availability.

5.4.1.1 Sensitivity Analysis for Availability

Sensitivity analysis allows us to understand which parameters have the most pro-

nounced effect on availability and reliability. We choose a 32 node system and com-

pare flat and 2 level hierarchical configurations with sub-cluster size set to 2. Using

this setup, we evaluate the sensitivity of availability and reliability to the parameters

specified in Table 10.

We present the results of our sensitivity analysis using a tornado plot. Each bar

represents the variation in availability with changes to a single parameter while all

other parameters are fixed at the baseline configurations. The length of the bar

is proportional to the sensitivity of the measure to the particular parameter. The

parameters are specified along the y-axis and the x-axis shows the change in the

133

H/W MTTF

H/W MTTR

M/W MTTR

M/W MTTF

P
a
ra

m
e
te

rs

Figure 49: Sensitivity analysis of availability in a flat cluster.

measure (availability in this case).

Figure 48 depicts the sensitivity of system availability to component failure and

repair rates in a hierarchical cluster. The plot for a flat cluster is shown in Figure 49

and is similar except for the absence of the bridge middleware. The graphs show

that, availability is most sensitive to middleware repair and failure rates as compared

to hardware. Also, note that the bridge middleware’s failure and repair rates have

minimal impact on the availability of a super-cluster. From this analysis we conclude

that dependent failures of the middleware continue to be the limiting factor in avail-

ability in both architectures. Also introduction of independently failing components

(bridge middleware) impacts availability minimally.

5.4.2 Baseline Reliability Analysis

Figure 50 presents the variation in system reliability with increasing cluster size using

the setup described in Section 5.4.1. The graph shows that reliability of both sub-

clusters and super-clusters in hierarchical architectures are comparable to that of

134

0

5000

10000

15000

20000

25000

30000

4 8 16 32
Number of Nodes

M
T

T
F

 (
in

 h
o

u
rs

)

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 50: Baseline reliability.

the corresponding flat clusters despite inclusion of additional components (bridge

middleware). However, note that sub-clusters in hierarchical architectures are units

with independent failure modes unlike the flat architecture. The graph also shows

that increasing the number of redundant hardware nodes does not improve reliability

as long as the middleware remains a single-point-of-failure.

5.4.2.1 Sensitivity Analysis for Reliability

Figure 52 depicts the sensitivity of reliability in super-clusters using the same set-

up as Section 5.4.1.1. The sensitivity of reliability in sub-clusters and flat clusters is

depicted in Figure 51. The graphs show that reliability is most sensitive to middleware

failure rates. For example, a decrease of MTTFmw by 50% causes as much as a 50%

drop in system MTTF. Again, note that bridge middleware failure rates hardly impact

reliability when compared to middleware failure rates.

135

M/W MTTR

H/W MTTR

H/W MTTF

M/W MTTF

P
a
ra

m
e
te

rs

F

Figure 51: Sensitivity analysis of reliability in a flat cluster.

5.4.3 Modeling the Middleware Workload

Although the merits of defining application fault boundaries can be qualitatively un-

derstood, it is still desirable to quantify the availability and reliability of the resulting

system. In this section, we use the middleware “workload-failure rate” relationship

to characterize the benefits of defining fault-boundaries.

A general formulation of software reliability as a linearly increasing function of

number of failures per encountered error (s), error density (d) and the workload (w)

is provided in [149, 160]. Based on this formulation, we model the middleware failure

rate as a linearly increasing function of middleware workload (number of events per

unit time), assuming that the parameters s and d are constant for a single implemen-

tation. However, the relationship between software failure rates and the workload

may vary depending upon the system, software and workload. Unfortunately, we do

not have sufficient data to precisely establish this relationship.

136

-100 -80 -60 -40 -20 0 20 40 60 80

M/W MTTR

 VN_App MTTR

 VN_App MTTF

H/W MTTR

H/W MTTF

M/W MTTF

P
a

ra
m

e
te

rs

% Change in MTTF

 50% Decrease 25% Decrease Base Line Value

25% Increase 50% Increase

Figure 52: Sensitivity analysis of reliability.

We define the middleware workload under which the baseline failure and repair

rates were observed as the standard workload (WLstd). We then introduce the notion

of a normalized workload (NWL) which is the ratio of the actual observed workload

to the standard workload. We consider the average case where workload is uniformly

partitioned amongst the sub-clusters. The middleware workload in the super-cluster

of virtual nodes consists primarily of global control and setup events. Based on

observations in real systems, we expect this class of events to constitute around 5%

of the total workload.

In this work we consider a sample of three different increasing functions of the

middleware workload (WL): (a) linear, (b) sub-linear (square root) and (c) super-

linear (exponential). The analysis can be extended to any function.

137

0.999950

0.999955

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

1 2 3 4 5
Average Normalized Workload (NWL)

A
v
a
il

a
b

il
it

y

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 53: Availability with linear function.

5.4.3.1 Effect of Workload on Availability

Figure 53, 55 and 56 show the variation of availability with increasing workload when

the middleware failure rate is a linear, square root and exponential function respec-

tively of the middleware workload. In each of the figures, the x-axis represents the

average normalized workload (number of events per unit time). The y-axis represents

the fraction of time that an application deployed over the system is available. The

bars represent the availability in a flat cluster with 32 nodes and a 2 level hierarchical

configuration of the same nodes with sub-cluster size 2.

Linear : Assume λm/w is a linearly increasing function of the middleware work-

load, given by:

λm/w = NWL × λ̄m/w + constant (1)

where λ̄m/w is the middleware failure rate observed with the standard workload.

(Since we assume that no failures are encountered in the absence of workload, the

constant becomes zero.) The variation of availability with workload under this linear

138

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5
Average Normalized Workload (NWL)

M
T

T
F

 (
in

 h
o

u
rs

)

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 54: Reliability with linear function.

function is shown in Figure 53. It shows that the hierarchical configuration provides

better availability at both the sub-cluster level and the super-cluster level. At both

levels downtime is reduced by 94% on average, over the flat clusters. Expressed as

downtime minutes, when the workload is 5 times the standard workload, the flat

configuration translates to an additional 23 minutes downtime annually, compared to

a sub-cluster in the hierarchical configuration.

Sub-linear : Figure 55 shows variation in availability when the middleware failure

rate λm/w, varies as a sub-linear increasing function of the middleware workload given

by:

λm/w =
√

NWL × λ̄m/w (2)

Again, the hierarchical configuration provides better availability at both the sub-

cluster level and the super-cluster level. At the sub-cluster level downtime is reduced

by 81% on average, over the flat clusters. At the super-cluster level, compared to

the flat cluster, downtime is reduced by 76%. Expressed as downtime minutes, when

139

0.999955

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

A
v
a
il

a
b

il
it

y

Figure 55: Availability with square-root function.

the workload is 5 times the standard workload, the flat configuration translates to an

additional 9 minutes downtime per year, compared to a sub-cluster in the hierarchical

configuration.

Super-linear : Figure 56 shows variation in availability when the middleware

failure rate λm/w, varies as a super-linear increasing function of the middleware work-

load given by:

λm/w = α expNWL +c (3)

where,

α =
λ̄m/w

e − 1

and c = −α, since failure rate is zero in the absence of workload. At both levels down-

time is reduced by 98% on average, over flat clusters. This implies that, under 5 times

the standard workload, the flat configuration translates to an additional 433 minutes

downtime per year compared to a sub-cluster in the hierarchical configuration.

The above graphs give us an estimate of the expected improvement in availability

140

0.999000

0.999300

0.999600

0.999900

1.000200

A
v
a
il

a
b

il
it

y

Figure 56: Availability with exponential function.

achieved by using a hierarchical configuration when the operational profile indicates

a linear, sub-linear or super-linear dependence of middleware failure rates on mid-

dleware workload. The actual expected improvement in availability in a particular

system can be estimated based on how the system’s workload-failure rate function

compares with these functions.

5.4.3.2 Effect of Workload on Reliability

Figure 54, 57 and 58 show the variation of reliability with increasing workload when

the middleware failure rate is a linear, square root and exponential function respec-

tively of the middleware workload. In each of the figures, the x-axis represents the

average normalized workload (number of events). The y-axis represents the MTTF

(in hours) of an application deployed over the system. The bars represent the avail-

ability in a flat cluster with 32 nodes and a 2 level hierarchical configuration of the

same nodes with sub-cluster size 2.

Linear : Figure 54 represents the variation in reliability when the relationship

141

between the middleware failure rates and the workload is linear and follows Equa-

tion 1. As evident from the figure, all levels of the hierarchical configuration offer

better MTTF than the flat architecture. Our results show that in a system with

N nodes, compared to flat architectures, hierarchical architectures can improve the

MTTF of the sub-cluster by nearly P times, where P is the size of the super-cluster.

(In our 32 node system, the super-cluster size is 16, which means we get nearly 16

times improvement in MTTF). At the super-cluster level, the improvement in MTTF

is approximately 20 times. Although this may lead us to conclude that setting P

equal to N would result in the best reliability, note that this is not true since, under

this condition, the limiting factor would be the hardware reliability. In general the

guideline for choosing P is that the value should represent the point in system growth

where the hardware ceases to be a limiting factor in reliability.

Sub-linear : Figure 57 represents the variation in reliability when the relation-

ship between the middleware failure rates and the workload is sub-linear and follows

Equation 2.

The graph shows that with the above relationship, a hierarchical configuration

improves MTTF by nearly
√

P times, where P is the size of the super-cluster. For

example, at 5 times the standard workload, the MTTF of the flat cluster is 1.3 years

(approx.) while that of the hierarchical cluster is nearly 5.4 years at the sub-cluster

level and 5.7 years at the super-cluster level.

Super-linear : Figure 58 represents the variation in reliability when the relation-

ship between the middleware failure rates and workload is super-linear and follows

Equation 3. In the case of a super-linear relationship between middleware failure

rates and middleware workload, the hierarchical architecture offers orders of mag-

nitude improvement in MTTF over the flat cluster. For example, at 5 times the

standard workload the MTTF of the flat cluster is 12 days (approx.) while that of

the hierarchical cluster is nearly 14 years at the sub-cluster level and 16 years at the

142

0

20000

40000

60000

80000

100000

120000

M
e
a
n

-t
im

e
-t

o
-f

a
il

u
re

 (
in

 h
o

u
rs

)

Figure 57: Reliability with square-root function.

super-cluster level.

5.4.3.3 Evaluation with other configurations

We repeated our experiments with other hierarchical set-ups, varying both system

size and sub-cluster size. In general, given a N node system, varying the sub-cluster

size resulted in a corresponding variation in partitioning of the workload. As shown in

Section 5.4.1 and 5.4.2, beyond a certain point the hardware is no longer the limiting

factor, availability and reliability vary according to the partitioning of workload and

are determined by the super-cluster size, P . Our results from the sensitivity analysis of

availability (Section 5.4.1.1) and reliability (Section 5.4.2.1) show that even at upper

levels of the hierarchy, the middleware failure and repair rates are the dominating

factor in availability and reliability. Likewise, organizing the nodes into hierarchies

with more than two levels indicate that the availability and reliability are primarily

indicative of only the workload (and hence the middleware failure rates) at those

levels. Even under a ‘workload-failure rate’ independence assumption, the availability

143

0

200000

400000

600000

800000

1000000

1200000

M
e
a
n

-t
im

e
-t

o
-f

a
il

u
re

 (
in

 h
o

u
rs

)

Figure 58: Reliability with exponential function.

and reliability at higher levels vary only marginally compared to sub-clusters.

A number of parameters can determine the selection of a particular hierarchical

structure. Obviously, hardware and middleware failure and repair rates and speci-

fied availability and reliability targets are important factors for determining the ap-

propriate sub-cluster sizes. For example, the availability (Figure 47) and reliability

(Figure 50) of the system can help determine minimum sub-cluster sizes. In general

the guideline for choosing sub-cluster sizes is that the size should represent the point

in system growth where the hardware reliability ceases to be a limiting factor.

5.5 Comparison of Clustering Architectures

The hierarchical architecture trades-off system symmetry for application fault bound-

aries. As a consequence of this, while application-induced middleware faults are con-

tained within sub-clusters, additional overhead in terms of global event communica-

tion and structural complexity are incurred. The disadvantage of decreased symmetry

144

is that although applications can be deployed anywhere within the hierarchical clus-

ter initially, failover is possible only within the sub-cluster resulting in possible load

skews. In order to deal with this, techniques for dynamic workload based migrations

of application across sub-clusters are required. We leave such directions to future

work.

While the virtual node selection made by the bridge middleware is susceptible to

dependent failures, the inter-cluster communication segments are expected to have

independent failure modes. In our experience, these primitives tend to be well tested

and unlike application-induced events, are not a major-source of failures.

Flat clusters that utilize symmetric middleware architectures have limited scal-

ability. The middleware maintains tight lease timers for better response times in

detecting failed nodes. The lease-time must increase with the number of nodes in the

system and cannot be lesser than the worst round trip time between any two nodes

in the cluster. Thus, in flat clusters, failure response times worsen with geographic

spread. Hierarchical clusters on the other hand are a natural way to combine remote

nodes. For example, the local clusters can form one level of hierarchy and remote

clusters may maintain consistent state at another level. The hierarchy allows the flex-

ibility of using different lease timers at different levels and thereby improves response

times for applications running over sub-clusters.

5.6 Related Work

A large body of existing research studies availability and reliability from the view

point of storage arrays [107, 152] and controllers [118, 79]. Our work emphasizes the

fact that in large scale-out systems, middleware (software) reliability is often the key

determinant in system availability and reliability. Our approach proposes to provide

graceful isolation of application-induced middleware failures, while retaining SSI, by

organizing cluster storage services into a hierarchical overlay. Note that, our approach

145

is different from resilient overlay networks such as RON [35], which are designed to

improve connectivity in Internet environments.

While fault isolation can be achieved through partitioning of a single cluster into

smaller independent clusters [30, 26], without care, SSI and the flexibility to access

storage from anywhere within the system will be lost in the process. Our goal is

to provide fault-boundaries while continuing to provide these features. Although

techniques like software rejuvenation [151] through rolling restart can reset software

state, such techniques cannot deal with application-induced failures which would be

encountered irrespective of the age of the software. Alternatively techniques like N-

version programming [37] can be utilized to decouple middleware instance failures.

However, this technique may be expensive and different implementations based on

the same specification may still have common bugs [84].

5.7 Summary

This chapter has presented our investigation on the availability and reliability of a

fault-tolerant middleware architecture that uses a pre-determined hierarchical struc-

ture. Determining application placements over the hierarchical structure in order to

minimize cross-cluster traffic and issues relating to dynamic creation and maintenance

of the hierarchical structure are topics of ongoing research.

146

CHAPTER VI

DATA AVAILABILITY THROUGH OPERATOR REUSE

6.1 Introduction

Modern enterprise applications [104, 2, 12], business and scientific collaborations

across wide area networks [19], and large-scale distributed sensor networks [156, 97]

are placing growing demands on high performance distributed data stream manage-

ment services to provide capabilities beyond basic data transport such as wide area

data storage [1] and basic in-network processing of continuous stream service re-

quests [12]. Over the past decade, an increasing number of streaming applications

are applying ‘in-network’ and ‘in-flight’ data manipulation to data streaming services

designed for enterprise systems [20], financial management [11], scientific comput-

ing [48], and situation monitoring applications [66, 95]. One challenge of ‘in-network’

processing [29, 109, 156] is how to best utilize these geographically distributed re-

sources to carry out end-user tasks while reducing the bandwidth usage and min-

imizing delay in service response time [60, 28], especially considering the dynamic

and distributed nature of these applications and the variations in their underlying

execution environments.

In this thesis we address this challenge by exploiting reuse opportunities in large

scale distributed stream processing systems, focusing on the class of stream data

manipulations represented as long-running continuous query services. It is observed

that stream queries are typically processed by a selection of collaborative nodes and

often share similar stream filters (such as stream selection or stream projection filters).

The ability to reuse existing operators during query service deployment, especially

for long running query services, is critical to the performance and scalability of a

147

distributed stream processing system.

We argue that by taking advantage of opportunities to reuse the same distributed

operators for processing multiple and different concurrent query service requests and

by intelligently consolidating operator computation across multiple query service de-

ployment processes, we can reduce the total cost of query service deployment and

minimize duplicate in-network processing. The technical challenges of reuse in stream-

ing systems include dealing with large and time-varying workloads, and dynamically

exploiting both the similarities between query service requests and the ability for

runtime application of network knowledge. We believe that an effective reuse ap-

proach can provide high performance and high scalability for distributed streaming

systems and intelligently capitalizing on both network locality awareness and operator

similarity awareness are critical for making an effective reuse decision.

In this chapter we present the design and evaluation of a reuse-conscious dis-

tributed stream query processing system, called StreamReuse. We develop a

suite of reuse-conscious stream query grouping techniques that dynamically find cost-

effective reuse opportunities based on multiple performance factors, such as network

locality, data rates, and operator lifetime. StreamReusescalably performs runtime

query optimization by dynamically grouping queries based on reuse possibilities iden-

tified at runtime. We identify a three step process for generating reuse-conscious

query service deployment plans. The first step is operator similarity based reuse.

StreamReuse not only groups queries with the same operators but also provides

capabilities to take into account containments and overlaps between queries in order

to utilize reuse opportunities in queries that are partially similar, such as sharing

some filtering operations though with different predicates. We develop a set of query

relaxation techniques to identify operator similarity based reuse opportunities. The

second step is reuse refinement by combining operator similarity and network locality

to enhance the effectiveness of in-network reuse. We aim at locating and evaluating

148

different reuse opportunities possible at different network locations. A reuse lattice

is devised to encode both operator similarity and network locality using a uniform

data structure. Another feature of the reuse lattice is its ability to assist in fast

identification of reuse opportunities from a large space of operators. With the reuse

lattice we can efficiently generate an optimized query grouping plan that capitalizes

on those ’relaxed operators’ satisfying both operator similarity and network locality

requirements. Our evaluation of reuse opportunities utilizes a cost model that assists

us in making reuse decisions that are cost-effective. The third step is to effectively

modify and migrate existing plans at runtime without compromising the correctness

of query results. We develop techniques to perform ‘relaxations’ at runtime and to

allow modifications and seamless migration of existing query services to new plans.

Existing deployments continue to operate without pausing during runtime relaxation.

We conduct a detailed experimental evaluation of the StreamReuse approach

with both simulations and a prototype. In particular, we examine two popular ap-

proaches used for optimizing distributed queries in the database community. The

first approach is based on the construction of distributed query graphs. However, it is

known that distributed query graphs cannot be statically analyzed [28, 55, 88, 78, 156]

or optimized due to dynamic arrivals and departures of query services, and due to

difficulty in obtaining accurate a priori knowledge of workload. The other popular ap-

proach is to devise a dynamic query optimization solution that considers re-planning

of all query processing schedules in the system upon the arrival or departure of each

individual query request. Obviously this approach suffers from inordinately large

computational overheads [27]. Our experimental results confirm that the Stream-

Reuse approach outperforms existing approaches under different workloads by re-

ducing network and computational resource usage, and offers an order of magnitude

improvement in the throughput of our stream query service processing system.

149

6.2 StreamReuse System Overview

Our techniques for dynamic system-level operator reuse are implemented in the

StreamReuse sub-system within a distributed stream query processing system [90].

This section presents some motivating examples and an overview of the Stream-

Reuse system architecture.

6.2.1 Motivating Examples

Exploiting operator level reuse for enhancing query service performance is important

for a wide variety of systems and applications. Examples include query services that

are long running and operating over a distributed collection of data centers. For

example, most of the service requests in airline computer reservation systems or in

enterprise operational information systems are long running and often perform pre-

caching over distributed data repositories for business or scientific collaborations. The

specific motivating example used in our research is derived from the airline industry

based on our collaboration with Delta Air Lines [104].

An enterprise operational system (OIS) is a large scale distributed system that pro-

vides continuous support for a company or organization’s daily operations. The OIS

run by Delta Air Lines provides the company with up-to-date information about all of

their flight operations including crews, passengers, weather and baggages. Delta’s OIS

combines three different types of functionality: continuous data capture for informa-

tion such as flight and passenger status; continuous status updates to a range of end-

systems including overhead displays, gate agent PCs and large enterprise databases;

and responses to client requests which arrive in the form of queries. In order to re-

spond to these query services, data streams from multiple sources need to be joined

based on the flight, location or time attribute, using techniques such as a symmetric

hash join.

Consider the following simple example. Assume that Delta’s OIS is operating

150

�

�������

��	
����

�
�

���

������������

�����
��
���

���

���

�������

�������

�������

�	��	���

��������� ������������������� �������

����������	
��������������	��	���

�����������	
���

����������
����������������������

���	
��������������	��	���������
�����������������������

����������
����������

�������������

Figure 59: An example network N

over the small network N shown in Figure 59. Let WEATHER, FLIGHTS, CHECK-INS

and BAGGAGE represent sources of data-streams of the same name and nodes N1-

N5 be available for in-network processing. Each line in the diagram represents a

physical network link. Also assume that we can estimate the expected data-rates of

the stream sources and the selectivities of their various attributes, perhaps gathered

from historical observations of the stream-data or measured by special purpose nodes

deployed specifically to gather data statistics.

Assume that the following SQL-like query request Q1 needs to be streamed to a

terminal overhead display SINK3 and the results will be updated every 1 minute.

Q1: SELECT FLIGHTS.NUM, FLIGHTS.GATE, BAGGAGE.AREA,

CHECK-INS.STATUS, WEATHER.FORECAST

FROM FLIGHTS [RANGE 5 MIN], WEATHER [RANGE 5 MIN], CHECK-INS [RANGE 1 MIN], BAGGAGE

[RANGE 1 MIN]

WHERE FLIGHTS.DEST = WEATHER.CITY

151

AND FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.NUM = BAGGAGE.FLIGHT

AND FLIGHTS.TERMINAL = ‘‘TERMINAL A’’

AND FLIGHTS.CARRIER CODE = ‘‘DL’’;

One way to deploy the service request Q1 is to apply the filter conditions and

the project operators for the various attributes at the source. The join operator

FLIGHTS⊲⊳CHECK-INS is placed at node N1 and join with WEATHER and BAGGAGE at N3.

All join operators are evaluated every minute.

Assume that a new ad-hoc service request in form of query Q2 is posed by an airline

manager in order to determine whether any low-capacity flights can be canceled and

customers shifted to a partner airline’s flight. Let us assume that the results need to

be refreshed every 5 minutes.

Q2: SELECT FLIGHTS.NUM, CHECK-INS.STATUS,

CHECK-INS.VACANT SEATS

FROM FLIGHTS [RANGE 5 MIN], CHECK-INS [RANGE 5 MIN]

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE IN (‘‘DL’’,‘‘CO’’);

Clearly, Q1 and Q2 share a join filter operator “FLIGHTS.NUM = CHECK-INS.FLIGHT”

at N1. Firstly, depending upon the sink for Q2, we may decide to either reuse the

existing join operator at node N1 or redeploy a new join operator. For example, if Q2

arrives at SINK4 it may be beneficial to reuse the operator but if it arrives at SINK1

we may prefer to deploy a new join operator. Secondly, in order to be able to reuse

the join operator FLIGHTS⊲⊳CHECK-INS, we would have to completely remove some filter

conditions (on attribute TERMINAL) before the join, relax some conditions (on attribute

CARRIER CODE) and place the original conditions after the join. Thirdly, this would

imply that we would have to project some additional columns (attribute TERMINAL

and VACANT SEATS in this case). Also, we must now expand the window size for the

CHECK-INS stream at the FLIGHTS⊲⊳CHECK-INS operator to 5 minutes, but only forward

152

CHECK-INS data within a one minute window to query Q1. Additionally, we must filter

updates based on timestamp such that results of query Q2 are streamed only every

5 minutes. Moreover, these reuse opportunities need to be identified and evaluated

at run-time and should be implemented without disrupting existing queries, causing

inconsistent information, or incurring excessive delays.

Several attributes of the example presented in this section are important to our

research. First, when query services are not known a priori, reuse opportunities that

exploit operator level similarity across multiple query services need to be identified at

runtime. Second, the benefit from operator-level reuse depends on network locality.

When the operator level similarity occurs at two or more network nodes that are

far apart from one another, the potential communication delay in the network may

take away the benefit of this reuse opportunity. Thus an effective reuse-conscious

scheduling should take into account of both operator-level computation similarity

and network locality. Finally, reusing an operator would often imply that existing

operators and existing service deployments may need to be modified at runtime. Thus

an efficient runtime migration of deployment plans is critical.

6.2.2 StreamReuse System Architecture

This section provides an architectural and implementation overview of the Stream-

Reuse system that has been implemented on top of IFLOW [90], a distributed data

stream processing system, developed at Georgia Tech. A scalable virtual hierarchical

network partition structure is used to collect and maintain information about the

nodes and operators currently in use. This virtual hierarchy is composed of a net-

work of nodes, grouped into regions based on the notion of network locality. In each

region, one node is designated as the coordinator or planner node for the region.

This coordinator node represents the region at the next level in the virtual hierar-

chical structure and collects and maintains network and operator information for all

153

�

���������

	
����
���
�

�������

����

���������

����

����������

����

����������� ��������

����
�����

����
����

�����������

��

���
��
���
�

��������	
����
��� ����

�������
�����
!
���
�

�������
�
���
�

����
������
����
��

������
���
�

������

5 6

5

5

45

5

�����	�������	

��
�����
��

	
��
����������

���	�����	��	

��		��������	���	����������	���	���
��	
��� ��	��	���	

�����	

!�		�����"	���	�����	#�������������

$�	%������	�������������	

&�					' ��������	��	#�������������

"�������
��

#���������

(�)������					�
*�		+����	

�����������

��������	,�	�"�	

�����	-������	

���������	�������	����	

Figure 60: System Design

nodes and links within its region. This process of partitioning nodes into regions and

coordinator selection continues until an acceptable approximation of the underlying

network has been created. At each level, the coordinator consolidates operator and

network information from all underlying nodes/regions. Readers who are interested

in details on the hierarchy creation and maintenance may refer to [90].

Figure 60 shows a schematic representation of the StreamReuse system archi-

tecture. Each node in the system consists of three main components: (1) a query

manager for maintaining information about stream queries and operators currently

deployed at the node, (2) a resource manager for managing local processing resources

and maintaining information about sources originating at that node, and (3) a net-

work manager and associated monitoring infrastructure for managing and maintaining

154

information about network resources. The network information is collected by the

network manager and maintained in the network hierarchy data structure at coordi-

nator nodes, and is utilized for operator placement computation by the cost model.

Local planning and placement decisions of operators within a region are performed

by the representative planner nodes. In summary, our deployment algorithm, the

Top-Down algorithm described in [133], works as follows: the query arrives at the

top-most level in the virtual hierarchy and the planner node at that level performs

query planning and approximate region-level placement decisions of operators. The

concrete operators determined at this level are passed on to coordinators of respec-

tive regions for placement within their region. Operators are thus passed down to

coordinators at the next lower level in the hierarchy until they are mapped to actual

physical nodes. The planning process is triggered when a new query service request

arrives in the system or when network topology changes, such as new nodes join or

existing nodes fail or depart.

The key contribution of this work is the reuse-conscious query planning process

at the coordinator nodes, henceforth referred to as the planner node. Figure 60

shows the architecture of the planner node with the additional components indicated

by shading in the diagram. In addition to network, resource and query manager com-

ponents, the planner node also maintains (1) a plan generator, (2) a reuse lattice that

organizes the information in the operator repository into an efficient search-optimized

structure, (3) a semantic analyzer, (4) a cost model, (5) network information orga-

nized based on the virtual hierarchical structure, and (6) a component to compute

operator placement. Of these components, the reuse lattice, the semantic analyzer,

and the cost model provide the functionality required for identifying and evaluat-

ing reuse opportunities. The plan generator is similar to those found in traditional

database engines for computing combinatorial operator ordering possibilities. The

155

network information component and the operator placement and deployment algo-

rithms have been summarized in the previous paragraphs and have been discussed in

detail in [133].

In this work, we concentrate on aspects of the system that are specifically designed

to promote efficient identification and utilization of reuse opportunities in a system

where multiple similar distributed continual queries are running simultaneously. In

particular:

• Semantic Analyzer: utilizes operator semantics to identify existing operators

that can be reused in the computation of the new query request. For each such

identified opportunity, the semantic analyzer computes ‘relaxations’, i.e. modi-

fications to the existing operators, in order to allow the operator to be reused

and ‘compensations’, i.e. new operators that need to be introduced at runtime

to ensure that existing query computations are consistent and are not disrupted.

(Section 6.3)

• Reuse Lattice: congregates information from the operator repository and the

network hierarchy into a single structure that allows efficient search and identifica-

tion of reuse opportunities based on both operator similarity and network locality.

(Section 6.4)

• Cost Model: combines network costs from the operator placement computation

model based on network information and data-flow rates from semantic informa-

tion to compute a cost-measure for each candidate reuse opportunity/deployment.

Using this information along with query lifetimes, the planner node chooses effi-

cient deployments for queries while taking into account reuse opportunities that

increase the overall efficiency of the system. (Section 6.5.1)

156

6.2.3 Basic Concepts and Notations

We now briefly discuss some background concepts and notations used throughout

the chapter. Throughout the discussion, continuous queries are specified using SQL

semantics. Let S = {s1, s2, . . . , sk} represent the set of sources in a distributed

stream processing system G. Let Ψ(t) represent the set of queries, each associated

with a lifetime, executing over the system at time t. The query workload results

in a set of operators being deployed across the system. A single operator may be

shared by multiple queries. Let Θ(t) = {θ1, θ2, . . . , θm} represent the set of operators

(including sources) executing in the system at time t. Each operator is the source for

the stream computed by its underlying query.

An operator θ in the distributed stream processing system is uniquely identified

by the following:

• V , the definition of an operator which declaratively represents its output stream

by an equivalent query,

• N , the network location which is the identity of the physical node over which

the operator is executing, and

• T , the lifetime which is the duration of time for which the operator persists in

the system.

The operator definition is in the form a single level ‘select-project-join-group by’

(SPJG) query with a FROM clause consisting only of base streams sources (i.e, not other

operators or derived streams). The definition includes window (RANGE and SLIDE i.e.

the window size and frequency of computation of results respectively) specifications

for each of the input streams. The lifetime of an operator is the maximum over the

lifetimes of all queries that share that operator. Note that two physical operators

with identical definitions may appear at different network locations with different

lifetimes.

The next section characterizes the semantic criteria for reuse candidate selection

157

and describes how the semantic analyzer computes modifications to existing operators

in order to reuse them. The reuse lattice data structure, our cost model and the actual

process of implementing operator reuse and plan migration at runtime are presented

in subsequent sections.

6.3 Identifying Reuse Candidates

The aim is to identify two kinds of reuse opportunities:

• Containment or Exact matches: we identify reuse possibilities where existing op-

erators and their results can readily be used to evaluate a new query.

• Overlap: we explore opportunities where even existing operators that cannot be

directly reused to compute a query can be modified in order to induce reuse.

Section 6.3.1 identifies the basic conditions that must be satisfied by any operator

θi in order to be reused in the evaluation of query Q. The main operator relax-

ation steps that identify the operators for modifications and compute relaxations and

additional compensations are detailed in Section 6.3.2.

6.3.1 Base Conditions

In order to rewrite a newly arriving query Q in terms of an existing operator θi (with

view definition Vi), the following conditions referred to as ‘base conditions’ should

be satisfied.

1. Source table condition : Let SQ be the set of source streams referenced by

the stream query. Let Sθ represent the set of source streams referenced by Vi. Then

SQ = Sθ must be satisfied. Here ‘=’ represents set equivalence. If Vi refers to

additional source streams, it can still be used to rewrite Q provided the joins with

the additional source streams are cardinality preserving. However, we may not be

able to guarantee this when stream characteristics and rates are constantly varying.

Thus we do not consider operators with additional source streams for rewriting.

158

2. Join predicate conditions : Let JQ be the set of predicates that represent the

join operations in the where clause of Q. Similarly, let Jθ represent the join predicates

in Vi. Then, set equivalence JQ = Jθ must be satisfied in order to be able to rewrite

the query in terms of the operator.

3. Two-column predicates : A two-column predicate is of the form Sk.Ca OP

Sn.Cb where OP is one of {<,≤, >,≥, 6=}, Sk,Sn represent stream sources and Ca,Cb

represent attributes. Let TQ be the set of two-column predicates in the query. Let T θ

be the set of two-column predicates specified in Vi. Then, set containment T θ ⊆ TQ

must hold; i.e., every two-column predicate in the operator θ must also appear in the

query Q.

4. Grouping column condition :Let GQ be the group-by columns in the stream

query. Let Gθ be the group-by columns in Vi. Then GQ ⊆ Gθ must hold i.e., every

group-by column in the query must also appear in the operator θ. If the group-

by condition in the operator includes additional columns, then the query can be

computed by performing further aggregations on the operator results using techniques

such as those described in [78].

If the above conditions are satisfied, then the operator θi can be used for rewriting

the query Q. The conditions are adapted from the context of rewriting queries in

terms of materialized views. While rewriting queries in terms of materialized views,

certain additional conditions such as selection predicates and project columns are

also considered since materialized views cannot be modified at runtime. However, in

our case, it is possible to modify existing operators. Moreover, stream queries have

window specifications which must also be taken into consideration during rewriting.

The following discussion outlines the semantic considerations for identifying runtime

reuse opportunities of existing operators.

159

6.3.2 Relaxation and Compensation

By exploiting query semantics, it is possible to modify existing operators to facilitate

sharing of operators between multiple queries. According to our definition of relax-

ation, the query and original operator must be obtainable from the relaxed operator

by imposing just selection, projection and temporal filter operators. We restrict re-

laxation in this way since we must ensure that the existing operator can be relaxed at

runtime without disrupting queries that may already be executing over the original

deployed operator. Hence our focus is primarily on relaxing join operators.

We consider four kinds of relaxations of existing operators in the system: (1)

relaxation of selection predicates, (2) relaxation of project operators (3) relaxation

of operator lifetime, and (4) relaxation of window specification. Depending upon

the query and the existing operator, one or more of these relaxations may be ap-

plied. During relaxation, an existing operator is modified into a ‘relaxed’ operator

and compensation operators. Compensation operators are introduced to ensure the

consistency of results of existing queries and are also used to rewrite the new and

existing queries in terms of the relaxed operator.

While relaxing an operator, the condition being relaxed may be local, meaning

that it is applied by the current operator, or it may already be embedded into the

input stream by some operator at an upstream node. If the condition is local, then

relaxation only involves modifying the current operator. If the condition being relaxed

occurs at some upstream operator, the relaxation operation will cascade and result

in relaxations of multiple upstream operators. The actual implementation of the

migration from the existing plan to the new plan that uses the relaxed operator is

described in Section 6.5. We first introduce some preliminary definitions and the

notion of minimal relaxation.

Since stream data is potentially unbounded, queries typically have a window speci-

fication. In CQL [36] window size is specified using a RANGE clause r and the frequency

160

of computation of the operator is specified with an optional SLIDE clause s. For ease

of exposition, we describe the process of relaxing windows for windows where a single

range and slide specification applies to all input streams in the operator. However,

note that, our techniques are applicable to any general window specification. First,

we define temporal operators for the operator θi and query Q: rθ, rQ, referred to as

range filters filter tuples based on RANGE specifications and operators sQ, sθ, referred

to as slide filters, filter tuples based on SLIDE specifications.

Operator Containment: An operator (or query) θk is said to be contained in

another operator θi, denoted by θk ⊑ θi, iff for every tuple tk produced by θk ∃ a

unique tuple ti produced by θi such that tk ⊑ ti. (A tuple tk is said to be contained

within another tuple ti iff every attribute in tk also appears in ti.)

Containment relationship with windows : Given operators θi and θj with iden-

tical SPJG definitions and (RANGE, SLIDE) window specifications (ri, si) and (rj, sj)

respectively, the containment relation ⊑ imposes a partial ordering on the set of

operators and is defined as follows: θi ⊑ θj iff ri < rj and si mod sj ≡ 0.

Relaxation: Let θ represent an already deployed operator and Q represent a new

query. Then, θ is called a ‘relaxation’ of θ under Q, if

1. θ ⊑ θ and

2. Q ⊑ θ and

3. ∃σθ, Πθ, rθ, sθ such that rθ(sθ(Πθ(σθ(θ)))) ≡ θ and

4. ∃σQ, ΠQ, rQ, sQ such that rQ(sQ(ΠQ(σQ(θ)))) ≡ Q.

Compensation Operators : Selection operators σθ, σQ, projection operators Πθ, ΠQ

and temporal filter operators rθ, rQ, sQ, sθ are referred to as compensation operators

and θ as a ‘relaxed operator’.

161

Minimal relaxation: A relaxation θ of θ under Q is called a minimal relaxation

if ∀ relaxations θi of θ under Q, θ ⊑ θi.

Lemma 6.3.1. Given query Q and operator θ, if Q ⊑ θ, then θ is the only minimally

relaxed operator.

Proof. From the definition of relaxation and operator containment, we can easily see

that θ represents a relaxation of itself under Q. Since all other relaxations must

contain θ, by definition, θ is a minimal relaxation under Q.

Given that an operator θ satisfies the base conditions with a query Q, a minimal

relaxation of the operator is computed using the following steps.

1. Relaxing selection predicates : An operator can be relaxed by modifying the

selection predicates and there by imposing a less restrictive filter condition. We relax

the operator θ such that the new relaxed operator θ is a minimal cover of θ and Q.

We compute a minimally relaxed operator from θ by analyzing the predicates of both

θ and Q. θ retains predicates that are common to both Q and θ. For predicates

that involve different conditions over the same attribute, θ includes a predicate that

is a disjunction of the two predicates. In some cases this disjunction can be further

simplified. For example, if Q contains a predicate of the form S.a > constant1 and

θ contains a predicate of the form S.a > constant2, then θ will use predicate S.a >

min(constant1, constant2). Similarly, if Q and θ involve complementary predicates

on the same attribute, then the resulting disjunction can be removed from the set of

predicates of θ without loss of minimality. Other predicates are omitted from θ.

Since selection operators are idempotent, a simple way to compose compensation

operators σQ (or σθ) is to include all predicates that appear in Q (or θ). Although

correct, this may lead to redundant condition checking. Therefore, we compose com-

pensation operators σQ (or σθ) by including only those predicates that have not been

included in the relaxed operator.

162

2. Relaxing projections : Q may require projection of additional columns than

those projected by θ. Moreover, columns that are not part of the output column list

may be required by the compensation selection operators σQ and σθ. θ is modified

to project, in addition to columns projected by θ, extra columns required by Q, σQ

and σθ. Additionally, if group-by conditions are specified, then the group-by columns

required by Q and θ also need to be projected. The compensation projection operators

ΠQ and Πθ are simply those columns in the output list of Q and θ respectively.

3. Relaxing operator lifetimes : The relaxed operator must persist in the system

for as long as any of the queries using it still execute in the system. Thus the lifetime

of the relaxed operator is set to the maximum of the lifetimes of all the queries using

it. The lifetime of compensation operators σθ and Πθ is set to that of the original

operator θ. Lifetimes of σQ and ΠQ is set to that of Q.

4. Relaxing windows : Our relaxation techniques are primarily aimed at sliding-

window join operators. Note that, sharing of a single blocking (aggregation) operator

between queries with different range or slide specifications is not feasible. This is

because no single input data timestamp can be associated with the output, rendering

temporal filtering impossible. However, it is still possible to resort to node-level

reuse and share computations between multiple such operators placed on the same

node [89].

The range specification, i.e. the window size, for the relaxed operator θ is the

larger of rθ and rQ. Relaxation of slide specifications are slightly more involved.

Let sθ and sQ represent the slide specification of the operator θ and the query Q

respectively. A naive solution would be set the slide to the GCD(sθ, sQ). Thus, if

sθ mod sQ ≡ 0 then sθ = sQ; if sQ mod sθ ≡ 0 then sθ = sθ and sθ = 1 otherwise.

However, this could potentially lead to a large amount of unnecessary computations.

For example, if sθ and sQ are two different large primes, then for most instants

163

of time, computation of operator θ would be wasted. Instead we specify window

slide frequencies as a boolean condition which when evaluated to true results in a

window slide. For example, the operator performs its computation at time instant

t if the following condition evaluates to true: ((t mod sθ ≡ 0) ∨ (t mod sQ ≡ 0)).

In general, systems which support adaptivity have the ability to modify filter and

window specifications at runtime [28, 61]. We are able to leverage the dynamic code

generation capabilities of our system [61] to modify windows at runtime.

We introduce compensation range filters rθ and rQ that filter tuples from the

relaxed operator based on the timestamps associated with the tuples and the range

specifications of θ and Q respectively. For example, if θ specifies a range of 10 minutes

and Q specifies a range of 8 minutes, then θ is computed over a window of 10 minutes.

The compensation operator rQ then filters tuples whose data items have timestamps

that fall beyond the 8 minute window. Similarly compensation slide filters sθ and sQ

filter tuples from the relaxed operator based on the timestamp of the output from θ.

For example, if θ specifies a slide of 2 minutes and Q specifies a slide of 1 minute, then

θ is computed at a slide of 1 minute. Compensation slide filter sθ only forwards results

which appear at 2 minute intervals. Note that in order to perform compensation, we

must project per tuple timestamps for each data item participating in the join in

addition to the items already being projected.

Sharing an operator between two queries with different ranges and slides can result

in a significant increase in the size of intermediate data due to an increase in both

window size and frequency of slide. However, this is taken into consideration by our

cost function since we include operator output rate while computing network usage

per unit time.

5. Cascading relaxations : If relaxing an operator involves the relaxation of con-

ditions that are not local (i.e. not at the current operator itself) but instead are

embedded into the input streams by some upstream operator, then we may need

164

to perform cascading relaxations (and the associated compensations). For each up-

stream operator that requires relaxation, the process is repeated and relaxed and

compensation operators are computed. Cascading terminates when all the conditions

being relaxed are local.

6.3.3 Example

The following example explains the relaxation and compensation process for the

queries Q1 and Q2 described in Section 6.2.1. We explain how the FLIGHTS⊲⊳CHECK-INS

join operator θj deployed for query Q1 should be relaxed to be reused in the evaluation

of query Q2. Originally,

θj :SELECT FLIGHTS.NUM, FLIGHTS.GATE, FLIGHTS.DEST, CHECK-INS.STATUS FROM FLIGHTS [RANGE

5 MIN], CHECK-INS [RANGE 1 MIN]

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE = ‘‘DL’’

AND FLIGHTS.TERMINAL = ‘‘TERMINAL A’’;

Since the base conditions are satisfied by θj under Q2, the operator can be reused with

the query. However, relaxation is required. We briefly outline the steps to compute

the minimally relaxed operator θj next.

1. Relaxing selection predicates : The selection conditions C of θj is given by:

C : FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE IN (‘‘DL’’,‘‘CO’’)

In this case, compensation selection operators are required only for the existing query,

and the conditions Cθ in the compensation operator σθ is given by:

Cθ : FLIGHTS.TERMINAL = ‘‘TERMINAL A’’

AND FLIGHTS.CARRIER CODE = ‘‘DL’’

2. Relaxing project operators : The project column list L in θj is given by:

L : FLIGHTS.NUM, FLIGHTS.GATE, FLIGHTS.DEST,

FLIGHTS.TERMINAL,FLIGHTS.CARRIER CODE,

CHECK-INS.STATUS, CHECK-INS.VACANT SEATS

165

The compensation projection operators are simply those columns specified by θj and

Q2.

3. Relaxing lifetimes : The lifetime of the new operator θj will be the maximum

of the lifetimes of Q2 and Q1.

4. Relaxing windows : The window range for the CHECK-INS stream in θj is set to 5

minutes (maximum of range for Q1 (i.e. 1 minute) and Q2 (i.e. 5 minute)). Similarly,

the slide is specified by the following boolean condition: ((t mod 1 ≡ 0)∨ (t mod 5 ≡

0)), which is simplified to just (t mod 1 ≡ 0). Range compensation operator τ θ filters

out tuples whose data items corresponding to the CHECK-INS stream fall beyond a 1

minute window. Similarly, slide compensation operator ΓQ2 only forwards results that

appear at a 5 minute interval.

5. Cascading relaxations : Since the selection conditions on the FLIGHTS source

are actually performed at the source, the conditions in the selection operator at the

source will have to be replaced with C. The same applies to the project operators

at the sources FLIGHTS and CHECK-INS. Thus, the definition of the minimally relaxed

operator θj is:

θj : SELECT FLIGHTS.NUM, FLIGHTS.GATE, FLIGHTS.DEST,

FLIGHTS.TERMINAL,FLIGHTS.CARRIER CODE,

CHECK-INS.STATUS, CHECK-INS.VACANT SEATS

FROM FLIGHTS FL, CHECK-INS CI

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.CARRIER CODE IN (‘‘DL’’,‘‘CO’’);

6.4 Searching for Reuse Candidates using Reuse Lattice

The ‘Reuse Lattice’ data structure combines information from the operator repository

and the network hierarchy into a single structure that allows efficient search and

identification of reuse opportunities based on both operator similarity and network

locality. This section answers the following question: how do we efficiently search for

166

reuse opportunities?

The reuse lattice uses the operator definition Vi to encode containment. Since op-

erator definitions are similar to view definitions in traditional databases, this allows

us to leverage the large body of existing work in rewriting queries using material-

ized views. Particularly, we adapt the filter tree index structure described in [71] to

efficiently maintain containment relationships between operators. Section 6.4.1 de-

scribes the adaptation of the structure to the context of continuous queries to create

the reuse lattice that handles window specifications and relaxations. Section 6.4.2

describes techniques that extend the structure to incorporate network locality. The

reuse lattice supports the following search operations: (1) Network locality : Search

for candidate operators only within specified regions, (2) Reuse without modifica-

tion : Search for operators that can be reused without modifications, and (3)Reuse

with modification : Searches for operators that can be reused with modifications.

An exhaustive search would search all network regions for all operators including

relaxation opportunities.

6.4.1 Encoding Operator Containment

The reuse lattice adapts a restricted filter tree structure [71] to the context of a

distributed stream processing system. Given a query, the filter tree structure can

be used to quickly narrow down the list of candidate operators in the system that

will give rise to valid rewrites. The filter tree is a multiway search tree where all

leaves are at the same level. A single node in this structure represents a collection of

operators. Different partitioning conditions are applied to the nodes at each level to

further partition the operators into multiple smaller disjoint nodes at the next level.

For example, at the top-most level, operators are partitioned into disjoint subsets

based on source streams (specified in the FROM clause of the operator definition).

Each disjoint subset is represented at that level by a single node in the filter tree. A

167

different partitioning condition is applied at each subsequent level. For example, we

partition nodes into disjoint subsets based on join predicates at the next level, based

on two column predicates at the third level and group-by predicates at the fourth level.

At this point, all the base conditions have been accounted for. We further partition

each node based on each of the relaxable conditions, viz. selection predicates, project

column list and window specifications. These last three levels in the filter tree are

only used when searching for reuse opportunities that do not require modifications.

The key at each level is determined by the partitioning condition. For example,

if the partitioning condition is the set of source streams, then the list of sources

specified in the FROM clause of the definitions serves as the key. If the partitioning

condition is the window specification, then the (RANGE, SLIDE) specifications serve as

the key. Each node in the filter tree is a collection of <key,pointer> pairs that may

further be organized into an internal index structure based on containment of keys

(determined by the partitioning condition) to further speed-up search within a node.

For example, Figure 61 shows a single lattice node at the window specification level,

where the keys (which is (RANGE, SLIDE) specifications in this case) are organized

into an internal index structure based on containment. For example, the Figure 61

shows that given operators that are identical in all other specifications, an operator

with a (RANGE, SLIDE) specification of (5,2) can be derived from an operator with

(5,1) specification or an operator with a (6,2) specification. At the lowest level in the

lattice, the internal nodes contain pointers to actual operator definitions. Since the

Figure 61 indicates a leaf level node (since window specification forms the lowest level

in the lattice tree), the internal nodes contain pointers to actual operator definitions.

6.4.2 Encoding Network Location

In order to allow search based on different granularities of network locality, network

nodes are organized into ‘regions’ based on the notion of “nearness in the network”.

168

The organization of network nodes into regions can be based on a clustering algorithm

like K-Means that uses inter-node delay as a clustering parameter or a static grouping

if the distribution of nodes in the infrastructure is known before hand. Each region

is identified by a unique bit-vector of length n, where n is the number of regions. We

refer to this bit-vector as a ‘Region ID’ (RID). The RID for the ith region has the ith

bit set to 1 and all other bits set to 0.

The network location indicator (NID) of an operator, is a bit-vector that represents

the region(s) to which the operator belongs. The ith bit of the NID is set to 1 only

if the node belongs to the ith region. At the lowest level, each internal node contains

pointers to all operators with the same key at each level of the lattice. Each internal

node in the lattice is again associated with an NID which is the bitwise OR of all

the associated operator NIDs. Note that the same operator may appear at multiple

network locations causing the operator NID to have more than one bit set to 1.

Figure 61 shows an example lattice node. The figure shows a single leaf level

lattice node where the partitioning condition is the window specification. As the figure

shows, the lattice node contains a collection of keys, (RANGE, SLIDE) specifications in

this case, such as (5,1), (6,2) etc., organized into a containment (see Section 6.3.2)

based structure. Since this is a leaf node, each internal node contains a pointer to a

set of operators. Note that all operators belonging to one internal node at this level

have identical keys at all levels of the lattice. Each operator is associated with a NID

corresponding to the regions where the operator resides. For example, the NID of key

(5,1) indicates that such an operator is available in regions 1, 2 and 4.

6.4.3 Lattice Operations: Insert, Delete, Search

Inserting a new operator into the lattice involves first applying the partitioning con-

dition to the operator in order to locate the appropriate lattice node to which the

operator belongs, followed by a search for the key within the lattice node. If the key

169

1
0

0
0

1
0

0
1

1
1

0
0

�1 �2 �3

5, 3 6, 4

1 1 0 1

5, 1

1
0

1
0

1
0

1
0

�4 �5

1 0 1 0

6, 2

5, 2

4, 2 5, 6

Figure 61: A single leaf lattice node.

is already present at an internal node within the lattice node, then the NID of the

internal node is set to the bitwise OR of the existing and the new operator’s NIDs.

Otherwise a new internal node is created with the key and new operator’s NID. In-

serting an operator into the lattice may result in the insertion of a new internal node

at each level of the lattice. The pseudo code for insertion into a single lattice node

at some level i is shown in Figure 62.

In the delete operation, locating the internal lattice node at each level is similar

to that during insertion. In order to avoid recomputation of the internal node NIDs

for each deletion, we maintain a per-bit counter for each internal node which main-

tains the number of operators in the region with that key. The per-bit counter is

decremented each time an operator with that key belonging to the region is deleted

and incremented when an operator is inserted. When the last operator in the region

with a given key is deleted, the bit corresponding to the region in the NID is set to

170

InsertIntoLatticeNode(LatticeNode, i, θ): Insert operator
θ into LatticeNode which is at level i.

1. key := getKeyForLevel(θ,i);
2. List internalNodes := findKey(LatticeNode, key, PCONDN);
/*PCONDN ∈ {EQUAL, SUBSET, SUPERSET} */
3. internalNode := internalNodes[0];
4. if (internalNode is NULL)
5. internalNode := create new internal node with key;
6. setNetworkLocation(internalNode,getNetworkLocation(θ));
7. setMinmalSupersets(internalNode, LatticeNode);
8. setMaximalSubsets(internalNode, LatticeNode);
9. else setNetworkLocation(internalNode,
getNetworkLocation(θ)|getNetworkLocation(internalNode));
10. end if
11. return internalNode

Figure 62: Inserting operator into lattice node

zero. The pseudo-code for deletion is similar to that of insert.

Recall that the lattice supports search based on network location and support for

relaxation. Figure 63 shows the pseudo code for searches for exact matches (without

modification) within the regions specified as a bit-vector. In order to search for all

operators that exactly match an input operator (the view definition of the query),

the SearchNetworkRestrictExact function is invoked with the root as the start node.

The AREAID bit-vector has one bit per region and any combination of regions can

be searched by using an appropriate bit-vector. Using a bit-vector with all 1s, an ex-

haustive search can be performed. If relaxations are allowed, the SearchNetworkRe-

strictExact function is modified to stop at the level where all base conditions are

satisfied and the set of candidate nodes are selected. The set of operators that can

be reused with modifications are then obtained by traversing all the lower level nodes

of selected candidate nodes.

171

SearchNetworkRestrictExact(θ, AREAID, StartNode):
Search for exact matches for θ AREAID beginning at StartNode.

1. i := getLevel(StartNode);
2. key := getKeyForLevel(θ,i);
3. LatticeNode := getLatticeNodeByKeyCond(StartNode, key, i);
4. List internalNodes := findKey(LatticeNode, key, EQUAL);
/*PCONDN ∈ {EQUAL, SUBSET, SUPERSET} */
5. if (internalNodes is NULL) return NULL; else
6. for each internalNode in internalNodes
7. if(getNetworkLocation(internalNode) & AREAID is 0)
8. return NULL;
9. else if level is LEAF
10. return operators of internalNode within AREAID;
11. else
12. SearchNetworkRestrictExact(θ,AREAID, internalNode);
13. . . .

Figure 63: Search with network restriction.

6.5 Putting the Pieces Together

Thus far, we have presented key pieces of our StreamReuse subsystem – the se-

mantic analyzer and the reuse lattice data structure. We described how dynamic

groupings of queries are identified and how relaxations to existing operators and the

corresponding compensations are computed. The question that now arises is: “how

do we actually implement these operations at runtime and migrate existing queries to

the new plans while ensuring the correctness of results?”. This section describes the

cost model that is used to evaluate deployment candidates identified from our reuse

lattice and the steps involved in implementing dynamic query groupings.

6.5.1 Cost Model

In a distributed data-stream system where communication and processing costs are

high and incurred continuously, an optimal query execution plan should ideally try to

achieve multiple objectives – a minimum response-time while also incurring minimum

communication and processing cost per unit time. However, these objectives may be

172

conflicting, since it is possible that lower delay paths have higher communication

cost, or it may be the case that paths that incur low communication cost can cause

a processing overload at some intervening network node. To optimize across such

conflicting objectives, we choose the metric of ‘network usage’ described in [109] to

compute cost of deployments. The network usage metric computes the total amount

of data in-transit in the network. This metric captures the bandwidth-delay prod-

uct of a query and trades off the overall application delay and network bandwidth

consumption.

Consider a data stream processing system G. Let Lθ represent the set of links that

are used to transfer input data to the operator θ from immediate predecessor operators

or sources (in the case of leaf operators). Then the instantaneous network usage

u(G, θ, t) of operator θ at a time t over system G is given by

u(G, θ, t) =
∑

ℓ∈Lθ

λ(ℓ)µ(ℓ)

where λ(ℓ) and µ(ℓ) represents the data-rate and latency respectively of link ℓ. Since

each operator θ has an associated lifetime T (θ), this cost is incurred continuously over

the lifetime of the operator. Thus, the total cost including estimated future costs that

are incurred due to operator θ over its lifetime T (θ) is given by

U(G, θ) =

∫ T (θ)

t

u(G, θ, t)

Thus, the total system cost (including future estimates) under a set of operators Θ(t)

is given by :

C(G, Θ(t)) =
∑

θ∈Θ(t)

U(G, θ)

Taking into consideration the long running nature of the queries, given a new query

Q to be deployed over the system G, our goal is to find an efficient query deployment

such that the new set of operators Θ′(t) minimizes the total system cost including

estimated future costs. Our objective is therefore to find this query deployment Θ′(t)

from the space Θ of all such deployments such that the total system cost C(G, Θ′(t))

is given by

173

1 2 3

σ
A

Query1

Query
2

New Request:

σ'A

σ
B

σ
C

σ
D

(a) Original deployment

3

Query
2

New Request:

 σ'A

σA

Query1

 σA

1 2

σA

σ
B

σ
C

σ
D

(b) Compensation operators

3

Query
2

New Request:

 σ'A

σA

Query1

 σA

1 2

σ'A

σ
B

σ
C

σ
D

(c) Operator Relaxation

3

Query
2

Query3

σA

Query1

 σA

1 2

σ'A

σ
B

σ
C

σ
D

(d) Final deployment

Key : w - Relaxed operator w - Compensation operator i - Marker Tuple

Figure 64: Runtime Migration Steps

C(G, Θ′(t)) = min
Θi(t)∈Θ

∑

θ∈Θi(t)

U(G, θ)

Note that our optimization function takes network locality, data rates and oper-

ator lifetimes into consideration. When an operator is reused, costs (network and

processing) for the operator are incurred only once. Intuitively, it is in general more

beneficial to share operators with long-lived queries than with short-lived queries,

since with the former, the benefit from longer durations of sharing may outweigh the

temporary difference in cost. The lifetime parameter in the expression essentially

captures this intuition. The planner evaluates candidate deployments including those

without operator grouping using our cost function. Thus queries are grouped only

when the cost model indicates that it is beneficial to do so.

The effectiveness of the StreamReuse approach is measured using two key met-

rics: instantaneous network usage and end-to-end latency. The instantaneous

174

network usage under a set of operators Θ(t), which is the total system resource con-

sumption per unit time is given by the expression

c(G, Θ(t), t) =
∑

θ∈Θ(t)

u(G, θ, t)

In order to measure the response time while taking independent intra-query par-

allelism into consideration we adopt the end-to-end latency cost model devised in

Ganguly et al. [67]. Using this model, the response time for a deployment is com-

puted as the latency along its critical path which is the longest path from the root to

a leaf node in the operator tree.

6.5.2 Runtime Plan Migration

Techniques for runtime plan migration exploit the fact that selection, projection and

temporal filter operators are idempotent, i.e, the effect of applying the operation

multiple times is the same as that of applying it once.

Figure 64 outlines the steps involved in the process of runtime relaxation. The

white circles indicate operators already deployed in the system and the arrows indicate

the direction of flow of data. Two queries are already being served by the deployment

as indicated in the figure. The figure explains how the deployment is relaxed at

runtime in order to serve a third request that requires the output of join operator 2⊲⊳

with the selection predicate σA modified to σ′
A. For the sake of clarity, we show the

runtime relaxation of only selection predicates. The same steps apply to projection

operators and temporal (range or slide) filters also.

Figure 64(a) shows the original deployment with the new request for relaxation

at operator 2⊲⊳. Upon arrival of the request, the relaxations and compensations in-

volved are computed recursively using the steps described in Section 6.3.2 and the

deployment with the least cost is chosen. The first step is to introduce the idem-

potent compensation operators at the earliest point along the outputs to existing

queries from the operators to be relaxed. This step is shown in Figure 64(b) where

175

the compensation operators for Query1 and Query2 are added as shown in the figure.

Adding a compensation operator at runtime involves creation and placement of the

compensation operator followed by redirection of the data-flow. Since the compensa-

tion operators have no state, plugging them into the deployment is simple.

The second step, as shown in Figure 64(c), is the beginning of the relaxation pro-

cess. Since relaxation of input conditions (upstream operators) must be performed

before relaxation of local conditions, the actual relaxation is first performed by the

most upstream operator where the filter conditions are actually applied. Relaxation

involves runtime modification of the filter predicates. Most stream systems support-

ing adaptivity have the facility to modify filter conditions at runtime [28, 61]. In our

case, the selections are instantiated as parameterized filters [61], and this reduces the

task of filter modification to the task of changing the parameter associated with the

filter. When the relaxed operator begins executing, it inserts a special tuple, called

the marker tuple, into the input stream. When the marker tuple is received by a

downstream operator, it indicates that the relaxation has been performed upstream

and all tuples that follow result from the new filter condition. The downstream oper-

ator then performs the local relaxations and indicates this to other downstream nodes

by again introducing a marker tuple. Compensation operators and operators that do

not perform local relaxations absorb the marker tuples and do not propagate them

further. Once relaxations have been performed, operators activate output streams

that requested the relaxations, as shown in Figure 64(d).

A natural next step to runtime relaxation of operators with query arrival is runtime

contraction with query departure. Given the steps for runtime relaxation of queries,

runtime contraction is also possible by performing the steps in the reverse order.

Runtime contraction is triggered by the departure of a query from the system. Briefly,

if one of the many queries sharing an operator leaves the system, the disjunctions in

predicates at all upstream vertices introduced by the query can be removed resulting

176

in more restrictive filters. Again, when more than one operator is involved, cascading

contractions should be performed beginning at the most downstream operator used

by the query.

6.6 Experimental Evaluation

Experimental evaluation of the StreamReuse approach studies the performance of

our techniques with respect to a number of metrics such as resource usage, latency,

and planning time. Our experimental evaluation answers the following questions:

(1) What is the cost-benefit of reusing operators across continual queries in terms of

resource usage? (2) How do these techniques behave under different workloads? (3)

What is the impact on the latency of the existing deployments and the throughput

of the system? (4) What are the effects of dynamic grouping on query planning time

and the time to initial deployment?

Experiments were performed on both simulations and a prototype and were con-

ducted using two very different workloads: an enterprise workload obtained from

Delta Air Lines and a synthetically generated RFID workload. Our results show

that:

• Our techniques can reduce network usage by as much as 96% when compared to

the state-of-art approaches.

• By our dynamic grouping approach, computation costs can be reduced by more

than an order of magnitude while the increase in latency and time-to-deployment

is negligible.

6.6.1 Workloads

Figure 65 partitions the space of workloads into four quadrants based on the number

of sources and queries. Our interest primarily lies in the shaded quadrants that

represent a high number of simultaneously executing continuous queries where there

is significant opportunity for operator reuse. It should be noted that while our system

177

Number of Sources

N
u
m
b
e
r

o
f

Q
u
e
r
i
e
s

EW

RW

High

H
i
g
h

Low

L
o
w

Figure 65: Classification of workloads

Source Rate Selectivity

Flights 1500 per 5 min 1 per flight per 5 min
Check-ins 240 per min 2 per flight per min
Baggage 500 per min 4 per flight per min
Weather 450 per 5 min 1 per destination per 5 min

Sales 70 per min 1 per destination per min

Figure 66: Enterprise Workload

Parameter Value

Number of sources 20
Query size 3 joins (80%), 4 joins (15%), 5 joins (5%)
Number of predicates 1-3
Query duration 1 hour (80%), 6 hours (15%), 12 hours (5%)
Query arrival rate Poisson µ = 30 queries/hour
Range, Slide specifications U[1-5] Minutes
Total record size Fixed (100 bytes)

Figure 67: RFID Workload

can handle the other two quadrants, due to the low number of queries, the benefit to be

realized from enabling operator reuse is also low. Another factor that determines the

performance of our techniques is the number of data-stream sources in the system – a

high number of sources may lead to a varied set of operators implying a low possibility

of operator reuse, while a relatively low number of sources increases overlap between

queries and the possibility of reuse. Accordingly, we model two workloads that are

representative of those two quadrants. For example, enterprise information systems

(Section 6.2.1) are representative of the quadrant which covers a region with a high

number of queries and a low number of sources. Similarly, applications like the ones

used for inventory tracking using RFID tags can be categorized into the quadrant

with a high number of sources and a high number of queries.

EW: Enterprise-Workload The enterprise workload is a real-world workload con-

sisting of gate-agent, terminal and monitoring queries posed as part of the day-to-day

178

operations of Delta Air Lines’ enterprise operational information system. The query

workload is based on the 5 query sources whose characteristics are shown in Table 66.

Gate agent queries constitute 80% of the workload and the SLIDE for these queries is

set to 1 minute. The queries use the following template.

Q3: SELECT FL.GATE, BG.STATUS, CI.STATUS

FROM FLIGHTS FL [RANGE 5 MIN], BAGGAGE BG [RANGE 1 MIN], CHECK-INS CI [RANGE 1

MIN]

WHERE FLIGHTS.NUM = CHECK-INS.FLIGHT

AND FLIGHTS.NUM = BAGGAGE.FLIGHT

AND FLIGHTS.NUM = ?;

Each gate agent query originates at the gate of departure of a flight and lasts for 2

hours prior to departure of the flight. Terminal queries, which represent 15% of the

workload, are longer running queries (12 hours lifetime) and follow the template of

query Q1 in Section 6.2.1 and are evaluated every minute. Finally, the last 5% of

the workload represent long-running (6 hours) ad-hoc monitoring queries over any

combination of the 5 sources. For these queries, we use window ranges and slides

that are uniformly distributed between [1-5] minutes for all streams. With nearly

1500 flights a day, we assume that queries arrive with a poisson distribution with

µ = 60 queries/hour. Each update record was assumed to be of the same size (100

bytes).

RW: RFID-Application Workload The synthetic RFID workload (Table 67) mod-

els the quadrant representing systems with a large number of queries over a large

numbers of sources resulting in smaller overlaps between queries.

6.6.2 Experimental Setup

Our prototype was built over a distributed stream processing system [90] and used a

testbed of 128 Emulab nodes (Intel XEON, 2.8 GHz, 512MB RAM, RedHat Linux 9),

179

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

N
et

w
o
rk

 u
sa

g
e

(x
 1

0
0
0
 b

y
te

s)

Time (in minutes)

StreamReuse
No reuse (or No rewriting)

Figure 68: EW: Network usage

organized into a topology that was generated using the standard tool, the GT-ITM

internetwork topology generator [159]. Links were 100Mbps and the inter-node delays

were set between 1msec and 6msec. The simulation experiments were conducted over

transit-stub topology networks generated using GT-ITM. Experiments used a 128

node network, with a standard Internet-style topology: 1 transit (e.g., “backbone”)

domain of 4 nodes, and 4 “stub” domains (each of 8 nodes) connected to each transit

domain node. Link costs (per byte transferred) were assigned such that the links in

the stub domains had lower costs than those in the transit domain, corresponding to

transmission within an intranet being far cheaper than long-haul links. We used a

uniformly random selection of nodes for sink placements.

In order to compute the placement of new operators over the network, we im-

plemented a version of the ‘Top-Down’ algorithm described in [133]. The algorithm

first clusters nodes into regions based on the notion of ‘network nearness’ and then

maintains a virtual hierarchy of regions that helps to scalably compute placements

over a large set of nodes with near-optimal approximations. The algorithm exploits

180

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300N
et

w
o
rk

 u
sa

g
e

(
x
 1

0
0
0
 b

y
te

s)

Time (in minutes)

StreamReuse
No rewriting

Figure 69: 10% Overlap

the network locality based search of our reuse lattice to perform searches for reuse

opportunities within a subset of of regions.

The StreamReuse approach is compared with two other state-of-the-art tech-

niques: (1) NO REWRITING, reuses existing operators only if their definitions exactly

match the requirements and does not perform any rewritings [109, 133] and (2) NO

REUSE [32] does not take into consideration any existing operators while deploying

new queries.

In order to study the resource usage of our techniques and compare with other

existing approaches the following two concrete metrics are used: the instantaneous

network resource usage and the number of operators in the system which is

indicative of the processing resource usage. Recall that the network usage u(q) of

a query q represents the total amount of data that is in-transit for a query at any

given instant. The total number of operators in the system and the number of join

and select operators are indicative of the processing load imposed on the system and

again the throughput to which the system can scale. The effect of dynamic operator

181

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300N
et

w
o
rk

 u
sa

g
e

(
x
 1

0
0
0
 b

y
te

s)

Time (in minutes)

StreamReuse
No rewriting

Figure 70: 25% Overlap

grouping on response time of individual deployments is measured using the end-

to-end latency of deployments [67]. Finally, the time-to-deployment is used to

evaluate the overhead imposed on the planning process.

6.6.3 Efficiency of Deployments

Figure 68 shows the total network usage per instant of time for a 5 hour duration of

system deployment with the EW workload. Gate, terminal and monitoring queries

last for 2, 12 and 6 hours respectively. After initial ramp-up, approximately 120

queries execute concurrently.

Under the EW workload each gate query specifies a unique flight number. Sim-

ilarly, all terminal queries are unique as are the monitoring queries. All selection

predicates are placed earlier in the query deployment, as close to the source as possi-

ble. In the presence of all unique predicates, the NO REWRITING technique degrades to

a NO REUSE technique. As the graph shows, even in the presence of unique selection

182

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300N
et

w
o
rk

 u
sa

g
e

(
x
 1

0
0
0
 b

y
te

s)

Time (in minutes)

StreamReuse
No rewriting

Figure 71: 50% Overlap

predicates, our approach of runtime relaxation and rewriting can reduce network us-

age by nearly 96% as compared to a NO REUSE/ NO REWRITING approach. This large

win can be attributed to the fact that fewer join operators to which inputs need to

be streamed are deployed in the system. In the presence of highly selective joins, the

small increase in input size to few join operators is negligible compared to streaming

inputs to a large number of join operators.

In order to study the effect of StreamReuse under varying degrees of overlap

between queries and compare with a NO REWRITING approach, controlled variations

were induced in the degree of overlap between selection predicates in the EW work-

load. Figures 69, 70 and 71 show the network usage over 5 hours when the total

number of unique selection predicates are only 10, 4 and 2 respectively. The figures

show that as the variance between queries increases, NO REWRITING techniques result

in more network usage. In fact, by adopting a runtime relaxation based approach,

with only 10 unique predicates, network usage can be reduced by as much as 75%

compared to NO REWRITING (Figure 69).

183

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300N
et

w
o
rk

 u
sa

g
e

(
x
 1

0
0
0
 b

y
te

s)

Time (in minutes)

StreamReuse
No reuse (or No rewriting)

Figure 72: RW: Network usage

Figure 72 shows the total network usage with the RFID workload (RW) over 5

hours. The system executes with approximately 30 concurrently executing queries

after initial ramp-up. This workload has more sources than the enterprise workload,

and sources specified in queries are chosen from a large range of combinations. In fact,

with the RW workload, within any set of concurrently executing queries, only 5 queries

had any common joins with other queries. Consequently the number of rewrite/reuse

opportunities available are fewer. Again, as in the case of the enterprise workload,

since negligible number of queries specify the exact same selection predicates, the NO

REWRITING approach degenerates into a NO REUSE approach. The figure shows that a

dynamic grouping based approach results in a 28% reduction in network usage even

with this workload.

184

 0

 50

 100

 150

 200

 250

 300

NO REUSEStreamReuse

N
u
m

b
er

 o
f

O
p
er

at
o
rs

Joins
Select

Figure 73: EW: Deployed operators

6.6.4 Evaluation of Computation Costs

Computation costs are evaluated using the average number of operators deployed at

any instant of time. Recall that, since all selection predicates are unique in EW, the

NO REWRITING approach degenerates into a NO REUSE approach. Figure 73 shows the

average number of join, and select operators that are concurrently executing at any

given instant of time with StreamReuse and the NO REUSE approaches. The figure

shows that the StreamReuse approach effects a massive decrease in the number of

join operators with only a slight increase in the number of selection operators. The

increase in selection operators can be attributed to the introduction of additional

compensation operators while reusing existing joins. This figure shows that even

in the presence of unique queries, by effectively sharing operators between queries

through dynamic grouping, the number of join operators can be reduced by an order

of magnitude. It is a well known fact that joins are expensive operators and can

reduce throughput. By reducing the number of such expensive joins, we expect the

185

 0

 20

 40

 60

 80

 100

5 10 25
 %Overlap

50 Any

N
u
m

b
er

 o
f

O
p
er

at
o
rs

StreamReuse
No Rewrite

Figure 74: EW: Join operators

throughput to increase significantly.

The EW workload was modified to compare StreamReuse against NO REWRITING

under varying degrees of overlap between queries. Figure 74 shows the number of

concurrent join operators with the two approaches in a set-up where the number of

unique predicates in the workload is varied. A 50% overlap represents a workload with

only 2 unique predicates. Similarly 25%, 10% and 5% overlaps represent 4, 10 and 20

unique predicates respectively. The figure shows that the number of join operators

with NO REWRITING increases rapidly as the number of unique predicates increases.

The StreamReuse approach, however, deploys fewer joins (11 joins) even in the

presence of a workload where all queries are unique.

Figure 75 shows the number of deployed operators with the RW workload. Briefly,

in spite of the low overlap between queries, our techniques resulted in a 28% reduction

in join operators over the NO REUSE approach.

186

 0

 20

 40

 60

 80

 100

 120

 140

NO REUSEStreamReuse

N
u
m

b
er

 o
f

O
p
er

at
o
rs

Joins
Select

Figure 75: RW: Deployed operators

Workload Operation Time Average

All Total time to deployment 3.5 sec
EW Plan Computation 8.733 ms

Rewrite/Lattice search 1.158 ms
RW Plan Computation 9.262 ms

Rewrite/Lattice search 0.738 ms

Table 11: Deployment times

6.6.5 Effect of Grouping on Latency

Figure 76 shows the end-to-end latency of 120 queries of the EW workload with

StreamReuse and with NO REUSE/ NO REWRITING. The figure shows that latencies

experienced by the queries with StreamReuse is comparable to that with NO REUSE

or NO REWRITING. On an average, latency increases by 13 msec with StreamReuse.

Figure 77 shows the end-to-end latency of 120 queries of the RW workload with

StreamReuse and with NO REUSE/NO REWRITING. In this case, the average increase in

latency with StreamReuse is only 3.675 msec. Since most applications can tolerate

187

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

E
n
d
-t

o
-e

n
d
 l

at
en

cy
 (

in
 m

s)

Query

StreamReuse
No reuse (or No rewriting)

Figure 76: EW: Latency

this slight increase, this is a small price to pay for the large savings in network and

computational costs.

6.6.6 Prototype Experiment: Deployment Time

The scalability of the StreamReuse approach was studied by examining the over-

head imposed by the planning process (including searching the lattice and computing

relaxations) on the total time to deployment. Figure 78 shows the total planning time

for the deployment of 300 queries from the EW workload each with an average of 8

operators (including selections and projections). The figure demonstrates: (1)that

the increase in planning time is negligible (an average increase of 1 ms) and (2) the

increase in planning time with the size of the lattice is near linear.

The times for the different actions performed during deployment are summarized

in Figure 11. The total time to deployment is the time taken to contact nodes in the

system and deploy the operators. Since the nodes are contacted in parallel, this time

188

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

 0 20 40 60 80 100 120

E
n
d
-t

o
-e

n
d
 l

at
en

cy
 (

in
 m

s)

Query

StreamReuse
No reuse (or No rewriting)

Figure 77: RW: Latency

is nearly independent of the number of operators and is mainly a function of inter-

node delays. The plan computation times are common to the NO REUSE, NO REWRITING

and runtime rewriting cases. The rewrite and lattice search time is the additional

overhead imposed on the planning process by our techniques. Note that, compared

to the deployment times and planning times, the rewrite and lattice search time is

negligible. Given the large gains in network and computational costs, this leads us

to conclude that this one time overhead at the time of deployment is completely

justifiable.

6.7 Related Work

A number of data-stream systems such as STREAM [36], Borealis [28], TelegraphCQ [51],

NiagaraCQ [55] and System S [34] have been developed to process queries over contin-

uous streams of data. We present a summary of related work pertaining to techniques

for the reuse of operators between distributed stream query deployments.

189

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

P
la

n
n
in

g
 T

im
e

(i
n
 m

s)

Query

NO REWRITING/NO REUSE
StreamReuse

Figure 78: Total Planning Time

Coincidental Reuse (Static): With this approach, a newly arriving query reuses

an existing operator only if it exactly matches the query’s requirement [32, 109, 133].

Even with a high degree of overlap amongst queries in the workload, this strategy

offers only average performance since it is unable to reuse operators unless they ex-

actly match.

Optimistic-deployment (Static): Such systems use ‘rules of thumb’ such as ‘pull-

up selections’ to improve reusability [55, 88] or assume that the workload is already

known [156, 78]. The approach may be effective when the workload is known a priori,

but is unable to handle a dynamic workload since the system must pay the price of

increased intermediate data size even for operators that are never reused.

Runtime Recomputation (Dynamic): In this approach, with each arrival or de-

parture of a single query, a portion of the query network [28] is replanned. However,

operator groupings are performed by the system administrator and are not dynamic.

190

System level functionalities that allow runtime modification of operator parame-

ters have been implemented in systems such as Borealis [28]. Our techniques utilize

such system-level functionality, along with semantic knowledge, to perform dynamic

grouping of queries and runtime migration of query plans. Our work also builds on

query rewriting techniques that have been widely studied in the context of materi-

alized views [54, 71]. While operator definitions in our context are similar to view

definitions, our problem is complicated by the need to consider network locality, op-

erator similarity, windows and runtime modifications in addition to containment.

6.8 Summary

We have described StreamReuse, a reuse-conscious distributed stream query pro-

cessing system for scaling distributed stream query services. The main idea behind

the design of StreamReuse is three folds. First, we exploit the operator similarity

of multiple concurrent stream query services, aiming at enhancing the performance

and scalability of query services by minimizing the amount of duplicate processing

in the system. Second, we refine operator level reuse opportunities by taking into

account of the network locality of these operators to ensure that only the highly

profitable reuse opportunities are capitalized on by StreamReuse. Third but not

the least, we introduce the notion of ‘relaxations’ and the ‘reuse lattice’ data struc-

ture to encode reuse opportunities through operator semantics and network locality

awareness, and to enable the runtime identification of reusable operators that exhibit

both operator level similarity and network locality similarity. A unique characteris-

tics of StreamReuse is its three step reuse opportunity discovery and deployment

process: (i) operator-similarity based query relaxation, (ii) network locality-based

reuse refinement, and (iii) seamless runtime reuse plan migration. We evaluate the

StreamReuse approach by conducting experiments over a range of different work-

loads. The experimental results show that our reuse techniques can reduce resource

191

consumption and computational costs by more than an order of magnitude compared

to the existing approaches.

192

CHAPTER VII

NETWORK-AWARE OPERATOR REUSE

7.1 Introduction

Many data stream delivery and dissemination systems today produce stream data at

multiple, geographically distributed locations. It is often too expensive to stream all

of the data to a centralized query processor, both because of the high communication

costs, and the high and yet continuously changing processing load at the central server.

Therefore, in order to ensure efficiency and scalability, these naturally distributed

applications adopt a distributed processing paradigm.

Distributed data streams systems are distinguished by a number of characteristics.

First, a network of computing nodes with heterogeneous bandwidth and computing

resources together serves as a distributed data stream delivery system. Second, data

streams originate from multiple sources and are disseminated to multiple receivers.

Third, multiple continuous stream queries are executing simultaneously on the stream

delivery network with different input and output rates. Instead of shipping all data

streams to a single node and processing all the stream queries in a centralized server,

many have shown that performing distributed processing of stream queries using

techniques such as in-network processing [158, 99, 32] and filtering at the source [105]

minimizes the communication overhead on the system and helps spread processing

load, significantly improving performance.

Given that data streams are typically produced from multiple disparate nodes,

stream queries naturally consist of many operators (filters, joins etc.) on multiple

data streams of interest. We can think of a data stream query as a continual query

193

being “deployed” in the network, with data streams flowing between operators asso-

ciated with distributed physical streaming nodes, which may either be sensor nodes

or the relay nodes in a data stream delivery network. The conventional approach to

stream query processing used in many existing distributed data stream management

systems [28, 136] consists of three consecutive phases: query planning, query deploy-

ment, and query adaptation. The system constructs a query plan (e.g., the stream

query processing should follow a specified join ordering) at compile time and deploys

this plan at runtime to improve performance. Figure 7.1(a) gives a sketch of this ap-

proach. A fundamental problem with this static optimization approach is its inability

to respond to the unexpected data and resource changes occurring at runtime. For

example, the join order chosen at compile time may require intermediate results to be

transported to another network node over a long distance, even though there exists

an alternate join order that is more efficient. Similarly, a predefined join order may

involve a transfer or a processing of an intermediate result to a node that is currently

unavailable, thus causing the query to halt even though an alternate join order exists

and is available. Furthermore, given that each query plan is computed at compile time

independently and once for all, the pre-defined join order from one query plan may

prevent us from reusing the results of an already deployed join from another query

at runtime. This limits the scope of the adaptation which aims at exploiting runtime

environment properties to further optimize the efficiency of distributed stream query

deliveries.

Bearing these issues in mind, we propose a distributed stream query optimiza-

tion framework that considers the query plan and the deployment simultaneously

(Figure 7.1(b)). Our framework consists of the system architecture for integrating

distributed stream query planning and query plan deployment and a suite of tech-

niques for performing query planning in conjunction with deployment planning. One

of the key ideas in our framework is to use hierarchical network partitions to scalably

194

Deployment AdaptationQuery Planning

(a) Plan, then deploy

Adaptation
Query Planning
and Deployment

(b) Our approach

Figure 79: Approaches

exploit various opportunities for operator level reuse in the processing of multiple

stream queries. Figure 80 compares the approach of integrating planning and deploy-

ment through operator reuse with two existing “Plan, then deploy” approaches − the

Relaxation algorithm [109] and an optimal deployment through exhaustive search.

The graph shows the total communication cost (the total data transferred along each

link times the link cost) incurred by 100 queries over 5 stream sources each, on a 64-

node network. The figure shows that significant (> 50%) cost savings can be achieved

by combining the planning and deployment phases.

It is well known that, as the size of the network grows, the number of possible

plan and deployment combinations can grow exponentially. The cost of considering

all possibilities exhaustively is prohibitive. Consider Figure 80. With a network of

64 nodes, combining query plans and plan deployments simultaneously required us

to examine nearly 3.02 × 109 plans for a single query over 5 streams. Clearly, a key

technical challenge for effectively combining query planning and plan deployment is

to reduce the search space in the presence of large networks and a large number of

query operators.

195

 0

 1000

 2000

 3000

 4000

 5000

 6000

Our ApproachExhaustive
Plan, then deploy

Relaxation
Plan, then deploy

T
o
ta

l
co

st
 p

er
 u

n
it

 t
im

e(
in

 t
h
o
u
sa

n
d
s)

Figure 80: Comparison with typical approaches

One idea we explore in this work is to address this challenge by using hierarchi-

cal network partitions as a heuristic, aiming at trading some optimality for a much

smaller search space. We organize the network of physical nodes into a virtual hierar-

chy and utilize this hierarchy along with “stream advertisements” to guide query

planning and deployment. We develop three alternative algorithms to facilitate oper-

ator reuse through hierarchical network partitions. In the Top-Down algorithm, the

query starts at the top of the hierarchy, and is recursively planned by progressively

partitioning the query and assigning sub-queries to progressively smaller portions of

the network. In the Bottom-Up algorithm, the query starts at the bottom of the

hierarchy, and is propagated up the hierarchy, such that portions of the query are pro-

gressively planned and deployed. While both algorithms choose efficient deployments

by exploring only a small fraction of the search space, the Top-Down algorithm is more

effective in limiting the sub-optimality of the solutions while the Bottom-Up approach

is more effective in reducing the search space, and thereby the time to deployment.

196

We further develop a heuristic based hybrid algorithms that combines the strengths

of both the Top-Down and Bottom-Up algorithms - the Net Present Cost (NPC)

algorithm. The NPC algorithm is a probabilistic algorithm that guides the planning

process based on cost estimates of choosing a join order locally or delaying the de-

cision to the next level. We have implemented our algorithms using IFLOW [90], a

distributed data stream system. In this chapter we also present formal analysis and

experiments to show that our algorithms can compute efficient deployments, and at

the same time, reduce the search space by orders of magnitude compared to an ex-

haustive search, even using dynamic programming. For example, experimentally, the

Top-Down algorithm on average was able to achieve solutions that were sub-optimal

by only 10% while considering less than 1% of the search space.

The remainder of this chapter is organized as follows. We formally describe the

distributed stream query optimization problem and give an overview of our distributed

optimization framework in Section 7.2. We present the Top-Down, Bottom-Up and

NPC algorithms and a rigorous analysis of their effectiveness in Section 7.3. Our

experimental evaluation of the proposed solutions are reported in Section 7.4. The

chapter ends with a discussion on the related work and a summary.

7.2 System Overview

Many modern enterprise applications [104, 2, 12], scientific collaborations across wide

area networks [110, 19], and large-scale distributed sensor systems [156, 97] are plac-

ing growing demands on distributed streaming systems to provide capabilities beyond

basic data transport such as wide area data storage [1] and continuous and oppor-

tunistic processing [12]. An increasing number of streaming applications are applying

‘in-network’ and ‘in-flight’ data manipulation to data streaming systems designed for

enterprise systems [20], financial management [11], scientific computing [56, 110, 48],

and situation monitoring applications [56, 66, 95].

197

The specific motivating example that we present in this work is based on enterprise-

level data streaming systems such as the Operational Information System (OIS) [104]

employed by our collaborators, Delta Air Lines. An OIS is a large scale distributed

system that provides continuous support for a company or organization’s daily op-

erations. The OIS run by Delta Air Lines provides the company with up-to-date

information about all of their flight operations, including crews, passengers, weather

and baggage. Delta’s OIS combines three different types of functionality: continuous

data capture, for information like crew dispositions, passengers and flight locations;

continuous status updates, for systems ranging from low-end devices like overhead dis-

plays to PCs used by gate agents and even large enterprise databases; and responses

to client requests which arrive in the form of queries.

In such a system multiple continuous queries may be executing simultaneously

and hundreds of nodes, distributed across multiple geographic locations are available

for processing. In order to answer these queries data streams from multiple sources

need to be joined based on the flight or time attribute, perhaps using something like

a symmetric hash join. We next use a small example network and sample queries to

illustrate the optimizations opportunities that may be available in such a setup.

7.2.1 Motivating Application Scenario

Let us assume Delta’s OIS to be operating over the small network N shown in Fig-

ure 81. Let WEATHER, FLIGHTS and CHECK-INS represent sources of data-streams

of the same name and nodes N1 − N5 be available for in-network processing. Each

line in the diagram represents a physical network link. Also assume that we can

estimate the expected data-rates of the stream sources and the selectivities of their

various attributes, perhaps gathered from historical observations of the stream-data

or measured by special purpose nodes deployed specifically to gather data statistics.

198

Node available for

processing

Source Sink

FLIGHTS

Sink4

Sink3

Sink5

N2

N3

Sink1

Sink2

CHECK-INS

N1

N5

N4

WEATHER

Figure 81: An example network N

Assume that the following query Q1 is to be streamed to a terminal overhead dis-

play Sink4. Q1 displays flight, weather and check-in information for flights departing

in the next 12 hours.

Q1: SELECT FL.STATUS, WR.FORECAST, CI.STATUS

FROM FLIGHTS FL, WEATHER WR, CHECK-INS CI WHERE FL.DEPARTING=‘ATLANTA’

AND FL.DESTN = WR.CITY AND FL.NUM = CI.FLNUM AND FL.DP-TIME - CURRENT TIME < 12:00:00

Network-aware join ordering: Based purely on the size of intermediate results,

we may normally choose the join order (FLIGHTS⊲⊳WEATHER)⊲⊳CHECK-INS. Then we

would deploy the join FLIGHTS⊲⊳WEATHER at node N2, and the join with stream

CHECK-INS at node N3. However, node N2 may be overloaded, or the link FLIGHTS→N2

may be congested. In this case, the network conditions dictate that a more effi-

cient join ordering is (FLIGHTS⊲⊳CHECK-INS)⊲⊳WEATHER, with FLIGHTS⊲⊳CHECK-INS

deployed at N1, and the join with WEATHER at N3.

Now, consider situations where we may be able to reuse an already deployed

199

Level 3

Level 2

Level 1

Cluster Boundaries

Coordinator Links

Figure 82: Hierarchical network clusters

operator. This will reduce network usage (since the base data only needs to be

streamed once) and processing (since the join only needs to be computed once).

Imagine that query Q2 has already been deployed:

Q2: SELECT FL.STATUS, CI.STATUS FROM FLIGHTS FL, CHECK-INS CI

WHERE FL.DEPARTING=‘ATLANTA’ AND FL.NUM = CI.FLNUM AND FL.DP-TIME - CURRENT TIME

< 12:00:00

with the join FLIGHTS⊲⊳CHECK-INS deployed at N1. Assume that the sink for the

query Q2 is located at node Sink3.

Operator Reuse: Although the optimal operator ordering in terms of the size

of intermediate results for query Q1 may be (FLIGHTS⊲⊳WEATHER)⊲⊳CHECK-INS, in

order to reuse the already deployed operator FLIGHTS⊲⊳CHECK-INS, we must pick

the alternate join ordering (FLIGHTS⊲⊳CHECK-INS)⊲⊳WEATHER. Note that, reuse may

require additional columns to be projected. In contrast, if the sinks for the two

200

queries are far apart (say, at opposite ends of the network), we may decide not to

reuse Q2’s join; instead, we would duplicate the FLIGHTS⊲⊳CHECK-INS operator at

different network nodes, or use a different join-ordering. Thus, having knowledge of

already deployed queries influences our query planning.

These examples show that the network conditions and already deployed operators

must often be considered when choosing a query plan and deployment in order to

achieve the highest performance.

7.2.2 System Definition

We now formally describe the components of our distributed data stream system.

Let N(Vn, En) represent a physical network of nodes where vertices Vn represent

the set of actual physical nodes and the network connections between the nodes are

represented by the set of edges En. Let Q represent a single continuous query and

let PQ = {pQ
1 , . . . , pQ

m} represent the set of all relational algebra query trees (e.g.

operator orderings) for query Q. The deployment of a query tree pQ
j over the network

N is defined as a mapping M(pQ
j , N) that assigns each operator in pQ

j to a network

node vnk ∈ Vn.

Since network costs are a primary concern in wide-area stream processing sys-

tems, to illustrate our techniques, we choose a formulation that tries to minimize the

communication cost incurred per unit time by the deployed query plan. We use the

metric of ‘network usage’ [109] to compute costs of query deployments. The network

usage metric computes the total amount of data in-transit in the network at a given

instant. This metric captures the bandwidth-delay product of a query and trades off

the overall application delay and network bandwidth consumption. We define a cost

function Cost(M(pQ
i , N)) that estimates the total network usage per unit time for the

deployment M(pQ
i , N). Using network usage as the cost function, for a deployment

M(pQ
i , N) the cost is given by

∑

l∈M(pQ
i ,N) λ(l) × latency(l) where λ(l) represents the

201

data rate over the physical link l. We present a further discussion on the choice of

the cost metric in Section 7.5.

7.2.3 Optimization Problem

Our problem definition addresses the continual query equivalent of ‘select-project-join’

queries that involve simple selection, projection and join operations on one or more

data streams. The focus of this work is on join-ordering and the initial placement

of operators. Note that it may be possible to modify existing deployments to get a

better solution. However, such modifications require us to consider the cost of re-

configurations and deal with translation of state as well. We leave such possibilities

for the future. We assume stream joins are performed using standard techniques (e.g.

doubly-pipelined operators and windows if necessary). We assume that potentially,

any operator can be deployed at any node in the system. Given a query, there could

possibly be multiple execution plans that the system could follow to produce results.

We assume that all such plans produce equivalent results.

Query-Optimization Problem: Given a query Q to be deployed over a network

N , and a (possibly empty) set of existing query deployments D = {D1,. . . ,Dn}, find

a query tree {pQ
i } and a deployment M(pQ

i , N) for Q such that Cost(M(pQ
i , N)) is

minimum over all possible query trees and deployments.

7.3 Query Optimization Algorithms

In order to choose an optimal execution plan, traditional query optimizers typically

perform an exhaustive search of the solution space using dynamic programming, esti-

mating the cost of each plan using pre-computed statistics. Lemma 1 shows the size

of the exhaustive search space for the query optimization problem in distributed data

stream systems.

Lemma 1. Let Q be a query over K (> 1) sources to be deployed on a network with

202

N nodes. Then the size of the solution space of an exhaustive search is given by:

Oexhaustive =

(

K! × (K − 1)!

2K−1

)

× (N)(K−1)

Proof. We are given a network with N nodes, and a query Q over K streams 〈S1,S2,. . .SK〉.

The search space is given by all plans (permutations of join-orders) and all possible

placements of each plan. The number of query re-writings i.e. an enumeration of

both linear and bushy joins of K streams is given by:
(

K

2

)

×
(

K − 1

2

)

× . . . ×
(

2

2

)

=

(

K! × (K − 1)!

2K−1

)

The number of network placements of the joins in a query with K streams in a network

of size N is given by N (K−1). Thus, the exhaustive search space Oexhaustive given by:

Oexhaustive =

(

K! × (K − 1)!

2K−1

)

× (N)(K−1)

As shown in the Lemma 1, the search space increases exponentially with an in-

crease in the query size. Certainly, in a system with thousands of nodes such an

exhaustive search even with dynamic programming would be infeasible. We now

present our optimization infrastructure and heuristics for finding good plans and

deployments while avoiding the cost of exhaustive search. Note that in the case of

distributed query optimization, dynamic programming does not result in any pruning

of the search space without loss of optimality since the query optimization problem

in distributed data stream systems does not exhibit the property of optimal substruc-

ture [86].

7.3.1 Optimization infrastructure

In this section we describe the key components of our optimization infrastructure -

hierarchical network partitions that guide our planning heuristics and stream adver-

tisements that facilitate operator reuse. We can tune the hierarchy to trade-off be-

tween search space size and sub-optimality by adjusting the maxcs parameter, which

203

is the maximum number of nodes allowed per network partition. This trade-off is

complex, and is analyzed in detail in our discussion of the Top-Down (Section 7.3.2)

and Bottom-Up (Section 7.3.3) algorithms.

7.3.1.1 Hierarchical Network Clusters

We organize physical network nodes into a virtual clustering hierarchy, by clustering

nodes based on link costs which represents the cost of transmitting a unit amount of

data across the link. We refer to this clustering parameter as inter-node/cluster

traversal cost . Nodes that are close to each other in the sense of this clustering

parameter are allocated to the same cluster. We allow no more than maxcs nodes per

cluster.

Clusters are formed into a hierarchy. At the lowest level, i.e. Level 1, the physical

nodes are organized into clusters of maxcs or fewer nodes. Each node within a cluster

is aware of the inter-node traversal cost between every pair of nodes in the cluster. A

single node from each cluster is then selected as the coordinator node for that cluster

and promoted to the next level, Level 2. There may be a set of nodes in a cluster,

each of which qualifies to be a representative coordinator node as long as they do not

modify the ordering of Euclidean distances between the clusters. Nodes in Level 2 are

again clustered according to average inter-node traversal cost, with the cluster size

again limited by maxcs. This process of clustering and coordinator selection continues

until Level N where we have just a single cluster. An example hierarchy is shown in

Figure 82.

As a result of our clustering approach we can determine the upper bounds on the

cost approximation at each level, which is described in the following theorem.

Theorem 1. Let di be the maximum intra-cluster traversal cost at level i in the

network hierarchy and cact(vnj, vnk) be the actual traversal cost between the network

nodes vnj and vnk. Then the estimated cost between network nodes vnj and vnk

204

at any level l, represented as cl
est(vnj, vnk), is related to the actual cost as follows:

cact(vnj, vnk) ≤ cl
est(vnj, vnk) +

∑i<l
i=1 2di

Proof. At a particular level l the cost of traversal between nodes vnj and vnk is given

by the inter-node traversal cost between the nodes representing them at that level.

However, each node will be resolved to some node in the underlying cluster at level

l−1. Inter-node traversal costs at this level are bounded by the value dl−1. Therefore,

nodes at level l − 1 will be at most dl−1 distance away from the node representing

them at level l. Thus the inter-node traversal costs between nodes vnj and vnk at

level l − 1 is given by: cl−1
est (vnj, vnk) ≤ cl

est(vnj, vnk) + 2dl−1. Similarly,

cl−2
est (vnj, vnk) ≤ cl−1

est (vnj, vnk) + 2dl−2

⇒ cl−2
est (vnj, vnk) ≤ cl

est(vnj, vnk) +
i<l
∑

i=l−2

2di

This process continues down the hierarchy. At level 1, the estimated cost is the same

as the actual traversal cost and thus is at most
∑i<l

i=1 2di less than the actual cost.

7.3.1.2 Discussion

The hierarchical organization is created and maintained as follows. When a node joins

the infrastructure, it contacts an existing node that forwards the join request to its

coordinator. The request is propagated up the hierarchy and the top level coordinator

assigns it to the top level node that is closest to the new node. This top level node

passes the request down to its child that is closest to the new node. The child repeats

the process, which continues until the node is assigned to a bottom level cluster. Note

that similar organization strategies appear in other domains such as hierarchies for

internet routing [101] and for data aggregation in sensor networks [44]. However, to

the best of our knowledge we are the first to use such hierarchical approximations

and clustering techniques for distributed continual query optimization. The virtual

hierarchy is robust enough to adapt as necessary. It can handle both node joins and

205

departures at runtime. Failure of coordinator nodes can be handled by maintaining

active back-ups of the coordinator node within each cluster. However, the issue of

fault tolerance is beyond the scope of this work.

In situations where nodes are distributed such that it is easy to find clusters meet-

ing the clustering condition of inter-cluster distances >> intra-cluster distances, the

planning decisions are likely to be less sensitive to the selection of coordinator nodes.

However, situations where nodes in the entire system either are all widely distributed

or are all close to one another in terms of network cost, may result in loosely-defined

clusters, which further impact the quality of coordinator nodes selected. Such situa-

tions are relatively rare. Also in the worst case, it is possible to choose appropriate

values for maxcs in order to improve accuracy of the planning process. Also, note

that since the hierarchy is only a virtual structure and since query deployment times

(Section 7.4.6) are in the order of seconds, when it is known a priori that the node

distribution in the network might possibly result in loosely-defined clusters, it may be

beneficial to compare planning decisions across multiple hierarchical structures with

different values of maxcs.

7.3.1.3 Stream Advertisements

Stream Advertisements are used by nodes in the network to advertise the stream

sources available at that node. A node may advertise two kinds of stream sources

- base stream sources and derived stream sources. We observe that each sink and

deployed operator is a new stream source for the data computed by its underlying

query or sub-query. We refer to these stream sources as derived stream sources and

the original stream sources as base stream sources. As a result of the advertisement

of derived stream sources, nodes are now aware of operators that are readily available

at multiple locations in the network and can be reused with no additional cost in-

volved for transporting input data. The stream advertisements are aggregated by the

206

coordinator nodes and propagated up the hierarchy. Thus the coordinator node at

each level is aware of all the stream sources available in its underlying cluster. Adver-

tisements of derived stream sources are key to operator reuse in our algorithms. The

advertisements are one-time messages exchanged only at the initial time of operator

instantiation and deployment.

7.3.2 The Top-Down Algorithm

The Top-Down algorithm bounds sub-optimality by making deployment decisions

using bounded approximations of the underlying network; specifically, each coordina-

tor’s estimate of the distance between its cluster and other clusters. The algorithm

works as follows: The query Q is submitted as input to the top level (say level t)

coordinator. The coordinator exhaustively constructs the possible query trees for the

query, and then for each such tree constructs a set of all possible node assignments

within its current cluster. The cost for each assignment is calculated and the assign-

ment with least cost is chosen. An assignment of operators to nodes partitions the

query into a number of views, each allocated to a single node at level t. Each node is

then responsible for instantiating such a view using sources (base or derived) available

within its underlying cluster. The allocated views act as the queries that are again

deployed in a similar manner at level t − 1, with all possible assignments within the

cluster being evaluated exhaustively and the one with the least cost being chosen.

This process continues until level 1, which is the level at which all the physical nodes

reside, and operators are assigned to actual physical nodes. Since each level has fewer

nodes and operators are progressively partitioned and assigned to different cluster

coordinators, the search space is still much smaller compared to a global exhaustive

search (even using DP). Whenever a coordinator is exhaustively mapping a portion

of the query, it considers both base and derived streams available locally. Thus, op-

erator reuse is automatically considered in the planning process. In particular, if the

207

coordinator calculates that reuse would result in the best plan, derived streams are

used; otherwise, operators are duplicated.

7.3.2.1 Bounding Search Space with the Top-Down Algorithm

In a network of N nodes that is organized into a clustering hierarchy, for a query Q

over K (> 1) sources the search space depends on the clustering parameter maxcs and

the resulting height h (≈logmaxcs
N) of the hierarchy. We define the following:

β = h(
maxcs

N
)K−1 (4)

In Theorem 2 we prove that β represents the upper bound on the ratio of the search

space of the Top-Down algorithm to that of the exhaustive search. Note that as

the ratio maxcs

N
decreases linearly, β decreases exponentially. When maxcs << N ,

β is orders of magnitude less than 1 and thus, the Top-Down algorithm is orders of

magnitude cheaper than exhaustive search. For example, for a query over 4 streams

on a network with 1000 nodes, with a maxcs value of 100, β ≈ 0.0015.

Theorem 2. Let Q be a query over K (> 1) sources to be deployed on a network

with N nodes. Let the clustering parameter used to organize the network into a

hierarchical cluster be maxcs and let the height of such a hierarchical cluster be h. If

Otop−down represents the size of the solution space for the top-down algorithm, then

Otop−down ≤ βOexhaustive

Proof. The worst case search space of the Top-Down algorithm results when all query

tree nodes (sources, operators and sink) appear in the same cluster. As in the case of

Theorem 4 we compute this search space by considering all possible query trees and

all possible placements of operators within a single cluster at each level.

We are given a network with N nodes, and a query Q over K streams 〈S1,S2,. . .SK〉.

At the top level t, we have K streams. At any level the search space is given by all

208

plans (permutations of join-orders) and all possible placements of each plan. There-

fore, the search space Ot at level t is given by:

Ot =

(

K! × (K − 1)!

2K−1

)

× (maxcs)
(K−1)

In the worst case the coordinator at each level may assign all streams to a single

partition thereby causing the search space to be the same at all levels. Thus, Otop−down

is given by

Otop-down ≤ h ×
(

K! × (K − 1)!

2K−1

)

× (maxcs)
(K−1) (5)

Thus from Equation 5 and Lemma 1 we have Otop−down ≤ βOexhaustive.

7.3.2.2 Sub-Optimality in the Top-Down Algorithm

The Top-Down algorithm works by propagating a query down the network hierarchy,

described in Section 7.3.1.1. Given a query Q, at each level a coordinator chooses

a query plan and a deployment with the least cost for the sub-query assigned to

it. As the network approximations increase at higher levels of the hierarchy (refer

Theorem 1), it follows that the maximum approximation is incurred at the top most

level of the hierarchy. Therefore the Top-Down algorithm is most sub-optimal when all

the edges of the query plan are deployed at the top-most level. The following theorem

establishes the bounds on sub-optimality of the top-down algorithm as compared to

an optimal deployment.

Theorem 3. A query Q deployed using the Top-Down algorithm over a network N is

no more than
∑

ek∈EQ(
∑i<h

i=1 2di)×sk sub-optimal compared to the optimal deployment

of query Q over the same network N , where h is the number of levels in the network

hierarchy of N , EQ represents the set of edges of the tree chosen for query Q, di is

the maximum intra-cluster traversal cost at level i and sk is the stream rate for the

kth edge ek.

209

Proof. The maximum sub-optimality of the Top-Down algorithm occurs only when

all the edges of the tree chosen for Q are mapped to the top-most level, i.e. no two

nodes (operators or sources or sinks) lie in the same underlying cluster. The proof

then follows directly from Theorem 1.

The point of this proof is to establish a relationship between the hierarchical cluster

structure and the sub-optimality of the resulting solution. The intra-cluster traversal

cost increases with the levels of the hierarchy since the hierarchical structure provides

a more approximate representation of the network at higher levels. The height of the

hierarchical structure in turn, is determined by the maxcs parameter and the den-

sity of node distributions in the network. The proof shows that the sub-optimality

can increase with increasing number of levels in the hierarchy and decreasing cluster

density. This proof, along with Theorem 2, can help decide an optimization hierar-

chy that offers a desirable trade-off between search space and optimality for a given

network. We present empirical results that corroborate these theorems in Section 7.4.

7.3.3 The Bottom-Up Algorithm

We now describe the Bottom-Up algorithm which propagates queries up the hier-

archy, progressively constructing complete query execution plans. Unlike the Top-

Down approach, the Bottom-Up algorithm does not provide a good bound on the

sub-optimality of the solution. However, in return, the Bottom-Up approach is usu-

ally able to further reduce the search space compared to the Top-Down algorithm.

Thus, in situations where quick planning is needed, the Bottom-Up algorithm may

be appropriate, perhaps to be replaced later with a Top-Down deployment.

Queries are registered at their sink. When a new query Q over base stream sources

arrives at a sink at Level 1, the sink informs its coordinator at Level 2. The coordinator

rewrites the query Q as Q′ with respect to two views - VQ
local and V

Q
remote where VQ

local is

composed of base and derived sources available locally within the cluster and V
Q
remote

210

is composed of base sources not available locally. The coordinator deploys V
Q
local

within the current cluster, and then advertises VQ
local as a derived stream at the next

level. The above rewriting causes any joins between local streams to be deployed

within the current cluster, leaving the joins of local streams with remote streams

or joins between remote streams to be deployed further up in the hierarchy. The

coordinator then requests Q′ from its next level coordinator. This process continues

up the hierarchy, with the query Q′ progressively decomposed into locally available

views and remote views and the re-written query being requested from the current

cluster’s coordinator. The coordinator performs an exhaustive search only within its

underlying cluster to determine an optimal execution plan for VQ
local. The search space

is limited to a single network partition and the local sub-query.

Operator reuse is taken into consideration by coordinators by taking into account

all possible constructions of VQ
local that utilize derived sources within the cluster. When

using a derived stream source, communication costs for transporting input data to the

node that is the source of the derived stream, and processing costs for computing the

result of the operator are incurred only once. Note that if it is cheaper to duplicate

operators rather than reuse existing ones, the coordinator will do so.

For example, assume that query Q1 described in Section 7.2.1 arrives at a node

which belongs to a cluster where sources FLIGHTS and CHECK-INS are available locally.

The Bottom-Up algorithm proceeds as follows. Q1 is partitioned into local and remote

views V
Q
local and V

Q
remote respectively, where V

Q
local consists of sources FLIGHTS and

CHECK-INS and V
Q
remote consists of source WEATHER as shown below.

V
Q
local: SELECT FLIGHTS.STATUS, CHECK-INS.STATUS, FLIGHTS.DESTN FROM FLIGHTS, CHECK-INS

WHERE FLIGHTS.DEPARTING=‘ATLANTA’ AND FLIGHTS.NUM = CHECK-INS.FLNUM

AND FLIGHTS.DP-TIME - CURRENT TIME < 12:00:00

V
Q
remote: SELECT WEATHER.FORECAST, WEATHER.CITY FROM WEATHER

Query Q1 is then rewritten (with V
Q
remote expanded) as Q1’ given by:

211

Q1’: SELECT FLIGHTS.STATUS, WEATHER.FORECAST, CHECK-INS.STATUS FROM V
Q
local, WEATHER

WHERE FLIGHTS.DESTN = WEATHER.CITY

V
Q
local is deployed within the current cluster using any locally available derived

streams, if required. Thus the join between sources FLIGHTS and CHECK-INS is de-

ployed locally within the cluster. V
Q
local is then advertised as a derived stream and

query Q1’ is propagated to the next level for deployment at some higher level cluster.

This process continues up the hierarchy until all sources for Q1’ are found locally in

some cluster. At that point, all operators are placed at appropriate representative

nodes and passed down the hierarchy for placement on an actual physical node.

7.3.3.1 Bounding Search Space with the Bottom-Up Algorithm

Recall our definition of β in Section 7.3.2.1. We now show in Theorem 4 that β

also represents the the upper bound on the ratio of the search space of the Bottom-

Up algorithm to that of the exhaustive search. Although the worst case bounds are

the same for the two algorithms, in Section 7.4.1 we show experimentally that the

Bottom-Up algorithm examines a smaller search space in the average case. As before,

when maxcs << N , β is orders of magnitude less than 1. Thus, the search space of the

Bottom-Up algorithm is orders of magnitude less than the exhaustive search space.

Theorem 4. Let Obottom−up represent the size of the solution space for the bottom-up

algorithm. Then, Obottom−up ≤ βOexhaustive

Proof. We are given a network with N nodes, and a query Q over K streams 〈S1,S2,. . .SK〉.

Let σi represent the number of streams, for query Q , requested by a node at level

i-1 and available within the partition of a single coordinator at level i . Also,

σ1 + . . .+σh = K. Let αi represent the actual number of streams to be considered at

level i. At the level where VQi

remote=φ, αi=σi. At all other levels αi=σi +1 to take into

consideration the presence of the remote stream V
Qi

remote. Thus, α1 + . . .+αh ≤ K +h.

At any level the search space is given by all plans (permutations of join-orders) and

212

all possible placements of each plan. Thus the search space Oi at level i with αi

streams is given by:

Oi ≤
(

αi! × (αi − 1)!

2αi−1

)

× (maxcs)
(αi−1)

Thus the total search space in the Bottom-Up algorithm, Obottom−up for a query Q is:

Obottom−up ≤
i≤h
∑

i=1

Oi (6)

Since ∀ i, αi ≤ K, and not all αi = K (since the query is totally composed of only K

streams and streams found at each level are different), we have

Obottom−up ≤
i≤h
∑

i=1

(

K! × (K − 1)!

2K−1

)

× (maxcs)
(K−1) ≤

(

K! × (K − 1)!

2K−1

)

× (maxcs)
(K−1) × (h)

Thus, from Lemma 1 and the above equation we have: Obottom−up ≤ βOexhaustive.

7.3.3.2 Sub-Optimality in the Bottom-Up Algorithm

The Bottom-Up algorithm partitions queries into locally and remotely available views

as the result of which all local sources are now represented as a single source deployed

at the coordinator. This results in a pruning of the plan search space since only join

orderings between streams available within a single cluster are considered. While

the Bottom-Up algorithm can find optimal join orderings among local sources, the

resulting overall execution plan may be sub-optimal. As an example, consider a

high volume stream Sr that is in a remote cluster, and which we want to join with

two low volume, local streams S1 and S2. An overall optimal plan might be to

perform a selective join between Sr and S1 in the remote cluster, and then stream

the resulting (low-volume) intermediate results to the local cluster for joining with

S2. The Bottom-Up algorithm will not consider this plan. However, note that the

Bottom-Up algorithm may instead stream the results of S1 ⊲⊳ S2 to the remote cluster

for joining with Sr.

213

In the worst case the resulting deployment may be arbitrarily bad making it

impossible to bound the sub-optimality of the algorithm. However, note that the

situations under which this algorithm performs badly can be well characterized: it

performs badly when streams available remotely have significantly higher data rates

than those available close to the sink. In order to overcome this limitation, we next

present heuristic-based hybrid algorithms that aim at improving the planning process

of the Bottom-Up algorithm while retaining the advantage of a small search space.

7.3.4 The NPC Algorithm

In this section we introduce a heuristic based hybrid algorithm that combines the ad-

vantages of reduced search space from the Bottom-Up algorithm and improved query

planning from the Top-Down algorithm. We present a heuristic based hybrid algo-

rithm - the Net Present Cost (NPC) algorithm. The NPC algorithm is a probabilistic

algorithm that uses cost estimates of local and delayed query planning decisions to

guide the planning process. A decision to choose a join order at the current level

may result in a penalty if a poor join order is chosen. On the other hand, delaying

the planning process to the next level will result in wasted planning time and also a

possible increase in cost due to coarser approximations. In the NPC algorithm, the

query planning process is delayed to the next level in the hierarchy only when the

cost of making a decision at the current level exceeds the estimated cost of delaying

the decision to the next level in the hierarchy. We next describe the computation of

local and delayed cost estimates.

Let V
Q
local and V

Q
remote represent the sub-queries composed of sources available lo-

cally and remotely respectively. In the worst case, if a poor join order is chosen as

the result of making a local decision, it may result in a high-volume remote query

that needs to be streamed to the current cluster for joining with the local query. Let

Cl denote the cost incurred immediately within a cluster at level l by making a join

214

ordering decision locally at level l. We use the term ‘net present cost’, Γl, to indicate

all present and future costs that may be incurred as the result of making a local join

ordering decision at the level l. Then the estimated net present cost Γl is computed

as follows:

Γl = Cl +
h

∑

i=l+1

pi × λ(VQ
remote) × di

where pi represents the probability of finding V
Q
remote at the level i, λ(VQ

remote) repre-

sents the data rate of stream V
Q
remote, h represents the height of the hierarchy and

di represents the maximum intra-cluster traversal cost at level i. The probability of

finding the remote query at a particular level is computed based on the fraction of

network visible at that level assuming sources are likely to appear anywhere within

the network. In this expression, the first term represents the present cost and the

second term represents all future costs likely to be incurred at higher levels in the

hierarchy. Note that Γl is a conservative estimate of the future costs aimed mainly

at penalizing query partitioning where the join order results in a high-volume remote

stream that needs to be transported across longer distances.

The cost of delaying the decision to the next level, i.e. cost Ωl at level l is computed

as follows:

Ωl =
h

∑

i=l+1

pi × λ(Q) × di

In order to compute Ωl we compute the expected future costs of delaying the query

partitioning decision to the next level. The NPC algorithm then performs query

partitioning at the current level l if Ωl ≥ Γl. Unlike the other algorithms, the NPC

algorithm requires knowledge of the hierarchical structure in terms of height, number

of nodes in a cluster and maximum intra-cluster traversal costs at each level. It also

requires knowledge of join selectivities.

Since the NPC algorithm attempts to avoid poor join orders, it is expected to

perform better than the Bottom-Up algorithm. However, since it continues to make

215

query partitioning decisions based only on efficiency of join orders, oblivious to the

availability of reuse opportunities, it is expected to produce less efficient deployments

as compared to the Top-Down algorithm. The NPC algorithm performs query parti-

tioning when it perceives that partitioning the query at some level is beneficial. As

a result it is more effective in reducing the search space compared to the Top-Down

algorithm.

7.4 Experiments

We present both simulation based experiments and prototype experiments conducted

on Emulab [7] using IFLOW [90]. Our experiments focus on (1) the effect of the

maxcs clustering parameter on the trade-off between sub-optimality and search space

(2) the effectiveness of our algorithms as compared to existing approaches (3) and

the efficiency of our algorithms compared to an optimal solution computed through

an exhaustive search. Our experiments show that our algorithms result in acceptable

sub-optimality: the Top-Down algorithm is sub-optimal by only 10% and the Bottom-

Up algorithm by 34% while exploring less than 1% of the total search space. At the

same time, our algorithms clearly outperform existing approaches. For example,

the Bottom-Up algorithm reduces cost by nearly 25% when compared to the In-

network [32] algorithm while exploring only a small fraction of the search space.

Also, the NPC algorithm allows us to further fine tune the trade-off between search

space and sub-optimality and help us achieve plans that were close to the Top-Down

algorithm in optimality and Bottom-Up algorithm in search space.

7.4.1 Experimental Setup

Our simulation experiments were conducted over transit-stub topology networks gen-

erated using the standard tool, the GT-ITM internetwork topology generator [159].

Most experiments were conducted using a 128 node network, with a standard Internet-

style topology: 1 transit (e.g. “backbone”) domain of 4 nodes, and 4 “stub” domains

216

(each of 8 nodes) connected to each transit domain node. Link costs (per byte trans-

ferred) were assigned such that the links in the stub domains had lower costs than

those in the transit domain, corresponding to transmission within an intranet being

far cheaper than long-haul links. As described in Section 7.2.2, we adopt the ‘network

usage’ metric [109] to compute costs of query deployments. Recall that, the network

usage u(q) of a query q represents the total amount of data that is in-transit for a

query at any given instant.

As described in Section 7.3.1.1 our network is organized into a virtual clustering

hierarchy based on link costs which represent the cost of transmitting a unit amount

of data across the link. We used the K-Means [82] clustering in order to create the

clustering hierarchy.

7.4.1.1 Workloads

We evaluate our approaches using two different workloads: a synthetic workload

generated using a random workload generator and a real enterprise workload based

on the enterprise operational information system used by Delta Airlines [104, 90]. We

used a synthetic workload so that we could experiment with a large variety of stream

rates, query complexities, and operator selectivities. Our synthetic workload was

generated using a uniformly random workload generator. The workload generator

generated stream rates, selectivities and source placements for a specified number

of streams according to a uniform distribution. It also generated queries with the

number of joins per query varying within a specified range (2-5 joins per query) with

random sink placements.

The enterprise workload is a real-world workload consisting of gate-agent, termi-

nal and monitoring queries posed as part of the day-to-day operations of Delta Air

Lines’ enterprise operational information system. The query workload is based on

the 5 query sources whose characteristics are shown in Table 83. Each update record

217

was assumed to be of the same size (100 bytes). Each query definition includes win-

dow (RANGE and SLIDE i.e. the window size and frequency of computation of results

respectively) specifications for each of the input streams.

Gate agent queries, which originate at the gate of departure of a flight, constitute

80% of the workload and the SLIDE for these queries is set to 1 minute. The queries

use the following template.

Q1: SELECT FL.GATE, BG.STATUS, CI.STATUS

FROM FLIGHTS FL [RANGE 5 MIN], BAGGAGE BG [RANGE 1 MIN], CHECK-INS CI [RANGE 1

MIN]

WHERE FL.NUM = CI.FLIGHT AND FL.NUM = BG.FLIGHT AND FL.NUM = ?;

Terminal queries follow the template of query Q2 given below and represent 15% of

the workload. The results of these queries, evaluated every minute are streamed to

overhead terminal displays.

Q2: SELECT FL.NUM, FL.GATE, BG.AREA, CI.STATUS, WR.FORECAST

FROM FLIGHTS FL [RANGE 5 MIN], WEATHER WR [RANGE 5 MIN], CHECK-INS CI [RANGE 1

MIN], BAGGAGE BG [RANGE 1 MIN] WHERE FL.DEST = WR.CITY AND FL.NUM = CI.FLIGHT

AND FL.NUM = BG.FLIGHT AND FL.TERMINAL = ? AND FL.CARRIER CODE = ‘‘DL’’;

Finally, the last 5% of the workload represent long-running ad-hoc monitoring queries

over any combination of the 5 sources. For these queries, window ranges and slides

are uniformly distributed between [1-5] minutes for all streams. Note that each gate

agent, terminal and monitoring query may have unique selection predicates. In the

current work, our focus is on join ordering and discovering join reuse opportunities.

In our simulation experiments, sharing join operators between queries with different

selection criteria over the input stream is implemented by modifying selection predi-

cates at runtime. In our prototype implementation, the selections are instantiated as

parameterized filters [61], and this reduces the task of selection predicate modification

218

Source Rate Selectivity

Flights 1500/5 min 1/flight/5 min
Check-ins 240/min 2/flight/min
Baggage 500/min 4/flight/min
Weather 450/5 min 1/dest/5 min

Sales 70/min 1/dest/min

Figure 83: Enterprise Workload

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
er

 o
f

p
la

n
s

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 84: Bottom-Up: Plans

to the task of changing the parameter associated with the filter. While evaluating the

benefit of reusing a join operator, the cost of projecting additional columns and relax-

ing the filter specifications upstream are also taken into consideration and operators

are reused only when the resulting cost is less than that of deploying a new operator.

The synthetic workload is used to study the trade-off between sub-optimality and

search space in our algorithms. We use the enterprise workload consisting of 300

queries to compare the performance of our algorithms with existing techniques in a

realistic setup.

219

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
er

 o
f

p
la

n
s

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 85: Top-Down: Plans

7.4.2 Tuning Cluster Size: Trade-off between Sub-Optimality and Search
Space

An exhaustive search of all possible query plans and all possible placement of op-

erators may not be feasible as network size increases. For example, an exhaustive

search on a 128 node network for the deployment of a single query over 5 stream

sources required enumeration of approximately 4.83×1010 plans that took nearly 3

hours to complete. In this section we demonstrate how the maxcs parameter can be

used to tune the trade-off between the sub-optimality of the heuristic and minimiz-

ing the search space. The experiments were conducted using the synthetic workload

described in Section 7.4.1.

7.4.2.1 Effect of Cluster Size on Search Space

In this experiment we studied the effect of the cluster size parameter maxcs on the

search space with the Bottom-Up and Top-Down algorithms. Figure 84 and Figure 85

depict the cumulative number of plans examined on a log scale, with varying maxcs

220

for the Bottom-Up and Top-Down algorithms respectively. As the figure shows, the

number of plans increases as maxcs increases.

Interestingly, we notice that in both algorithms, a maxcs value of 32 results in a

smaller search space than a value of 16. In both cases, the hierarchy had the same

number of levels, but in the case of maxcs = 32, the upper level clusters were smaller

(since the lower level clusters were larger.) Since many sources are found remotely,

most of the planning is done at the upper levels, and having small cluster sizes at

those levels results in a smaller search space overall.

In contrast, a maxcs value of 64 resulted in the maximum search space, nearly an

order of magnitude larger than maxcs = 16. This is a straightforward effect of the

increased probability of finding sources in a larger cluster. For example a query over

4 streams, with all streams found within a 57 node Level 1 cluster, considers as many

as 3.3 × 106 deployments.

In general, the Bottom-Up algorithm considers on an average 67% fewer plans

than the Top-Down algorithm. The exception to this rule occurs when the virtual

hierarchy structure is an unbalanced structure with very few nodes at the top, as in

the case of a maxcs = 64 (3 top-level nodes) and maxcs = 32 (5 top-level nodes). In

these cases, due to the small cluster size at the level where the query is partitioned

the Top-Down algorithm has a smaller search space than the Bottom-Up algorithm.

7.4.2.2 Effect of Cluster Size on Cost

Figure 86 shows the cumulative deployed cost per unit time of queries deployed incre-

mentally using the Bottom-Up algorithm for different values of the maxcs parameter.

It can be noticed that cost decreases as the maxcs value is increased. For example, a

maxcs value of 64 results in a 21% decrease in cost compared to a maxcs value of 8.

With smaller cluster sizes, the number of levels in the hierarchy increases. As a result,

more deployments are computed at higher levels resulting in greater approximations.

221

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

T
o
ta

l
co

st
 p

er
 u

n
it

 t
im

e
(i

n
 t

h
o
u
sa

n
d
s)

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 86: Bottom-Up: Cost

To summarize, in terms of sub-optimality, fewer levels and more nodes per level is

best. In terms of search space, fewer nodes per level is best. A useful guideline for

choosing maxcs for the Bottom-Up algorithm is:

• Choose the largest value of maxcs that results in a search space (Theorem 4) that

is acceptable.

Figure 87 shows the effect of the cluster size parameter maxcs on the cost in the

Top-Down algorithm. Note that large values of maxcs (> 4) result in deployed costs

that are close to each other. The Top-Down algorithm considers all possible operator

orderings at the top-most level (regardless of maxcs). This results in a good and

mostly ‘similar’ choice of operator ordering for a range of maxcs values. However,

if maxcs is too small, there are many levels in the hierarchy and each level adds

more inaccuracy to the approximation. Hence, a useful guideline for the Top-Down

algorithm is:

• Choose the smallest value of maxcs that is large enough so that the height of the

222

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

T
o
ta

l
co

st
 p

er
 u

n
it

 t
im

e
(i

n
 t

h
o
u
sa

n
d
s)

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 87: Top-Down: Cost

hierarchy results in reasonable sub-optimality (based on Theorem 3).

7.4.3 Efficiency of NPC Algorithm

The NPC algorithm allows us to further fine tune the trade-off between search

space and sub-optimality. Figure 88 shows the cost with the NPC algorithm with

maxcs = 16 as compared with the Top-Down and Bottom-Up algorithms. We choose

to present the graph for this value of maxcs since this is the largest value that results

in a balanced virtual hierarchical structure with almost full clusters at each level rep-

resenting the standard behaviors of the Top-Down and Bottom-Up algorithms. As

the figure shows, the NPC algorithm results in plans that are sub-optimal by only

1% compared to the Top-Down algorithm. At the same time, as Figure 89 shows,

the NPC algorithm explores 14% fewer plans than the Top-Down algorithm. Note

that, for each value of maxcs where the Top-Down algorithm explored fewer plans

than the Bottom-Up algorithm, the NPC algorithm explored only as many plans at

223

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

T
o
ta

l
co

st
 p

er
 u

n
it

 t
im

e
(i

n
 t

h
o
u
sa

n
d
s)

Number of queries

Bottom-Up
Top-Down

NPC

Figure 88: NPC algorithm: Cost

the Top-Down algorithm while still resulting in solutions that were close to the Top-

Down algorithm in optimality. While the NPC algorithm avoids poor join orders,

it performs less efficiently than the Top-Down algorithm since it is unable to take

into account reuse opportunities that may appear at the upper-levels in the hierarchy

while deciding on join orders.

7.4.4 Comparison with existing approaches

In this experiment we compare our Top-Down and Bottom-Up approaches with exist-

ing approaches - the Relaxation algorithm [109] and In-network [32], a network-aware

query processing algorithm. Both Relaxation and In-network are phased deployment

approaches that first plan and then deploy (see Figure 7.1(a)). Operator reuse was

implemented through stream-advertisements. The communication cost of advertise-

ments was negligible compared to the data streams themselves.

Figure 90 and 91 show the cumulative cost of deployments computed using the

224

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
er

 o
f

p
la

n
s

Number of queries

Bottom-Up algorithm
NPC algorithm

Top-Down algorithm

Figure 89: NPC Algorithm: Plans

Top-Down, Bottom-Up and NPC algorithms as compared with the Relaxation and

In-network algorithms, using the synthetic and enterprise workload respectively. The

graphs also shows the costs of optimal deployments computed using an exhaustive

search. Operator reuse was taken into consideration for all algorithms. We used a 3-

dimensional cost space for the Relaxation algorithm and considered a virtual hierarchy

with maxcs 32 for the Top-Down, Bottom-Up and NPC algorithms. We chose this

value of maxcs based on the above guideline for the Bottom-Up algorithm; and we

used the same value for the Top-Down and NPC algorithms to provide an apples-

to-apples comparison. In order to correspond with this maxcs value, we divided the

network into 5 zones for the In-network algorithm.

Figure 90 shows that, under the synthetic workload, when compared to the In-

network algorithm, the Top-Down algorithm can provide nearly 40% additional cost

savings per unit time, and the Bottom-Up algorithm, savings of 27%. Also, note

225

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160 180 200

T
o
ta

l
co

st
 p

er
 u

n
it

 t
im

e
(i

n
 t

h
o
u
sa

n
d
s)

Number of queries

Top-Down algorithm
Bottom-Up algorithm
Relaxation algorithm
’In-Network’ algorithm
NPC algorithm
Exhaustive

Figure 90: Comparison with existing approaches

that, the search space of the In-network algorithm was nearly 70% that of the Top-

Down algorithm and 200% that of the Bottom-Up algorithm. When compared to the

Relaxation algorithm, the Top-Down algorithm reduces cost by nearly 59% and the

Bottom-Up algorithm by nearly 49%. The search space of the Relaxation algorithm

is not directly comparable with that of the Top-Down and Bottom-Up algorithms,

due to the variable number of iterations that may be performed for each step of

the Relaxation algorithm. In our experiment, the 3-dimensional cost space [59] was

calculated using 4000 iterations and we used as many iterations for the Relaxation

algorithm and the running time was comparable to that of the Bottom-Up algorithm.

Figure 91 represents the network usage of the deployment algorithms under the

enterprise workload and Figure 92 shows the cumulative number of operators deployed

after 300 queries under the same workload. Note that, the y-axis of Figure 91 uses a

log scale. The graph shows that compared to the In-network algorithm, Top-Down,

Bottom-Up and NPC algorithms result in approximately 42%, 25% and 41% cost

226

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

L
o
g
 (

N
et

w
o
rk

 u
sa

g
e/

1
0
0
0
)

b
y
te

s

Number of queries

Top-Down
Bottom-Up
Relaxation
In-Network
NPC
Exhaustive

Figure 91: Enterprise Workload: Cost

savings respectively. However, note that, the In-network algorithm examined only

3% fewer plans compared to Top-Down and 170% more plans than Bottom-Up with

this workload. When compared to the Relaxation algorithm, Top-Down, Bottom-

Up and NPC algorithms result in approximately 96%, 93% and 95% cost savings

respectively.

Figure 92 shows the total number of deployed operators. It is a well known

fact that join operators are expensive and reduce throughput. Figure 92 shows that

algorithms using our framework resulted in better utilization of system resources with

the Top-Down, Bottom-Up and NPC algorithms utilizing nearly 81%, 73% and 48%

fewer join operators compared to the phased-deployment algorithms (In-network and

relaxation). The increase in the number of selection filters with our algorithms result

from telescoping filter placements (i.e. placing a less restrictive filter first to allow a

join operator to be reused, followed by more restrictive filters) to facilitate join reuse.

Although the number of select operators have increased, these operators are stateless

227

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

No Reuse
(In-Network and

Relaxation)

NPCBottom-Up Top-Down

N
u
m

b
er

 o
f

o
p
er

at
o
rs

Joins
Select

Figure 92: Enterprise Workload: # Operators

and require fewer processing resources. By reducing the number of join operators, we

expect that the system throughput will increase significantly.

Figure 90 and Figure 91 also allows us to compare the deployed costs of our al-

gorithms with the optimal solution computed using DP under the two workloads.

Figure 90 shows that the Top-Down algorithm performs better than the Bottom-Up

algorithm by nearly 19% and when compared to the optimal, the Bottom-Up algo-

rithm, performs sub-optimally by 34% and the Top-Down algorithm by only 10%.

The NPC algorithm performs sub-optimally by only 18%. Similarly, with the enter-

prise workload, as Figure 91 shows, the sub-optimality of the Top-Down algorithm

is only 5%, while that of the Bottom-Up algorithm is 36%. On the other hand, the

performance of the NPC algorithm is close to that of the Top-Down algorithm, with

a sub-optimality of only 6%.

228

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

1024512256128

N
u
m

b
er

 o
f

p
la

n
s

Network size

Top-Down
Bottom-Up
Exhaustive

AnalyticalBounds

Figure 93: Scalability with Network Size

7.4.5 Scalability with Network Size

In this experiment we study the scalability of the algorithms with respect to the

number of deployments considered as network size increases. We generated a workload

of 100 queries using 10 stream sources with each query performing joins over 4 streams.

We measured the average number of deployments considered over 4 different transit-

stub topologies of different sizes generated using GT-ITM. Again, sinks were placed

at random nodes in the network. Figure 93 shows the deployments considered for a

single query with Bottom-Up and Top-Down algorithms with maxcs 32 and exhaustive

search. The figure also shows how the average case (experimental) compares with the

worst case (theoretical) analytical bounds. Again, the value of maxcs was set to 32

to produce the largest feasible search space. (An exhaustive search on a 128 node

network for the deployment of a single query took nearly 3 hours to complete on our

system.) Note that the increase in Oexhaustive is offset by the decrease in β such that

the worst case bounds are nearly identical across the different networks. Note that

229

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

432

T
im

e
(i

n
 s

ec
o
n
d
s)

Size of query (number of streams)

Bottom-Up (cluster size=4)
Bottom-Up (cluster size=8)
Top-Down (cluster size=4)
Top-Down (cluster size=8)

Figure 94: Query deployment time

the y-axis has a log scale.

The values for exhaustive search were calculated using Lemma 1 and the analytical

bounds using Theorems 2 and 4. Clearly, performing exhaustive searches in such

systems is infeasible. Both the Top-Down and Bottom-Up algorithms decrease the

search space by at least 99%. We also see that the search space per query with

Bottom-Up is nearly 45% less than that of Top-Down. This can be attributed to the

early splitting of queries between levels in the Bottom-Up algorithm resulting in fewer

operators being considered for placement at each level. Meanwhile, the Top-Down

algorithm must consider all operator deployments at all levels in the hierarchy.

Although the search space of Top-Down and Bottom-Up algorithms seems to

first decrease with network size and then increase, note that this is only a particular

characteristic of our sample networks. For example, clustering using maxcs 32 resulted

in an average lowest level (i.e. Level 1) cluster size of 26 with a 128-node network,

and 15 with a 510-node network. Thus the search space for a 510-node network is less

230

than that of the 128 node network. Note that the search space, while being limited

by the maxcs parameter, is affected by the average cluster size too, which depends

on the particular network topology.

7.4.6 Deployment Time

We conducted prototype experiments on Emulab using IFLOW [90], our implemen-

tation of the distributed data stream system which supports hierarchies and adver-

tisements as described earlier. The testbed on Emulab consisted of 32 nodes (Intel

XEON, 2.8 GHz, 512MB RAM, RedHat Linux 9), organized into a topology that was

again generated with GT-ITM. Links were 100Mbps and the inter-node delays were

set between 1msec and 6msec. The workload for the following experiments consisted

of 25 queries over 8 stream sources and sinks distributed across the system. The

number of joins per query varied from 1 to 3.

The experiment conducted on Emulab was aimed at measuring the time to de-

ployment of a query over the system when using our algorithms. Figure 94 shows the

average deployment time in seconds for different query sizes. We observe that the

deployment times of the Bottom-Up algorithm is almost 70% less than that of the

Top-Down algorithm. This can be attributed to two factors: (1) the smaller search

space in the Bottom-Up algorithm, and (2) the fact that the Top-Down algorithm

must always traverse the entire depth of the network hierarchy. We also observe that

the deployment time of the Top-Down algorithm decreases with increasing maxcs

value. With lower maxcs, there are more hierarchy levels to be traversed, resulting in

higher deployment times. Our experiment allows us to conclude that our algorithms

can greatly reduce the search space for the query deployment problem while offering

efficient deployments with acceptable sub-optimality.

231

7.5 Related Work and Discussion

Distributed query optimization has received a great deal of attention from researchers

since the 1980s [86]. Classic efforts in this area include R∗ [153] and Distributed IN-

GRES [146]. Both the R∗ algorithm and the Distributed INGRES algorithm execute

at a master site. Since our system may consist of thousands of nodes, it is infeasible

to maintain all network information at a single node or perform exhaustive searches

for an optimal deployment.

A number of data-stream systems including SQL-based systems such as STREAM [39],

dQUOB [110], TelegraphCQ [51] and NiagaraCQ [55], as well as general purpose sys-

tems such as GATES [56], Borealis [28] and IFLOW [90] have been developed to

process queries over continuous streams of data. Centralized stream processing sys-

tems have explored use of techniques like common sub-expression elimination [110]

and commutative ordering of operators [40, 55] to enable operator reuse. However,

our problem is complicated by the need to consider an operator’s network location

while computing plans that can take advantage of reuse. At the other extreme, novel

systems like Eddies [38] have also used a tuple-by-tuple routing approach to adap-

tively decide the execution plan of a query.

The paradigm of in-network query processing has been used earlier in sensor net-

works [99, 158] and also in scientific data flows [56] and large scale visualizations [110]

with data manipulations sometimes pushed to the source for efficiency. The use of

this technique in stream based systems to only decide operator placement when the

query tree is already known is described in [32, 109]. The network-aware algorithms

in [32] firstly perform phased deployments which we have shown to be sub-optimal.

Secondly, they do not address the important question of how the query should be

divided and assigned to different portions of the network. Clearly, as seen from our

experiments on varying cluster sizes, this decision can impact the efficiency of the

resulting deployments. Also, no analysis is provided on the impact of the number

232

of zones and the placement heuristics on the computational complexity of the algo-

rithms.

The Relaxation algorithm [109] is a novel heuristic for operator placements in

distributed stream processing systems. However, the approach does not take into

consideration planning and deployment simultaneously resulting in increased sub-

optimality, both due to lost reuse opportunities and the subsequent approximate

placement decisions. Optimal placement for a single query on a sensor network is

considered in [144]. However, we consider the more generic problem of determining

both operator ordering and placements. Moreover, both our algorithms are able to

bound the search space and the Top-Down algorithm is also able to bound the sub-

optimality.

In our current design, we consider that communication overhead, especially the

amount of data transmitted, is the dominating cost in a distributed data stream

system for continuous streaming applications, in comparison to the amount of local

processing at each node. Although our cluster hierarchy creation using the network

usage metric does not explicitly take into account the differences in computing power

of individual nodes, it does incorporate the effect of imbalance between computing

capacity and communication capacity of a node in the process of creating our cluster

hierarchy using the delay parameter in the network usage metric [109].

In a distributed data-stream system where communication and processing costs

are not only high but also changing continuously, an optimal query execution plan

should ideally try to achieve multiple objectives at the same time, such as minimum

response-time, minimum communication and processing cost per unit time. How-

ever, these objectives are often conflicting, since it is possible that lower delay paths

have higher communication cost, or paths that incur low communication cost can

cause a processing overload at some intervening network node. Epstein et.al [21]

have developed an approach to optimize across such conflicting objectives, where the

233

optimization criteria is some ‘application dependent’ cost function expressed in terms

of objectives, such as communication cost and response time at each node; the latter

is often dependent on the node’s processing and buffering capacity and memory uti-

lization. Note that, our framework and the query optimization algorithms presented

in this thesis are capable of incorporating existing ‘application dependent’ cost func-

tions to find an efficient query execution plan, both in terms of cluster coordinator

selection and distributed query planning.

An alternative approach to deal with a system of nodes with heterogeneous pro-

cessing capacities would be to design a more complex task scheduler for the coor-

dinator node, which allows the coordinator node that maps the query operators to

the actual physical node to additionally take into consideration available processing

capacities.

7.6 Summary

We have described a distributed stream query optimization framework that integrates

query planning and deployment through hierarchical network partitions. Our frame-

work consists of two key components: a hierarchical clustering of network nodes

that allows network approximations and stream advertisements that enable opera-

tor reuse. We described three alternative algorithms − Top-Down, Bottom-Up and

Hybrid, which exploit different ways of using hierarchical network partitions for op-

erator level reuse and search space reduction. We show that although Top-Down and

Bottom-Up algorithms can both choose efficient deployments while exploring only a

small fraction of the search space, the Top-Down algorithm is more effective in limiting

the sub-optimality of the solutions, while the Bottom-Up approach is more effective in

reducing the search space and the time-to-deployment. The hybrid algorithm NPC,

find efficient execution plans while examining a small search space, allowing us to fur-

ther tune the trade-off between search space and algorithm sub-optimality. We show

234

through both experimental and analytical results that our algorithms are efficient and

scalable at costs comparable to optimal while exploring much fewer plans.

235

CHAPTER VIII

CONCLUSION

The unprecedented growth of the amount of digital information in almost every sphere

of life, the increasing reliance on anytime, anywhere access to this information and

the high cost and repercussions of downtime are placing ever increasing availability

demands on storage systems. Given the fact that these demands are achieved (1)

by rapidly adapting existing legacy software to new hardware architectures (2) with

development processes that are often concurrent with quality assurance processes

and (3) in systems which span thousands of nodes managing hundreds of terabytes of

data, software and hardware failures are expected to be the norm. However, existing

failure recovery mechanisms are insufficient to handle the scale and complexity of

these systems while achieving availability and service quality expectations.

In this dissertation we focused on the issues of firmware and middleware availabil-

ity in storage systems that have rarely been addressed. The firmware and middleware

layers of the storage system have grown tremendously in terms of both complexity and

functionality over the past several years. With trends such as consolidation for eas-

ier management, virtualization and application offloading, such systems are rapidly

adapting to new hardware and system architectures. However despite traditional high

availability mechanisms such as hardware redundancy, decentralization and process

pairs that are already in place, such systems still face challenges meeting the high

availability expectations of today’s enterprise applications and users. System level re-

covery procedures like reboots and failover to hot standbys may soon become a barrier

to achieving high availability due to the coarse granularity of such processes and since

the recovery time using these measures will increase as systems continue to grow in

236

terms of number of cores and persistent in-memory data. Next middleware scale and

functionality that exposes the software through application programmer interfaces

will increase the susceptibility of middleware to application induced failures and also

massive simultaneous failures. Finally, modern specialized storage systems built on

the principles of massive scalability, decentralization and autonomy specifically to

serve the needs of niche applications such as web search, mining and stream process-

ing call for high data availability techniques that look beyond traditional caching and

replication mechanisms.

Toward addressing these challenges we have presented:

1. A recovery conscious framework and a suite of techniques to improve the fault

resiliency and recovery efficiency of storage controller firmware over multi-core

architectures through micro recovery that can be retrofitted into existing legacy

software.

2. A fault tolerant middleware architecture that utilizes a hierarchical overlay to

separate application state from control state in order to provide fault isolation

from application induced failures and middleware bugs without loss of function-

ality while continuing to provide a SSI.

3. We present STREAMREUSE a reuse-conscious store forward network of stor-

age nodes that utilize dynamic grouping techniques and runtime modification

of operators in order to allow similar operators to be shared between multiple

concurrent queries. We present algorithms to scalably identify these operators

from a large search space while considering multiple factors such as network

location, semantics and operator lifetimes.

Below we summarize the contributions of this dissertation research chapter-wise.

Chapter 2 presented our recovery conscious framework which divides the task of

retrofitting fine-grained recovery into highly concurrent legacy storage software into

237

three stages. The stages progressively identify recovery dependencies and strategies,

organize dependent tasks into groups for enforcing scheduling constraints and finally

maps these groups to processing resources through recovery conscious scheduling.

Chapter 3 presented Log(Lock), a practical and flexible architecture for tracking

dynamic dependencies and performing state restoration without rearchitecting legacy

code. A comprehensive experimental evaluation shows that Log(Lock)-enabled micro-

recovery is both efficient and effective in reducing system recovery time.

Chapter 4 addressed the issues in the second and third tier of our recovery-

conscious framework. Our main contributions include (1) the development of recovery-

conscious scheduling, a non-intrusive technique to reduce the ripple effect of software

failure and improve the availability of the system and (2) guidelines for effective map-

pings of dependent tasks to recovery groups over which recovery-conscious schedul-

ing is performed. Through our analysis and experimentation we have shown that

through careful tuning of the system configuration and the recovery-sensitive param-

eters, RCS can significantly improve system performance during failure recovery and

thus improve system resiliency to faults while continuing to sustain high performance

during normal operation.

Chapter 5 presented our fault tolerant architectures for scale-out storage middle-

ware. Our highly available architectures utilize hierarchical overlays to provide fault

isolation while continuing to deliver existing functionality and a single-system-image.

Chapter 6 described StreamReuse, a reuse-conscious network of storage nodes

for distributed stream query processing systems. A unique characteristics of Stream-

Reuse is its three step reuse opportunity discovery and deployment process: (i)

operator-similarity based query relaxation, (ii) network locality-based reuse refine-

ment, and (iii) seamless runtime reuse plan migration. Experimental evaluation of

the StreamReuse approach shows that our reuse techniques can reduce resource

consumption and computational costs by more than an order of magnitude compared

238

to the existing approaches.

Chapter 7 described an optimization framework that integrates query planning

and deployment through hierarchical network partitions to perform network-aware

operator reuse. Our framework consists of two key components: a hierarchical cluster-

ing of network nodes that allows network approximations and stream advertisements

that enable operator reuse. We described three alternative algorithms − Top-Down,

Bottom-Up and Hybrid, which exploit different ways of using hierarchical network

partitions for operator level reuse and search space reduction. We show through both

experimental and analytical results that our algorithms are efficient and scalable at

costs comparable to optimal while exploring much fewer plans.

8.1 Future Work

Our research continues along a number of directions which we detail next. First,

in order to adopt our recovery-conscious framework for large software systems, a

significant challenge is to identify efficient recovery scopes. In ongoing work we are

working on developing more generic techniques that would assist in improving the

efficiency and accuracy of our recovery scope classification. The design and concepts

of our recovery-conscious framework are more broadly applicable to software systems

beyond storage systems. One open direction of research is to identify techniques for

identifying recovery dependencies in other high performance software systems.

Next, the Log(Lock) architecture can easily be extended to a more coarse granu-

larity of micro-recovery such as at a task or component level. However, a limitation of

our approach is that although the protocols and the Log(Lock) architecture provide

guidelines and information required for micro-recovery, programmer intervention is

still required to define the recovery actions. One of our ongoing efforts is to improve

this aspect by providing the programmer with better abstractions and hints to sim-

plify and error-proof recovery. We are also interested in deploying and evaluating the

239

Log(Lock) approach in other high performance systems both to observe performance

and also to get more insights in term of effectiveness of state restoration. Another

line of effort is to extend the Log(Lock) capability to support longer durations of

tracking, for example, across multiple threads.

With respect to the hierarchical middleware architectures, determining application

placements over the hierarchical structure in order to minimize cross-cluster traffic,

for example by placing communicating applications within the same cluster when-

ever possible, is another interesting direction of research. In ongoing work we are

investigating how the hierarchical structure can be maintained dynamically, how the

structure can be modified at run-time based on existing conditions and how applica-

tions can be moved between sub-clusters at run-time. and issues relating to dynamic

creation and maintenance of the hierarchical structure are topics of ongoing research.

Our research on StreamReuse continues along a number of dimensions. Cur-

rently, we are investigating issues pertaining to the migration of stateful operators

and the scalable techniques for distribution of the planning process and the reuse lat-

tice. We are also interested in extending the reuse semantics from SQL like operator

similarity to other messaging based service description and query languages, such as

WSDL [6], SOAP [5], and BPL [53]. We believe that the design framework of the

StreamReuse is sufficiently general to be applicable to exploit operator level reuse

opportunities inherent in different types of service description languages [106, 157].

Finally, we are interested in examining other types of system parameters and under-

standing how they may impact on the effectiveness of operator level reuse.

Even with pluggable mechanisms like RCS it is necessary to emphasize that high-

availability should still be a design concern and not an after-thought. Failure recovery

is best thought of during the design stage itself and should not be construed as a

mechanism that can be patched onto existing software. However, in a situation where

we are already dealing with legacy software, like in the case of a storage controller,

240

we think of implementing micro-recovery more as completing the design, rather than

using a patch fix. From our discussions with microcode developers we can think

of a few recommendations: It is easier to implement micro-recovery in a system

where there is clear separation of components and few well-defined interfaces for

communicating between these components. For instance, using a client-server style

separation between components and including failure handling capabilities may be a

good strategy. A server should be able to handle client failures and vice-versa. Again,

failure recovery and recovery handling should be thought of while writing good-path

code. We hope our framework would encourage developers to incorporate additional

error handling and anticipate more error scenarios and that our scheduling schemes

would aid in scaling efficient error handling with system size.

Virtualization is emerging as a popular paradigm across the industry. Data-centers

and enterprises are rapidly moving towards embracing virtualization in order to max-

imize utilization and improve quality of service, more so given that new multi-core ar-

chitectures naturally call for virtualized solutions. However, unlike earlier generations

of hardware, considerable burden has now shifted over to the software developers. The

question now becomes how should applications be designed/ deployed in a virtualized

environment in order to provide the best availability to the end-users of the service?

Different components have different characteristics in terms of statefulness and the

time to recovery with restart mechanisms. Currently four different recovery mecha-

nism exists which are best suited for different component styles. (1) Microreboot -

Best suited for components with no state and requiring very little initialization and

hence have fast times to restart; (2) Passive stand-by - Stateless components with

high initialization (like caches). (3) Active stand-by - Stateful components requiring

high amount of initialization. (e.g., write-back caches). (4) Software rejuvenation

(with checkpoints) - can be applied to almost all components. Instead of the applica-

tion developer having to implement all these techniques, one approach is to implement

241

these at the virtual machine and then spread the components across virtual machines,

each configured to use an appropriate method for fault-tolerance. The open research

question is to study the feasibility of these techniques, the resulting reliability and

the performance impact.

242

REFERENCES

[1] “Akamai,” http://akamai.com/.

[2] “Amazon ec2. amazon elastic computing cloud,” aws.amazon.com/ec2.

[3] “Amazon s3 availability event: July 20, 2008,”
http://status.aws.amazon.com/s3-20080720.html.

[4] “Amazon simple storage service (amazon s3),” http://aws.amazon.com/s3/.

[5] “Box, d., et al.: Simple object access protocol (soap), version 1.1. w3c note,
w3c, may 2000. http://www.w3.org/tr/ soap/.,”

[6] “Christensen, e., et al.: Web services description language (wsdl) 1.1. w3c note,
w3c, march 2001. http://www.w3.org/tr/2001/note-wsdl-20010315,”

[7] “Emulab network testbed,” http://www.emulab.net/.

[8] “Health insurance portability and accountability act (hipaa),” 104th Congress,
United States of America Public Law 104-191.

[9] “How much information?,” http://www.sims.berkeley. edu/projects/how-much-
info/.

[10] “Hp TagmaStore,” http://www.hds.com/go/virtualization/.

[11] “IBM Unveils Enterprise Stream Processing System,”
http://www.hpcwire.com/hpc/1623603.html.

[12] “Ibm websphere,” http://www-306.ibm.com/software/websphere/.

[13] “Industry data retention regulations,” http://www.veritas.
com/van/articles/4435.jsp.

[14] “Isilon systems,” http://www.isilon.com.

[15] “Personal communication with lawrence chiu and paul muench, ibm almaden
research center, 2007,”

[16] “Remote data backups,” http://www.remotedatabackup.com.

[17] “Storage networking industry association,” http: // www. snia. org .

[18] “Storage systems projects: Tiburon,” http: // www. almaden. ibm. com/

StorageSystems/ projects/ tiburon .

243

[19] “Terascale supernova initiative,” http: // www. phy. ornl. gov/ tsi/ ,2005.

[20] “TIBCO,” http://www.tibco.com/.

[21] “Veritas Foundation Suite,” http://www.veritas.com/us/products/foundation.

[22] “Ibm z/architecture principles of operation,” SA22-7832, IBM Corporation,
2001.

[23] “Data clinic. hard disk failure.,” http://www.dataclinic.co.uk/harddisk-
failures.htm, 2004.

[24] “The data clinic. hard disk failure.,” http://www.dataclinic.co.uk/harddisk-
failures.htm, 2004.

[25] “Cdp buyers guide,” Available at http://www.snia.org/tech activi-
ties/dmf/docs/CDP Buyers Guide 20050822.pdf, 2005.

[26] “Ceph: A scalable, high-performance distributed file system,” in OSDI, 2006.

[27] Abadi, D. J., Carney, D., Cetintemel, U., Cherniack, M., Convey,

C., Lee, S., Stonebraker, M., Tatbul, N., and Zdonik, S., “Aurora:
a new model and architecture for data stream management,” VLDB Journal,
2003.

[28] Abadi, D. J. and others, “The Design of the Borealis Stream Processing
Engine,” in CIDR, 2005.

[29] Abrams, Z. and Liu, J., “Greedy is good: On service tree placement for
in-network stream processing,” in ICDCS, 2006.

[30] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R.,
Douceur, J. R., Howell, J., Lorch, J. R., Theimer, M., and Wat-

tenhofer, R. P., “FARSITE: federated, available, and reliable storage for
an incompletely trusted environment,” in OSDI ’02: Proceedings of the 5th
symposium on Operating systems design and implementation, 2002.

[31] Aguilera, M. K., Keeton, K., Merchant, A., Muniswamy-Reddy, K.-

K., and Uysal, M., “Improving recoverability in multi-tier storage systems,”
in DSN, 2007.

[32] Ahmad, Y. and Cetintemel, U., “Network-aware query processing for
stream-based applications,” in VLDB, 2004.

[33] Alvarez, G. A., Burkhard, W. A., and Cristian, F., “Tolerating multiple
failures in raid architectures with optimal storage and uniform declustering,”
SIGARCH Comput. Archit. News, vol. 25, no. 2, pp. 62–72, 1997.

[34] Amini, L., Jain, N., Sehgal, A., Silber, J., and Verscheure, O., “Adap-
tive control of extreme-scale stream processing systems,” in ICDCS, 2006.

244

[35] Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris, R., “Re-
silient overlay networks,” in SOSP, 2001.

[36] Arasu, A., Babu, S., and Widom, J., “The cql continuous query language:
semantic foundations and query execution,” The VLDB Journal, vol. 15, no. 2,
2006.

[37] Avizienis, A., “The N-version approach to fault-tolerant software.,” IEEE
Trans. Software Eng., vol. 11, no. 12, pp. 1491–1501, 1985.

[38] Avnur, R. and Hellerstein, J. M., “Eddies: continuously adaptive query
processing,” in SIGMOD, 2000.

[39] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J., “Mod-
els and issues in data stream systems.,” in PODS, 2002.

[40] Babu, S., Motwani, R., Munagala, K., Nishizawa, I., and Widom, J.,
“Adaptive ordering of pipelined stream filters,” in SIGMOD, 2004.

[41] Bairavasundaram, L. N., Goodson, G. R., Pasupathy, S., and
Schindler, J., “An analysis of latent sector errors in disk drives,” SIGMET-
RICS Perform. Eval. Rev., vol. 35, no. 1, pp. 289–300, 2007.

[42] Bairavasundaram, L. N., Goodson, G. R., Schroeder, B., Arpaci-

Dusseau, A. C., and Arpaci-Dussea, R. H., “An analysis of data corruption
in the storage stack,” in FAST’08: Proceedings of the 6th USENIX Conference
on File and Storage Technologies, (Berkeley, CA, USA), pp. 1–16, USENIX
Association, 2008.

[43] Baker, M., Shah, M., Rosenthal, D. S. H., Roussopoulos, M., Ma-

niatis, P., Giuli, T., and Bungale, P., “A fresh look at the reliability
of long-term digital storage,” in EuroSys ’06: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006, (New
York, NY, USA), pp. 221–234, ACM, 2006.

[44] Beaver, J. and Sharaf, M. A., “Location-aware routing for data aggregation
for sensor networks,” in Geo Sensor Networks Workshop, 2003.

[45] Bernstein, P. A., Hadzilacos, V., and Goodman, N., Concurrency con-
trol and recovery in database systems. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1986.

[46] Bhagwan, R., Tati, K., Cheng, Y.-C., Savage, S., and Voelker, G. M.,
“Total recall: system support for automated availability management,” in
NSDI’04: Proceedings of the 1st conference on Symposium on Networked Sys-
tems Design and Implementation, (Berkeley, CA, USA), pp. 25–25, USENIX
Association, 2004.

245

[47] Burrows, M., “The chubby lock service for loosely-coupled distributed sys-
tems,” OSDI, 2006.

[48] Cai, Z., Kumar, V., and Schwan, K., “Iq-paths: Self-regulating data
streams across network overlays,” in HPDC, 2006.

[49] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A.,
“Microreboot–a technique for cheap recovery,” OSDI, 2004.

[50] Candea, G., Cutler, J., and Fox, A., “Improving availability with recursive
microreboots: a soft-state system case study,” Perform. Eval., vol. 56, no. 1-4,
pp. 213–248, 2004.

[51] Chandrasekaran, S. and others, “TelegraphCQ: Continuous dataflow
processing for an uncertain world.,” in CIDR, 2003.

[52] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,
Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E., “Bigtable:
A distributed storage system for structured data,” OSDI, 2006.

[53] Charfi, A. and Mezini, M., “Hybrid web service composition: business pro-
cesses meet business rules,” in ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pp. 30–38, 2004.

[54] Chaudhuri, S., Krishnamurthy, R., Potamianos, S., and Shim, K.,
“Optimizing queries with materialized views,” in ICDE, 1995.

[55] Chen, J., DeWitt, D. J., and Naughton, J. F., “Design and evaluation
of alternative selection placement strategies in optimizing continuous queries.,”
in ICDE, 2002.

[56] Chen, L., Reddy, K., and Agrawal, G., “GATES: A grid-based middle-
ware for processing distributed data streams,” in HPDC, 2004.

[57] Chen, S., Gibbons, P. B., Kozuch, M., Liaskovitis, V., Ailamaki,

A., Blelloch, G. E., Falsafi, B., Fix, L., Hardavellas, N., Mowry,

T. C., and Wilkerson, C., “Scheduling threads for constructive cache sharing
on cmps,” in SPAA, (New York, NY, USA), pp. 105–115, ACM Press, 2007.

[58] Clarke, E. M. and Wing, J. M., “Formal methods: state of the art and
future directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626–643, 1996.

[59] Cox, R., Dabek, F., Kaashoek, F., Li, J., and Morris, R., “Practical,
distributed network coordinates,” in Proceedings of the Second Workshop on
Hot Topics in Networks (HotNets-II), ACM SIGCOMM, November 2003.

[60] Datta, A., Stoica, I., and Franklin, M., “Lagover: Latency gradated
overlays,” in ICDCS, 2007.

246

[61] Eisenhauer, G., Bustamante, F. E., and Schwan, K., “Event services
for high performance computing,” in HPDC, 2000.

[62] Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B.,
“A survey of rollback-recovery protocols in message-passing systems,” ACM
Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[63] Elnozahy, E. N. and Plank, J. S., “Checkpointing for peta-scale systems:
A look into the future of practical rollback-recovery,” IEEE Trans. Dependable
Secur. Comput., vol. 1, no. 2, pp. 97–108, 2004.

[64] Engelmann, C., Scott, S. L., Leangsuksun, C., and He, X., “Symmetric
active/active high availability for high-performance computing system services,”
Journal of Computers (JCP), vol. 1, no. 8, pp. 43–54, 2006.

[65] Fagan, M., “Design and code inspections to reduce errors in program devel-
opment,” pp. 575–607, 2002.

[66] Ganguly, S., Garofalakis, M., Rastogi, R., and Sabnani, K., “Stream-
ing algorithms for robust, real-time detection of ddos attacks,” in ICDCS, 2007.

[67] Ganguly, S., Goel, A., and Silberschatz, A., “Efficient and accurate cost
models for parallel query optimization (extended abstract),” in PODS, 1996.

[68] Garg, S., Puliafito, A., Telek, M., and Trivedi, K., “On the analysis of
software rejuvenation policies,” in Proceedings of the 12th Annual Conference
on Computer Assurance (COMPASS’97), 1997.

[69] Ghemawat, S., Gobioff, H., and Leung, S.-T., “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[70] Glider, J. S., Fuente, C. F., and Scales, W. J., “The software architec-
ture of a SAN storage control system,” IBM System Journal, vol. 42, no. 2,
pp. 232–249, 2003.

[71] Goldstein, J. and Larson, P.-A., “Optimizing queries using materialized
views: a practical, scalable solution,” in SIGMOD, 2001.

[72] Gray, J., “Why do computers stop and what can be done about it?,” in
Symposium on Reliability in Distributed Software and Database Systems, pp. 3–
12, 1986.

[73] Gray, J. and Reuter, A., Transaction Processing : Concepts and Techniques.
Morgan Kaufmann, October 1992.

[74] Gulati, A., Merchant, A., and Varman, P. J., “pclock: an arrival curve
based approach for qos guarantees in shared storage systems,” in SIGMET-
RICS, (New York, NY, USA), pp. 13–24, ACM Press, 2007.

247

[75] Hartung, M., “IBM totalstorage enterprise storage server: A designer’s
view,” IBM Syst. J., vol. 42, no. 2, pp. 383–396, 2003.

[76] Hildrum, K., Douglis, F., Wolf, J. L., Yu, P. S., Fleischer, L., and
Katta, A., “Storage optimization for large-scale distributed stream-processing
systems,” Trans. Storage, vol. 3, no. 4, pp. 1–28, 2008.

[77] HP, “HSG80 array controller software,”

[78] Huebsch, R., Garofalakis, M., Hellerstein, J. M., and Stoica, I.,
“Sharing aggregate computation for distributed queries,” in SIGMOD, 2007.

[79] Hunter, S. W. and Smith, W. E., “Availability modeling and analysis of
a two node cluster,” in 5th Intl. Conference on Information Systems, Analysis
and Synthesis, 1999.

[80] Iyer, R. K., Rossetti, D. J., and Hsueh, M. C., “Measurement and model-
ing of computer reliability as affected by system activity,” ACM Trans. Comput.
Syst., vol. 4, no. 3, 1986.

[81] Iyer, S. and Druschel, P., “Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous i/o,” in Symposium
on Operating Systems Principles, pp. 117–130, 2001.

[82] Jain, A. K. and Dubes, R. C., Algorithms for clustering data. NJ, USA:
Prentice-Hall, Inc., 1988.

[83] Karlsson, M., Karamanolis, C., and Zhu, X., “Triage: Performance dif-
ferentiation for storage systems using adaptive control,” Trans. Storage, vol. 1,
no. 4, pp. 457–480, 2005.

[84] Knight, J. C. and Leveson, N. G., “An experimental evaluation of the
assumption of independence in multiversion programming,” IEEE Trans. Softw.
Eng., vol. 12, no. 1, pp. 96–109, 1986.

[85] Kolettis, N. and Fulton, N. D., “Software rejuvenation: Analysis, module
and applications,” in FTCS, 1995.

[86] Kossmann, D., “The state of the art in distributed query processing,” ACM
Comput. Surv., 2000.

[87] Kotla, R., Alvisi, L., and Dahlin, M., “Safestore: a durable and practical
storage system,” in ATC’07: 2007 USENIX Annual Technical Conference on
Proceedings of the USENIX Annual Technical Conference, (Berkeley, CA, USA),
pp. 1–14, USENIX Association, 2007.

[88] Krishnamurthy, S., Franklin, M. J., Hellerstein, J. M., and Jacob-

son, G., “The case for precision sharing.,” in VLDB, 2004.

248

[89] Krishnamurthy, S., Wu, C., and Franklin, M., “On-the-fly sharing for
streamed aggregation,” in SIGMOD, 2006.

[90] Kumar, V. and others, “Implementing diverse messaging models with self-
managing properties using IFLOW.,” in IEEE International Conference on
Autonomic Computing, 2006.

[91] Laadan, O. and Nieh, J., “Transparent checkpoint-restart of multiple pro-
cesses on commodity operating systems,” in ATC’07: 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual Technical Confer-
ence, (Berkeley, CA, USA), pp. 1–14, USENIX Association, 2007.

[92] LaFrese, L., “Ibm totalstorage enterprise storage server model 800 new fea-
tures in lic level 2.3.0 (performance white paper),” ESS Performance Evalua-
tion, IBM Corporation, 2003.

[93] Lamport, L., “Time, clocks, and the ordering of events in a distributed sys-
tem,” Commun. ACM, vol. 21, no. 7, 1978.

[94] Lee, I. and Iyer, R. K., “Software dependability in the tandem guardian
system,” IEEE Trans. Softw. Eng., vol. 21, no. 5, pp. 455–467, 1995.

[95] Li, X. and others, “Mind: A distributed multi-dimensional indexing system
for network diagnosis,” in IEEE Infocom, 2006.

[96] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R. A., and
Zhou, Y., “Muvi: automatically inferring multi-variable access correlations
and detecting related semantic and concurrency bugs,” SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, pp. 103–116, 2007.

[97] Luo, L., Cao, Q., Huang, C., Abdelzaher, T., Stankovic, J. A., and
Ward, M., “Enviromic: Towards cooperative storage and retrieval in audio
sensor networks,” in ICDCS, 2007.

[98] Lyu, M. R., Handbook of Software Reliability Engineering. McGraw-Hill, New
York, 1996.

[99] Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W.,
“TAG: a tiny aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[100] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P.,
“ARIES: a transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging,” ACM Trans. Database Syst.,
vol. 17, no. 1, pp. 94–162, 1992.

[101] Moy, J., “OSPF version 2, request for comments 2328,” 1998.

[102] Myers, G. J. and Sandler, C., The Art of Software Testing. John Wiley &
Sons, 2004.

249

[103] Nagle, D., Serenyi, D., and Matthews, A., “The panasas activescale stor-
age cluster: Delivering scalable high bandwidth storage,” in SC ’04: Proceedings
of the 2004 ACM/IEEE conference on Supercomputing, 2004.

[104] Oleson, V., Schwan, K., Eisenhauer, G., Plale, B., Pu, C., and
D.Amin, “Operational information systems - an example from the airline in-
dustry,” in First Workshop on Industrial Experiences with Systems Software
(WIESS), 2000.

[105] Olston, C., Jiang, J., and Widom, J., “Adaptive filters for continuous
queries over distributed data streams,” in SIGMOD, 2003.

[106] Papazoglou, M. P. and Heuvel, W.-J., “Service oriented architectures:
approaches, technologies and research issues,” 2007.

[107] Patterson, D. A., Gibson, G., and Katz, R. H., “A case for redundant
arrays of inexpensive disks (raid),” SIGMOD Rec., vol. 17, no. 3, 1988.

[108] Peterson, Z. and Burns, R., “Ext3cow: a time-shifting file system for reg-
ulatory compliance,” Trans. Storage, vol. 1, no. 2, pp. 190–212, 2005.

[109] Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh,

M., and Seltzer, M., “Network-aware operator placement for stream-
processing systems,” in ICDE, 2006.

[110] Plale, B. and Schwan, K., “Dynamic querying of streaming data with the
dQUOB system,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 4, 2003.

[111] Prabhakaran, V., Bairavasundaram, L. N., Agrawal, N., Gunawi,

H. S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H., “Iron file
systems,” in SOSP ’05: Proceedings of the twentieth ACM symposium on Op-
erating systems principles, (New York, NY, USA), pp. 206–220, ACM, 2005.

[112] Prabhakaran, V., Bairavasundaram, L. N., Agrawal, N., Gunawi,

H. S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H., “IRON file
systems,” SOSP, 2005.

[113] Pullum, L. L., Software fault tolerance techniques and implementation. Nor-
wood, MA, USA: Artech House, Inc., 2001.

[114] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y., “Rx: Treating bugs as
allergies — a safe method to survive software failure,” in SOSP, Oct 2005.

[115] Ramasamy, H. and Schunter, M., “Architecting dependable systems using
virtualization.,” in Workshop on Architecting Dependable Systems in conjunc-
tion with DSN, 2007.

[116] Randell, B., “System structure for software fault tolerance,” in Proceedings
of the international conference on Reliable software, (New York, NY, USA),
pp. 437–449, ACM Press, 1975.

250

[117] Randell, B., Lee, P., and Treleaven, P. C., “Reliability issues in com-
puting system design,” ACM Comput. Surv., vol. 10, no. 2, pp. 123–165, 1978.

[118] Rao, K. K., Hafner, J. L., and Golding, R. A., “Reliability for networked
storage nodes,” in DSN ’06: Proceedings of the International Conference on
Dependable Systems and Networks (DSN’06), 2006.

[119] Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., Leu, T., and
William S. Beebee, J., “Enhancing server availability and security through
failure-oblivious computing,” in OSDI, 2004.

[120] Rizzo, L., “Effective erasure codes for reliable computer communication pro-
tocols,” ACM Computer Communication Review, vol. 27, pp. 24–36, Apr. 1997.

[121] Ronsse, M. and Bosschere, K. D., “Recplay: a fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, no. 2, pp. 133–152,
1999.

[122] Russinovich, M. and Cogswell, B., “Replay for concurrent non-
deterministic shared-memory applications,” in PLDI, (New York, NY, USA),
pp. 258–266, ACM, 1996.

[123] Sacks, D., “Demystifying storage networking, das, san, nas, nas gateways,
fibre channel, and iscsi,” IBM Storage Networking, June 2001.

[124] Schneider, F. B., Replication management using the state-machine approach.
1993.

[125] Schroeder, B. and Gibson, G. A., “Disk failures in the real world: what
does an mttf of 1,000,000 hours mean to you?,” in FAST ’07: Proceedings of
the 5th USENIX conference on File and Storage Technologies, (Berkeley, CA,
USA), p. 1, USENIX Association, 2007.

[126] Schroeder, B. and Gibson, G. A., “Understanding disk failure rates: What
does an mttf of 1, 000, 000 hours mean to you?,” TOS, vol. 3, no. 3, 2007.

[127] Scott, D., “Assessing the costs of application downtime.,” Gartner Group,
Stamford, CT, 1998.

[128] Seshadri, S., Bamba, B., Cooper, B. F., Kumar, V., Liu, L., Schwan,

K., and Zhang, G., “Grouping distributed stream query services by operator
similarity and network locality,” in SERVICES ’08: Proceedings of the 2008
IEEE Congress on Services - Part I, (Washington, DC, USA), pp. 11–18, IEEE
Computer Society, 2008.

[129] Seshadri, S., Chiu, L., Constantinescu, C., Balachandran, S.,
Dickey, C., Liu, L., and Muench, P., “Enhancing storage system availabil-
ity on multi-core architectures using recovery conscious scheduling,” in USENIX
FAST, 2008.

251

[130] Seshadri, S., Chiu, L., and Liu, L., “A systematic approach to system state
restoration during storage controller micro-recovery,” in USENIX FAST, 2009.

[131] Seshadri, S., Kumar, V., and Cooper, B. F., “Optimizing multiple queries
in distributed data stream systems,” in NetDB, 2006.

[132] Seshadri, S., Kumar, V., Cooper, B. F., and Liu, L., “Optimizing multi-
ple distributed stream queries using hierarchical network partitions,” in IPDPS,
2007.

[133] Seshadri, S., Kumar, V., Cooper, B. F., and Liu, L., “Optimizing multi-
ple distributed stream queries using hierarchical network partitions,” in IPDPS,
2007.

[134] Seshadri, S., Liu, L., and Chiu, L., “Recovery scopes, recovery groups, and
fine-grained recovery in enterprise storage controllers with multi-core proces-
sors.,” 2009.

[135] Seshadri, S., Liu, L., Cooper, B. F., Chiu, L., Gupta, K., and Muench,

P., “A fault-tolerant middleware architecture for high-availability storage ser-
vices,” in IEEE SCC, pp. 286–293, 2007.

[136] Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., and Franklin,

M. J., “Flux: An adaptive partitioning operator for continuous query systems,”
in ICDE, 2003.

[137] Sidiroglou, S., Laadan, O., Keromytis, A. D., and Nieh, J., “Using
rescue points to navigate software recovery,” in SP, 2007.

[138] Sirius, “Sirius enterprise systems group disk drive storage hardware,” Solici-
tation EPS050059-A4.

[139] Sivathanu, M., Prabhakaran, V., Arpaci-Dusseau, A. C., and Arpaci-

Dusseau, R. H., “Improving Storage System Availability with D-GRAID,” in
Proceedings of the Third USENIX Symposium on File and Storage Technologies
(FAST ’04), March 2004.

[140] Sivathanu, M., Prabhakaran, V., Arpaci-Dusseau, A. C., and Arpaci-

Dusseau, R. H., “Improving Storage System Availability with D-GRAID,”
ACM Transactions on Storage (TOS), vol. 1, pp. 133–170, May 2005.

[141] Slember, J. and Narasimhan, P., “Living with nondeterminism in repli-
cated middleware applications,” Middleware, 2006.

[142] Sommerville, I., Software engineering (5th ed.). Redwood City, CA, USA:
Addison Wesley Longman Publishing Co., Inc., 1995.

252

[143] Srinivasan, S. M., Kandula, S., Andrews, C. R., and Zhou, Y., “Flash-
back: a lightweight extension for rollback and deterministic replay for software
debugging,” in USENIX ATC, (Berkeley, CA, USA), pp. 3–3, USENIX Associ-
ation, 2004.

[144] Srivastava, U., Munagala, K., and Widom, J., “Operator placement for
in-network stream query processing,” in PODS, 2005.

[145] StidhamJr., S., “A last word on l = λw,” in Operations Research, vol. 22,
(Montreal, Que., Canada), pp. 417–421, IEEE Computer Society Press, 1974.

[146] Stonebraker, M., “The design and implementation of distributed IN-

GRES,” The INGRES papers: anatomy of a relational database system, 1986.

[147] Stroustrup, B., The Design and Evolution of C++. Addison-Wesley, 1994.

[148] Sullivan, M. and Chillarege, R., “Software defects and their impact on
system availability - a study of field failures in operating systems,” FTCS, 1991.

[149] Trachtenberg, M., “A general theory of software-reliability modeling,”
IEEE Trans. on Reliability, vol. 39, no. 1, pp. 92–96, 1990.

[150] Trivedi, K. S., Probability and Statistics with Reliability, Queuing and Com-
puter Science Applications. Upper Saddle River, NJ, USA: Prentice Hall PTR,
1982.

[151] Vaidyanathan, K., Harper, R. E., Hunter, S. W., and Trivedi, K. S.,
“Analysis and implementation of software rejuvenation in cluster systems,” in
SIGMETRICS ’01: Proceedings of the 2001 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 2001.

[152] Wilkes, J., Golding, R., Staelin, C., and Sullivan, T., “The HP

AutoRAID hierarchical storage system,” in SOSP, 1995.

[153] Williams, R. and others, R*: An overview of the architecture.

[154] Wolfram Research, I., Mathematica. version 5.0 ed.

[155] Wylie, J. J., Bigrigg, M. W., Strunk, J. D., Ganger, G. R.,
Kiliççöte, H., and Khosla, P. K., “Survivable information storage sys-
tems,” Computer, vol. 33, no. 8, 2000.

[156] Xiang, S., Lim, H. B., Tan, K.-L., and Zhou, Y., “Two-tier multiple query
optimization for sensor networks,” in ICDCS, 2007.

[157] Yang, J. and Papazoglou, M., “Service components for managing the life-
cycle of service compositions,” 2003.

[158] Yao, Y. and Gehrke, J., “The cougar approach to in-network query process-
ing in sensor networks,” SIGMOD Rec., 2002.

253

[159] Zegura, E. W., Calvert, K. L., and Bhattacharjee, S., “How to model
an internetwork,” in Infocom, 1996.

[160] Zeitler, D., “Realistic assumptions for software reliability models,” in IEEE
Int’l Symp. Software Reliability Eng., 1991.

[161] Zhang, J., Sivasubramaniam, A., Wang, Q., Riska, A., and Riedel,

E., “Storage performance virtualization via throughput and latency control,”
Trans. Storage, vol. 2, no. 3, pp. 283–308, 2006.

254

VITA

Sangeetha Seshadri was born in Calcutta and raised in Madras, India. She received

the BE degree in computer science and the M.Sc degree in Mathematics from the

Birla Institute of Technology and Science, Pilani, India, in 2002. She spent the next

two years working as a Senior Applications Engineer at Oracle, India. Since Fall 2004,

Sangeetha has been working toward the PhD degree at the College of Computing,

Georgia Institute of Technology, advised by Prof. Ling Liu. As a member of the Cen-

ter for Experimental Research in Computer Science (CERCS) and the Distributed

Data Intensive Lab (DiSL), Sangeetha’s research interests include large scale storage

systems and distributed middleware overlay systems particularly techniques to im-

prove the resilience and scalability of such systems. Since May 2005, Sangeetha has

actively collaborated with researchers at the Scalable Storage Systems group at IBM

Almaden Research Center working towards developing new approaches to develop

highly available storage firmware and middleware.

255

