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TWO PROPERTIES OF VOLUME GROWTH ENTROPY

IN HILBERT GEOMETRY

BRUNO COLBOIS AND PATRICK VEROVIC

Abstract. The aim of this paper is to provide two examples in Hilbert geometry which show
that volume growth entropy is not always a limit on the one hand, and that it may vanish for
a non-polygonal domain in the plane on the other hand.

1. Introduction

A Hilbert domain in Rm is a metric space (C, dC), where C is an open bounded convex set in Rm

and dC is the distance function on C — called the Hilbert metric — defined as follows.

Given two distinct points p and q in C, let a and b be the intersection points of the straight line
defined by p and q with ∂C so that p = (1− s)a+ sb and q = (1− t)a+ tb with 0 < s < t < 1.
Then

dC(p, q) :=
1

2
ln[a, p, q, b] ,

where

[a, p, q, b] :=
1− s

s
×

t

1 − t
> 1

is the cross ratio of the 4-tuple of ordered collinear points (a, p, q, b) (see Figure 1).
We complete the definition by setting dC(p, q) := 0 for p = q.

a

b

p

q

∂C

Figure 1. The Hilbert metric dC

The metric space (C, dC) thus obtained is a complete non-compact geodesic metric space whose
topology is the one induced by the canonical topology of Rm and in which the affine open
segments joining two points of the boundary ∂C are geodesic lines. It is to be mentioned here
that in general the affine segment between two points in C may not be the unique geodesic
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2 BRUNO COLBOIS AND PATRICK VEROVIC

joining these points (for example, if C is a square). Nevertheless, this uniqueness holds whenever
C is strictly convex.

Moreover, the distance function dC is associated with the Finsler metric FC on C given, for any
p ∈ C and any v ∈ TpC ≡ Rm (the tangent vector space to C at p), by

FC(p, v) :=
1

2

(

1

t−
+

1

t+

)

for v 6= 0 ,

where t− = t−C(p, v) and t+ = t+C(p, v) are the unique positive numbers satisfying p − t−v ∈ ∂C
and p+ t+v ∈ ∂C, and FC(p, v) := 0 for v = 0.

Remark. For p ∈ C and v ∈ TpC ≡ Rm with v 6= 0, we will define p−= p−C(p, v) := p− t−C(p, v)v
and p+ = p+C(p, v) := p + t+C(p, v)v (see Figure 2). Then, given any arbitrary norm ‖ · ‖ on Rm,
we can write

FC(p, v) =
1

2
‖v‖

(

1

‖p− p−‖
+

1

‖p− p+‖

)

.

p

p+

p−

vv

∂C

Figure 2. The Finsler metric FC

Finally, let vol be the canonical Lebesgue measure on Rm and define ωm := vol(Bm).

For p ∈ C, let BC(p) := {v ∈ Rm | FC(p, v) < 1} be the unit open ball with respect to the norm
FC(p, ·) on TpC ≡ Rm.
The measure µC on C associated with the Finsler metric FC is then defined, for any Borel set
A ⊆ C, by

µC(A) :=

∫

A

ωm

vol(BC(p))
dvol(p)

and will be called the Hilbert measure associated with (C, dC).

Remark. The Borel measure µC is the classical Busemann measure of the Finsler space (C, FC)
and corresponds to the Hausdorff measure of the metric space (C, dC) (see [3, page 199, Exam-
ple 5.5.13]).
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Thanks to this measure, we can make use of a concept of fundamental importance, the volume
growth entropy, which is attached to any metric space. Very often, this notion is introduced for
cocompact metric spaces and is defined as follows in Hibert geometry.

Let (C, dC) be a Hilbert domain in Rm admitting a cocompact group of isometries, for which we
may assume 0 ∈ C since translations in Rm preserve the cross ratio.

If for any R > 0 we denote by BC(0, R) := {p ∈ C | dC(0, p) < R} the open ball of radius R
about 0 in (C, dC), then the volume growth entropy of dC writes

h(C) := lim
R→+∞

1

R
ln[µC(BC(0, R))] .

Now, when we drop cocompactness, this limit still exists in the case when the boundary ∂C of
C is strongly convex (see [9]) or in the case when C is a polytope (see [15]), but it is not known
whether this is true in general as stated in [10, question raised in section 2.5].

Therefore, the main goal of this paper is to answer to this question and to show that the answer
is negative.

Main Theorem. There exists a Hilbert domain (C, dC) in R2 with 0 ∈ C that satisfies

lim sup
R→+∞

1

R
ln[µC(BC(0, R))] = 1 ,

and

lim inf
R→+∞

1

R
ln[µC(BC(0, R))] = 0 .

The proof of this theorem will be given in the third section by constructing an explicit example
which is a convex ‘polygon’ with infinitely many vertices having an accumulation point around
which the boundary of the ‘polygon’ strongly looks like a circle.

The intuitive idea behind this construction is that, depending on where we are located in the
‘polygon’, its boundary may look like the one of a usual polygon — and hence the volume
growth entropy behaves as if it were vanishing — (this corresponds to the lim inf part in the
theorem) or like a small portion of a circle (around the accumulation point) — and hence the
volume growth entropy behaves as if it were positive — (this corresponds to the lim sup part
in the theorem).

On the other hand, using such ‘polygons’ with infinitely many vertices and considering the
same techniques as in the proof of the main theorem, we show that there are other Hilbert
domains in the plane than polygonal ones whose volume growth entropy is zero. This is stated
in Theorem 4.2.

For further information about Hilbert geometry, we refer to [4, 5, 11, 12, 14] and the excellent
introduction [13] by Socié-Méthou.

About the importance of volume growth and topological entropies in Hilbert geometry, we may
have a look at the interesting work [10] by Crampon and the references therein.
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2. Preliminaries

This section is devoted to listing the key ingredients we will need in the present work.

Notations. From now on, the canonical Euclidean norm on R2 will be denoted by ‖ · ‖.

On the other hand, for any three distinct points a, b and c in R2, we will denoted by abc their
open convex hull (open triangle), and by ∢(bac) the sector defined as the convex hull of the

union of the half-lines a +R+

−→
ab and a+R+

−→ac.

The first ingredient, whose proof can be found for example in [16, page 69], is classic and
concerns the hyperbolic plane given here by its Klein model (B2, dB2).

Proposition 2.1. We have

(1) dB2(0, p) = atanh(‖p‖) for any p ∈ B2, and

(2) µB2(BB2(0, R)) =
π

2
sinh2(R) for any R > 0.

The two following results have been established in [7, Proposition 5 and Proposition 6].

Proposition 2.2. If (C, dC) and (D, dD) are Hilbert domains in Rm satisfying C ⊆ D, then the
following properties are true:

(1) Given any two distinct points p, q ∈ C, we have dC(p, q) > dD(p, q) with equality if and
only if (p+R+

−→pq)∩ ∂C = (p+R+
−→pq)∩ ∂D and (p+R−

−→pq)∩ ∂C = (p+R−
−→pq)∩ ∂D

hold.

(2) For any p ∈ C, we have vol(BC(p)) 6 vol(BD(p)).

(3) For any Borel set A ⊆ C, we have µC(A) > µD(A).

Proposition 2.3. If Q := (−1, 1)×(−1, 1) ⊆ R2 denotes the standard open square, then for any
p = (x, y) ∈ Q we have

2(1− x2)(1− y2) 6 vol(BQ(p)) 6 4(1− x2)(1− y2) .

The last ingredient can be found in [6, Proof of Theorem 12].

Proposition 2.4. Given any Hilbert domain (C, dC) in Rm satifying 0 ∈ C, we have

vol(BC(0, R)) 6 e8R×vol(BC(p))

for all R > 0 and p ∈ BC(0, R).

We now give two technical lemmas which will be used for proving both Theorem 3.1 and
Theorem 4.2.

Lemma 2.1. Let (C, dC) be a Hilbert domain in R2 with 0 ∈ C, and let P , Q be distinct points
in R2 such that the affine segments [P,Q] and [−P ,−Q] are contained in the boundary ∂C.

If T is the open quadrilateral in R2 defined as the open convex hull of P , Q, −P and −Q, then
for any R > 0 we have
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(1) BC(0, R) ∩ P0Q = BT (0, R) ∩ P0Q, and

(2) µC

(

BC(0, R) ∩ P0Q
)

6 2πR2.

Q

P−P

−Q

0

BT (0, R)

BC(0, R)

∂T

∂C

Figure 3. Comparing BC(0, R) ∩ P0Q and BT (0, R) ∩ P0Q

Proof (see Figure 3).
• Point 1. The equality case in Point 1 of Proposition 2.2 proves that any point p ∈ P0Q
satisfies dC(0, p) = dT (0, p), and hence we get SC(0, R) ∩ P0Q = ST (0, R) ∩ P0Q.

Then, writing BC(0, R) =
⋃

r∈[0,R)

SC(0, r), we have BC(0, R) ∩ P0Q = BT (0, R) ∩ P0Q.

• Point 2. The previous point implies

BC(0, R) ∩ P0Q ⊆ BT (0, R) ⊆ T ⊆ C ,

and hence

(2.1) µC

(

BC(0, R) ∩ P0Q
)

6 µT (BT (0, R)) .

Now, if f denotes the unique linear transformation of R2 such that f(P ) = (1,−1) and f(Q) =
(1, 1), we have

f(T ) = Q := (−1, 1)×(−1, 1) ⊆ R2 (standard open square) .

The cross ratio being preserved by the linear group GL(R2), the map f induces an isometry be-
tween the metric spaces (T , dT ) and (Q, dQ) with f(0) = 0, and thus we obtain µT (BT (0, R)) =
µQ(BQ(0, R)).
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But Proposition 2.3 yields

µQ(BQ(0, R)) = 8

∫ tanh(R)

0

(
∫ x

0

π

vol(BQ(x, y))
dy

)

dx

6 4

∫ tanh(R)

0

(
∫ x

0

π

(1− x2)(1− y2)
dy

)

dx = 2πR2,

which gives µC

(

BC(0, R) ∩ P0Q
)

6 2πR2 from Equation 2.1. �

Lemma 2.2. Let (C, dC) be a Hilbert domain in R2 which satisfies 0 ∈ C ⊆ B2, and let A, B be
two distinct points in S1.

Then for any R > 0 we have

µC

(

BC(0, R) ∩ ∢(A0B)
)

6
πe8R

vol(BC(0, 1))
×Â0B/2 ,

where Â0B is the spherical distance between the vectors
−→
0A and

−→
0B ( i. e. , the unique number

θ in [0, π] defined by cos θ =
〈−→
0A/

∥

∥

∥

−→
0A

∥

∥

∥
,
−→
0B/

∥

∥

∥

−→
0B

∥

∥

∥

〉

∈ [−1, 1], where 〈· , ·〉 stands for the

canonical Euclidean scalar product on R2).

Proof.
Since we have 1/vol(BC(p)) 6 e8R/vol(BC(0, R)) for every p ∈ BC(0, R) by Proposition 2.4, one
can write

µC

(

BC(0, R) ∩ ∢(A0B)
)

6
πe8R

vol(BC(0, R))
vol

(

BC(0, R) ∩ ∢(A0B)
)

6
πe8R

vol(BC(0, 1))
vol

(

B2∩ ∢(A0B)
)

(noticing BC(0, 1) ⊆ BC(0, R) ⊆ B2)

=
πe8R

vol(BC(0, 1))
×π×Â0B/(2π) =

πe8R

vol(BC(0, 1))
×Â0B/2 ,

where we used vol(B2) = π. �

3. Entropy may not be a limit

We prove in this section the main result of this paper which states that the volume growth
entropy for a Hilbert domain may not be a limit. To this end, we will approximate a disc
in the plane by an inscribed ‘polygonal’ domain with infinitely many vertices that have two
accumulation points around which the boundary of the ‘polygonal’ domain looks very strongly
like the boundary of the disc.

Let (nk)k>0 be the sequence of positive integers defined by

n0 := 3 and ∀ k > 0, nk+1 = 3n
2

k .

It is increasing and satisfies nk −→ +∞ as k −→ +∞.
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Next, define the sequences (αk)k>0 and (θk)k>0 in R by αk := 2π/nk together with

θ0 := 0 and ∀ k > 1, θk :=

k−1
∑

ℓ=0

αℓ = 2π

k−1
∑

ℓ=0

1

nℓ
.

Finally, consider the sequence (Mk)k>0 and the family (Pk(j))(k,j)∈{(k,j)∈Z2 | k> 0 and 06 j 6nk}
of

points in S1 defined by

Mk := (cos(θk) , sin(θk)) and Pk(j) := (cos(θk + αkj/nk) , sin(θk + αkj/nk)) ,

and denote by C the open convex hull in R2 of the set

{Pk(j),−Pk(j) | k > 0 and 0 6 j 6 nk} .

Then we get the following (see Figure 4):

Theorem 3.1. We have

(1) h(C) := lim sup
R→+∞

1

R
ln[µC(BC(0, R))] = 1, and

(2) lim inf
R→+∞

1

R
ln[µC(BC(0, R))] = 0.

M0

M1

M∞

M2

0

S
1

P0(1)

P0(2)

∂C

α0/n0

α0/n0

α0/n0

θ1

Figure 4. A Hilbert domain in the plane whose entropy is not a limit

Remarks.

1) For all k > 0, one has Pk(0) = Mk and Pk(nk) = Mk+1.
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2) For all ℓ > 0, we have nℓ > 3ℓ+1 (by induction and using 9m > m for all integer m > 0),
and hence the increasing sequence (θk)k>0 converges to some real number θ∞ which satisfies

0 < θ∞ < π (since we have

+∞
∑

ℓ=0

1/3ℓ+1 = (1/3)

+∞
∑

ℓ=0

(1/3)ℓ = 1/2 and (nℓ)ℓ>0 6=
(

3ℓ+1
)

ℓ>0
).

In order to prove this theorem, we shall use two different sequences of balls about the origin.
The first one corresponds to the sequence of radii rk := ln(nk) for k > 0 that makes look the
balls like those in the Klein model (B2, dB2) as k −→ +∞, from which we get Point 1. The
second one corresponds to the sequence of radii Ri := ni for i > 0 that makes look the balls
like those in a polygonal domain as i −→ +∞, leading to Point 2.

Proof of Theorem 3.1.
• Point 1. Since we already have h(C) 6 1 by [1, Theorem 3.3], let us prove h(C) > 1.

Consider the sequence of positive numbers (rk)k>0 defined by rk := ln(nk).

Fix k > 0, and let (pk(j))06 j 6nk−1 be the sequence of points in R2 defined by

pk(j) ∈ [0, Pk(j)] and dC(0, pk(j)) = rk .

Then fix j ∈ {0, . . . , nk − 1}, and let P := Pk(j), Q := Pk(j + 1), p := pk(j) and q := qk(j + 1)
(see Figure 5).

0

P = Pk(j)
Q = Pk(j + 1)

∂C

S
1

p = pk(j)

q = pk(j + 1)

BC(0, rk)

αk/nk

Figure 5. Showing lim sup
k→+∞

ln[µC(BC(0, rk))]

rk
> 0 with rk := ln(nk)

First of all, since we have C ⊆ B2, the equality case in Point 1 of Proposition 2.2 gives

rk = dC(0, p) = dB2(0, p) and rk = dC(0, q) = dB2(0, q) ,
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which implies

‖p‖ = ‖q‖ = tanh(rk)

by Point 1 of Proposition 2.1.

Therefore, if a denotes the midle point of p and q, we get

‖a‖ = tanh(rk) cos[αk/(2nk)] = tanh(rk) cos(π/n
2
k) .

Defining ρk := dB2(0, a) and using again Point 1 of Proposition 2.2 together with the formula

tanh(ln x) =
x2 − 1

x2 + 1
which holds for any x > 0, one can write

1− tanh(ρk) = 1− tanh(rk) cos(π/n
2
k) = 1−

n2
k − 1

n2
k + 1

cos(π/n2
k)

= 2/n2
k + ◦(1/n2

k) ∼ 2/n2
k as k −→ +∞ .

(3.1)

On the other hand, the inclusions

BB2(0, ρk) ∩ P0Q ⊆ p0q ⊆ C ⊆ B2

yield

µC(p0q) > µB2(p0q) > µB2(BB2(0, ρk) ∩ P0Q) =
αk/nk

2π
×µB2(BB2(0, ρk))

by Point 3 of Proposition 2.2 and since Euclidean rotations induce isometries of (B2, dB2), from
which one obtains

(3.2) µC(p0q) >
π

2
sinh2(ρk)/n

2
k

by Point 2 in Proposition 2.1.

Now, since we have sinh2(x) = tanh2(x)/(1− tanh2(x)) for all x ∈ R, Equation 3.1 implies

π

2
sinh2(ρk)/n

2
k ∼ π/8 as k −→ +∞ ,

from which Equation 3.2 insures the existence of an integer k0 > 0 such that

µC(pk(j)0pk(j + 1)) = µC(p0q) > 1/3

holds for every k > k0.

We then get

µC(BC(0, rk)) >

nk−1
∑

j=0

µC(pk(j)0pk(j + 1)) > (1/3)nk

for each k > k0 since we have pk(j)0pk(j + 1) ⊆ BC(0, rk) for every j ∈ {0, . . . , nk − 1} (indeed,
balls of a Hilbert domain are convex), and hence

ln[µC(BC(0, rk))]

rk
>

ln[(1/3)nk]

ln(nk)
,

which yields
ln[µC(BC(0, rk))]

rk
−→ 1 as k −→ +∞.

This gives the first point of Theorem 3.1.

• Point 2. Consider the sequence of positive numbers (Ri)i>0 defined by Ri := ni.
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Fixing an integer i > 0, we can write the decomposition

1

2
µC(BC(0, Ri)) = µC

(

BC(0, Ri) ∩ −M∞0M0

)

+
i

∑

k=0

nk−1
∑

j=0

µC

(

BC(0, Ri) ∩ Pk(j)0Pk(j + 1)
)

+ µC

(

BC(0, Ri) ∩ ∢(Mi+10M∞)
)

(3.3)

with M∞ := (cos(θ∞) , sin(θ∞)) ∈ ∂C (recall that θ∞ is the limit of the sequence (θk)k∈N: see
the second remark following Theorem 3.1).

∗ First step. Here, we deal with the two first terms in Equation 3.3.

For each k > 0 and j ∈ {0, . . . , nk − 1}, let Tk(j) be the open rectangle that is equal to the
open convex hull in R2 of Pk(j), −Pk(j), Pk(j + 1) and −Pk(j + 1).

Then, by Lemma 2.1, we have

(3.4) µC

(

BC(0, Ri) ∩ Pk(j)0Pk(j + 1)
)

6 2πR2
i

and

(3.5) µC

(

BC(0, Ri) ∩ −M∞0M0

)

6 2πR2
i .

∗ Second step. Next, we focus on the third term in Equation 3.3.

Lemma 2.2 with ̂Mi+10M∞ = θ∞ − θi+1 = 2π
+∞
∑

ℓ=i+1

1/nℓ implies

(3.6) µC

(

BC(0, Ri) ∩ ∢(Mi+10M∞)
)

6 τ

+∞
∑

ℓ=i

e8Ri/nℓ+1 ,

where τ := π2/vol(BC(0, 1)) is a positive constant.

But for any ℓ > i we have

e8Ri/nℓ+1 = e8Ri3−n2

ℓ 6 38Ri3−n2

ℓ = 38ni−n2

ℓ = 3−n2

ℓ
(1−8ni/n

2

ℓ
)

with ni/n
2
ℓ 6 1/ni from the monotone increasing of the sequence (nℓ)ℓ>0.

Hence, since 1/ni −→ 0 as i −→ +∞, there exists an integer i0 > 0 such that for all ℓ > i one

has e8Ri/nℓ+1 6 3−n2

ℓ
/2 whenever i > i0.

Equation 3.6 then implies

µC

(

BC(0, Ri) ∩ ∢(Mi+10M∞)
)

6 τ
+∞
∑

ℓ=i

3−n2

ℓ
/2 6 τ

+∞
∑

ℓ=i

3−ℓ = 3−i+1τ/2

for all i > i0 (notice that we have n
2
ℓ/2 > 9ℓ > ℓ for any ℓ > 0: see the second remark following

Theorem 3.1).

Now we have 3−i −→ 0 as i −→ +∞, and thus there exists an integer i1 > i0 such that for all
i > i1 one has

(3.7) µC

(

BC(0, Ri) ∩ ∢(Mi+10M∞)
)

6 1 .
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∗ Third step. Combining Equations 3.3, 3.4, 3.5 and 3.7, we eventually get

µC(BC(0, Ri)) 6 4πR2
i + 4πR2

i

i
∑

k=0

nk + 1

6 4πR2
i + 4πR2

i (i+ 1)ni + 1

(since the sequence (nk)k>0 is non-decreasing)

= 4πR2
i + 4π(i+ 1)R3

i + 1

6 12πR4
i

for all i > i1 (since we have Rℓ := nℓ > 3ℓ+1 > ℓ+ 1 > 1 for every ℓ > 0), and hence

ln[µC(BC(0, 1))]

Ri
6

ln[µC(BC(0, Ri))]

Ri
6

ln(12πR4
i )

Ri
,

which yields
ln[µC(BC(0, Ri))]

Ri
−→ 0 as i −→ +∞.

This proves the second point of Theorem 3.1. �

Remark. Considering the proof of Point 1 in Theorem 3.1, we can observe that the conclusion
h(C) > 0 we obtained is actually true for any sequence of positive integers (nk)k>0 provided the
sequence (θk)k∈N converges to some real number θ∞ which satisfies 0 < θ∞ < π.

4. Non-polygonal domains may have zero entropy

In this section, we construct a Hilbert domain in the plane which is a ‘polygon’ having infinitely
many vertices and whose volume growth entropy is a limit that is equal to zero. This ‘polygon’
is inscribed in a circle and its vertices have one accumulation point.

Before giving our example, let us first recall the following result proved in [15]:

Theorem 4.1. Given any open convex polytope P in Rm that contains the origin 0, the volume
growth entropy of dP satisfies

h(P) = lim
R→+∞

1

R
ln[µP(BP(0, R))] = 0 .

Remark. Another — but less direct — proof of this theorem consists in saying that (P, dP) is
Lipschitz equivalent to Euclidean plane as shown in [2] (and in [8] for the particular case when
n := 2), and hence h(P) = 0 since the volume growth entropy of any finite-dimensional normed
vector space is equal to zero.

Now, let us show that having zero volume growth entropy for a Hilbert domain in R2 does not
mean being polygonal, that is, that the converse of Theorem 4.1 is false.

Let (Pn)n∈N be the sequence of points in S1 defined by

Pn := (cos(2−n) , sin(2−n)) ,

and denote by C the open convex hull in R2 of the set

{Pn,−Pn | n ∈ N} .
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Then we have (see Figure 6)

Theorem 4.2. The volume growth entropy of dC satisfies

h(C) = lim
R→+∞

1

R
ln[µC(BC(0, R))] = 0 .

Remark. More precisely, we will show in the proof of this result that the volume µC(BC(0, R))
of the ball BC(0, R) actually has at most the same growth as R3 when R goes to infinity.

P∞

P0

P1

P2

S
1

∂C

0

−P∞

−P0

−P1

−P2

Figure 6. A non-polygonal Hilbert domain in the plane with zero entropy

Proof of Theorem 4.2.
Fixing an integer n > 0 and a number R > 1, we can use again the decomposition given by
Equation 3.3 in the proof of the second point of Theorem 3.1 and write

1

2
µC(BC(0, R)) = µC

(

BC(0, R) ∩ −P∞0P0

)

+

n
∑

k=0

µC

(

BC(0, R) ∩ Pk0Pk+1

)

+ µC

(

BC(0, R) ∩ ∢(Pn+10P∞)
)

(4.1)

with P∞ := (1, 0) = lim
k→+∞

Pk ∈ ∂C.

• First step. Here, we deal with the two first terms in Equation 4.1.

For each k ∈ N, let Tk be the open rectangle that is equal to the open convex hull in R2 of Pk,
−Pk, Pk+1 and −Pk+1.

Then, by Lemma 2.1, we have

(4.2) µC

(

BC(0, R) ∩ Pk0Pk+1

)

6 2πR2

and

(4.3) µC

(

BC(0, R) ∩ −P∞0P0

)

6 2πR2.

• Second step. Next, we focus on the third term in Equation 4.1.
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As in the second step of the proof of the second point of Theorem 3.1, we use again Lemma 2.2

with ̂Pn+10P∞ = 2−(n+1) − 0 = 2−(n+1) to get

(4.4) µC

(

BC(0, R) ∩ ∢(Pn+10P∞)
)

6 τe8R×2−n,

where τ := π/(4 vol(BC(0, 1))) is a positive constant.

So, if we choose n := [12R] + 1 (where [ · ] denotes the integer part), we have e8R×2−n 6 1, and
hence Equation 4.4 implies

(4.5) µC

(

BC(0, R) ∩ ∢(Pn+10P∞)
)

6 τ .

• Third step. Combining Equations 4.1, 4.2, 4.3 and 4.5, we eventually obtain

µC(BC(0, R)) 6 4πR2+ 4π(n+ 1)R2+ τ

6 4πR2+ 4π(12R+ 2)R2+ τ

(since one has n− 1 = [12R] 6 12R)

6 (144π + τ)R3

for any R > 1, and hence

ln[µC(BC(0, 1))]

R
6

ln[µC(BC(0, R))]

R
6

ln((144π + τ)R3)

R
,

which yields
ln[µC(BC(0, R))]

R
−→ 0 as R −→ +∞.

This proves Theorem 4.2. �
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[15] Vernicos, C. Spectral radius and amenability in Hilbert geometry. Houston J. Math. 35, 4 (2009), 1143–

1169.
[16] Vinberg, E. Geometry II. Springer, 1993.



14 BRUNO COLBOIS AND PATRICK VEROVIC
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