
A PARALLEL GEOMETRIC MULTIGRID METHOD
FOR

FINITE ELEMENTS ON OCTREE MESHES
APPLIED TO

ELASTIC IMAGE REGISTRATION

A Dissertation
Presented to

The Academic Faculty

by

Rahul S. Sampath

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computational Science and Engineering

College of Computing
Georgia Institute of Technology

August 2009

A PARALLEL GEOMETRIC MULTIGRID METHOD
FOR

FINITE ELEMENTS ON OCTREE MESHES
APPLIED TO

ELASTIC IMAGE REGISTRATION

Approved by:

Dr. Richard Vuduc, Committee Chair
College of Computing
Georgia Institute of Technology

Dr. Hao Min Zhou
School of Mathematics
Georgia Institute of Technology

Dr. George Biros, Advisor
College of Computing
Georgia Institute of Technology

Dr. Christos Davatzikos
Department of Radiology
University of Pennsylvania

Dr. Allen Tannenbaum
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 18 June 2009

To my parents

Malini Sampath and V.S. Sampath

and my brothers

Balaji and Rajiv

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Dr. George Biros, for his guidance and support

over the last 5 years. I would like to thank Dr. Christos Davatzikos, Dr. Allen Tannen-

baum, Dr. Richard Vuduc and Dr. Hao Min Zhou for serving on my thesis committee. I

am also grateful to Dr. Hari Sundar, Dr. Santi Swaroop Adavani and Dr. Ilya Lashuk

for their support in developing Dendro. I would like to acknowledge the support for this

work through the U.S. Department of Energy under grant DE-FG02-04ER25646, and the

U.S. National Science Foundation grants CCF-0427985, CNS-0540372, DMS-0612578, OCI-

0749285 and OCI-0749334. Computing resources on the TeraGrid systems were provided

under the grants ASC070050N and MCA04T026. I am also grateful to the TeraGrid support

staff and consultants at the National Center for Supercomputing Applications, Pittsburgh

Supercomputing Center and Texas Advanced Computing Center for accomodating my var-

ious requests. I would also like to thank the PETSc team. Finally, I would like to thank my

family and friends who have always supported me.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . xiv

SUMMARY . xx

CHAPTERS

I INTRODUCTION . 1

1.1 Related work . 3

1.1.1 Constructing octrees . 3

1.1.2 2:1 Balancing octrees . 3

1.1.3 Meshing octrees . 4

1.1.4 FEM using octrees . 4

1.1.5 Multigrid . 4

1.1.6 Image registration . 6

1.2 Contributions . 8

1.3 Limitations . 10

1.4 Future work . 11

1.5 Organization of the thesis . 12

II CONSTRUCTION AND 2:1 BALANCE-REFINEMENT OF OCTREES . . . 13

2.1 Background . 15

2.1.1 Morton encoding . 18

2.1.2 Balance constraint . 19

2.2 Algorithms . 20

2.2.1 Block partition . 20

2.2.2 Constructing linear octrees in parallel 27

2.2.3 Balancing linear octrees in parallel 28

2.3 Results . 44

2.3.1 Test data . 45

2.3.2 Comparison between different strategies for local balancing 46

v

2.3.3 Scalability analysis . 46

2.4 Summary . 52

III OCTREE MESHING FOR FINITE ELEMENT COMPUTATIONS 55

3.1 Computing the element to vertex mapping 57

3.1.1 Exhaustive searches to compute mapping 60

3.1.2 Four-way searches to compute mapping 62

3.2 Mesh compression . 64

3.3 Finite element computation on octrees . 66

3.3.1 Overlapping communication with computation 68

3.4 Performance evaluation . 69

3.5 Summary . 73

IV GEOMETRIC MULTIGRID ON OCTREES 74

4.1 A finite element multigrid formulation . 76

4.1.1 Variational problem . 76

4.1.2 Prolongation . 77

4.1.3 Coarse-grid problem . 78

4.1.4 Restriction . 78

4.1.5 A note on implementing the operators 79

4.2 Implementation . 79

4.2.1 Global coarsening . 79

4.2.2 Intergrid transfer operations . 84

4.2.3 Handling variable-coefficient operators 91

4.2.4 Minimum grain size required for good scalability 92

4.2.5 Summary . 92

4.3 Numerical experiments . 93

4.3.1 Convergence test . 96

4.3.2 Robustness test . 96

4.3.3 Parallel scalability results . 97

4.4 Conclusions . 104

vi

V ELASTIC REGISTRATION USING OCTREES 106

5.1 Problem description . 110

5.2 Octree discretization . 111

5.3 Interpolation . 112

5.3.1 Image partition . 114

5.4 Solvers . 114

5.4.1 Gauss Newton approximation . 116

5.4.2 Multigrid preconditioner . 117

5.4.3 Grid continuation . 118

5.5 Results . 118

5.5.1 Synthetic examples . 119

5.5.2 Clinical examples . 120

5.5.3 Effect of the thresholding parameter 126

5.5.4 Parallel scalability . 135

5.6 Summary . 135

APPENDICES

APPENDIX A PROPERTIES OF MORTON ENCODING 138

APPENDIX B MULTICOMPONENT MORTON REPRESENTATION 140

APPENDIX C ANALYSIS OF THE BLOCK PARTITIONING ALGORITHM . 141

APPENDIX D SPECIAL CASE DURING CONSTRUCTION 142

APPENDIX E AK IS A SYMMETRIC POSITIVE OPERATOR W.R.T. (·, ·)K 143

APPENDIX F THE PROLONGATION MATRIX 144

APPENDIX G DERIVATION OF THE GALERKIN CONDITION 146

APPENDIX H RESTRICTION MATRIX . 148

APPENDIX I AN EQUIVALENT MULTIGRID SCHEME 149

REFERENCES . 151

vii

LIST OF TABLES

1 Symbols for terms . 16

2 Symbols for operations . 16

3 Input and output sizes for the construction and balancing algorithms for the
scalability experiments on Gaussian, Log-Normal, and Regular point distri-
butions. The output of the construction algorithm is the input for the bal-
ancing algorithm. All the octrees were generated using the same parameters:
Dmax = 30 and Np

max = 1; differences in the number and distributions of the
input points result in different octrees for each case. The maximum level of
the leaves for each case is listed. Note that none of the leaves produced were
at the maximum permissible depth (Dmax). This depends only on the input
distribution. Regular point distributions are inherently balanced, and so we
report the number of octants only once. 45

4 The time (in seconds) to construct (Meshing) and perform 5 matrix-vector
multiplications (MatVec) on a single processor for increasing problem sizes.
Results are presented for Gaussian distribution and for uniformly spaced
points. We compare with matrix-vector multiplication on a regular grid (no
indexing) having the same number of elements and the same discretization
(trilinear elements). We discretize a variable coefficient (isotropic) operator.
The runs took place on a 2.2 GHz, 32-bit Xeon box. The sustained per-
formance is approximately 400 MFlops/sec for the structured grid. For the
uniform and Gaussian distribution of points, the sustained performance is
approximately 280 MFlops/sec. 70

5 L2 norm of the error between the true solution and its finite element approx-
imation for the variable coefficient problem (Equation 19). The sequence of
meshes used in this experiment were constructed by using a base discretiza-
tion of ≈ 0.25M elements generated using a Gaussian point distribution fol-
lowed by successive uniform refinements of the coarse elements of this mesh. 96

6 The number of iterations required to reduce the 2-norm of the residual in
Equation 21 by a factor of 10−8 for different values of K, a parameter that
controls the frequency of jumps. A regular grid with 128 elements in each
dimension was used for this experiment. 97

viii

7 Isogranular scalability for solving the constant coefficient linear elastostatics
problem on a set of octrees with a grain size (on the finest multigrid level) of
30K (approx) elements per CPU (np) generated using a Gaussian distribution
of points. A relative tolerance of 10−10 in the 2-norm of the residual was used.
11 iterations were required in each case, to solve the problem to the specified
tolerance. The size of the problem is indicated in the “Elements” row, the
“Max/Min elements” row gives the load imbalance across processors, the
“MG levels” row indicates the number of multigrid levels (it differs from
the number of “Meshes” because our algorithm duplicates meshes to allow
for incompatible partitioning), “R+P” indicates restriction and prolongation
costs, and “LU” is the coarse-grid solve. In the “Theory row”, we report an
estimate of the time required using the asymptotic analysis complexity using
constants fitted by the runs on 12 – 12288 processors. The fine-level input
octrees are highly non-uniform. The largest octants are at tree-level three
and the smallest octants are at a tree-level reported in the “Finest Octant’s
level” row. All timings are reported in seconds. 99

8 Isogranular scalability for solving a linear elastostatics problem on a set of
octrees with a grain size (on the finest multigrid level) of 80K (approx)
elements per processor generated using a Gaussian distribution of points.
A relative tolerance of 10−10 in the 2-norm of the residual was used. 11
iterations were required in each case, to solve the problem to the specified
tolerance. All timings are reported in seconds. 100

9 Isogranular scalability for solving the variable-coefficient Poisson problem
(Equation 19) on the set of octrees with a grain size (on the finest multigrid
level) of 0.25M elements (approx.) per processor (np) generated using a
Gaussian distribution of points. The iterations were terminated when the
2-norm of the residual was reduced by a factor of 10−10. 5 iterations were
required in each case. All timings are reported in seconds. 100

10 Isogranular scalability for solving the variable-coefficient Poisson problem
(Equation 19) on a set of octrees with a grain size (on the finest multigrid
level) of 25K elements (approx.) per processor (np) generated using a log-
normal distributions of points located on two diagonally opposite corners
of the unit cube. The iterations were terminated when the 2-norm of the
residual was reduced by a factor of 10−10. The levels of the coarsest and
finest octants at the finest multigrid level are reported in the table. All
timings are reported in seconds. 101

11 Fixed-size scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on an octree with 31.9M elements generated from a Gaussian distri-
bution of points. 8 multigrid levels were used. 5 iterations were required to
reduce the 2-norm of the residual by a factor of 10−10. 468 Matvecs, 72 of
which are on the finest grid, were required. All timings are reported in seconds.102

ix

12 Fixed-size scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on an octree with 22.4M elements generated using a log-normal dis-
tribution of points located on two diagonally opposite corners of the unit
cube. 8 multigrid levels were used. 5 iterations were required to reduce the
2-norm of the residual by a factor of 10−10. All timings are reported in seconds.103

13 Fixed-size scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on an octree with 5.64M elements generated using a log-normal dis-
tribution of points located on two diagonally opposite corners of the unit
cube. 8 multigrid levels were used. 5 iterations were required to reduce the
2-norm of the residual by a factor of 10−10. All timings are reported in seconds.103

14 Performance of the optimizer for the synthetic images shown in Figure 32.
J is the objective function and g is the 2-norm of the gradient. γ is the
regularization parameter. Approximately 104 elements were used in the finest
grid. The Newton iterations were terminated when the maximum step-length
was less than 0.1 × h, where h is the regular grid spacing for that level.
The maximum and minimum values of the determinants of the Jacobian
of the recovered deformation for γ = 102 was found to be 1.89 and -0.14,
respectively. The maximum and minimum values of the determinants of the
Jacobian of the recovered deformation for γ = 103 was found to be 1.56 and
0.35, respectively. The maximum and minimum values of the determinants
of the Jacobian of the recovered deformation for γ = 104 was found to be
1.21 and 0.85, respectively. 121

15 Performance of the optimizer for the synthetic images shown in Figure 35.
J is the objective function and g is the 2-norm of the gradient. γ is the
regularization parameter. Approximately 2.9×105 elements were used in the
finest grid. The Newton iterations were terminated when the maximum step-
length was less than 0.1×h, where h is the regular grid spacing for that level or
after 30 iterations. The maximum and minimum values of the determinants
of the Jacobian of the recovered deformation for γ = 103 was found to be
84.82 and -11.94, respectively. The maximum and minimum values of the
determinants of the Jacobian of the recovered deformation for γ = 104 was
found to be 3.33 and -0.42, respectively. The maximum and minimum values
of the determinants of the Jacobian of the recovered deformation for γ = 105

was found to be 1.07 and 0.97, respectively. 122

x

16 Performance of the optimizer for the MR images shown in Figure 38. J is
the objective function and g is the 2-norm of the gradient. γ is the regu-
larization parameter. Approximately 1.28 × 106 elements were used in the
finest grid. The Newton iterations were terminated when the maximum step-
length was less than 0.1×h, where h is the regular grid spacing for that level.
The maximum and minimum values of the determinants of the Jacobian of
the recovered deformation for γ = 200 was found to be 2.79 and 0.087, re-
spectively. The maximum and minimum values of the determinants of the
Jacobian of the recovered deformation for γ = 500 was found to be 1.65 and
0.49, respectively. The maximum and minimum values of the determinants
of the Jacobian of the recovered deformation for γ = 1000 was found to be
1.35 and 0.67, respectively. 126

17 Performance of the optimizer for registering the MR images shown in Figure
40. J is the objective function and g is the 2-norm of the gradient. γ is the
regularization parameter. The threshold parameter, δ, was set equal to 10 in
this experiment. Approximately 1.4 × 106 elements were used in the finest
grid. The Newton iterations were terminated when the maximum step-length
was less than 0.1× h, where h is the regular grid spacing for that level. We
computed the determinant of the Jacobians of the deformation at 7 points
within each voxel. The maximum and minimum values of the determinants
of the Jacobian of the recovered deformation for γ = 1000 was found to be
11.15 and -1.34, respectively. The maximum and minimum values of the
determinants of the Jacobian of the recovered deformation for γ = 3000 was
found to be 3.83 and 0.53, respectively. The maximum and minimum values
of the determinants of the Jacobian of the recovered deformation for γ = 5000
was found to be 2.19 and 0.74, respectively. 131

18 Effect of the thresholding parameter (δ) used for octree construction for the
example shown in Figure 40. The regularization parameter, γ, was set equal
to 3000 in this experiment. We report the sum of the square of the mismatch
between the fixed and registered images normalized by the sum of the square
of the mismatch between the fixed and moving images. We also report the
number of octants in the finest octree for each case. 131

xi

19 Fixed-size scalability for the example shown in Figure 40 using γ = 3000
and δ = 50. Approximately 4.3 × 105 elements were used in the finest grid.
The time spent in evaluating the objective function is reported in the row
labelled “Objective”. The time spent in evaluating the gradient is reported
in the row labelled “Gradient”. Interpolation at the Gauss points were re-
quired to evaluate the objective function and the gradient. 4-th order Gauss
quadrature rule was used so there are 64 Gauss points per element. Inter-
polation at vertices were required to build the approximate Hessian using
under-integration. The total time spent in the optimization function is re-
ported in the row labelled “Gauss Newton”. The total time spent in the linear
solves in each Newton iteration is reported in the row labelled “KSP solve”.
The time spent in the Matvecs for the elasticity operator is reported in the
row labelled “Elas-Matvec”; this is only used to evaluate the objective and
the gradient and not for the Hessian. The time spent in the Hessian Matvecs
is reported in the row labelled “Hess-Matvec”. The time required to update
the Hessian is reported in the row labelled “Update-Hess”; this includes the
time spent in interpolations. The time spent in building the image patches
on each processor and gathering the image values from the Petsc DA ordering
to the local ordering is reported in the row labelled “Build Patches”. The
time spent in setting up the multigrid solver is reported in the row labelled
“MG-Setup”; this includes the time spent in coarsening and balancing all
the coarser octrees for the multigrid and meshing for all the multigrid levels.
The total runtime is the sum of the times spent in setting up the Multigrid,
building the image patches and the Gauss Newton iterations. These rows
are printed in boldface. All timings are reported in seconds. This experi-
ment was performed on the Teragrid system “Ranger” [122]. Although, the
last run was submitted to 512 processors only 374 processors could be used
because the grain size (elements per processor) for the finest octree was too
small. 136

xii

20 Isogranular scalability for synthetic examples. The row labelled “N” gives
the number of voxels in each dimension of the images and the corresponding
number of octants at the finest octree is reported in the row labelled “Oc-
tants”. The time spent in evaluating the objective function is reported in
the row labelled “Objective”. The time spent in evaluating the gradient is
reported in the row labelled “Gradient”. Interpolation at the Gauss points
were required to evaluate the objective function and the gradient. 4-th order
Gauss quadrature rule was used so there are 64 Gauss points per element. In-
terpolation at vertices were required to build the approximate Hessian using
under-integration. The total time spent in the optimization function is re-
ported in the row labelled “Gauss Newton”. The total time spent in the linear
solves in each Newton iteration is reported in the row labelled “KSP solve”.
The time spent in the Matvecs for the elasticity operator is reported in the
row labelled “Elas-Matvec”; this is only used to evaluate the objective and
the gradient and not for the Hessian. The time spent in the Hessian Matvecs
is reported in the row labelled “Hess-Matvec”. The time required to update
the Hessian is reported in the row labelled “Update-Hess”; this includes the
time spent in interpolations. The time spent in building the image patches
on each processor and gathering the image values from the Petsc DA ordering
to the local ordering is reported in the row labelled “Build Patches”. The
time spent in setting up the multigrid solver is reported in the row labelled
“MG-Setup”; this includes the time spent in coarsening and balancing all
the coarser octrees for the multigrid and meshing for all the multigrid levels.
The total runtime is the sum of the times spent in setting up the Multigrid,
building the image patches and the Gauss Newton iterations. These rows are
printed in boldface. All timings are reported in seconds. This experiment
was performed on the Teragrid system “Ranger” [122]. 137

xiii

LIST OF FIGURES

1 Varying degrees of adaptivity: (a) Regular grid, (b) Quadtree grid and (c)
Unstructured grid. Quadtrees are 2-D analogues of Octrees. 1

2 The results from an isogranular scalability experiment using Dendro. In this
experiment, a linear elastostatic problem was solved on a set of octrees with
a grain size (on the finest multigrid level) of approximately 80K elements
per processor. The octrees were generated using a Gaussian distribution
of points. A relative tolerance of 10−10 in the 2-norm of the residual was
used. The time (in seconds) to setup and solve the problem in each case are
reported. This experiment was performed on “Ranger”. 9

3 The time (in seconds) to register MR images of the brains of two different
subjects using the octree-based multiscale Gauss Newton multigrid algorithm
on varying number of processors. The original resolution of the images was
256× 256× 171 and the corresponding octree mesh had approximately 430K
elements. This experiment was performed on “Ranger”. 10

4 (a) Tree representation of a quadtree and (b) decomposition of a square
domain using the quadtree, superimposed over a uniform grid, and (c) a
balanced linear quadtree: result of balancing the quadtree. 17

5 Orientation for an octant. By convention, v0 is chosen as the anchor of the
octant. The vertices are numbered in the Morton ordering. 18

6 Computing the Morton id of quadrant “d” in the quadtree shown in Fig.
4(b). The anchor for any quadrant is it’s lower left corner. 19

7 (a) A minimal list of quadrants covering the local domain on a processor,
and (b) A Morton ordering based partition of a quadtree across 4 processors,
and (c) the coarse quadrants and the final partition produced by using the
quadtree shown in (b) as input to Algorithm 1. 22

8 (b) The minimal number of octants between the cells given in (a). This
is produced by using (a) as an input to Algorithm 3. (d) The coarsest
possible complete linear quadtree containing all the cells in (c). This is
produced by using (c) as an input to Algorithm 4. The figure also shows
the two additional octants added to complete the domain. The first one is the
coarsest ancestor of the least possible octant (the deepest first descendant of
the root octant), which does not overlap the least octant in the input. This
is also the first child of the nearest common ancestor of the least octant in
the input and the deepest first decendant of root. The second is the coarsest
ancestor of the greatest possible octant (the deepest last descendant of the
root octant), which does not overlap the greatest octant in the input. This
is also the last child of the nearest common ancestor of the greatest octant
in the input and the deepest last decendant of root. 25

9 The minimal list of balancing quadrants for the current quadrant is shown.
This list of quadrants is generated in one iteration of Algorithm 6. 30

xiv

10 To find neighbors coarser than the current cell, we first select the finest cell
at the far corner. The far corner is the one that is not shared with any of
the current cell’s siblings. The neighbors of this corner cell are determined
and used as the search keys. The search returns the greatest cell lesser than
or equal to the search key. The possible candidates in a complete linear
quadtree, as shown, are ancestors of the search key. 34

11 (a) A boundary octant cannot be finer than its internal neighbors, and (b)
an illustration of an insulation layer around octant N. No octant outside this
layer of insulation can force a split on N. 36

12 A coarse quadtree illustrating inter and intra processor boundaries. First,
every processor balances each of its local blocks. Then, each processor bal-
ances the cells on its intra-processor boundaries. The octants that lie on
inter-processor boundaries are then communicated to the respective proces-
sors and each processor balances the combined list of local and remote octants. 38

13 Communication for inter-processor balancing is done in two stages: First,
every octant on the inter-processor boundary (Stage 1) is communicated to
processors that overlap with its insulation layer. Next, all the local inter-
processor boundary octants that lie in the insulation layer of a remote octant
(N) received from another processor are communicated to that processor
(Stage 2). 39

14 Cells that lie on the inter-processor boundaries. The figure on the left shows
an inter-processor boundary involving 2 processors and the figure on the right
shows an inter-processor boundary involving 4 processors. 43

15 Comparison of three different approaches for balancing linear octrees (a) for
a Gaussian distribution of 1M octants, (b) for a Gaussian distribution of 4M
octants, (c) for a Gaussian distribution of 8M octants, and (d) for a Gaussian
distribution of 16M octants. 47

16 Isogranular scalability for a Gaussian distribution of 1M octants per proces-
sor. From left to right, the bars indicate the time taken (in seconds) for
the different components of our algorithms for increasing processor counts.
The bar for each processor is partitioned into 4 sections. From top to bot-
tom, the sections represent the time taken (in seconds) for (1) communi-
cation (including related pre-processing and post-processing) during balance
refinement (Algorithm 11), (2) balancing across intra and inter processor
boundaries (Algorithm 9), (3) balancing the blocks (Algorithm 7), and
(4) construction from points (Algorithm 5). 49

xv

17 Isogranular scalability for a Log-normal distribution of 1M octants per pro-
cessor. From left to right, the bars indicate the time taken (in seconds) for
the different components of our algorithms for increasing processor counts.
The bar for each processor is partitioned into 4 sections. From top to bot-
tom, the sections represent the time taken (in seconds) for (1) communi-
cation (including related pre-processing and post-processing) during balance
refinement (Algorithm 11), (2) balancing across intra and inter processor
boundaries (Algorithm 9), (3) balancing the blocks (Algorithm 7), and
(4) construction from points (Algorithm 5). 50

18 Isogranular scalability for a Regular distribution of 1M octants per proces-
sor. From left to right, the bars indicate the time taken (in seconds) for
the different components of our algorithms for increasing processor counts.
The bar for each processor is partitioned into 4 sections. From top to bot-
tom, the sections represent the time taken (in seconds) for (1) communi-
cation (including related pre-processing and post-processing) during balance
refinement (Algorithm 11), (2) balancing across intra and inter processor
boundaries (Algorithm 9), (3) balancing the blocks (Algorithm 7) and
(4) construction from points (Algorithm 5). While both the input and
output grain sizes remain almost constant for the Gaussian and LogNormal
distributions, only the output grain size remains constant for the Uniform
distribution. Hence, the trend seen in this study is a little different from
those for the Gaussian and LogNormal distributions. 51

19 Fixed size scalability for a Gaussian distribution of 1M octants. From left
to right, the bars indicate the time taken (in seconds) for the different com-
ponents of our algorithms for increasing processor counts. The bar for each
processor is partitioned into 2 sections. The top and bottom sections of each
column represent the total time taken (in seconds) for (1) balance refinement
(Algorithm 11) and (2) construction (Algorithm 5), respectively. . . . 52

20 Fixed size scalability for a Gaussian distribution of 32M octants. From left
to right, the bars indicate the time taken (in seconds) for the different com-
ponents of our algorithms for increasing processor counts. The bar for each
processor is partitioned into 2 sections. The top and bottom sections of each
column represent the total time taken (in seconds) for (1) balance refinement
(Algorithm 11) and (2) construction (Algorithm 5), respectively. 53

21 Fixed size scalability for a Gaussian distribution of 128M octants. From left
to right, the bars indicate the time taken (in seconds) for the different com-
ponents of our algorithms for increasing processor counts. The bar for each
processor is partitioned into 2 sections. The top and bottom sections of each
column represent the total time taken (in seconds) for (1) balance refinement
(Algorithm 11) and (2) construction (Algorithm 5), respectively. 54

xvi

22 (a) Illustration of nodal-connectivities required to perform conforming FEM
calculations using a single tree traversal. Every octant has at least 2 non-
hanging vertices, one of which is shared with the parent and the other is
shared amongst all the siblings. The octant shown in blue (a) is a child
0, since it shares its zero vertex (a0) with its parent. It shares vertex a7

with its siblings. All other vertices, if hanging, point to the corresponding
vertex of the parent octant instead. Vertices, a3, a5, a6 are face hanging
and point to p3, p5, p6, respectively. Similarly a1, a2, a4 are edge hanging
and point to p1, p2, p4. (b) The figure explains the special case that occurs
during exhaustive searches of ghost elements. Element anchored at a, when
searching for vertex b, will not find any vertex. Instead, one of the hanging
siblings of b, (c, d) which are hanging will be pointed to. Since hanging
vertices do not carry any information, the information for b will be replicated
to all its hanging siblings while updating the ghosts. 61

23 Computing element-to-vertex mapping using negative searches. (a) If the
found octant (a) is not a sibling of the current octant (b), then the element-
to-vertex mapping can be copied via the mapping b0 ← a2, b1 ← a3, b4 ← a6,
and b5 ← a7. (b) In case the found octant (a) is a sibling of the current octant
(b), then the mapping depends on whether or not the vertex in question is
hanging. If the vertex is not hanging, then the same mapping as used in (a)
can be applied. If the vertex is hanging, then the corresponding indices for
the found element are directly copied. For the case shown, (b0, b2, b4, b6) ←
(a0, a2, a4, a7) = (p0, p2, p4, a7). 63

24 Isogranular scalability for Gaussian distribution of 1M octants per proces-
sor. From left to right, the bars indicate the time taken (in seconds) for
the different components of our algorithms for increasing processor counts.
The bar for each processor is partitioned into 4 sections. From top to bot-
tom, the sections represent the time taken (in seconds) for (1) performing
5 Matrix-Vector multiplications, (2) Construction of the octree-based mesh,
(3) balancing the octree and (4) construction from points. 70

25 Isogranular scalability for uniformly spaced points with 1M octants per pro-
cessor. From left to right, the bars indicate the time taken (in seconds) for
the different components of our algorithms for increasing processor counts.
The bar for each processor is partitioned into 4 sections. From top to bot-
tom, the sections represent the time taken (in seconds) for (1) performing
5 Matrix-Vector multiplications, (2) Construction of the octree-based mesh,
(3) balancing the octree and (4) construction from points. 71

26 Comparison of meshing times (in seconds) using exhaustive search with using
a hybrid approach where only the first layer of octants uses exhaustive search
and the rest use the 4-way search to construct the lookup tables. The test was
performed using a Gaussian distribution of 1 million octants per processor.
It can be seen that the 4-way search is faster than the exhaustive search and
scales upto 4096 processors. 72

xvii

27 (a)-(c) Quadtree meshes for three successive multigrid levels. The shaded
octants in (a) and (b) were not coarsened because doing so would have vi-
olated the 2:1 balance constraint. (d) A V-cycle where the meshes at all
multigrid levels share the same partition and (e) A V-cycle where not all
meshes share the same partition. Some meshes do share the same partition
and whenever the partition changes a pseudo mesh is added. The pseudo
mesh is only used to support intergrid transfer operations and smoothing is
not performed on this mesh. 84

28 Samples of the point distributions used for the numerical experiments: (a)
A Gaussian point distribution with mean at the center of the unit cube and
(b) A log-normal point distribution with mean near one corner of the unit
cube and it’s mirror image about the main diagonal. 95

29 Illustration of the image registration problem. The point “Q” on the “mov-
ing” image and the point “P” on the “fixed” image have the same physical
coordinates but they represent different material points. The points “P” on
the fixed and moving images represent the same material points but have dif-
ferent physical coordiantes. We need to find the displacement “u” between
the points “P” and “Q” on the moving image. 107

30 (a) A regular grid image and (b) the linear octree constructed by coarsening
the regular grid image. 112

31 Illustration of image partition: (a) An octree distributed on 3 processors,
(b) the input image aligned with the octree and (c) the part of the input
image owned by the first processor. In this example, the ghost layer recieved
from other processors is 2 voxels thick. 115

32 First synthetic example. The moving image was chosen to be 255 sin2(2πx)
sin2(2πy) sin2(2πz) and the fixed image was generated by applying 3 succes-
sive synthetic diffeomorphic displacement field to this image. The resolution
of each image was 256 × 256 × 256. Each row shows a z-crosssectional slice
of the fixed, moving and corresponding registered (deformed moving) images
using the regularization parameter: γ = 1000. 120

33 Results from using the proposed methology on the images shown in Figure
32. Each row shows a z-crosssectional slice of the initial mismatch between
the fixed and moving images and the final mismatch between the registered
and fixed images for different regularization parameters (γ). 121

34 The z-crosssectional slice of the reconstructed deformation for the example
shown in Figure 32. 122

35 Second synthetic example. The moving image is a sphere and the fixed image
is a partial torus. The resolution of each image was 256 × 256 × 256. Each
row shows a z-crosssectional slice of the fixed, moving and corresponding
registered (deformed moving) images for the regularization parameters: γ =
103 and γ = 104. 123

xviii

36 Results from using the proposed methology on the images shown in Figure
35. Each row shows a z-crosssectional slice of the initial mismatch between
the fixed and moving images and the final mismatch between the registered
and fixed images for different regularization parameters (γ). 124

37 The z-crosssectional slice of the reconstructed deformation for the example
shown in Figure 35. 125

38 Skull stripped MR images of the brain of the same subject taken at different
times and the corresponding registered (deformed moving) image for γ = 200.
Each row shows a z-crosssectional slice of the fixed, moving and registered
images. 127

39 Results from using the proposed methology for registering the example shown
in Figure 38. Each row shows a z-crosssectional slice of the initial mismatch
between the fixed and moving images and the final mismatch between the
registered and fixed images for different regularization parameters (γ). . . . 128

40 Skull stripped MR images of the brains of two different subjects and the
corresponding registered (deformed moving) image for γ = 3000. Each row
shows a z-crosssectional slice of the fixed, moving and registered images. . . 129

41 Results from using the proposed methology for registering the example shown
in Figure 40. Each row shows a z-crosssectional slice of the initial mismatch
between the fixed and moving images and the final mismatch between the
registered and fixed images for different regularization parameters (γ). . . . 130

42 The z-crosssectional slice of the reconstructed deformation for the example
shown in Figure 40. 132

43 Determinants of the Jacobians at the centers of voxels for the example shown
in Figure 40. 133

44 Effect of the thresholding parameter (δ) used for octree construction for the
example shown in Figure 40. Each row shows a z-crosssectional slice of the
registered (deformed moving) images for γ = 3000. 134

45 Two types of z-ordering in quadtrees. 138

xix

SUMMARY

The first component of this thesis is a parallel algorithm for constructing octree meshes

for finite element computations. Prior to octree meshing, the linear octree data structure

must be constructed and a constraint known as “2:1 balancing” must be enforced; par-

allel algorithms for these two subproblems are also presented. The second component of

this thesis is a parallel geometric multigrid algorithm for solving elliptic partial differential

equations (PDEs) using these octree meshes. The last component of this thesis is a parallel

multiscale Gauss Newton optimization algorithm for solving the elastic image registration

problem. The registration problem is discretized using finite elements on octree meshes and

the parallel geometric multigrid algorithm is used as a preconditioner in the Conjugate Gra-

dient (CG) algorithm to solve the linear system of equations formed in each Gauss Newton

iteration.

The parallel octree meshing and multigrid algorithms have several physical and computer

science applications such as in solid/fluid mechanics, heat/mass transfer, electromagnetism,

image processing and unstructured mesh generation. Potential applications for the image

registration algorithm include automatic identification of abnormalities in medical images,

motion reconstruction from temporal sequences of images and planning of surgeries.

Several ideas were used to reduce the overhead for constructing the octree meshes. These

include (a) a way to lower communication costs by reducing the number of synchronizations

and reducing the communication message size, (b) a way to reduce the number of searches

required to build element-to-vertex mappings, and (c) a compression scheme to reduce the

memory footprint of the entire data structure. To our knowledge, the multigrid algorithm

presented in this work is the only matrix-free multiplicative geometric multigrid implemen-

tation for solving finite element equations on octree meshes using thousands of processors.

xx

The overall scheme is second-order accurate, for sufficiently smooth right-hand sides and ma-

terial properties; and its complexity, for nearly uniform trees, is O(Nnp
log N

np
)+O(np log np).

Here, N is the number of octants and np is the number of processors. The proposed reg-

istration algorithm is also unique; it is a combination of many different ideas: adaptivity,

parallelism, fast optimization algorithms, and fast linear solvers.

All the algorithms were implemented in C++ using the Message Passing Interface (MPI)

standard and were built on top of the PETSc library from Argonne National Laboratory. The

multigrid implementation has been released as an open source software: Dendro. Several

numerical experiments were performed to test the performance of the algorithms. These ex-

periments were performed on a variety of NSF TeraGrid platforms: on the Cray XT3 MPP

system “Bigben” at the Pittsburgh Supercomputing Center (PSC), the Intel 64 Linux Clus-

ter “Abe” at the National Center for Supercomputing Applications (NCSA), and the Sun

Constellation Linux Cluster “Ranger” at the Texas Advanced Computing Center (TACC).

Our largest run was a highly-nonuniform, 8- billion-unknown, elasticity calculation on 32,000

processors.

xxi

CHAPTER I

INTRODUCTION

The finite element method is a popular technique for solving partial differential equations

(PDEs) numerically. Finite element methods require grid generation (or meshing) to gen-

erate function approximation spaces. Regular grids are easy to generate, but can be quite

expensive when the solution of the PDE is highly localized. Localized solutions can be

captured more efficiently using non-uniform or unstructured grids. However, the flexibil-

ity of unstructured grids comes at a price — they are difficult to construct in parallel,

they are difficult to precondition, and they incur the overhead of explicitly constructing

element-to-vertex connectivity information, they are unsuitable for matrix-free implemen-

tations and are generally cache inefficient because of random queries into this data structure

[6, 55, 135]. Octree meshes seem like a promising alternative, at least for some problems

[3, 13, 93]; they are more flexible than uniform grids, the overhead of constructing element-

to-node connectivity information is lower than that of unstructured grids and they allow

for matrix-free implementations (Figure 1). Constructing parallel octree meshes for finite

element computations involves several challenges; the first part of this thesis addresses these

challenges.

Besides grid-generation, an optimal solver is also necessary for good scalability. In

(a) Regular grid (b) Quadtree grid (c) Unstructured grid

Figure 1: Varying degrees of adaptivity: (a) Regular grid, (b) Quadtree grid and (c)
Unstructured grid. Quadtrees are 2-D analogues of Octrees.

1

this thesis, we focus on elliptic PDEs and multigrid methods are known to be efficient for

solving these type of PDEs. A distinguishing feature of multigrid algorithms is that their

convergence rate does not deteriorate with increasing problem size [25, 61, 126]. Some

multigrid implementations even obtain optimal complexity by combining this feature with

an operation count linear in the number of unknowns.

Multigrid algorithms can be classified into two categories: (a) geometric and (b) alge-

braic; the primary difference being that algorithms of the former type use an underlying

mesh for constructing coarser multigrid levels (“coarsening”) and algorithms of the latter

type use the entries of the fine-grid matrix for coarsening in a black-box fashion. Algebraic

multigrid methods are gaining prominence due to their generality and the ability to deal

with unstructured meshes. Geometric multigrid methods are less general, but have low

overhead, are quite fast, and are easy to parallelize (at least for structured grids). For these

reasons, geometric multigrid methods have been quite popular for solving smooth coefficient

non-oscillatory elliptic PDEs on structured grids.

The main components of any multigrid algorithm include the construction of a sequence

of coarse meshes and the construction of inter-grid transfer operations. Both of these

operations are non-trivial to implement, particularly in parallel, for non-uniform meshes.

In this thesis, we developed efficient parallel algorithms for performing these operations

on octree meshes. To our knowledge there is no other work on octree-based, matrix-free,

geometric multigrid solvers for finite element discretizations that has scaled to thousands

of processors.

The multigrid algorithm developed in this thesis has several physical applications in-

volving heat and mass transfer theory [35], solid and fluid mechanics [35, 56] and electro-

magnetism [54]. They can also be used in non-physical applications such as mesh generation

[114] and image processing [47, 88]. In this thesis we have applied it to the image regis-

tration problem, which is an important image processing operation. Image registration,

particularly nonlinear registration using non-parametric deformation models, is one of the

challenging problems in image processing today. A few approaches to reduce the compu-

tational time for solving this problem have been proposed in the literature. These include

2

adaptive schemes, fast optimization algorithms such as quasi-Newton and Gauss-Newton

methods, fast linear solvers like multigrid and fast fourier transforms (FFTs) and paral-

lelization. The final part of this thesis describes our approach to this problem, which uses

a combination of all these ideas.

1.1 Related work

In this section, we will review some related work on constructing parallel octrees, enforcing

the 2:1 balance constraint, meshing octrees and using them for finite element computations,

multigrid and image registration.

1.1.1 Constructing octrees

The key component in constructing parallel octrees is the partitioning of the input in order

to achieve good load balancing. The use of space-filling curves for partitioning data has

been quite popular [62, 129, 134, 140]. The proximity preserving property of space-filling

curves makes them attractive for data partitioning. Typical approaches to parallel octree

construction use a top-down approach after the initial partition. The major hurdle in

using a parallel top-down approach is avoiding overlaps. This typically requires significant

synchronization and communication after constructing a portion of the tree [129, 134, 140].

In Section 2.2.2, we present an alternative bottom-up approach to constuct parallel linear

octrees with little communication.

1.1.2 2:1 Balancing octrees

Balance refinement is a key pre-processing operation in order to use octrees for finite element

computation. The only known parallel algorithms for this problem are presented in [16, 119,

129]. Bern et al. [16] proposed an algorithm for balancing quadtrees for EREW PRAM

architectures; this cannot be easily adapted for distributed architectures. In addition, the

balanced quadtree produced is suboptimal and can have up to 4 times as many cells as the

optimal balanced quadtree. Tu et al. [129] propose a more promising approach, which was

evaluated on billions of elements using thousands of processors. In Section 2.2.3 we present

a way to decouple the problem of balancing and reduce communication costs.

3

1.1.3 Meshing octrees

Unstructured meshes are used extensively to solve problems with localized solutions and

problems involving complex geometries. A pre-processing step in any unstructured finite

element computation is the construction of the element-to-vertex connecitivity information;

this operation is known as meshing. However, generating large unstructured meshes is a

challenging task [111] and existing implementations do not scale well to many thousands of

processors. Moreover, generic unstructured meshing schemes are not suitable for matrix-free

implementations and tend to break down due to bad element quality during the remeshing

step. On the contrary, octree-based unstructured hexahedral meshes can be constructed

efficiently [17, 52, 106, 107, 110, 128] and the resulting quality of the elements is good.

Scalable algorithms for parallel octree meshing are presented in [29, 129]. [129] describes

an algorithm to mesh a parallel octree and [29] presents an algorithm to mesh a forest of

parallel octrees. New parallel algorithms to mesh and compress octrees are presented in

Chapter 3.

1.1.4 FEM using octrees

Examples of large scale finite element computations using parallel octrees can be found in

[3, 29, 73, 129]. A characteristic feature of octree meshes is that they contain “hanging”

vertices. Projection schemes are typically used to preserve the continuity of the solution

at hanging vertices. Alternatively, one could modify the element shape functions for the

elements that contain hanging vertices so that the continuity of the solution is automatically

enforced. We discuss the latter approach in Section 3.3.

1.1.5 Multigrid

Multigrid methods for solving elliptic PDEs have been researched extensively in the past

[11, 21, 22, 36, 57, 61, 109, 141, 142, 143, 144] and remain an active research area [1, 2, 13,

15, 53, 57, 71]. Here, we review some of the recent work on multigrid for adaptive meshes.

In [18], a sequential geometric multigrid algorithm was used to solve two and three dimen-

sional linear elastic problems using finite elements on non-nested unstructured triangular

4

and tetrahedral meshes, respectively. The implementation of the intergrid transfer opera-

tions described in this work can be quite expensive for large problems and is non-trivial to

parallelize. A sequential multigrid scheme for finite element simulations of non-linear prob-

lems on quadtree meshes was described in [71]. In addition to the 2:1 balance constraint, a

specified number of “safety layers” of octants were added at each multigrid level to support

their intergrid transfer operations. Projections were also required at each multigrid level

to preserve the continuity of the solution, which is otherwise not guaranteed using their

non-conforming discretizations. Projection schemes require two additional tree-traversals

per MatVec, which we avoid in our approach. Multigrid algorithms for quadtree/octree

meshes were also described in [13, 14, 93]. [93] created the multigrid hierarchy using a

simple coarsening strategy in which only the octants at the finest level were coarsened at

each stage. While that coarsening stategy ensures that the 2:1 balance constraint is auto-

matically preserved after each stage of coarsening, the decrease in the number of elements

after coarsening might be small. An alternate coarsening strategy that tries to coarsen all

octants was used in [13, 14] and in the present work. [13] describes a sequential multigrid

algorithm and the corresponding parallel extension is described in [14]. In [14] a sequential

graph-based scheme was used to partition the meshes on a dedicated master processor and

the resulting partitioned meshes were handed out to client processors, which performed the

parallel multigrid solves. Hence, the scalability of their implementation was limited by the

amount of memory available on the master processor. Moreover, the partitioning can be

more expensive than the parallel computation of the solution. Simpler scalable partitioning

schemes based on space-filling curves have been used in [28, 53, 85] and in the present work.

All these algorithms work on adaptive hierarchical Cartesian grids, which are constructed

by the recursive refinement of grid cells into a fixed number of congruent subcells. In the

approach used in [28, 85], each refinement produced 3 subcells in each coordinate direction.

In the approach used in the present work and in [53], each refinement produces 2 subcells

in each coordinate direction and so the number of elements grow slower in this approach

compared to the former approach. [28, 53] used the additive version of multigrid, which

is simpler to parallelize compared to the multiplicative version of multigrid used in the

5

present work. However, the multiplicative version is considered to be more robust than the

additive version as far as convergence rates are concerned [12]. A parallel multiplicative

multigrid algorithm for non-uniform meshes was presented in [78]; that work reported good

scalability results on up to 512 processors. In [78], the smoothing at each grid was per-

formed only in the refined regions and in a small neighborhood around the refined regions.

In contrast, we chose to cover the entire domain at each grid and this allows us to use a

simpler scheme to distribute the load across processors. A 3-D parallel algebraic multi-

grid method for unstructured finite element problems was presented in [2]. In that work,

the authors used parallel maximal independent set algorithms for constructing the coarser

grids and constructed the Galerkin coarse-grid operators algebraically using the restriction

operators and the fine-grid operator. In [15], a calculation with over 11 billion elements

was reported. The authors proposed a scheme for conforming discretizations and geometric

multigrid solvers on semi-structured meshes. That approach is highly scalable for nearly

structured meshes but it somewhat limits adaptivity because it is based on regular refine-

ment. Additional examples of scalable approaches for non-uniform meshes include [1] and

[83]. In those works, multigrid approaches for general elliptic operators were proposed. The

associated constants for constructing the mesh and performing the calculations however, are

quite large. A significant part of CPU time is related to the multigrid scheme. The high-

costs related to partitioning, setup, and accessing generic unstructured grids, has motivated

the use of octree-based data structures. A parallel, octree-based, geometric multigrid solver

for finite element discretizations is described in Chapter 4.

1.1.6 Image registration

Image registration has been an active research area for the past two decades. [50] gives an

exhaustive review of the classical general purpose registration methods. [145] and [88] focus

on the more recent methods, the former focusses more on parametric registration methods

and the latter focusses more on non-parametric registration methods. [66, 80, 82] focus on

registration techniques commonly used in medical image processing.

Many of the early works on registration focussed on rigid or affine transformations.

6

These models are incapable of capturing the nonlinear deformations typically associated

with medical images. Global polynomial models were proposed to tackle these nonlinear

deformations. Local transformation models using piecewise polynomials [48] or weighted

polynomials [49] were later introduced to handle local deformations better. Radial basis

functions [41, 42] and B-splines [7, 76, 77, 113] were also introduced to improve the modelling

of local deformations. Thin-plate splines [20, 97] and elastic splines [34, 138] were introduced

to get physically meaningful deformations. [98] presented three different types of parametric

registration approaches based on splines and anatomical point landmarks: thin-plate splines,

radial basis functions with compact support and Gaussian elastic body splines. These

parametric registration algorithms are computationally efficient because their search space is

typically small, but they do not handle local deformations well. In contrast, non-parametric

registration algorithms are well-equipped to deal with local deformations. In the non-

parametric case, the transformation model comes directly from the discretization scheme

such as finite differencing or finite elements. In the parametric case, the ill-posedness of

the registration problem is addressed by the constraints on the displacements imposed

by the transformation model; in the non-parametric case, the ill-posedness is addressed by

adding an explicit penalty or regularization term to the objective function. Different choices

for regularization give rise to different registration algorithms: diffusive registration [39],

elastic registration [5, 63, 67, 136], fluid registration [26, 137] and curvature registration

[40]. There are also examples of hybrid approaches that combine parametric and non-

parametric registration methods: [105] used elastic registration on affine registered images

to improve the accuracy of reconstruction. Some tools for rigid, affine, spline-based and

demon’s registration in two or more dimensions can be found in the open-source software:

Insight Segmentation and Registration Toolkit (ITK) [68]. It provides implementations for

different similarity metrics, various interpolation schemes and derivative-free and gradient-

based optimizers.

The use of multigrid for image registration is fairly recent and some of the relevant

works include [31, 60, 63, 67, 72]. [31] used a diffusive regularizer and a steepest-descent type

optimization algorithm accelerated using a multigrid solver. [63] used a Full Approximation

7

Scheme (FAS) and d-linear image approximation for elastic registration. [67] presented a

multigrid scheme using operator dependent prolongation for elastic image registration. [72]

used a parallel multigrid algorithm for the optical flow problem with a diffusive regularizer.

[60] presented a Gauss Newton algorithm and a multigrid scheme for solving the elastic

registration problem using a regular grid discretization.

The use of octrees/quadtrees for image registration is also a fairly recent idea [58, 59,

75, 120, 121]. [58] presented a parametric registration algorithm using octree discretization

and [59] used octrees for elastic image registration. [75] used quadtrees for affine image

registration. [120] and [121] used a family of volumetric tensor product first order (linear)

B-splines whose coefficients were defined on an octree and quadtree grid to model the

transformation for the registration problem.

There is also little work on parallel image registration. [37, 89, 131] focussed on rigid

registration using derivative-free optimization algorithms. A steepest-descent approach was

used in [69] for parallel rigid registration of 2-D images to 3-D volumes. A parallel non-

rigid registration algorithm using a B-spline transformation model was presented in [70].

[115] parallelized the 3-D demon’s registration algorithm. [19] used a fixed point iteration

combined with parallel FFTs to solve the 2-D elastic registration problem. [86, 87] also

used a fixed point iteration to solve the 2-D elastic registration problem and used a parallel

Conjugate Gradient (CG) method to solve the linear system within the nonlinear iteration.

[72] presented a parallel multigrid scheme to solve the 3-D optical flow problem.

1.2 Contributions

The contributions of this thesis are summarized below.

Construction and 2:1 Balancing A parallel bottom-up algorithm for constructing lin-

ear octrees with little communication was developed. A hybrid algorithm was also

developed to enforce the 2:1 balance constraint in parallel. This is required for using

linear octrees for finite element computations. We introduced a way to decouple the

2:1 balancing problem and used it to reduce the number of synchronizations and the

total communication message size compared to earlier approaches to the problem.

8

np

seconds
Total Setup

Total Solve

12 48 192 768 3K 12K

0

25

50

75

100

125

150

175

200

225

250

Figure 2: The results from an isogranular scalability experiment using Dendro. In this
experiment, a linear elastostatic problem was solved on a set of octrees with a grain size
(on the finest multigrid level) of approximately 80K elements per processor. The octrees
were generated using a Gaussian distribution of points. A relative tolerance of 10−10 in the
2-norm of the residual was used. The time (in seconds) to setup and solve the problem in
each case are reported. This experiment was performed on “Ranger”.

This work was published in [119].

Meshing In this work, a parallel algorithm is presented to build data structures that

store the element-to-vertex connectivity information, which is required for finite el-

ement computations. We use these data structures to build second-order accurate

discretizations of PDEs. A compression scheme for the octree and the element con-

nectivity is also presented that achieves a three-fold compression (a total of four words

per octant). This work was published in [118].

Multigrid In this work, a matrix-free, geometric multigrid algorithm was designed and

implemented for solving elliptic PDEs using finite elements on parallel octree meshes.

The setup costs of our algorithm is low making it ideal for applications that require re-

peated solutions of linear systems of equations. This is significant for time dependent

and nonlinear problems. The MPI-based implementation of our method, Dendro, has

scaled to billions of elements on thousands of processors. Figure 2 shows an example of

the performance of Dendro. This work was published in [101] and additional algorith-

mic details and numerical experiments were reported in [102]. Our implementation

9

np

seconds

16 32 64 128 256

0

400

800

1200

1600

2000

2400

Figure 3: The time (in seconds) to register MR images of the brains of two different
subjects using the octree-based multiscale Gauss Newton multigrid algorithm on varying
number of processors. The original resolution of the images was 256 × 256 × 171 and
the corresponding octree mesh had approximately 430K elements. This experiment was
performed on “Ranger”.

has also been released as an open source software [104].

Image Registration In this work, a multiscale Gauss Newton algorithm is presented for

solving the elastic image registration problem. The linear system that is formed in

each optimization iteration is solved using our octree-based matrix-free geometric

multigrid algorithm. Our parallel implementation helps reduce the computation time

for registration and also allows us to register images that are too large to fit on a single

processor’s memory. Figure 3 shows an example of the performance of this algorithm.

This work has been submitted for publication [103].

1.3 Limitations

In this section, we list the limitations of this thesis.

Octree-based finite element discretization Our finite element discretization only re-

sults in a second-order accurate method. Our implementation does not directly sup-

port problems involving complex geometries; in principle, Dendro can be combined

with fictitious domain methods [45, 94] to allow solution of such problems but the

computational costs will increase and the order of accuracy may be reduced. Far-field

and periodic boundary conditions are not supported in our implementation.

10

Multigrid Although the algorithm has been successfully applied to solve many problems

with large jumps in the material properties, it can not be guaranteed to be robust

for such problems. The convergence tends to deteriorate with increasing number

and magnitude of discontinuities. We use a simple weighted partitioning heuristic to

tackle the issue of load balancing across processors. However, load balancing is still a

challenge and has not been fully addressed in this thesis.

Elastic registration We used the linear theory of elasticity, which is only valid for small

deformations. Other regularization approaches may be more appropriate for large

deformations. Further, we do not incorporate any biophysical information to addi-

tionally constrain the deformation. It has been suggested that incorporating such

information will provide intelligent priors and reduce the ill-posedness of the regis-

tration problem [117]. Finally, our implementation does not use adaptive integration.

Instead, we fix the order of the Gauss quadrature rule for integration a-priori. The

use of adaptive integration can further reduce the computation costs for evaluating

the objective function and gradient.

1.4 Future work

There are two important extensions for our octree framework: higher-order discretizations

and integration with domain-decomposition methods such as the Hierarchical Hybrid Grids

(HHG) scheme described in [15]. The former will result in improved accuracy with fewer

elements and the latter will help solve problems involving complicated geometries with fewer

elements. The last point stems from the fact that using a single octree to mesh a domain is

more restrictive than allowing the use of multiple octrees, each of which is only responsible

for a part of the entire domain.

In this thesis, we also applied our parallel octree framework to the elastic image regis-

tration. We anticipate a need to analyze very high resolution images in the future and we

believe that scalable parallel registration algorithms are essential for such analysis. We also

envision the use of the proposed framework in inverse biophysical applications in which high

resolution images are used to estimate certain material parameters in biophysical models;

11

there is already some work in this direction [99, 108].

Our elastic registration framework will lay the foundation for two important extensions:

(a) nonlinear elastic registration and (b) biophysically constrained registration. The for-

mer will be more appropriate for large deformations and the latter is a way to introduce

informative priors for the registration.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 introduces some terminology

related to octree data structures and describes parallel algorithms to construct and 2:1

balance linear octrees. Chapter 3 describes a parallel algorithm to mesh the 2:1 balanced

linear octrees and describes the construction of finite element approximation spaces using

these meshes. Chapter 4 presents a parallel geometric multigrid for solving elliptic PDEs

using these octree-based finite element discretizations. Finally, Chapter 5 presents a parallel

octree-based multiscale Gauss Newton Multigrid algorithm for intensity-based elastic image

registration.

12

CHAPTER II

CONSTRUCTION AND 2:1 BALANCE-REFINEMENT OF OCTREES

This chapter presents an overview of the octree data structure and describes parallel algo-

rithms to construct and 2:1 balance refine large linear octrees on distributed memory ma-

chines. Octrees are used in many problems in computational science and engineering: they

can be used as algorithmic foundations for adaptive finite element methods [13, 73], adap-

tive mesh refinement methods [53, 93], and many-body algorithms [62, 124, 133, 139, 140].

These tree data structures have been in use for over three decades now [38, 100]. How-

ever, design and use of large scale distributed tree data structures that scale to thou-

sands of processors is still a major challenge and is an area of active research even today

[16, 30, 43, 53, 62, 124, 129, 133, 134, 139, 140].

Octrees are usually employed while solving the following two types of problems.

• Searching: Searches within a domain using d-trees (d-dimensional trees with a max-

imum of 2d children per node), benefit from the reduction of the complexity of the

search from O(n) to O(log n) [44, 91].

• Spatial decomposition: Typical approaches for spatial decomposition include logically

structured grids, block structured and overlapping grids, unstructured grids, and oc-

trees. All methods have advantages and disadvantages. For example, structured grids

are relatively easy to implement, have low memory requirements, and avoid indirect

memory references. Structured grids however, limit adaptivity; for certain problems

this limitation can result in excessively large systems of equations. Although unstruc-

tured meshes can conform to complex geometries and enable non-uniform discretiza-

tions, they incur the overhead of having to explicitly store element-node connectivity

information and in general being cache inefficient because of random access [6, 55, 135].

Octrees offer a good balance between adaptivity and efficient performance for several

applications like solid modeling [84], object representation [8, 27], visualization [43],

13

image segmentation [116], adaptive mesh refinement [53, 93] and N-body simulations

[62, 124, 133, 134, 139, 140].

Octree data structures used in discretizations of partial differential equations should

satisfy a constraint known as the 2:1 balance constraint, which imposes a restriction on the

relative sizes of adjacent octants1 [16, 129]. One advantage of enforcing the 2:1 balance

constraint is that it ensures that there is at most one “hanging” vertex on any edge or face;

this makes it easier to construct conforming finite element approximation spaces on octree

meshes. What makes the balance-refinement problem difficult and interesting is a property

known as the ripple effect: An octant can trigger a sequence of splits whereby it can force an

octant to split, even if it is not in its immediate neighborhood. Hence, balance-refinement

is a non-local and inherently iterative process. Solving the balance-refinement problem in

parallel, introduces further challenges in terms of synchronization and communication since

the ripple can propagate across multiple processors.

Contributions. The salient contributions of this chapter are:

• A parallel bottom-up algorithm for coarsening octrees, which is also used for parti-

tioning the input in our other algorithms.

• A parallel bottom-up algorithm for constructing linear octrees. We avoid the synchro-

nization issues that are usually associated with parallel top-down methods.

• An algorithm for enforcing 2:1 balance refinement in parallel. The algorithm con-

structs the minimum number of nodes to satisfy the 2:1 constraint.2 Its key feature is

that it avoids parallel searches, which as we show in sections 2.2.3.6 and 2.2.3.7, are

the main hurdles in achieving good isogranular scalability.

1A formal definition of the 2:1 balance constraint is given in section 2.1.2.
2There exists a unique least common balance refinement for a given octree [90].

14

Remark. The main parallel tools used in our algorithms are sample sorts (accelerated

by bitonic sorts), and standard point-to-point/collective communication calls.3 In the fol-

lowing sections we present several algorithms for which we give precise work and storage

complexity. For some of the parallel algorithms we also give time complexity estimates;

this corresponds to wall-clock time and includes work per processor and communication

costs. The precise number depends on the initial distribution and the effectiveness of the

partitioning. Thus the numbers for time are only an estimate under uniform distribution

assumptions. If the time complexity is not specifically mentioned then it is comparable

to that of a sample-sort, which runs in O
(
N
np

log
(
N
np

)
+ np log (np)

)
time for uniformly

distributed points [51].

Organization of the chapter. In Section 2.1 we introduce some terminology that will

be used in the rest of the thesis. In Section 2.2, we describe the various components of our

construction and balance refinement algorithms. In Section 2.3, we present numerical exper-

iments, including fixed size and isogranular scalability tests on different data distributions.

Tables 1 and 2 summarize the notation that is used in the subsequent sections.

2.1 Background

An octree is a tree data structure in which every node4 has a maximum of eight children.

Octrees are analogous to binary trees (maximum of two children per node) in 1-D and

quadtrees (maximum of four children per node) in 2-D. A node with no children is called a

leaf and a node with one or more children is called an interior node. The only node with

no parent is the root and all other nodes have exactly one parent. Nodes that have the

same parent are called siblings. A node’s children, grandchildren and so on and so forth

are collectively referred to as the node’s descendants and this node will be an ancestor of

its descendants. A node along with all its descendants can be viewed as a separate tree in

itself with this node as its root. Hence, this set is also referred to as a subtree of the original

3When we discuss communication costs, we assume a Hypercube network topology with Θ(np) Bisection
Width.

4The term “node” is usually used to refer to the vertices of elements in a finite element mesh; but, in the
context of tree data structures, it refers to the octants themselves.

15

Table 1: Symbols for terms
L(N) Level of octant N .
L∗ Maximum level attained by any octant.
Dmax Maximum permissible depth of the tree. (Upper bound

for L∗).
P(N) Parent of octant N .
B(N) The block that is equal to or is an ancestor of octant N .
S(N) Siblings (sorted) of octant N .
C(N) Children (sorted) of octant N .
D(N) Descendant of octant N .
FC(N) First child of octant N .
LC(N) Last child of octant N .
FD (N, l) First descendant of octant N at level l.
LD (N, l) Last descendant of octant N at level l.
DFD(N) Deepest first descendant of octant N .
DLD(N) Deepest last descendant of octant N .
A(N) Ancestor of octant N .
Afinest (N,K) Nearest Common Ancestor of octants N and K.
N (N, l) List of all potential neighbors of octant N at level l.
N s (N, l) A subset of N (N, l), with the property that all of

these share the same common corner with N . This
is also the corner that N shares with its parent.

N (N) Neighbor of N at any level.
I(N) Insulation layer around octant N .
Np
max Maximum number of points per octant.

np Total number of processors.
Aglobal Union of the list A from all the processors.
{· · · } A set of elements.
∅ The empty set.

Table 2: Symbols for operations
A← B Assignment operation.
A⊕B Bitwise A XOR B.
{A} ∪ {B} Union of the sets A and B. The order is

preserved, if possible.
{A} ∩ {B} Intersection of the sets A and B.
A+B The list formed by concatenating the lists A and B.
A−B Remove the contents of B from A.
A[i] ith element in list A.
len(A) Number of elements in list A.
Sort(A) Sort A in the ascending Morton order.
A.push front(B) Insert B to the beginning of A.
A.push back(B) Append B to the end of A.
Send(A,r) Send A to processor with rank = r.
Receive() Receive from any processor.

16

root

nl

a nl

b c d e

f g

h i nl

j k l m

0

1

2

3

le
v
el

(a)

a
b c
d e

f g

h

i
j k

l m

(b)

a
b c
d e

f g

h1 h2

h3 h4

i
j k

l m

(c)

Figure 4: (a) Tree representation of a quadtree and (b) decomposition of a square domain
using the quadtree, superimposed over a uniform grid, and (c) a balanced linear quadtree:
result of balancing the quadtree.

tree. The depth of a node from the root is referred to as its level. As shown in Fig. 4(a),

the root of the tree is at level 0 and every interior node is one level lower than its children.

Octrees5 can be used to partition cuboidal regions (Figure 4(b)). These regions are

referred to as the domain of the tree. A set of octants is said to be complete if the union of

the regions spanned by them covers the entire domain. Alternatively, one can also define

complete octrees as octrees in which every interior node has exactly eight child nodes. We

will frequently use the equivalence of these two definitions.

There are many different ways to represent trees [32]. In this work, we will use a

linearized representation of octrees known as linear octrees. In this representation, we

discard the interior nodes and only store the complete list of leaves. This representation is

advantageous for the following reasons.

• It has lower storage costs than other representations.

• The other representations use pointers, which add synchronization and communication

overhead for parallel implementations.

To use a linear representation, a locational code is needed to identify the octants. A

locational code is a code that contains information about the position and level of the

octant in the tree. The following section describes one such locational code known as the

5All the algorithms described in this thesis are applicable to both octrees and quadtrees. For simplicity,
we will sometimes use quadtrees to illustrate the concepts in this thesis and use the terms “octrees” and
“octants”, consistently, in the rest of the thesis.

17

z

x

y

v0

v1

v2

v3

v4 v5

v6
v7

Figure 5: Orientation for an octant. By convention, v0 is chosen as the anchor of the
octant. The vertices are numbered in the Morton ordering.

Morton encoding.6

2.1.1 Morton encoding

In order to construct a Morton encoding, the maximum permissible depth, Dmax, of the

tree is specified a priori. Note that Dmax is different from L∗, the maximum level attained

by any node. In general, L∗ can not be specified a priori. Dmax is only a weak upper bound

for L∗.

The domain is represented by an uniform grid of 2Dmax indivisible cells in each dimen-

sion (Fig. 4(b)). Each cell is identified by an integer triplet representing its x, y and z

coordinates, respectively. Any octant in the domain can be uniquely identified by speci-

fying one of its vertices, also known as its anchor, and its level in the tree (Fig. 6). By

convention, the anchor of a quadrant is it’s lower left corner and the anchor of an octant is

it’s lower left corner facing the reader (corner v0 in Figure 5).

The Morton encoding for any octant is derived by interleaving7 the binary representa-

tions (Dmax bits each) of the three coordinates of the octant’s anchor, and then appending

the binary representation ((b(log2Dmax)c+ 1) bits) of the octant’s level to this sequence of

bits [16, 30, 125, 129]. Interesting properties of the Morton encoding scheme are listed in

Appendix A. In the rest of the thesis the terms lesser and greater and the symbols < and

6Morton encoding is one of many space-filling curves [30]. Our algorithms are generic enough to work
with other space-filling curves as well. However, Morton encoding is relatively simpler to implement since,
unlike other space-filling curves, no rotations or reflections are performed.

7Instead of bit-interleaving as described here, our implementation uses a multicomponent version (Ap-
pendix B) of the Morton encoding scheme.

18

00011000011

011
Append d’s level (3)

00011000

Interleave Bits

Binary Form (0100, 0010)

d’s anchor (4, 2)

Figure 6: Computing the Morton id of quadrant “d” in the quadtree shown in Fig. 4(b).
The anchor for any quadrant is it’s lower left corner.

> are used to compare octants based on their Morton ids, and coarser and finer to compare

them based on their relative sizes, i.e., their levels in the octree.

2.1.2 Balance constraint

In many applications involving octrees, it is desirable to impose a restriction on the relative

sizes of adjacent octants [65, 73, 129]. Generalizing Moore’s [90] categorization of the general

balance conditions, we have the following definition for the 2:1 balance constraint:

Definition 1 A linear d-tree is k-balanced if and only if, for any l ∈ [1,L∗), no leaf at level

l shares an m-dimensional face8 (m ∈ [k, d)) with another leaf, at level greater than l + 1.

For the specific case of octrees we use 2-balanced to refer to octrees that are balanced

across faces, 1-balanced to refer to octrees that are balanced across edges and faces, and

0-balanced to refer to octrees that are balanced across corners, edges and faces. The result

of imposing the 2:1 balance constraint is that no octant can be more than twice as coarse

as its adjacent octants. Similarly, 4:1 and higher constraints can be imposed. In this work,

we will restrict the discussion to 2:1 balancing alone. Although, the algorithms presented

8A corner is a 0-dimensional face, an edge is a 1-dimensional face and a face is a 2-dimensional face.

19

here can be extended easily to satisfy higher balance constraints as well. An example of a

0-balanced quadtree is shown in Figure 4(c). The balance algorithm proposed in this work

is capable of k-balancing a given complete linear octree, and since it is hardest to 0-balance

a given octree we report all results for the 0-balance case.

2.2 Algorithms

We will first describe a key algorithmic component (Section 2.2.1) that forms the back-

bone for both our parallel octree construction and balancing algorithms. This is a partition

heuristic known as Block Partition and is specifically designed for octrees. It has two main

sub-components, which are described in Sections 2.2.1.1 and 2.2.1.2.

We then present the parallel octree construction algorithm in Section 2.2.2 and the

parallel balancing algorithm in Section 2.2.3. The overall parallel balancing algorithm

(Algorithm 11) is made up of several components, which are described in Sections 2.2.3.1

through 2.2.3.6.

2.2.1 Block partition

A simple way to partition the domain into an union of blocks would be to take a top-down

approach and create a coarse regular grid, which can be divided9 amongst the processors.

However, this approach does not take load balancing into account since it does not use the

underlying data distribution. Alternatively, one could use a space-filling curve to sort the

octants and then partition them so that every processor gets an almost equal sized chunk

of octants, contiguous in this order. This can be done by assigning the same weight to all

the octants and then using Algorithm 2. However, this approach does not avoid overlaps.

Two desirable qualities of any partitioning strategy are load balancing, and minimization

of overlap between the processor domains. We use a novel parallel bottom-up coarsening

strategy to achieve these. The main intuition behind this partition algorithm (Algorithm 1)

is that a coarse grid partition is more likely to have a smaller overlap between the processor

domains as compared to a partition computed on the underlying fine grid. This algorithm

9If we create a regular grid at level l then the number of cells will be n = 2dl, where d is the dimension.
l is chosen in such a way that n > p.

20

comprises of 3 main stages:

1. Constructing a distributed coarse complete linear octree that is representative of the

underlying data distribution.

2. Assigning weights to the octants in the coarse octree and partitioning them to achieve

almost uniform load across the processors.

3. Projecting the partitioning computed in the previous step onto the original (fine)

linear octree.

We sort the leaves according to their Morton ordering and then distribute them uni-

formly across the processors. We select the least and the greatest octant at each processor

(e.g., octants a and h from Figure 7(a)) and complete the region between them, as described

in Section 2.2.1.1, to obtain a list of coarse octants. We then select the coarsest cell(s) out

of this list of coarse octants (octant e in Figure 7(a)). We use the selected octants at each

processor and construct a complete linear octree as described in Section 2.2.1.2. The leaves

of this complete linear octree are referred to as Blocks. This gives us a distributed coarse

complete linear octree that is based on the underlying data distribution.10

We compute the load of each of the blocks created above by computing the number of

original octants that lie within it. The blocks are then distributed across the processors

using Algorithm 2 so that the total weight on each processor is roughly the same.11

The original octants are then partitioned to align with the coarse block boundaries. Note

that the domain occupied by the blocks and the original octants on any given processor is

not the same, but it does overlap to a large extent. The overlap is guaranteed by the fact

that both are sorted according to the Morton ordering and that the partitioning was based

on the same weighting function (i.e., the number of original octants).

Algorithm 1 lists all the steps described above and Figures 7(b) and 7(c) illustrate a

sample input to Algorithm 1 and the corresponding output, respectively.

10Refer to the Appendix C for an estimate of the number of blocks produced.
11Some of the coarse blocks could be split if it facilitates achieving better load balance across the processors.

21

Region

not relevant

a
b

c d

e
f g

h

(a) (b) (c)

Figure 7: (a) A minimal list of quadrants covering the local domain on a processor, and
(b) A Morton ordering based partition of a quadtree across 4 processors, and (c) the coarse
quadrants and the final partition produced by using the quadtree shown in (b) as input to
Algorithm 1.

Algorithm 1 Partitioning octants into large contiguous blocks (parallel) -
BlockPartition

Input: A distributed sorted list of octants, F.

Output: A list of the blocks, G. F is re-distributed,
but the relative order of the octants is preserved.

Work: O(n), where n = len(F).
Storage: O(n), where n = len(F).
Time: Refer to the Appendix C.

1. T ← CompleteRegion(F [1], F [len(F)]) (Algorithm 3)
2. C ← {x ∈ T | ∀y ∈ T, L(x) ≤ L(y)}
3. G← CompleteOctree(C) (Algorithm 4)
4. for each g ∈ G
5. weight(g) ← len(Fglobal ∩ {g, {D(g)}})
6. end for
7. Partition(G) (Algorithm 2)
8. F ← Fglobal ∩ {{g, {D(g)}}, ∀ g ∈ G}

22

Algorithm 2 Partitioning a distributed list of octants (parallel) -
Partition

Input: A distributed list of octants, W.

Output: The octants re-distributed across processors so that
the total weight on each processor is roughly the same.
The relative order of the octants is preserved.

Work: O(n), where n = len(W).
Storage: O(n), where n = len(W).

1. S ← Scan(weight(W))
2. if rank = (np − 1)
3. TotalWeight ← max(S)
4. Broadcast(TotalWeight)
5. end if
6. w̄ ← TotalWeight

np

7. k ← (TotalWeight) mod np
8. Qtot ← ∅
9. for p← 1 to np
10. if p ≤ k
11. Q← {x ∈W | (p− 1).(w̄ + 1) ≤ S(x) < p.(w̄ + 1)}
12. else
13. Q← {x ∈W | (p− 1).w̄ + k ≤ S(x) < p.w̄ + k}
14. end if
15. Qtot ← Qtot +Q
16. Send(Q, (p− 1))
17. end for
18. R← Receive()
19. W ←W −Qtot +R

23

Algorithm 3 Constructing a minimal linear octree between two octants
(sequential) - CompleteRegion

Input: Two octants, a and b > a.
Output: R, the minimal linear octree between a and b.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← C(Afinest (a, b))
2. for each w ∈W
3. if (a < w < b) AND (w /∈ {A(b)})
4. R← R+ w
5. else if (w ∈ {{A(a)} , {A(b)}})
6. W ←W − w + C(w)
7. end if
8. end for
9. Sort(R)

2.2.1.1 Constructing a minimal linear octree between two octants

Given two octants, a and b > a, we wish to generate the minimal number of octants

that span the region between a and b according to the Morton ordering. The algorithm

(Algorithm 3) first calculates the nearest common ancestor of the octants a and b. This

octant is split into its eight children. Out of these, only the octants that are either greater

than a and lesser than b or ancestors of a are retained and the rest are discarded. The

ancestors of either a or b are split again and we iterate until no further splits are necessary.

This produces the minimal coarse complete linear octree (Figure 8(b)) between the two

octants a and b (Figure 8(a)). This algorithm is based on the Properties 2 and 3 of the

Morton ordering, which are listed in Appendix A.

2.2.1.2 Constructing complete linear octrees from a partial set of octants

In order to construct a complete linear octree from a partial set of octants (e.g. Figure 8(c)),

the octants are initially sorted based on the Morton ordering. Algorithm 8 is subsequently

used to remove overlaps, if any. Two additional octants are added to complete the domain

(Figure 8(d)). The first is the coarsest ancestor of the least possible octant (the deepest

first descendant of the root octant, Property 6), which does not overlap the least octant in

the input. This is also the first child of the nearest common ancestor of the least octant in

24

(a) (b)

(c)

1

2

(d)

Figure 8: (b) The minimal number of octants between the cells given in (a). This is
produced by using (a) as an input to Algorithm 3. (d) The coarsest possible complete
linear quadtree containing all the cells in (c). This is produced by using (c) as an input
to Algorithm 4. The figure also shows the two additional octants added to complete the
domain. The first one is the coarsest ancestor of the least possible octant (the deepest first
descendant of the root octant), which does not overlap the least octant in the input. This
is also the first child of the nearest common ancestor of the least octant in the input and
the deepest first decendant of root. The second is the coarsest ancestor of the greatest
possible octant (the deepest last descendant of the root octant), which does not overlap the
greatest octant in the input. This is also the last child of the nearest common ancestor of
the greatest octant in the input and the deepest last decendant of root.

25

Algorithm 4 Constructing a complete linear octree from a partial
(incomplete) set of octants (parallel) - CompleteOctree

Input: A distributed sorted list of octants, L.
Output: R, the complete linear octree.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. RemoveDuplicates(L)
2. L← Linearise(L) (Algorithm 8)
3. Partition(L) (Algorithm 2)
4. if rank = 0
5. L.push front(FC (Afinest (DFD(root), L[1])))
6. end if
7. if rank = (np − 1)
8. L.push back(LC (Afinest (DLD(root), L[len (L)])))
9. end if
10. if rank > 0
11. Send(L[1],(rank−1))
12. end if
13. if rank < (np − 1)
14. L.push back(Recieve())
15. end if
16. for i← 1 to (len(L)− 1)
17. A← CompleteRegion (L[i], L[i+ 1]) (Algorithm 3)
18. R← R+ L[i] +A
19. end for
20. if rank = (np − 1)
21. R← R+ L[len(L)]
22. end if

the input and the deepest first decendant of root. The second is the coarsest ancestor of

the greatest possible octant (the deepest last descendant of the root octant, Property 8),

which does not overlap the greatest octant in the input. This is also the last child of the

nearest common ancestor of the greatest octant in the input and the deepest last decendant

of root. The octants are distributed across the processors to get a weight-based uniform

load distribution. The local complete linear octree is subsequently generated by completing

the region between every consecutive pair of octants as described in Section 2.2.1.1. Each

processor is also responsible for completing the region between the first octant owned by

that processor and the last octant owned by the previous processor, thus ensuring that a

global complete linear octree is produced.

26

2.2.2 Constructing linear octrees in parallel

Octrees are usually constructed by using a top-down approach: starting with the root

octant, cells are split iteratively based on some criteria, until no further splits are required.

This is a simple and efficient sequential algorithm. However, it’s parallel analogue is not so.

We use the case of point datasets to discuss some shortcomings of a parallel top-down tree

construction. Formally, the problem might be stated as: Construct a complete linear octree

in parallel from a distributed set of points in a domain with the constraint that no octant

should contain more than (Np
max) number of points. Each processor can independently

construct a tree using a top-down approach on its local set of points. Constructing a global

linear octree requires a parallel merge. Merging however, is not straightforward.

1. Consider the case where the local number of points in some region on every processor

was less than (Np
max), and hence all the processors end up having the same level of

coarseness in the region. However, the total number of points in that region could be

more than (Np
max) and hence the corresponding octant should be refined further.

2. In most applications, we would also like to associate a unique processor to each octant.

Thus, duplicates across processors must be removed.

3. For linear octrees overlaps across processors must be resolved.

4. Since there might be overlaps and duplicates, not all the work done by the processors

can be accounted as useful work. This is a subtle yet important point to consider

while analyzing the algorithm for load-balancing.

Previous work [62, 129, 134, 140] on this problem has addressed these issues; however, all

the existing algorithms involve many synchronization steps and thus suffer from a sizable

overhead, resulting in suboptimal isogranular scalability. Instead, we propose a bottom-up

approach for constructing octrees from points. The crux of the algorithm is to distribute

the data across the processors in such a way that there is uniform load distribution across

processors and the subsequent operations to build the octree can be performed by the

processors independently, i.e., requiring no additional communication.

27

Algorithm 5 Constructing a complete linear octree from a distributed list
of points (parallel) - Points2Octree

Input: A distributed list of points, L and a parameter, (Np
max),

which specifies the maximum number of points per octant.
Output: Complete linear Octree, B.
Work: O(n log n), where n = len(L).
Storage: O(n), where n = len(L).

1. F ← [Octant(p,Dmax),∀p ∈ L]
2. Sort(F)
3. B ← BlockPartition(F) (Algorithm 1)

4. for each b ∈ B
5. if NumberOfPoints(b) > Np

max

6. B ← B − b+ C(b)
7. end if
8. end for

First, all points are converted into octants at the maximum depth and then parti-

tioned across the processors using the algorithm described in Section 2.2.1. This produces

a contiguous set of coarse blocks (with their corresponding points) on each processor. The

complete linear octree is generated by iterating through the blocks and by splitting them

based on number of points per block.12 This process is continued until no further splits are

required. This procedure is summarized in Algorithm 5.

2.2.3 Balancing linear octrees in parallel

Balance refinement is the process of refining (subdividing) nodes in a complete linear octree,

which fail to satisfy the balance constraint described in Section 2.1.2. The nodes are refined

until all their descendants, which are created in the process of subdivision, satisfy the

balance constraint. These subdivisions could in turn introduce new imbalances and so

the process has to be repeated iteratively. The fact that an octant can affect octants not

immediately adjacent to it is known as the ripple effect.

We use a two-stage balancing scheme: first we perform local balancing on each processor,

and follow this up by balancing across the inter-processor boundaries. We first use the

parallel bottom-up coarsening and partitioning algorithm (described in section 2.2.1) to

12Refer to the Appendix D on how to sample the points in order to construct the coarsest possible octree.

28

construct coarse blocks on each processor and to distribute the underlying octants. By

construction, the domains covered by these blocks are disjoint and the union of these blocks

covers the entire domain. We use the blocks as a means to minimize the number of octants

that need to be split due to inter-processor violations of the 2:1 balancing rule.

2.2.3.1 Local balancing

There are two approaches for balancing a complete octree. In the first approach, every

node constructs the coarsest possible neighbors satisfying the balance constraint, and sub-

sequently duplicates and overlaps are removed [16]. We describe this approach in Algorithm

6. In an alternative approach, the nodes search for neighbors and resolve any violations

of the balance constraint [127, 129]. The main advantage of the former approach is that

constructing nodes is inexpensive, since it does not involve any searches. However, this

could produce a lot of duplicates and overlaps making the linearizing operations expensive.

Another disadvantage of this approach is that it cannot handle incomplete domains, and can

only operate on subtrees. The advantage of the second approach is that the list of nodes is

complete and linear at any stage in the algorithm. The drawback, however, is that searching

for neighbors is an expensive operation. Our algorithm uses a hybrid approach: it keeps the

number of duplicates and overlaps to a minimum and also reduces the search space thereby

reducing the cost of the searching operation. The complete linear octree is first partitioned

into coarse blocks using the algorithm described in Section 2.2.1. The descendants of any

block, which are present in the fine octree, form a linear subtree with this block as its root.

This block-subtree is first balanced using the approach described in Section 2.2.3.2; the size

of this tree will be relatively small, and hence the number of duplicates and overlaps will

be small too. After balancing all the blocks, the inter-block boundaries in each processor

are balanced using a variant of the ripple propagation algorithm [129] described in Section

2.2.3.4. The performance improvements from using the combined approach are presented

in Section 2.3.2.

29

Balancing
Octant

Current
Octant

Figure 9: The minimal list of balancing quadrants for the current quadrant is shown. This
list of quadrants is generated in one iteration of Algorithm 6.

2.2.3.2 Balancing a local block

In principle, Algorithm 6 can be used to construct a complete balanced subtree of this

block for each octant in the initial unbalanced linear subtree. Note that these balanced

subtrees may have substantial overlap. Hence, Algorithm 8 is used to remove these overlaps.

Lemma 1 shows that this process of merging these different balanced subtrees results in a

complete linear balanced subtree. However, this implementation would be inefficient due

to the number of overlaps, which would in turn increase the storage costs and also make

the subsequent operations of sorting and removing duplicates and overlaps more expensive.

Instead, we interleave the two operations: constructing the different complete balanced

subtrees and merging them. The overall scheme is described in Algorithm 7.

We note that a list of octants forms a balanced complete octree, if and only if for every

octant all its neighbors are at the same level as this octant or one level finer or one level

coarser. Hence, the coarsest possible octants in a complete octree that will be balanced

against this octant are the siblings and the neighbors at the level of this octant’s parent.

Starting with the finest level and iterating over the levels up to but not including the level of

the block, the coarsest possible (without violating the balance constraint) neighbors (Figure

9) of every octant at this level in the current tree (union of the initial unbalanced linear

subtree and newly generated octants) are generated. After processing all the octants at

30

any given level, the list of newly introduced coarse octants is merged with the previous list

of octants at this level and duplicate octants are removed. The newly created octants are

included while working on subsequent levels. Algorithm 8 still needs to be used in the end

to remove overlaps, but the working size is much smaller now compared to the earlier case

(Algorithm 6). To avoid redundant work and to reduce the number of duplicates to be

removed in the end, we ensure that no two elements in the working list at any given level

are siblings of one another. This can be done in a linear pass on the working list for that

level as shown in Algorithm 7.

Lemma 1 Let T1 and T2 be two complete balanced linear octrees with n1 and n2 number of

potential ancestors respectively, then

T3 = (T1 ∪ T2)−

(
n1∑
i=1

{A(T1[i])}

)
−

 n2∑
j=1

{A(T2[j])}


is a complete linear balanced octree.

Proof. T4 = (T1 ∪ T2) is a complete octree. Now,(n1∑
i=1

{A(T1[i])}

)
+

 n2∑
j=1

{A(T2[j])}

 =

(
n3∑
k=1

{A(T4[k])}

)

So, T3 =

(
T4 −

(
n3∑
k=1

{A(T4[k])}

))
is a complete linear octree.

Now, suppose that a node N ∈ T3 has a neighbor K ∈ T3 such that L(K) ≥ (L(N) + 2). It

is obvious that exactly one of N and K must be present in T1 and the other must be present

in T2. Without loss of generality, assume that N ∈ T1 and K ∈ T2. Since T2 is complete,

there exists at least one neighbor of K,L ∈ T2, which overlaps N . Also, since T2 is balanced

L(L) = L(K) or L(L) = (L(K)− 1) or L(L) = (L(K) + 1). So, L(L) ≥ (L(N) + 1). Since

L overlaps N and since L(L) ≥ (L(N) + 1), L ∈ {D(N)}. Hence, N /∈ T3. This contradicts

the initial assumption. Therefore, T3 is also balanced.

2.2.3.3 Searching for neighbors

A leaf needs to be refined if and only if the level of one of its neighbors is at least 2 levels

finer than its own. In terms of a search this presents us two options: search for coarser

31

Algorithm 6 Constructing a complete balanced subtree of an octant, given
one of its descendants (sequential)

Input: An octant, N, and one of its descendants, L.
Output: Complete balanced subtree, R.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← L, T ← ∅, R← ∅
2. for l← L(L) to (L(N) + 1)
3. for each w ∈W
4. R← R+ w + S(w)
5. T ← T + {N (P(w), l − 1) ∩ {D(N)}}
6. end for
7. W ← T, T ← ∅
8. end for
9. Sort(R)
10. RemoveDuplicates(R)
11. R← Linearise(R) (Algorithm 8)

Algorithm 7 Balancing a local block (sequential) - BalanceSubtree

Input: An octant, N, and a partial list of its descendants, L.
Output: Complete balanced subtree, R.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← L, P ← ∅, R← ∅
2. for l← Dmax to (L(N) + 1)
3. Q← {x ∈W | L(x) = l}
4. Sort(Q)
5. T ← {x ∈ Q | S(x) /∈ T}
6. for each t ∈ T
7. R← R+ t+ S(t)
8. P ← P + {N (P(t), l − 1) ∩ {D(N)}}
9. end for
10. P ← P + {x ∈W | L(x) = l − 1}
11. W ← {x ∈W |L(x) 6= l − 1}
12. RemoveDuplicates(P)
13. W ←W + P, P ← ∅
14. end for
15. Sort(R)
16. R← Linearise(R) (Algorithm 8)

32

Algorithm 8 Removing overlaps from a sorted list of octants (sequential)
- Linearise

Input: A sorted list of octants, W.
Output: R, an octree with no overlaps.
Work: O(n), where n = len(W).
Storage: O(n), where n = len(W).

1. for i← 1 to (len(W)− 1)
2. if (W [i] /∈ {A(W [i+ 1])})
3. R← R+W [i]
4. end if
5. end for
6. R← R+W [len(W)]

neighbors or search for finer neighbors. It is much easier to search for coarser neighbors than

it is to search for finer neighbors. If we consider the 2D case, only 3 neighbors coarser than

the current cell need to be searched for. However, the number of potential neighbors finer

than the cell is extremely large, (in 2D it is 2 ·2Dmax−l+3, where l is the level of the current

quadrant), and therefore not practical to search. In addition, the search strategy depends

on the way the octree is stored; the pointer-based approach is more popular [16, 127], but

has the overhead that it has to be rebuilt every time octants are communicated across

processors. In the proposed approach the octree is stored as a linear octree in which the

octants are sorted globally in the ascending Morton order, allowing us to search in O(log n).

In order to find neighbors coarser than the current cell, we use the approach illustrated

in Figure 10. First, the finest cell at the far corner (marked as “Search Corner” in Figure

10) is determined. This is the corner that this octant shares with its parent. This is also

the corner diagonally opposite to the corner common to all the siblings of the current cell.13

The neighbors (at the finest level) of this cell (N) are then selected and used as the search

keys. These are denoted by N s (N,Dmax). The maximum lower bound14 for the given

search key is determined by searching within the complete linear octree. In a complete

linear octree, the maximum lower bound of a search key returns its finest ancestor. If the

search result is at a level finer than or equal to the current cell then it is guaranteed that

13We do not need to search in the direction of the siblings.
14The greatest cell lesser than or equal to the search key is referred to as its maximum lower bound.

33

Search keys

Current cell

Search corner

Search results

Figure 10: To find neighbors coarser than the current cell, we first select the finest cell
at the far corner. The far corner is the one that is not shared with any of the current
cell’s siblings. The neighbors of this corner cell are determined and used as the search keys.
The search returns the greatest cell lesser than or equal to the search key. The possible
candidates in a complete linear quadtree, as shown, are ancestors of the search key.

no coarser neighbor can exist in that direction. This idea can be extended to incomplete

linear octrees (including multiply connected domains). In this case, the result of a search

is ignored if it is not an ancestor of the search key.

2.2.3.4 Ripple propagation

A variant (Algorithm 9) of the prioritized ripple propagation algorithm first proposed by Tu

et al. [127], modified to work with linear octrees, is used to balance the boundary leaves.

The algorithm selects all leaves at a given level (successively decreasing levels starting with

the finest), and searches for neighbors coarser than itself. A list of balancing descendants15

for neighbors that violate the balance condition are stored. At the end of each level, any

octant that violated the balance condition is replaced by a complete linear subtree. This

subtree can be obtained either by using the sequential version of Algorithm 4 or by using

15Balancing descendants are the minimum number of descendants that will balance against the octant
that performed the search.

34

Algorithm 10, which is a variant of Algorithm 7. Both the algorithms perform equally

well.16

One difference with earlier versions of the ripple propagation algorithm is that our

version works with incomplete domains. In addition, earlier approaches [16, 127, 129] have

used pointer-based representations of the local octree, which incurs the additional cost of

constructing the pointer-based tree from the linear representation and also increases the

memory footprint of the octree as 9 additional pointers17 are required per octant. The

work and storage costs incurred for balancing using the proposed algorithm to construct

n balanced octants are O(n log n) and O(n), respectively. This is true irrespective of the

domain, including domains that are not simply connected.

2.2.3.5 Insulation against the ripple-effect

An interesting property of complete linear octrees is that a boundary octant cannot be finer

than its internal neighbors18 (Figure 11(a)) [127]. So, if a node (at any level) is internally

balanced then to balance it with all its neighboring domains, it is sufficient to appropriately

refine the internal boundary leaves.19 The interior leaves need not be refined any further.

Since the interior leaves are also balanced against all their neighbors, they will not force

any other octant to split. Hence, interior octants do not participate in the remaining stages

of balancing.

Definition 2 For any octant, N, in the octree, we refer to the union of the domains occupied

by its potential neighbor’s at the same level as N (N (N,L(N))) as the insulation layer

around octant N . This will be denoted by I(N).

Observe that the phenomenon with interior octants described above is only an example

of a more general property: No octant outside the insulation layer (Definition 2) around

16We indicate which algorithms are parallel and which are sequential. In our notation the sequential
algorithms are sometimes invoked with a distributed object: it is implied that the input is the local instance
of the distributed object.

17One pointer to the parent and eight pointers to its children.
18A neighbor of a boundary octant that does not touch the boundary is referred to as an internal neighbor

of the boundary octant.
19We refer to the descendants of a node that touch its boundary from the inside as its internal boundary

leaves.

35

Algorithm 9 Ripple propagation on incomplete domains (sequential) - Ripple

Input: L, a sorted incomplete linear octree.
Output: W, a balanced incomplete linear octree.
Work: O(n log n), where n = len(L).
Storage: O(n), where n = len(L).

1. W ← L

2. for l← Dmax to 3
3. T,R← ∅
4. for each w ∈W
5. if L(w) = l
6. K ← search keys(w) (Section 2.2.3.3)
7. (B, J)← maximum lower bound (K, W)

(J is the index of B in W)
8. for each (b, j) ∈ (B, J) | (∃ k ∈ K | b ∈ {A(k)})
9. T [j]← T [j] + ({N s (w, (l − 1))} ∩ {D(b)})
10. end for
11. end if
12. end for
13. for i← 1 to len(W)
14. if T [i] 6= ∅
15. R← R+ CompleteSubtree(W [i], T [i]) (Algorithm 10)
16. else
17. R← R+W [i]
18. end if
19. end for
20. W ← R
21. end for

Boundary
Octant

Internal
Octant

(a)

N

Neighbours of N
at level L(N)

(b)

Figure 11: (a) A boundary octant cannot be finer than its internal neighbors, and (b) an
illustration of an insulation layer around octant N. No octant outside this layer of insulation
can force a split on N.

36

Algorithm 10 Completing a local block (sequential) - CompleteSubtree

Input: An octant, N, and a partial list of its descendants, L.
Output: Complete subtree, R.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← L

2. for l← Dmax to L(N) + 1
3. Q← {x ∈W | L(x) = l}
4. Sort(Q)
5. T ← {x ∈ Q | S(x) /∈ T}
6. for each t ∈ T
7. R← R+ t+ S(t)
8. P ← P + S (P(t))
9. end for
10. P ← P + {x ∈W | L(x) = l − 1}
11. W ← {x ∈W | L(x) 6= l − 1}
12. RemoveDuplicates(P)
13. W ←W + P, P ← ∅
14. end for
15. Sort(R)
16. R← Linearise(R) (Algorithm 8)

octant N can force N to split (Figure 11(b)). This property allows us to decouple the

problem of balancing and allows us to work on only a subset of nodes in the octree and yet

ensure that the entire octree is balanced.

2.2.3.6 Balancing inter-processor boundaries

After the intra-processor, and inter-block boundaries are balanced, the inter-processor

boundaries need to be balanced. Unlike the internal leaves (Section 2.2.3.5), the octants

on the boundary do not have any insulation against the ripple-effect. Moreover, a ripple

can propagate across multiple processors. Most approaches to perform this balance have

been based on extensions of the sequential ripple algorithm to a parallel case by performing

parallel searches. Although this approach works well for small problems on a small number

of processors, it shows suboptimal isogranular scalability [129]. The main reason is iterative

communication. Although there are many examples of scalable parallel algorithms that

involve iterative communication, they overlap communication with computation to reduce

37

Intra-processor
boundaries

Inter-processor
boundaries

Local boundary
octants

Remote boundary
octants

Figure 12: A coarse quadtree illustrating inter and intra processor boundaries. First,
every processor balances each of its local blocks. Then, each processor balances the cells on
its intra-processor boundaries. The octants that lie on inter-processor boundaries are then
communicated to the respective processors and each processor balances the combined list
of local and remote octants.

the overhead associated with communication [51, 112]. Currently, there is no method that

overlap communication with computation for the balancing problem. Thus, any algorithm

that uses iterative parallel searches for balancing octrees will have high synchronization

costs.

In order to avoid parallel searches, the problem of balancing is decoupled. In other

words, each processor works independently without iterative communication. To achieve

this, two properties are used: (1) the only octants that need to be refined after the local

balancing stage are the ones whose insulation layer is not contained entirely within the same

processor. We will refer to them as the unstable octants. and (2) an artificial insulation

layer (Property ??) for these octants can be constructed with little communication overhead

(Section 2.2.3.7).

Note that although it is sufficient to build an insulation layer for octants that truly

touch the inter-processor boundary, it is non-trivial to identify such octants. Moreover,

even if it was easy to identify the true inter-processor boundary octants all unstable octants

must participate in subsequent balancing as well. Hence, the insulation layer is built for

all unstable octants as they can be identified easily. Since most of the unstable octants

38

p1

p2 p3

p4

N Insulation
Zone

Stage 1

Stage 2

Figure 13: Communication for inter-processor balancing is done in two stages: First, every
octant on the inter-processor boundary (Stage 1) is communicated to processors that overlap
with its insulation layer. Next, all the local inter-processor boundary octants that lie in the
insulation layer of a remote octant (N) received from another processor are communicated
to that processor (Stage 2).

do touch the inter-processor boundaries, we will simply refer to them as inter-processor

boundary octants in the following sections.

The construction of the insulation layer for the inter-processor boundary octants is done

in two stages (Figure 13): First, every local octant on the inter-processor boundary (Figure

12) is communicated to processors that overlap with its insulation layer. These processors

can be determined by comparing the local boundary octants against the global coarse blocks.

In the second stage of communication, all the local inter-processor boundary octants that

overlap with the insulation layer of a remote octant received from another processor are

communicated to that processor. Octants that were communicated in the first stage are

not communicated to the same processor again. For simplicity, Algorithm 11 only describes

a näıve implementation for determining the octants that need to be communicated in this

stage. However, this can be performed much more efficiently using the results of Lemma 2

and Lemma 3. After this two-stage communication, each processor balances the union of

the local and remote boundary octants using the ripple propagation based method (Section

2.2.3.4). At the end only the octants spanning the original domain spanned by the processors

are retained. Although there is some redundancy in the work, it is compensated by the fact

that we avoid iterative communications and also the communication message size is smaller

than any alternative parallel search-based approach. Section 2.2.3.7 gives a detailed analysis

of the communication cost involved.

39

Lemma 2 If octants a and b > a do not overlap, then there can be no octant c > b that

overlaps a.

Proof. If a and c overlap, then either a ∈ {A(c)} or a ∈ {D(c)}. Since c > a, the latter

is a direct violation of Property 3 and hence is impossible. Hence, assume that c ∈ {D(a)}.

By Property 8, c ≤ DLD(a). Property 9 would then imply that b ∈ {D(a)}. Property 4

would then imply that a and b must overlap. Since, this is not true our initial assumption

must be wrong. Hence, a and c can not overlap.

Lemma 3 Let N be an inter-processor boundary octant belonging to processor q. If the

I(N) is contained entirely within processors q and p, then the inter-processor boundary

octants on processor p that overlap with I(N) and that were not communicated to q in the

first stage, will not force a split on N .

Proof. Note that at this stage both p and q are internally balanced. Thus, N will be

forced to split if and only if there is a true inter-processor boundary octant, a, on p touching

an octant, b, on q such that L(a) > (L(b)+1) and when b is split it starts a cascade of splits

on octants in q that in turn force N to split. Since every true inter-processor boundary

octant is sent to all its adjacent processors, a must have been sent to q during the first stage

of communication.

Algorithm 11 gives the pseudo-code for the overall parallel balancing.

2.2.3.7 Communication costs for parallel balancing

Although not all unstable octants are true inter-processor boundaries, it is easier to visualize

and understand the arguments presented in this section if this subtle point is ignored. More-

over, since we only compare the communication costs associated with the two approaches

(upfront communication versus iterative communication) and since the majority of unstable

octants are true inter-processor boundary octants it is not too restrictive to assume that all

unstable octants are true inter-processor boundary octants.

Let us assume that prior to parallel balancing there are a total of N octants in the

global octree. The octants that lie on the inter-processor boundary can be classified based

40

Algorithm 11 Balancing complete linear octrees (parallel)

Input: A distributed sorted complete linear octree, L.
Output: A distributed complete balanced linear octree, R.
Work: O(n log n), where n = len(L).
Storage: O(n), where n = len(L).
Time: Refer to Section 2.2.3.7.

1. B ← BlockPartition(L) (Algorithm 1)
2. C ← ∅
3. for each b ∈ B
4. C ← C+ BalanceSubtree(b, {{D(b)} ∩ L}) (Algorithm 7)
5. end for
6. D ← {x ∈ C | ∃ z ∈ {I(x)} | B(z) 6= B(x)}

(intra-processor boundary octants)
7. S ← Ripple(D) (Algorithm 9)
8. F ← (C −D) ∪ S
9. G← {x ∈ S | ∃ z ∈ {I(x)} | rank(z) 6= rank(x) }

(inter-processor boundary octants)
10. for each g ∈ G
11. for each b ∈ Bglobal −B
12. if {b ∩ I(g)} 6= ∅
13. Send(g, rank(b))
14. end if
15. end for
16. end for
17. T ← Receive()
18. for each g ∈ G
19. for each t ∈ T
20. if {g ∩ I(t)} 6= ∅
21. if g was not sent to rank(t) in Step 10
22. Send(g, rank(t))
23. end if
24. end if
25. end for
26. end for
27. K ← Receive()
28. H ← Ripple(G ∪ T ∪ K)
29. R← {x ∈ {H ∪ F} | {B ∩ {x, {A(x)}}} 6= ∅}
30. R← Linearise(R) (Algorithm 8)

41

on the degree of the face20 that they share with the inter-processor boundary. We use Nk

to represent the number of octants that touch any m-dimensional face (m ∈ [0, k]) of the

inter-processor boundary.

Note that all vertex boundary octants are also edge and face boundaries and that all edge

boundary octants are also face boundary octants. Therefore we have, N ≥ N2 ≥ N1 ≥ N0,

and for N � np, we have N � N2 � N1 � N0.

Although it is theoretically possible that an octant is larger than the entire domain

controlled by some processors, it is unlikely for dense octrees. Thus, ignoring such cases we

can show that the total number of octants of a d-tree that need to be communicated in the

first stage of the proposed approach is given by

Nu =
d∑

k=1

2d−kNk−1. (1)

Consider the example shown in Figure 14. The domain on the left is partitioned into

two regions, and in this case all boundary octants need to be transmitted to exactly one

other processor. The addition of the additional boundary, in the figure on the right, does

not affect most boundary nodes, except for the boundary octants that share a corner, i.e.,

a 0-dimensional face with the inter processor boundaries. These octants need to be sent to

an additional 2 processors, and that is the reason we have a factor of 2d−k in Equation 1.

For the case of octrees, additional communication is incurred because of edge boundaries as

well as vertex boundaries. Edge boundary octants need to be communicated to 2 additional

processors whereas the vertex boundary octants need to be communicated to 4 additional

processors (7 processors in all).

Now, we analyze the cost associated with the second communication step in our algo-

rithm. Consider the example shown in Figure 13. Note that all the immediate neighbors

of the octant under consideration (octant on processor 1 in the figure), were communicated

during the first stage. The octants that lie in the insulation zone of this octant and that

were not communicated in the first stage are those that lie in a direction normal to the

20A corner is a 0-degree face, an edge is a 1-degree face and a face is a 2-degree face.

42

Inter-processor
boundaries

Boundary cells
along edges

Boundary cells
on corners

Figure 14: Cells that lie on the inter-processor boundaries. The figure on the left shows
an inter-processor boundary involving 2 processors and the figure on the right shows an
inter-processor boundary involving 4 processors.

inter-processor boundary. However, most octants that lie in a direction normal to the inter-

processor boundary are internal octants on other processors. As shown in Figure 13, the

only octants that lie in a direction normal to one inter-processor boundary and are also

tangential to another inter-processor boundary are the ones that lie in the shadow of some

edge or corner boundary octant. Therefore, we only communicate O(N1 + N0) octants

during this stage. Since N � np and N2 � N1 � N0 for most practical applications, the

cost for this communication step can be ignored.

The minimum number of search keys that need to be communicated in a search-based

approach is given by

Ns =
d∑

k=1

2k−1Nk−1. (2)

Again considering the example shown in Figure 14, each boundary octant in the figure

shown on the left, generates 3 search keys, out of which one lies on the same processor.

The other two need to be communicated to the other processor. The addition of the extra

boundary, in the figure on the right, does not affect most boundary nodes, except for

the boundary octants that share a corner, i.e., a 0-dimensional face with the inter processor

boundaries. These octants need to be sent to an additional processor, and that is the reason

we have a factor of 2k−1 in Equation 2. It is important to observe the difference between

the communication estimates for upfront communication, 1, with that of the search-based

approach, 2. For large octrees,

Nu ≈ N2,

43

while,

Ns ≈ 4N2.

Note, that in arriving at the communication estimate for the search-based approaches,

we have not accounted for the additional octants created during the inter-processor balanc-

ing. In addition, iterative search-based approaches are further affected by communication

lag and synchronization. Our approach in contrast requires no subsequent communication.

In conclusion, the communication cost involved in the proposed approach is lower than

that of search-based approaches.21

2.3 Results

The performance of the described algorithms is evaluated by a number of numerical ex-

periments, including fixed-size and isogranular scalabilty analysis. The algorithms were

implemented in C++ using the MPI library. A variant of the sample sort algorithm was

used to sort the points and the octants, which incorporates a parallel bitonic sort to sort

the sample elements as suggested in [51]. PETSc [10, 9] was used for profiling the code. All

tests were performed on the Pittsburgh Supercomputing Center’s TCS-1 terascale comput-

ing HP AlphaServer Cluster comprising of 750 SMP ES45 nodes. Each node is equipped

with four Alpha EV-68 processors at 1 GHz and 4 GB of memory. The peak performance is

approximately 6 Tflops, and the peak performance for the top-500 LINPACK benchmark is

approximately 4 Tflops. The nodes are connected by a Quadrics interconnect, which deliv-

ers over 500 MB/s of message-passing bandwidth per node and has a bisection bandwidth

of 187 GB/s. In our tests, we have used 4 processors per node wherever possible.

We present results from an experiment that we conducted to highlight the advantage

of using the proposed two-stage method for intra-processor balancing. Also, we present

fixed-size and isogranular scalability analysis results.

21We are assuming that both the approaches use the same partitioning of octants.

44

Table 3: Input and output sizes for the construction and balancing algorithms for the
scalability experiments on Gaussian, Log-Normal, and Regular point distributions. The
output of the construction algorithm is the input for the balancing algorithm. All the
octrees were generated using the same parameters: Dmax = 30 and Np

max = 1; differences
in the number and distributions of the input points result in different octrees for each case.
The maximum level of the leaves for each case is listed. Note that none of the leaves
produced were at the maximum permissible depth (Dmax). This depends only on the input
distribution. Regular point distributions are inherently balanced, and so we report the
number of octants only once.

Gaussian Log-Normal Regular
Problem Balancing Max. Balancing
size Points Leaves Leaves Level Points Leaves Leaves L∗ Points Leaves L∗

before after (L∗) before after

1M 180K 607K 0.99M 14 180K 607K 0.99M 13 0.41M 0.99M 7
2M 361K 1.2M 2M 15 361K 1.2M 2M 14 2M 2M 7
4M 720K 2.4M 3.9M 14 720K 2.4M 3.9M 15 2.4M 4.06M 8
8M 1.5M 4.9M 8.0M 16 1.5M 4.9M 8.1M 16 3.24M 7.96M 8
16M 2.9M 9.7M 16M 16 2.9M 9.7M 16M 16 16.8M 16.8M 8
32M 5.8M 19.6M 31.9M 17 5.8M 19.6M 31.8M 17 19.3M 32.5M 9
64M 11.7M 39.3M 64.4M 18 11.7M 39.3M 64.7M 17 25.9M 63.7M 9
128M 23.5M 79.3M 0.13B 19 23.5M 79.4M 0.13B 19 0.13B 0.13B 9
256M 47M 0.16B 0.26B 19 47M 0.16B 0.26B 19 0.15B 0.26B 10
512M 94M 0.32B 0.52B 20 94M 0.32B 0.52B 20 0.17B 0.34B 10
1B 0.16B 0.55B 0.91B 21 0.16B 0.55B 0.91B 20 1.07B 1.07B 10

2.3.1 Test data

Data of different sizes were generated for three different spatial distributions of points;

Gaussian, Log-normal and Regular. The Regular distribution corresponds to a set of points

distributed on a Cartesian grid. Datasets of increasing sizes were generated for all three

distributions so that they result in balanced octrees with octants ranging from 106(1M) to

109(1B). All of the experiments were carried out using the same parameters: Dmax = 30

and Np
max = 1. Only the number and distribution of points were varied to produce the

various octrees. The fixed size scalability analysis was performed by selecting the 1M, 32M,

and 128M Gaussian point distributions to represent small, medium and large problems. We

provide the input and output sizes for the construction and balancing algorithms in Table

3. The output of the construction algorithm is the input for the balancing algorithm.

45

2.3.2 Comparison between different strategies for local balancing

In order to assess the advantages of using a two-stage approach for local balancing over

existing methods, we compared the runtimes on different problem sizes. Since the compar-

ison was for different local-balancing strategies, it does not involve any communication and

hence was evaluated on a shared memory machine. We compared our two-stage approach,

discussed in Section 2.2.3.1, with two other approaches; the first approach is the prioritized

ripple propagation idea applied on the entire local domain [129], and the second approach

is to use ripple propagation in 2 stages, where the local domain is first split into coarser

blocks22 and ripple propagation is applied first to each local block and then repeated on

the boundaries of all local blocks. Fixed size scalability analysis was performed to compare

the above mentioned three approaches with problem sizes of 1, 4, 8, and 16 million octants.

The results are shown in in Figure 15. All three approaches demonstrate good fixed size

scalability, but the proposed two-stage approach has a lower absolute runtime.

2.3.3 Scalability analysis

In this Section, we provide experimental evidence of the good scalability of our algorithms.

We present both fixed-size and isogranular scalability analysis. Fixed size scalability was

performed for different problem sizes to compute the speedup when the problem size is

kept constant and the number of processors is increased. Isogranular scalability analysis is

performed by tracking the execution time while increasing the problem size and the number

of processors proportionately. By maintaining the problem size per processor (relatively)

constant as the number of processors is increased, we can identify communication problems

related to the size and frequency of the messages as well as global reductions and problems

with algorithmic scalability.

One of the important components in our algorithms is the sample sort routine, which

has a complexity of O(Nnp
log N

np
+ n2

p log np) if the samples are sorted using a serial sort.

This causes problems when O(N) < O(n3
p) as the serial sort begins to dominate and results

in poor scalability. For example, at np = 1024 we would require N
np

> 106 to obtain

22The same partitioning strategy as used in our two-stage algorithm was used to obtain the coarser blocks.

46

np

seconds

1 2 4 8

0

4

8

12

16

20

24

28

32

36
Ripple
Ripple-Ripple
Two Stage

(a)

np

seconds

1 2 4 8

0

28

56

84

112

140

168

196

224

252
Ripple
Ripple-Ripple
Two Stage

(b)

np

seconds

1 2 4 8

0

100

200

300

400

500

600

700

800

900
Ripple
Ripple-Ripple
Two Stage

(c)

np

seconds

1 2 4 8

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Ripple
Ripple-Ripple
Two Stage

(d)

Figure 15: Comparison of three different approaches for balancing linear octrees (a) for a
Gaussian distribution of 1M octants, (b) for a Gaussian distribution of 4M octants, (c) for
a Gaussian distribution of 8M octants, and (d) for a Gaussian distribution of 16M octants.

47

good scalability. This presents some problems as it becomes difficult to fit arbitrarily large

problems on a single processor. A solution, previously proposed in [51], is to sort the

samples using the parallel bitonic sort; this reduces the complexity of the overall parallel

sort function to O(Nnp
log N

np
+ np log np). Our implementation uses this approach.

Isogranular scalability analysis was performed for all three distributions with an output

size of roughly 1M octants per processor, for processor counts ranging from 1 to 1024. Wall-

clock timings, speedup, and efficiency for the isogranular analysis for the three distributions

are shown in Figures 16, 17, and 18.

Since the regularly spaced distribution is inherently balanced, the input point sizes were

much greater for this case than those for Gaussian and Log-normal distributions. Both the

Gaussian and Log-normal distributions are imbalanced; and in Table 3, we can see that,

on average, the number of unbalanced octants is three times the number of input points

and the number of octants doubles after balancing. For the regularly spaced distribution,

we observe that in some cases the number of octants is the same as the number of input

points (2M, 16M, 128M and 1B). These are special cases where the resulting grid is a perfect

regular grid. Thus, while both the input and output grain sizes remain almost constant for

the Gaussian and LogNormal distributions, only the output grain size remains constant for

the Regular distribution. Hence, the trend for the regular distribution is a little different

from those for the Gaussian and LogNormal distributions.

The plots demonstrate the good isogranular scalability of the algorithm. We achieve

near optimal isogranular scalability for all three distributions (50s per 106 octants per

processor for the Gaussian and Log-normal distributions and 25s for the regularly spaced

distribution.).

Fixed size scalability tests were also performed for three problem set sizes, small (1

million points), medium (32 million points), and large (128 million points), for the Gaussian

distribution. These results are plotted in Figures 19, 20 and 21.

48

np

seconds

1 2 4 8 16 32 64 128 256 512 1024

0

5

10

15

20

25

30

35

40

45

50

55

60

Construction

Internal Balance

Boundary Balance

Communication in Balance

2.3

8.7

2.8

1.8

3.0

11.8

3.4

1.5

3.9

16.6

6.4

2.5

3.0

24.6

8.4

3.3

5.6

26.0

6.6

3.4

4.6

17.1

10.7

4.2

4.8

18.6

9.1

3.8

6.2

23.1

9.7

4.7

6.4

20.3

11.0

4.6

8.4

21.8

10.1

5.8

15

15

11

14

Figure 16: Isogranular scalability for a Gaussian distribution of 1M octants per processor.
From left to right, the bars indicate the time taken (in seconds) for the different components
of our algorithms for increasing processor counts. The bar for each processor is partitioned
into 4 sections. From top to bottom, the sections represent the time taken (in seconds) for
(1) communication (including related pre-processing and post-processing) during balance
refinement (Algorithm 11), (2) balancing across intra and inter processor boundaries
(Algorithm 9), (3) balancing the blocks (Algorithm 7), and (4) construction from points
(Algorithm 5).

49

np

seconds

1 2 4 8 16 32 64 128 256 512 1024

0

5

10

15

20

25

30

35

40

45

50

55

60

Construction

Internal Balance

Boundary Balance

Communication in Balance

2.3

11.1

0.7

1.4

3.1

11.3

4.9

2.1

3.2

11.4

6.5

2.2

3.9

15.8

7.2

3.1

4.7

20.0

8.7

3.0

4.1

14.7

9.9

3.4

5.3

22.4

9.5

4.5

4.6

20.7

9.8

4.1

5.5

19.2

10.0

3.5

7.7

20.2

10.7

6.4

15

20

9

14

Figure 17: Isogranular scalability for a Log-normal distribution of 1M octants per processor.
From left to right, the bars indicate the time taken (in seconds) for the different components
of our algorithms for increasing processor counts. The bar for each processor is partitioned
into 4 sections. From top to bottom, the sections represent the time taken (in seconds) for
(1) communication (including related pre-processing and post-processing) during balance
refinement (Algorithm 11), (2) balancing across intra and inter processor boundaries
(Algorithm 9), (3) balancing the blocks (Algorithm 7), and (4) construction from points
(Algorithm 5).

50

np

seconds

1 2 4 8 16 32 64 128 256 512 1024

0

5

10

15

20

25

30

35

40

45

50

55

Construction

Internal Balance

Boundary Balance

Communication in Balance

3.2

10.1

0.0

1.9

8.1

13.96

0.0

2.4

5.7

9.0

0.0

3.5

4.4

10.6

0.0

2.5

8.0

14.4

0.0

2.9

5.8

9.3

0.0

4.1

4.8

10.9

0.0

3.1

8.0

14.7

0.0

3.9

6.7

9.0

0.0

5.0

6.4

6.3

0.0

5.0

18

14

0.0

19

Figure 18: Isogranular scalability for a Regular distribution of 1M octants per processor.
From left to right, the bars indicate the time taken (in seconds) for the different components
of our algorithms for increasing processor counts. The bar for each processor is partitioned
into 4 sections. From top to bottom, the sections represent the time taken (in seconds) for
(1) communication (including related pre-processing and post-processing) during balance
refinement (Algorithm 11), (2) balancing across intra and inter processor boundaries
(Algorithm 9), (3) balancing the blocks (Algorithm 7) and (4) construction from points
(Algorithm 5). While both the input and output grain sizes remain almost constant for
the Gaussian and LogNormal distributions, only the output grain size remains constant for
the Uniform distribution. Hence, the trend seen in this study is a little different from those
for the Gaussian and LogNormal distributions.

51

np

seconds

1 2 4 8 16

0

2

4

6

8

10

12

14

16

Construction

Balancing

2.3

13.3

1.3

7.0

0.7

4.1

0.7

4.1

0.4

2.3

Figure 19: Fixed size scalability for a Gaussian distribution of 1M octants. From left to
right, the bars indicate the time taken (in seconds) for the different components of our
algorithms for increasing processor counts. The bar for each processor is partitioned into
2 sections. The top and bottom sections of each column represent the total time taken
(in seconds) for (1) balance refinement (Algorithm 11) and (2) construction (Algorithm
5), respectively.

2.4 Summary

In this chapter, we presented new parallel algorithms for constructing and balancing large

linear octrees on distributed memory machines. We also tested MPI-based scalable parallel

implementations for both the algorithms. Our algorithms have several important features:

• Experiments on three different types of input distributions demonstrate that the al-

gorithms are insensitive to the underlying data distribution.

• Our algorithms avoid iterative communications and thus are able to achieve low ab-

solute runtime and good scalability.

• Experiments demonstrate that the proposed two-stage intra-processor balancing al-

gorithm has a significantly lower running time compared to alternate approaches.

• We demonstrated scalability up to 1024 processors: we were able to construct and

balance octrees with over 1 billion octants in less than one minute.

52

np

seconds

8 16 32 64 128

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Construction

Balancing

27.7

651.2

11.3

78.7

4.6

32.0

2.5

17.2

1.7

9.6

Figure 20: Fixed size scalability for a Gaussian distribution of 32M octants. From left
to right, the bars indicate the time taken (in seconds) for the different components of our
algorithms for increasing processor counts. The bar for each processor is partitioned into
2 sections. The top and bottom sections of each column represent the total time taken
(in seconds) for (1) balance refinement (Algorithm 11) and (2) construction (Algorithm
5), respectively.

53

np

seconds

32 64 128 256 512

0

50

100

150

200

250

300

350

400

450

500

550

600

Construction

Balancing

59.7

441.8

9.5

62.8

6.2

37.5

3.9

18.8

4.3

10.8

Figure 21: Fixed size scalability for a Gaussian distribution of 128M octants. From left
to right, the bars indicate the time taken (in seconds) for the different components of our
algorithms for increasing processor counts. The bar for each processor is partitioned into
2 sections. The top and bottom sections of each column represent the total time taken
(in seconds) for (1) balance refinement (Algorithm 11) and (2) construction (Algorithm
5), respectively.

54

CHAPTER III

OCTREE MESHING FOR FINITE ELEMENT COMPUTATIONS

In order to use the 2:1 balanced linear octrees described in the previous chapter for finite

element computations, we need additional data structures to store element-to-vertex map-

pings. This chapter presents a parallel algorithm for constructing these data structures; this

process is referred to as “meshing”. We also present a compression scheme to compress the

linear octree and the element-to-vertex connectivity information. Further, we describe how

to construct finite element shape functions using these data structures and describe how we

implement a typical finite element matrix-vector multiplication (MatVec1) without actually

assembling the matrix. We focus on reducing (1) the time to build these data structures;

(2) the memory overhead associated in storing them; and (3) the time to perform finite

element calculations using these data structures.

We avoid using multiple passes (projections) to enforce conformity; instead, we perform

a single traversal by mapping each octant to one of eight pre-computed element types,

depending on the configuration of hanging vertices for that element. Our data structure

does not allow efficient random queries in the octree, but such access patterns are not

necessary for finite element calculations.

The memory overhead associated with unstructured meshes arises from the need to store

the element connectivity information. In regular grids such connectivity is not necessary

as the indexing is explicit. For general unstructured meshes one has to explicitly store the

indices that point to the element vertices. In octrees we still need to store this information,

but it turns out that instead of storing eight integers (32 bytes), we only need to store

12 bytes. We use the Golomb-Rice encoding scheme to compress the element connectivity

information and to represent it as a Uniquely Decodable Code (UDC) [79]. In addition,

1A MatVec is a function that takes a vector as input and returns another vector, the result of applying
the matrix on the input vector.

55

the linear octree is stored in a compressed form that requires only one byte per octant (the

level of the octant).

Finally, we employ overlapping of communication and computation to efficiently handle

octants shared by several processors or “ghost” octants.2 In addition, the Morton-ordering

offers reasonably good memory locality.

Contributions. In a nutshell, the contributions in this chapter are the following:

• We present a parallel algorithm to build element-to-nodal connectivity information

efficiently. We use apriori communication of ghost elements to do this instead of

the more expensive explicity parallel searches. We also introduce the “4-way” search

strategy to reduce the number of searches required for meshing.

• We present a compression scheme for the octree and the element connectivity that

achieves a three-fold compression (a total of four words per octant).

• We present a lookup-table-based conforming discretization scheme that requires only

a single traversal for the evaluation of a partial differential operator.

• Our implementation supports looping over some ghost elements as well, which allows

us to avoid 1 communication step in every finite element Matvec.

Limitations. Some of the limitations of our implementation are listed below:

• Our current implementation only results in a second-order accurate method. A higher-

order method can be obtained either by extending the meshing algorithm to support

higher order discretizations.

• Problems with complex geometries are not directly supported in our implementation;

in principle, the algorithms described here can be combined with fictitious domain

methods [45, 94] to allow solution of such problems but the computational costs will

increase and the order of accuracy will be reduced.

2Every octant is owned by a single processor. However, the values of unknowns associated with octants
on interpocessor boundaries need to be shared among several processors. We keep multiple copies of the
information related to these octants and we term them ghost octants.

56

Algorithm 12 Octree Meshing And Compression

Input: A distributed sorted complete balanced linear octree, L
Output: Compressed Octree Mesh and Compressed Octree.

1. Embed L into a larger octree, O, and add boundary octants.
2. Identify “hanging” vertices.
3. Exchange “Ghost” octants.
4. Build lookup tables for first layer of octants. (Section 3.1.1)
5. Perform 4-way searches for remaining octants.

(Section 3.1.2)
6. Store the levels of the octants and discard the anchors.
7. Compress the mesh (Section 3.2).

• Far-field and periodic boundary conditions are not supported in our implementation.

Remark. Our algorithms have O(n log n) work and O(n) storage complexity. For typical

distributions of octants (and work per octant), the parallel time complexity of our scheme

is O(n/np log(n/np)+np log np), where n is the final number of leaves and np is the number

of processors. In contrast to existing implementations, our methods avoid iterative commu-

nications and thus, achieve low absolute runtime and excellent scalability. Our algorithm

has scaled to four billion octants on 4096 processors on a Cray XT3 (“Big Ben”) at the

Pittsburgh Supercomputing Center.

Organization of the chapter. The rest of this chapter is organized as follows. In Section

3.1 we describe the construction of element-to-vertex mappings and describe the octree and

mesh compression schemes in Section 3.2. In Section 3.3 we describe how we perform the

finite element computation. In Section 3.4 we present performance results that demonstrate

the efficiency of our implementation.

3.1 Computing the element to vertex mapping

In this section, we describe how we construct the data structures required to perform the

finite element Matvecs efficiently. The data structure is designed to be cache efficient by

using a Morton ordering based element traversal, and by reducing the memory footprint

57

Algorithm 13 Finding the child number of an octant

Input: The anchor (x,y,z) and level (d) of the octant and the maximum
permissible depth of the tree (Lmax).
Output: c, the child number of the octant.

1. l← 2(Lmax−d)

2. lp ← 2(Lmax−d+1)

3. (i, j, k)← (x, y, z) mod lp
4. (i, j, k)← (i, j, k)/l
5. c← (4k + 2j + i)

using compressed representations for both the octree and the element-to-vertex connectiv-

ity tables. The algorithm for generating the mesh given a distributed, sorted, complete,

balanced linear octree is outlined in Algorithm 12.

In the subsequent sections, we use the term “child number” to refer to an octant’s

configuration with respect to its parent. It is also the octant’s position relative to its

siblings in a list sorted in the Morton ordering. The child number of an octant is a function

of the coordinates of its anchor and its level in the tree. Algorithm 13 is used to compute the

child number of an octant. For convenience, the vertices of a given element are numbered

according to the Morton ordering. Hence, an octant with a child number equal to k will

share its k-th vertex with its parent. An example is shown in Figure 22(a). There are only

8 possible child number configurations.

Since all vertices, except boundary vertices, can be uniquely associated with an octant

(the octant with its anchor at the same coordinate as the vertex) we use an interleaved

representation where a common index is used for both the elements and the vertices. Since

the input balanced octree does not have any octants corresponding to the positive boundary

vertices, we embed the input octree in a larger octree with maximum depth Dmax+1; here,

Dmax is the maximum depth of the input octree. All elements on the positive boundaries

in the input octree add a layer of octants, with a single linear pass (O(n/p)) followed by

a parallel sort (O(n/p log n/p))). Since the input octree is already sorted we only sort the

extra octants and append them to the original octree.

The second step in the the computation of the element-to-vertex mapping is the iden-

tification of hanging vertices. Vertices that exist at the center of a face of another octant

58

are called face-hanging vertices. Vertices that are located at the center of an edge of an-

other octant are called edge-hanging vertices. Octants that are the 0 or 7 children of their

parent (a0, a7) can never be hanging (Figure 22(a)). Octants that are 3, 5, 6 children of

their parent (a3, a5, a6) can only be face hanging, and their status is determined by a single

negative search.3 The remaining octants (1, 2, 4 children) are edge hanging and identifying

their status requires three searches.

After identifying hanging vertices, we repartition the octree using the algorithm de-

scribed in Section 2.2.1 and all octants touching the inter-processor boundaries are commu-

nicated to the neighbouring processors. These octants will be referred to as ghost elements

on the processors that receive them and their anchors are called ghost vertices. In our

implementation of a typical finite element MatVec, we do not loop over ghost elements re-

cieved from a processor with greater rank and we do not write to ghost vertices. However,

we do support writing to ghost values if the need arises. We also support looping over ghost

elements recieved from a processor with lower rank. This framework gives rise to a subtle

special case for singular blocks. A singular block is a block (output of the partition algo-

rithm), which is also a leaf in the underlying fine octree (input to the partition algorithm).

If the singular block’s anchor is hanging, it might point to a ghost vertex and if so this ghost

vertex will be owned by a processor with lower rank. This ghost vertex will be the anchor

of the singular block’s parent. We tackle this case while partitioning by ensuring that any

singular block with a hanging anchor is sent to the processor to which the first child of the

singular block’s parent is sent. We also send any octant that lies between (in the Morton

ordering) the singular block and its parent to the same processor in order to ensure that

the relative ordering of the octants is preserved.

After exchanging ghosts, we perform independent sequential searches on each processor

to build the element-to-vertex mappings. We present two methods for the same, an ex-

haustive approach (Section 3.1.1) that searches for all the 8 vertices for each element, and

a more efficient approach that utilizes the mapping of its negative face neighbours (Section

3By “negative” searches we refer to searches in the −x or −y or −z directions. We use “positive searches”
to refer to searches along the positive directions.

59

3.1.2) to construct its own mapping.

3.1.1 Exhaustive searches to compute mapping

The simplest approach to compute the element-to-vertex mapping would be to search for

the vertices explicitly using a parallel search algorithm, followed by the computation of

global-to-local mappings that are necessary to manage the distributed data. However, this

would incur expensive communication and synchronization costs. To reduce these costs,

we chose to use a priori communication of “ghost” octants4 followed by independent local

searches on each processor that require no communication. A few special cases that can not

be identified easily during a priori communication are identified during the local searches

and corrected later.

For any element, all vertices except the anchor are in the positive direction. The exhaus-

tive search strategy is as follows: Generate search keys at the location of the eight vertices

of the element at the maximum depth and search for them in the linear octree. Since the

linear octree is sorted, the search can be performed in O(log n). If the search result is not

hanging, then the lookup table is updated. If we discover a hanging vertex instead, then a

secondary search is performed to recover the correct non-hanging index. As shown in Figure

22(a), hanging vertices are always mapped to the corresponding vertices of their parent5.

Unfortunately, secondary searches can not be avoided despite the identification of hanging

vertices prior to searching. This is because only the element whose anchor is hanging knows

this information and the other elements that share this vertex must first search and find

this element in order to learn this information.

Using exhaustive searches we can get the mapping for most elements, but certain special

cases arise for ghost elements. This case is illustrated in Figure 22(b), where the ghost

elements are drawn in red and the local elements are drawn in blue. Consider searching for

the +z neighbor of element a. Since a is a ghost, and we only communicate a single layer of

ghost octants across processor boundaries, the vertex b will not be found. In such cases, we

set the mapping to point to one of the hanging siblings of the missing vertex (c or d in this

4The use of blocks makes it easy to identify “ghost” octants.
5The 2:1 balance constraint ensures that the vertices of the parent can never be hanging.

60

z

x

y

p1

p4

p2

p3

p5

p6

a4 a5

a7

a6

a0

a1

a2 a3

(a)

z

x
a

b c
d

(b)

Figure 22: (a) Illustration of nodal-connectivities required to perform conforming FEM
calculations using a single tree traversal. Every octant has at least 2 non-hanging vertices,
one of which is shared with the parent and the other is shared amongst all the siblings.
The octant shown in blue (a) is a child 0, since it shares its zero vertex (a0) with its
parent. It shares vertex a7 with its siblings. All other vertices, if hanging, point to the
corresponding vertex of the parent octant instead. Vertices, a3, a5, a6 are face hanging and
point to p3, p5, p6, respectively. Similarly a1, a2, a4 are edge hanging and point to p1, p2, p4.
(b) The figure explains the special case that occurs during exhaustive searches of ghost
elements. Element anchored at a, when searching for vertex b, will not find any vertex.
Instead, one of the hanging siblings of b, (c, d) which are hanging will be pointed to. Since
hanging vertices do not carry any information, the information for b will be replicated to
all its hanging siblings while updating the ghosts.

61

case). The most likely condition under which b in not found is when the +z neighbor(s) is

smaller. In this case, we know that at least one of the siblings will be hanging. Although

the lookup table for this element is incorrect, we make use of the fact that the lookup table

points to a non-existent vertex, and the owner of the true vertex simply copies its data value

to the hanging vertex locations, thereby ensuring that the correct value is read. This case

can only happen for ghost elements and need not be done for local elements. In addition,

we occasionally observe cases where neither the searched vertex nor any of its siblings are

found. Such cases are marked and at the end of the lookup table construction, a parallel

search is done to obtain the missing vertices directly from the processors that own them.

3.1.2 Four-way searches to compute mapping

The exhaustive search explicitly searches for all vertices and in many cases is the only way

to find the correct element-to-vertex mapping. However, it requires a minimum of 7 and a

maximum of 13 searches per element. In order to reduce the constants associated with the

exhaustive search, we use the exhaustive search only for the first layer of octants (octants

that do not have neighbours in the negative x, y and z directions) on each processor. For

all other octants, the lookup table information can be copied from the elements in the

negative directions. Each element in the negative x, y and z directions that shares a face

with the current element, also shares 4 vertices. Therefore, by performing negative searches

along these directions, we can obtain the lookup information for 7 out of the 8 vertices of

an element. Only the last vertex, labeled a7 in Figure 22(a), cannot be obtained using a

negative search and a positive search is required.

In order to get the mapping information using negative searches, we perform the search

in the negative direction and check if the current element is a sibling of the element obtained

via the negative search. If the element found by the search is not a sibling of the current

element, then the lookup information can be copied via a mapping. For the example shown

in Figure 23(a), given the element b and searching in the −y direction, we find a, then

the mapping is (b0, b1, b4, b5) = (a2, a3, a6, a7). Corresponding mappings are (b0, b2, b4, b6) =

(a1, a3, a5, a7), and (b0, b1, b2, b3) = (a4, a5, a6, a7), for negative searches along the x and z

62

z

x

y

b1

b4

b5

a2, b0
a3

a7

a6

(a)

z

x

y

b1, p1

p4

p2

p3

p5

a4

a5, b4

a7, b6

a0

a1, b0

a2 a3, b2

(b)

Figure 23: Computing element-to-vertex mapping using negative searches. (a) If the
found octant (a) is not a sibling of the current octant (b), then the element-to-vertex
mapping can be copied via the mapping b0 ← a2, b1 ← a3, b4 ← a6, and b5 ← a7.
(b) In case the found octant (a) is a sibling of the current octant (b), then the mapping
depends on whether or not the vertex in question is hanging. If the vertex is not hanging,
then the same mapping as used in (a) can be applied. If the vertex is hanging, then
the corresponding indices for the found element are directly copied. For the case shown,
(b0, b2, b4, b6)← (a0, a2, a4, a7) = (p0, p2, p4, a7).

63

axes, respectively. Unfortunately, the mapping is a bit more complex if the negative search

returns a sibling of the current element. If the vertex in question is not hanging, then we

can copy its value according to the above mentioned mapping. However, if the vertex in

question is hanging, then instead of the mapping, the corresponding indices from element

a are copied. This case is explained in Figure 23(b), where we observe that if vertex a1, b0

is hanging, we need to use b0 = a0 and use b0 = a1 if it is not hanging.

3.2 Mesh compression

One of the major problems with unstructured meshes is the storage overhead. In the case of

the octree, this amounts to having to store both the octree and the lookup table. In order

to reduce the storage costs associated with the octree, we compress both the octree and

the lookup table. The sorted, unique, linear octree can be easily compressed by retaining

only the offset of the first element and the level of subsequent octants. Storing the offset

for each octant requires a storage of three integers (12 bytes) and a byte for storing the

level. Storing only the level represents a 12x compression as opposed to storing the offset

for every octant.

It is much harder to compress the element-to-vertex mapping, which requires eight

integers for each element. In order to devise a good compression scheme, we first estimate

the distribution of indices. The following lemma helps us analyze the distribution of the

indices of the vertices of a given element.

Lemma 4 The Morton ids of the vertices of a given element are greater than or equal to

the Morton id of the element.

Proof. Let the anchor of the given element be (x, y, z) and let its size be h. In that

case the anchors of the 8 vertices of the element are given by (x, y, z), (x + h, y, z), (x, y +

h, z), (x + h, y + h, z) · · · . By the definition of the Morton ordering all of these except

(x, y, z) are greater than the Morton id of the element. The vertex at (x, y, z) is equal to

the Morton id of the element.

64

Corollary 1 Given a sorted list of Morton ids corresponding to the combined list of ele-

ments and vertices of a balanced linear octree, the indices of the 8 vertices of a given element

in this list are strictly greater than the index of the element. Moreover, if the vertices are

listed in the Morton order, the list of indices is monotonically increasing. If we store offsets

in the sorted list, then these offsets are strictly positive.

Based on these observations we can estimate the expected range of offsets. Let us

consider a balanced octree, O, with n octants and with maximum possible depth Dmax.

Consider an element in the octree, oi, whose index is i, 0 6 i < n. The offset of the

anchor of this element is either i (if the anchor is not hanging) or n0 < i. The indices

for the remaining 7 vertices do not depend on octants with index less than i. In addition

since the indices of the 7 vertices are monotonically increasing, we can store offsets between

two consecutive vertices. That is, if the indices of the 8 vertices of an element, oi, are

(n0, n1, n2, n3, n4, n5, n6, n7), we only need to store (n0 − i, n1 − n0, n2 − n1, n3 − n2, n4 −

n3, n5−n4, n6−n5, n7−n6). To efficiently store these offsets, we need to estimate how large

these offsets can be. We start with a regular grid, i.e., a balanced octree with all octants

at Dmax. Note that any octree that can be generated at the same value of Dmax can be

obtained by applying a series of local coarsening operations to the regular grid. Since we

only store the offsets it is sufficient to analyze the distribution of the offset values for one

given direction, say for a neighbor along the x-axis. The expression for all other directions

are similar.

For Dmax = 0, there is only one octant and correspondingly the offset is 1. If we

introduce a split in the root octant, Dmax becomes 1, the offset increases by 2 for one

octant. On introducing further splits, the offset is going to increase for those octants that

lie on the boundaries of the original splits, and the general expression for the maximum

offset can be written as offset = 1+
∑Dmax

i=1 2d·i−1, for a d-tree. In addition, a number of other

large offsets are produced for intermediate split boundaries. Specifically for a regular grid

at maximum depth Dmax, we shall have 2d·(Dmax−x) octants with an offset of 1+
∑x

i=1 2d·i−1

. As can be clearly seen from the expression, the distribution of the offsets is geometric.

With the largest number of octants having small offsets.

65

For the case of general balanced octrees, we observe that any of these can be obtained

from a regular grid by a number of coarsening operations. The only concern is whether

the coarsening can increase the offset for a given octant. The coarsening does not affect

octants that are greater than the current octant (in the Morton order). For those which

are smaller, the effect is minimal since every coarsening operation reduces the offsets that

need to be stored.

Golomb-Rice coding [46, 95] is a form of entropy encoding that is optimal for geometric

distributions, that is, when small values are vastly more common than large values. Since,

the distribution of the offsets is geometric, we expect a lot of offsets with small values and

fewer occurrences of large offsets. The Golomb coding uses a tunable parameter M to divide

an input value into two parts: q, the result of a division by M , and r, the remainder. In

our implementation, the remainder is stored as a byte, and the quotient as a short. On

an average, we observe one large jump in the indices, and therefore the amortized cost of

storing the compressed lookup table, is 8 bytes for storing the remainders, 2 bytes for the

quotient, one byte for storing a flag to determine which of the 8 vertices need to use a

quotient, and one additional byte for storing additional element specific flags. Storing the

lookup explicitly would require 8 ints, and therefore we obtain a 3x compression in storing

the lookup table.

3.3 Finite element computation on octrees

In this section, we describe the evaluation of a MatVec with the global finite element “stiff-

ness” matrix. A key difference between our MatVec and earlier approaches [129] is that

the “hanging vertices6” are not stored explicitly. A method to eliminate hanging vertices

in locally refined quadrilateral meshes and yet ensure inter-element continuity by the use

of special bilinear quadrilateral elements was presented in [132]. We have extended that

approach to three dimensions.

The following properties of 2:1 balanced linear octrees helps us reduce the total number

of permissible hanging configurations. Figure 22(a) illustrates these properties.

6They do not represent independent degrees of freedom in a FEM solution.

66

• Every octant has at least 2 non-hanging vertices:

– The vertex that is common to both this octant and its parent.

– The vertex that is common to this octant and all its siblings.

• An octant can have a face-hanging vertex only if the remaining vertices on that face

are one of the following:

– Edge hanging vertices.

– The vertex that is common to both this octant and its parent.

After factoring in the above constraints, there are only 18 potential hanging-vertex

configurations for each of the 8 child number configurations.

Below, we list some of the properties of the shape functions defined on octree meshes.

• No shape function is rooted at hanging vertices.

• The shape functions are trilinear.

• The shape functions assume a value of 1 at the vertex at which they are rooted and

a value of 0 at all other non-hanging vertices in the octree.

• The support of a shape function can spread over more than 8 elements.

• If a vertex of an element is hanging, then the shape functions rooted at the other

non-hanging vertices in that element do not vanish on this hanging vertex. Instead,

they will vanish at the non-hanging vertex that this hanging vertex is mapped to. If

the i-th vertex of an element/octant is hanging, then the index corresponding to this

vertex will point to the i-th vertex of the parent7 of this element instead. For example,

in Figure 22(a) the shape function rooted at vertex a0 will not vanish at vertices a1,

a2, a3, a4, a5 or a6. It will vanish at vertices p1, p2, p3, p4, p5, p6 and a7. It will

assume a value equal to 1 at vertex a0.

7The 2:1 balance constraint ensures that the vertices of the parent can never be hanging.

67

• A shape function assumes non-zero values within an octant if and only if it is rooted

at some non-hanging vertex of this octant or if some vertex of the octant under

consideration is hanging, say the i-th vertex, and the shape function in question is

rooted at the i-th non-hanging vertex of the parent of this octant. Hence, for any

octant there are exactly eight shape functions that do not vanish within it and their

indices will be stored in the vertices of this octant.

• The finite element matrices constructed using these shape functions are mathemati-

cally equivalent to those obtained using projection schemes such as in [73, 129, 130].

3.3.1 Overlapping communication with computation

Every octant is owned by a single processor. However, the values of unknowns associated

with octants on inter-processor boundaries need to be shared among several processors. We

keep multiple copies of the information related to these octants and we term them “ghost”

octants. In our implementation of the finite element MatVec, each processor iterates over

all the octants it owns and also loops over a layer of ghost octants that contribute to the

vertices it owns. Within the loops, each octant is mapped to one of the above described

hanging configurations. This is used to select the appropriate element stencil from a list

of pre-computed stencils. Although a processor needs to read ghost values from other

processors, it only needs to write data back to the vertices it owns and does not need to

write to ghost vertices.8 Thus, there is only one communication phase within each MatVec,

which we can overlap with a computation phase:

1. Initiate non-blocking MPI sends for information stored on ghost-vertices.

2. Loop over the elements in the interior of the processor domain. These elements do

not share any vertices with other processors. We identify these elements during the

meshing phase itself.

3. Receive ghost information from other processors.

8This is possible because our meshing scheme also builds the element-to-vertex connectivity mappings
for the appropriate ghost elements. Although, this adds an additional layer of complexity to our meshing
algorithm, it saves us one communication per MatVec.

68

4. Loop over remaining elements to update information.

3.4 Performance evaluation

In this section we present numerical results for the tree construction, balancing, meshing

and matrix vector multiplication for a number of different cases. The algorithms were im-

plemented in C++ using the MPI library. PETSc [10, 9] was used for profiling the code. We

consider two point distribution cases: a regular grid one, to directly compare with structured

grids; and a Gaussian distribution which resembles a generic non-uniform distribution. In

all examples we discretized a variable-coefficient linear elliptic operator. We used piecewise

constant coefficients for both the Laplacian and Identity operators. Material properties

for the element were stored in an independent array, rather than within the octree data

structure.

First we tested the performance of the code on a sequential machine and compared it to

a regular grid implementation with direct indexing (the vertices are ordered in lexicographic

order along the coordinates). The results are presented in Table 4. We report construction

times, and the total time for 5 matrix vector multiplications. Overall the code performs

quite well. Both the meshing time and the time for performing the MatVecs are not sensitive

to the input point distribution used to construct the octrees. The MatVec time is only 50%

more than that for a regular grid with direct indexing, about five seconds for four million

octants.

In the second set of experiments we tested the isogranular scalability of our code. Again,

we considered two point distributions, a uniform one and a Gaussian. The size of the input

points, the corresponding linear and balanced octrees, the number of vertices, and the

runtimes for the two distributions are reported in Figures 24 and 25. All the runs were

performed on a Cray XT3 MPP system equipped with 2068 compute nodes (two 2.6 GHz

AMD Opteron and 2 GBytes of RAM per node) at the Pittsburgh Supercomputing Center.

We observe excellent scalability for the construction and balancing of octrees, meshing

and the matrix-vector multiplication operation. For example, in Figure 24 we observe

the expected complexity in the construction and balancing of the octree (there is a slight

69

Table 4: The time (in seconds) to construct (Meshing) and perform 5 matrix-vector
multiplications (MatVec) on a single processor for increasing problem sizes. Results are
presented for Gaussian distribution and for uniformly spaced points. We compare with
matrix-vector multiplication on a regular grid (no indexing) having the same number of
elements and the same discretization (trilinear elements). We discretize a variable coef-
ficient (isotropic) operator. The runs took place on a 2.2 GHz, 32-bit Xeon box. The
sustained performance is approximately 400 MFlops/sec for the structured grid. For the
uniform and Gaussian distribution of points, the sustained performance is approximately
280 MFlops/sec.

Problem Regular Octree Mesh
Size Grid Uniform Gaussian

MatVec Meshing MatVec Meshing MatVec
256K 1.08 4.07 1.62 4.34 1.57
512K 2.11 8.48 3.18 8.92 3.09
1M 4.11 17.52 6.24 17.78 6.08
2M 8.61 36.27 11.13 37.29 12.33
4M 17.22 73.74 24.12 76.25 24.22

np

seconds

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Octree Construction

Octree Balancing

Meshing

MatVec (5)

Points

Unbalanced Octants

Balanced Octants

Independent Vertices

0

25

50

75

100

125

0.99

5.34

16.01

18.61

1.41

8.39

23.57

20.72

1.32

8.75

23.19

21.09

1.40

10.55

25.15

20.59

1.44

11.94

26.77

23.29

1.60

12.57

28.99

27.79

1.51

13.52

27.03

25.78

1.65

13.62

29.52

27.65

1.72

14.67

34.91

33.01

1.75

15.99

35.56

31.12

2.17

18.53

36.63

32.40

2.92

25.42

38.23

33.24

6.68

34.44

41.14

28.27

180K

607K

996K

660K

361K

1.2M

2M

1.3M

720K

2.4M

4M

2.7M

1.47M

4.9M

8M

5.2M

2.89M

9.7M

16M

10.5M

5.8M

19.6M

31.9M

21.5M

11.7M

39.3M

64.4M

42M

23.5M

79.3M

131M

87.8M

47M

158M

257M

172M

94M

315M

519M

339M

188M

635M

1.04B

702M

376M

1.26B

2.05B

1.36B

752M

2.52B

4.16B

2.72B

Figure 24: Isogranular scalability for Gaussian distribution of 1M octants per processor.
From left to right, the bars indicate the time taken (in seconds) for the different components
of our algorithms for increasing processor counts. The bar for each processor is partitioned
into 4 sections. From top to bottom, the sections represent the time taken (in seconds)
for (1) performing 5 Matrix-Vector multiplications, (2) Construction of the octree-based
mesh, (3) balancing the octree and (4) construction from points.

70

np

seconds

1 2 4 8 16 32 64 128 256 512 1024 2048

Octree Construction

Octree Balancing

Meshing

MatVec (5)

Points

Unbalanced Octants

Balanced Octants

Vertices

0

15

30

45

60

75

2.01

7.21

18.21

17.19

3.44

7.06

23.12

20.25

4.15

12.46

26.91

17.02

3.47

11.64

25.72

20.16

3.42

8.46

25.11

19.77

3.83

12.57

25.74

20.07

3.52

12.86

25.93

20.14

3.42

12.65

26.85

20.94

3.62

18.78

25.94

19.56

4.16

13.83

29.21

18.88

3.93

13.03

31.64

18.06

4.67

14.31

27.94

17.97

1M

1.06M

1.06M

1.07M

2.05M

2.09M

2.09M

2.15M

3.94M

4.14M

4.14M

4.14M

8M

8.29M

8.29M

8.29M

15.8M

16.1M

16.1M

16.1M

31.8M

32.3M

32.3M

32.3M

63.5M

64.3M

64.3M

64.3M

127.3M

128M

128.5M

128.5M

248.8M

250.5M

250.5M

250.5M

504.5M

505.6M

505.6M

505.6M

1B

1B

1B

1B

1.96B

2B

2B

2B

Figure 25: Isogranular scalability for uniformly spaced points with 1M octants per pro-
cessor. From left to right, the bars indicate the time taken (in seconds) for the different
components of our algorithms for increasing processor counts. The bar for each processor
is partitioned into 4 sections. From top to bottom, the sections represent the time taken
(in seconds) for (1) performing 5 Matrix-Vector multiplications, (2) Construction of the
octree-based mesh, (3) balancing the octree and (4) construction from points.

71

np

seconds

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

4-way

Exhaustive

0

10

20

30

40

50

60

16.01

23.14

23.57

31.99

23.19

30.58

25.16

33.36

26.77

35.15

28.99

38.60

27.03

36.04

29.52

38.99

34.91

42.34

35.56

42.75

36.63

43.80

38.23

46.77

41.14

51.56

Figure 26: Comparison of meshing times (in seconds) using exhaustive search with using a
hybrid approach where only the first layer of octants uses exhaustive search and the rest use
the 4-way search to construct the lookup tables. The test was performed using a Gaussian
distribution of 1 million octants per processor. It can be seen that the 4-way search is faster
than the exhaustive search and scales upto 4096 processors.

72

growth due to the logarithmic factor in the complexity estimate) and we observe a roughly

size-independent behavior for the matrix-vector multiplication. The results are even better

for the uniform distribution of points in Figure 25, where the time for 5 matrix-vector

multiplications remains nearly constant at approximately 20 seconds.

Finally, we compared the meshing time for the two search strategies presented in Section

3.1. The improvement in meshing time as a result of using the 4-way search is shown in

Figure 26, for the Gaussian distribution.

3.5 Summary

In this chapter, we presented a parallel algorithm for meshing linear octrees. Our mesh data

structure is interfaced with PETSc [10, 9], thus allowing us to use its linear and non-linear

solvers. Our data structure supports second order accurate finite element discretizations

of partial differential equations. We presented results that verify the overall scalability

of our code. The overall meshing time was approximately one minute for problems with

four billion elements using 4096 processors. Thus, our scheme enables efficient execution of

applications that require frequent remeshing.

73

CHAPTER IV

GEOMETRIC MULTIGRID ON OCTREES

The previous chapters described how to construct octree meshes and discretize partial differ-

ential equations using finite element shape functions. In this chapter, we present a parallel

geometric multigrid algorithm for solving the resulting finite element equations efficiently.

Although several sequential and parallel multigrid implementations are available [2, 10, 64],

to our knowledge there is no work on octree-based, matrix-free, geometric multigrid solvers

for finite element discretizations that has scaled to thousands of processors. In addition to

the components described in the previous chapters, this method includes a global coarsen-

ing algorithm and a matrix-free implementation for the intergrid transfer operations. The

coarsening algorithm is used to construct a sequence of coarser 2:1 balanced octrees starting

with an arbitrary 2:1 balanced fine-grid octree. The intergrid transfer operations are used

to restrict the residuals from the fine grid to the coarse grid and interpolate the solution of

the coarse grid problems to the fine grid.

The overall scheme is second-order accurate, for sufficiently smooth right-hand sides

and material properties; and its complexity, for nearly uniform trees, is O(Nnp
log N

np
) +

O(np log np), where N is the number of octants, and np is the number of processors. Our

implementation, Dendro, uses the Message Passing Interface (MPI) standard and is built

on top of the PETSc library from Argonne National Laboratory. Dendro has been released

as an open source software that can be downloaded from [104].

Salient features. The main features of the proposed multigrid algorithm are listed below.

• In our global coarsening approach we construct a sequence of coarse octrees start-

ing with an arbitrary fine octree. An alternative approach would be to use regular

refinements of a coarse octree to construct a sequence of octrees. Although global

coarsening poses more difficulties with partitioning and load balancing compared to

74

global refinement, it is more natural for typical PDE applications in which only some

discrete representation (e.g., material properties defined at certain points) is available.

• We do not impose any restrictions on the number of multigrid levels or the size of

the coarsest mesh. We automatically reduce the number of processors at the coarser

levels if the grain size becomes too small and manage the different partitions and

communicators in a seamless fashion.

• Transferring information between successive multigrid levels in parallel is a challenging

task because the coarse and fine grids may have been partitioned across processors

in a completely different way. A scalable, matrix-free implementation of the intergrid

transfer operators is one of the main components of the multigrid algorithm.

• The setup costs of our algorithm is low making it ideal for applications that require

repeated solutions of linear systems of equations. This is significant for time dependent

and nonlinear problems.

• The MPI-based implementation of our multigrid method, Dendro, has scaled to bil-

lions of elements on thousands of processors even for problems with large contrasts in

the material properties.

Limitations. Some of the limitations of the proposed methodology are listed below:

• The method is not robust for problems with large jumps in the material properties.

• The problems of load balancing across processors has not been fully addressed in this

work.

Organization of the chapter. In Section 4.1, we present a symmetric variational prob-

lem and describe a V-cycle multigrid algorithm to solve the corresponding discretized system

of equations. It is common to work with discrete, mesh-dependent, inner products in these

derivations so that inverting the Gram matrix1 can be avoided [11, 22, 23, 24, 142, 143, 144].

1Given an inner-product and a set of vectors, the Gram matrix is defined as the matrix whose entries are
the inner-products of the vectors.

75

However, we do not impose any such restrictions. Instead, we show (Section 4.1.5) how

to avoid inverting the Gram matrix for any choice of the inner-product. In Section 4.2,

we describe a matrix-free implementation for the multigrid method. In Section 4.3, we

present numerical experiments for the Laplace and Navier (linear elasticity) operators that

demonstrate the scalability of our method. Our largest run was a highly-nonuniform, 8-

billion-unknown, elasticity calculation on 32,000 processors.

4.1 A finite element multigrid formulation

4.1.1 Variational problem

Given a domain Ω ⊂ R3 and a bounded, symmetric bilinear form, a(u, v), that is coercive

on H1(Ω) and f ∈ L2(Ω), we want to find u ∈ H1(Ω) such that u satisfies

a(u, v) = (f, v)L2(Ω) ∀v ∈ H1(Ω) (3)

and the appropriate boundary conditions on the boundary of the domain, ∂Ω. This problem

has a unique solution [24].

4.1.1.1 Galerkin approximation

In this section, we derive a discrete set of equations that need to be solved to find an

approximate solution for Equation 3. First, we define a sequence of nested finite dimensional

spaces, V1 ⊂ V2 ⊂ · · · ⊂ H1(Ω), all of which are subspaces of H1(Ω). Here, Vk corresponds

to a fine mesh and Vk−1 corresponds to the immediately coarser mesh. Then, the discretized

problem is to find an approximation of u, uk ∈ Vk, such that

a(uk, v) = (f, v)L2(Ω) ∀v ∈ Vk. (4)

The discretized problem has a unique solution and the sequence {uk} converges to u [24].

Let (·, ·)k be an inner-product defined on Vk. By using the linear operator Ak : Vk → Vk

defined by

(Akv, w)k = a(v, w) ∀v, w ∈ Vk, (5)

the discretized problem can be restated as follows: Find uk ∈ Vk, which satisfies

Akuk = fk (6)

76

where fk ∈ Vk is defined by

(fk, v)k = (f, v)L2(Ω) ∀v ∈ Vk (7)

The operator Ak is a symmetric (self-adjoint) positive operator w.r.t (·, ·)k. (In the following

sections, we use italics to represent an operator (or vector) in the continuous form and

use bold face to represent the matrix (or vector) corresponding to its co-ordinate basis

representation.)

Let
{
φk1, φ

k
2, . . . , φ

k
#(Vk)

}
be a basis for Vk. Then, we can show the following:

Ak = (Mk
k)−1Ãk

fk = (Mk
k)−1f̃k

Mk
k(i, j) = (φki , φ

k
j)k

Ãk(i, j) = a(φki , φ
k
j) ∀i, j = 1, 2, . . . ,#(Vk)

f̃k(j) = (f, φkj)L2(Ω) ∀j = 1, 2, . . . ,#(Vk)

(8)

In Equation 8, Mk
k is the Gram or mass matrix.

4.1.2 Prolongation

The prolongation operator is a linear operator

P : Vk−1 → Vk (9)

defined by

Pv = v ∀v ∈ Vk−1 ⊂ Vk. (10)

This is a standard prolongation operator and has been used previously [24, 25]. The varia-

tional form of Equation 10 is given by

(Pv,w)k = (v, w)k ∀v ∈ Vk−1 , w ∈ Vk. (11)

In the Appendix, we show that

P(i, j) = φk−1
j (pi). (12)

77

In equation 12, pi is the fine-grid vertex associated with the fine-grid finite element shape

function, φki and φk−1
j is a coarse-grid finite element shape function.

4.1.3 Coarse-grid problem

The coarse-grid problem can be stated as follows: Find vk−1 ∈ Vk−1 that satisfies

AGk−1vk−1 = fGk−1 (13)

where, AGk−1 and fGk−1 are defined by the “Galerkin” condition (Equation 14) [25].

AGk−1 = P ∗AkP

fGk−1 = P ∗(Akvk − fk),

∀vk−1 ∈ Vk−1, vk ∈ Vk

(14)

Here, P is the prolongation operator defined in Section 4.1.2 and P ∗ is the Hilbert adjoint

operator2 of P with respect to the inner-products (·, ·)k and (·, ·)k−1.

4.1.4 Restriction

Since the restriction operator must be the Hilbert adjoint of the prolongation operator, we

define the restriction operator R : Vk → Vk−1 as follows:

(Rw, v)k−1 = (w,Pv)k = (w, v)k ∀v ∈ Vk−1, w ∈ Vk (15)

In the Appendix, we show that

R = (Mk−1
k−1)−1Mk−1

k (16)

where,

Mk−1
k (i, j) = (φk−1

i , φkj)k = Mk
k−1(j, i). (17)

2P is a bounded linear operator from one Hilbert space, Vk−1, to another, Vk, and hence it has an unique,
bounded, linear Hilbert adjoint operator with respect to the inner-products considered [74].

78

Algorithm 14 Two-Grid Correction Scheme

1. Relax ν1 times on Equation 60 with an initial guess, u0
k.

(Pre-smoothing)

2. Compute the fine-grid residual using the solution vector, vk, at the
end of the pre-smoothing step: rk = f̃k − Ãkvk.

3. Compute: rk−1 = PT rk. (Restriction)

4. Solve for ek−1 in Equation 61. (Coarse-grid correction)

5. Correct the fine-grid approximation: vnew
k = vk + Pek−1.

(Prolongation)

6. Relax ν2 times on Equation 60 with the initial guess, vnewk .
(Post-smoothing)

4.1.5 A note on implementing the operators

The fine-grid operator, Ak, the coarse-grid operator, AGk−1, and the restriction operator, R,

are expensive to implement using Equations 8, 14 and 16, respectively. Instead of using

these operators, we can solve an equivalent problem using the matrices Ãk, Ãk−1 and PT

(Equations 8 and 12). We state the algorithm for the two-level case in Algorithm 14. This

scheme can be extended to construct the other standard multigrid schemes, namely the V,

W and FMV cycles [24, 25].

4.2 Implementation

In Section 4.2.1, we describe an algorithm for constructing coarse octrees starting with an

arbitrary 2:1 balanced fine-grid octree. This sequence of octrees gives rise to a sequence

of nested finite element spaces that can be used in the multigrid algorithm presented in

Section 4.1. In Section 4.2.2, we describe the matrix-free implementation of the restriction

and prolongation operators derived in Section 4.1. Finally, we end this section with a note

on variable-coefficient operators.

4.2.1 Global coarsening

Starting with the finest octree, we iteratively construct a hierarchy of complete, balanced,

linear octrees such that every octant in the k-th octree is either present in the k + 1-th

79

octree or all of its eight children are present (Figures 27(a) - 27(c)).

We construct the k-th octree from the k + 1-th octree by replacing every set of eight

siblings by their parent. This algorithm is based on the fact that in a sorted linear octree,

each of the 7 successive elements following a “Child-0” element is either one of its siblings

or a descendant of its siblings. Let i and j be the indices of any two successive Child-0

elements in the k+1-th octree. We have the following 3 cases: (a) j < (i+8), (b) j = (i+8)

and (c) j > (i + 8). In the first case, the elements with indices in the range [i, j) are not

coarsened. In the second case, the elements with indices in the range [i, j) are all siblings

of each other and are replaced by their parent. In the last case, the elements with indices

in the range [i, (i+ 7)] are all siblings of each other and are replaced by their parent. The

elements with indices in the range [(i+ 8), j) are not coarsened. The pseudocode for the

sequential implementation of the coarsening algorithm is given in Algorithm 15.

One-level coarsening is an operation with O(N) work complexity, where N is the number

of leaves in the k + 1-th octree. It is easy to parallelize and has an O(Nnp
) parallel time

complexity, where np is the number of processors. The main parallel operations are two

circular shifts; one clockwise and another anti-clockwise. The message in each case is just

1 integer: (a) the index of the first Child-0 element on each processor and (b) the number

of elements between the last Child-0 element on any processor and the last element on that

processor. While we communicate these messages in the background, we simultaneously

process the elements in between the first and last Child-0 elements on each processor. The

pseudocode for the parallel implementation of the coarsening algorithm is given in Algorithm

16.

The operation described above may produce 4:1 balanced octrees3 instead of 2:1 balanced

octrees. Hence, we balance the result using the algorithm described in Chapter 2. Although

there is only one level of imbalance that we need to correct, the imbalance can still affect

octants that are not in its immediate vicinity. This is a result of the “ripple effect”. Even

with just one level of imbalance, a ripple can still propagate across many processors.

3The input is 2:1 balanced and we coarsen by at most one level in this operation. Hence, this operation
will only introduce one additional level of imbalance resulting in 4:1 balanced octrees.

80

Algorithm 15 Sequential Coarsening

Input: A sorted, complete, linear fine octree (F).
Output: A sorted, complete linear coarse octree (C).
Note: This algorithm can also be used with a contiguous subset of F,
provided the first element of this subset is a Child-0 element and the last
element of this subset is either the last element of F or the element that
immediately precedes a Child-0 element. The output in this case will be
the corresponding contiguous subset of C.

1. C ← ∅
2. I1 ← 0
3. while (I1 < len(F))
4. Find I2 such that Child−Number(F [I2]) = 0 and

Child−Number(F [k]) 6= 0 ∀ I1 < k < I2.
5. if no such I2 exists
6. I2 ← len(F)
7. end if
8. if I2 ≥ (I1 + 8)
9. C.push back(Parent(F [I1]))
10. if I2 > (I1 + 8)
11. C.push back(F [I1 + 8], F [I1 + 9], . . . , F [I2 − 1])
12. end if
13. else
14. C.push back(F [I1], F [I1 + 1], . . . , F [I2 − 1])
15. end if
16. I1 ← I2

17. end while

81

Algorithm 16 Parallel Coarsening
(As executed by processor P)

Input: A distributed, globally sorted, complete, linear fine octree (F).
Output: A distributed, globally sorted, complete, linear coarse octree
(C).
Note: We assume that len(F) > 8 on each processor.

1. C ← ∅
2. Find If such that Child−Number(F [If]) = 0 and

Child−Number(F [k]) 6= 0 ∀ 0 ≤ k < If.
3. if no such If exists on P
4. Mf ← −1 ; Ml ← −1
5. else
6. Find Il such that Child−Number(F [Il]) = 0 and

Child−Number(F [k]) 6= 0 ∀ Il < k < len(F).
7. Mf ← If ; Ml ← (len(F)− Il)
8. end if
9. if P is not the first processor
10. Send Mf to the previous processor (P-1)

using an non-blocking MPI send.
11. end if
12. if P is not the last processor
13. Send Ml to the next processor (P+1)

using an non-blocking MPI send.
14. else if Mf > −1
15. Il ← len(F)
16. end if
17. if Mf > −1
18. Coarsen the list {F [If], F [If + 1], . . . , F [Il − 1]}

and store the result in C. (Algorithm 15)
19. end if
20. if P is not the first processor
21. Receive Ip from the previous processor (P-1).
22. Process octants with indices < If. (Algorithm 17)
23. end if
24. if P is not the last processor
25. Receive In from the next processor (P+1).
26. Process octants with indices ≥ Il. (Algorithm 18)
27. end if

82

Algorithm 17 Coarsening the first few octants on processor P
(Subcomponent of Algorithm 16)

1. if Ip ≥ 0 and Mf ≥ 0
2. if (Ip + If) ≥ 8
3. Ic ← max(0, (8− Ip))
4. C.push front(F [Ic], F [Ic + 1], . . . , F [If − 1])
5. else
6. C.push front(F [0], F [1], . . . , F [If − 1])
7. end if
8. else
9. if Mf < 0
10. if Ip < 0 or Ip ≥ 8
11. C ← F
12. else
13. Ic ← (8− Ip)
14. C.push front(F [Ic], F [Ic + 1], . . . , F [If − 1])
15. end if
16. else
17. C.push front(F [0], F [1], . . . , F [If − 1])
18. end if
19. end if

Algorithm 18 Coarsening the last few octants on processor P
(Subcomponent of Algorithm 16)

1. if In ≥ 0 and Ml ≥ 0
2. if (In +Ml) ≥ 8
3. C.push back(Parent(F [Il]))
4. if Ml > 8
5. C.push back(F [Il + 8], F [Il + 9], . . . , F [len(F)− 1])
6. end if
7. else
8. C.push back(F [Il], F [Il + 1], . . . , F [len(F)− 1])
9. end if
10. else
11. if Ml ≥ 0
12. C.push back(Parent(F [Il]))
13. if Ml > 8
14. C.push back(F [Il + 8], F [Il + 9], . . . , F [len(F)− 1])
15. end if
16. end if
17. end if

83

(a) MG Level k − 2 (b) MG Level k − 1 (c) MG Level k

(d) Sequential (e) Parallel

Smoothing Restriction Prolongation

Pseudo Scatter Coarse grid solve

Figure 27: (a)-(c) Quadtree meshes for three successive multigrid levels. The shaded
octants in (a) and (b) were not coarsened because doing so would have violated the 2:1
balance constraint. (d) A V-cycle where the meshes at all multigrid levels share the same
partition and (e) A V-cycle where not all meshes share the same partition. Some meshes
do share the same partition and whenever the partition changes a pseudo mesh is added.
The pseudo mesh is only used to support intergrid transfer operations and smoothing is not
performed on this mesh.

The sequence of octrees constructed as described above has the property that non-

hanging vertices in any octree remain non-hanging in all the finer octrees as well. Hanging

vertices on any octree could either become non-hanging on a finer octree or remain hanging

on the finer octrees too. In addition, an octree can have new hanging as well as non-hanging

vertices that are not present in any of the coarser octrees.

4.2.2 Intergrid transfer operations

To implement the intergrid transfer operations in Algorithm 14, we need to find all non-

hanging fine-grid vertices that lie within the support of each coarse-grid shape function. This

is trivial on regular grids, but for non-uniform grids it can be quite expensive; especially

84

for parallel implementations. Fortunately, for a hierarchy of octree meshes constructed as

described in Section 4.2.1, these operations can be implemented quite efficiently.

As seen in Section 4.1.5, the restriction matrix is the transpose of the prolongation

matrix. We do not construct these matrices explicitly; we implement a matrix-free scheme

using MatVecs. The MatVecs for the restriction and prolongation operators are very similar.

In both cases, we loop over the coarse and fine grid octants simultaneously. For each coarse-

grid octant, the underlying fine-grid octant could either be the same as itself or be one of

its eight children (Section 4.2.1). We identify these cases and handle them separately. The

main operation within the loop is selecting the coarse-grid shape functions that do not

vanish within the current coarse-grid octant and evaluating them at the non-hanging fine-

grid vertices that lie within this coarse-grid octant. These form the entries of the restriction

and prolongation matrices (Equation 12).

4.2.2.1 Alignment of grids

To parallelize the intergrid transfer operations, we need the coarse and fine grid partitions

to be “aligned”. By aligned we require the following two conditions to be satisfied:

• If an octant exists both in the coarse and fine grids, then the same processor must

“own” this octant on both the meshes.

• If an octant’s children exist in the fine-grid, then the same processor must own this

octant on the coarse mesh and all its 8 children on the fine mesh.

In order to satisfy these conditions, we first compute the partition on the coarse-grid

and then impose it on the finer grid. In general, it might not be possible or desirable to use

the same partition for all the multigrid levels. For example, one problem with maintaining

a single partition across all multigrid levels is that the coarser multigrid levels might be too

sparse to be distributed across all the processors. As explained in Section 4.2.4, we enforce

a minimum grain size (elements per processor) for all grids and this limits the number of

processors used for each grid. Another reason to use different partitions for the different

grids is to get better load distribution across the processors for the smoothing operation.

85

Hence, we allow certain multigrid levels to be partitioned differently than others.4 When a

transition in the partitions is required, we duplicate the octree in question and let one of

the duplicates share the same partition as that of its immediate finer multigrid level and

let the other one share the same partition as that of its immediate coarser multigrid level.

We refer to one of these duplicates as the “pseudo” mesh (Figure 27(e)). The pseudo mesh

is only used to support intergrid transfer operations (Smoothing is not performed on this

mesh). On these multigrid levels, the intergrid transfer operations include an additional step

referred to as “Scatter”, which just involves re-distributing the values from one partition

to another. We also want to reduce the number of pseudo meshes in order to lower setup

costs and to lower communication costs by avoiding Scatter operations. Hence, we do the

following checks to avoid pseudo meshes if possible:

• If a fine grid can use more processors than its immediate coarse grid, we first check

the increase in average grain size if the fine grid used the same number of processors

as the coarse grid. If this increase is small, we restrict the number of processors on

the fine grid to be the same as that for the coarse grid.

• We check the load imbalance on each fine grid if it were to use the same partition as

its immediate coarse grid. If this imbalance is below a user-specified threshold, we

use the same partition for the fine grid and its immediate coarse grid.

4.2.2.2 Matvecs for restriction and prolongation

One of the challenges with implementing the MatVec for the intergrid transfer operations

is that as we loop over the octants we must keep track of the pairs of coarse and fine grid

vertices that were visited already. In order to implement this MatVec efficiently, we make

use of the following observations.

• Every non-hanging fine-grid vertex is shared by at most eight fine-grid elements,

excluding the elements whose hanging vertices are mapped to this vertex.

4It is also possible that some processors are idle on the coarse-grids, while no processor is idle on the
finer grids.

86

• Each of these eight fine-grid elements will be visited only once within the Restriction

and Prolongation MatVecs.

• Since we loop over the coarse and fine elements simultaneously, there is a coarse octant

associated with each of these eight fine octants. These coarse octants (maximum of

eight) overlap with the respective fine octants.

• The only coarse-grid shape functions that do not vanish at the non-hanging fine-grid

vertex under consideration are those whose indices are stored in the vertices of each

of these coarse octants. Some of these vertices may be hanging, but they will be

mapped to the corresponding non-hanging vertex. So, the correct index is always

stored immaterial of the hanging state of the vertex.

We compute and store a mask for each fine-grid vertex. Each of these masks is a set

of eight bytes, one for each of the eight fine-grid elements that surround this fine-grid

vertex. When we visit a fine-grid octant and the corresponding coarse-grid octant within

the loop, we read the eight bits corresponding to this fine-grid octant. Each of these bits is

a flag to determine whether or not the respective coarse-grid shape function contributes to

this fine-grid vertex. The overhead of using this mask within the actual MatVecs includes

(a) the cost of a few bitwise operations for each fine-grid octant and (b) the memory

bandwidth required for reading the eight-byte mask. The latter cost is comparable to the

cost required for reading a material property array within the finite element MatVec (for

a variable coefficient operator). The restriction and prolongation MatVecs are operations

with O(N) work complexity and have an O(Nnp
) parallel time complexity. Algorithm 19

lists the sequence of operations performed by a processor for the restriction MatVec. For

simplicity, we do not overlap communication with computation in the pseudocode. In the

actual implementation, we overlap communication with computation as described in Section

4.2.2.4. The following section describes how we compute these masks for any given pair of

coarse and fine octrees.

87

Algorithm 19 Parallel Restriction MatVec
(As executed by processor P)

Input: Fine vector (F), masks (M), pre-computed stencils (R1) and (R2),
fine octree (Of), coarse octree (Oc).
Output: Coarse vector (C).

1. Exchange ghost values for F and M with other processors.
2. C ← 0.
3. for each oc ∈ Oc
4. Let cc be the child number of oc.
5. Let hc be the hanging type of oc.
6. Step through Of until of ∈ Of is found s.t.

Anchor(of) = Anchor(oc).
7. if Level(oc) = Level(of)
8. for each vertex, Vf, of of

9. Let Vf be the i-th vertex of of.
10. if Vf is not hanging
11. for each vertex, Vc, of oc

12. Let Vc be the j-th vertex of oc.
13. If Vc is hanging, use the corresponding

non-hanging vertex instead.
14. if the j-th bit of M(Vf , i) = 1
15. C(Vc) = C(Vc) +R1(cc, hc, i, j)F (Vf)
16. end if
17. end for
18. end if
19. end for
20. else
21. for each of the 8 children of oc

22. Let cf be the child number of of, the child of oc

that is processed in the current iteration.
23. Perform steps 8 to 19 by replacing R1(cc, hc, i, j)

with R2(cf , cc, hc, i, j) in step 15.
24. end for
25. end if
26. end for
27. Exchange ghost values for C with other processors.
28. Add the contributions recieved from other processors

to the local copy of C.

88

4.2.2.3 Computing the “masks” for restriction and prolongation

Each non-hanging fine-grid vertex has a maximum5 of 1758 unique locations at which a

coarse-grid shape function that contributes to this fine vertex could be rooted. Each of

the vertices of the coarse-grid octants that overlap with the fine-grid octants surrounding

this fine-grid vertex, can be mapped to one of these 1758 possibilities. It is also possible

that some of these vertices are mapped to the same location. When we compute the masks

described earlier, we want to identify these many-to-one mappings and only one of them is

selected to contribute to the fine-grid vertex under consideration.

Now, we briefly describe how we identified these 1758 cases. We first choose one of the

eight fine-grid octants surrounding a given fine-grid vertex as a reference element. Without

loss of generality, we pick the octant whose anchor is located at the given fine vertex. Now

the remaining fine-grid octants could either be the same size as the reference element, or

be half the size or twice the size of the reference element. This simply follows from the

2:1 balance constraint. Further, each of these eight fine-grid octants could either be the

same as the overlapping coarse-grid octant or be any of its eight children. Moreover, each

of these coarse-grid octants that overlap the fine-grid octants under consideration could

belong to any of the 8 child number types, each of which could further be of any of the

18 hanging configurations. Taking all these possible combinations into account, we can

locate all the possible non-hanging coarse-grid vertices around a fine-grid vertex. Note that

the child numbers, the hanging vertex configurations, and relative sizes of the eight fine-

grid octants described above are not mutually independent. Each choice of child number,

hanging vertex configuration and size for one of the eight fine-grid octants imposes numerous

constraints on the respective choices for the other elements. Listing all possible constraints

is unnecessary for our purposes; we simply assume that the choices for the eight elements

under consideration are mutually independent. This computation can be done offline and

results in a weak upper bound of 1758 unique non-hanging coarse-grid locations around any

fine-grid vertex.

5This is a weak upper bound.

89

We cannot compute the masks offline since this depends on the coarse and fine octrees

under consideration. To do this computation efficiently, we employ a “PreMatVec” before

we actually begin solving the problem; this is only performed once for each multigrid level.

In this PreMatVec, we use a set of 16 bytes per fine-grid vertex; 2 bytes for each of the

eight fine-grid octants surrounding the vertex. In these 16 bits, we store the flags for each

of the possibilities described above. These flags contain the following information.

• A flag to determine whether or not the coarse and fine grid octants are the same (1

bit).

• The child number of the current fine-grid octant (3 bits).

• The child number of the corresponding coarse-grid octant (3 bits).

• The hanging configuration of the corresponding coarse-grid octant (5 bits).

• The relative size of the current fine-grid octant with respect to the reference element

(2 bits).

Using this information and some simple bitwise operations, we can compute and store the

masks for each fine-grid vertex. The PreMatVec is an operation with O(N) work complexity

and has an O(Nnp
) parallel time complexity.

4.2.2.4 Overlapping communication with computation

Finally, we overlap computation with communication for ghost values even within the Re-

striction and Prolongation MatVecs. However, unlike the finite element MatVec the loop is

split into three parts because we cannot loop over ghost octants since these octants need not

be aligned across grids. Hence, each processor loops only over the coarse and the underlying

fine octants that it owns. As a result, we need to both read as well as write to ghost values

within the MatVec. The steps involved are listed below:

1. Initiate non-blocking MPI sends for ghost-values from the input vector.

2. Loop over some of the coarse and fine grid elements that are present in the interior of

the processor domains. These elements do not share any vertices with other processors.

90

3. Receive the ghost-values sent from other processors in step 1.

4. Loop over the coarse and fine grid elements that share at least one of its vertices with

a different processor.

5. Initiate non-blocking MPI sends for ghost-values in the output vector.

6. Loop over the remaining coarse and fine grid elements that are present in the interior

of the processor domains. Note in step 2, we only iterated over some of these elements.

In this step, we iterate over the remaining elements.

7. Receive the ghost-values sent from other processors in step 5.

8. Add the values received in step 7 to the existing values in the output vector.

4.2.3 Handling variable-coefficient operators

One of the problems with geometric multigrid methods is that their performance deteriorates

with increasing contrast in material properties [25, 36]. Section 4.1.5 shows that the direct

coarse-grid discretization can be used instead of the Galerkin coarse-grid operator provided

the same bilinear form, a(u, v), is used both on the coarse and fine multigrid levels. This

poses no difficulty for constant coefficient problems. For variable-coefficient problems, this

means that the coarser grid MatVecs must be performed by looping over the underlying

finest grid elements, using the material property defined on each fine-grid element. This

would make the coarse-grid MatVecs quite expensive. A cheaper alternative would be to

define the material properties for the coarser grid elements as the average of those for the

underlying fine-grid elements. This process amounts to using a different bilinear form for

each multigrid level and hence is a clear deviation from the theory. This is one reason why

the convergence of the stand-alone multigrid solver deteriorates with increasing contrast in

material properties. Coarsening across discontinuities also affects the coarse grid correction,

even when the Galerkin condition is satisfied. Large contrasts in material properties also

affect simple smoothers like the Jacobi smoother. The standard solution is to use multigrid

as a preconditioner to the Conjugate Gradient (CG) method. We have conducted numerical

91

experiments that demonstrate this for the Poisson problem. The method works well for

smooth coefficients but it is not robust in the presence of discontinuous coefficients.

4.2.4 Minimum grain size required for good scalability

For good scalability of our algorithms, the number of elements in the interior of the processor

domains must be significantly greater than the number of elements on the inter-processor

boundaries. This is because communication costs are proportional to the number of elements

on the inter-processor boundaries, and by keeping the number of such elements small we

can keep our communication costs low. We use a heuristic to estimate the minimum grain

size necessary to ensure that the number of elements in the interior of a processor is greater

than those on its surface. In order to do this, we assume the octree to be a regular grid.

Consider a cube that is divided into N3 equal parts. There are (N − 2)3 small cubes in the

interior of the large cube and N3− (N −2)3 small cubes touching the internal surface of the

large cube. In order for the number of cubes in the interior to be more than the number of

cubes on the surface, N must be >= 10 . Hence, the minimum grain size per processor is

estimated to be 1000 elements.

4.2.5 Summary

The sequence of steps involved in solving the problem defined in Section 4.1.1.1 is summa-

rized below:

1. A “sufficiently” fine6 2:1 balanced complete linear octree is constructed using the

algorithms described in Chapter 2.

2. Starting with the finest octree, a sequence of 2:1 balanced coarse linear octrees is

constructed using the global coarsening algorithm (Section 4.2.1).

3. The maximum number of processors that can be used for each multigrid level without

violating the minimum grain size criteria (Section 4.2.4) is computed.

4. Starting with the coarsest octree, the octree at each multigrid level is meshed using the

6Here the term sufficiently is used to mean that the discretization error introduced is acceptable.

92

algorithm described in Chapter 3. As long as the load imbalance across processors

is acceptable and as long as the number of processors used for the coarser grid is

the same as the maximum number of processors that can be used for the finer grid

without violating the minimum grain size criteria, the partition of the coarser grid is

imposed on to the finer grid during meshing. If either of the above two conditions is

violated then the octree for the finer grid is duplicated; one of them is meshed using

the partition of the coarser grid and the other is meshed using a fresh partition. The

process is repeated until the finest octree has been meshed.

5. A restriction PreMatVec (Section 4.2.2) is performed at each multigrid level (except

the coarsest) and the masks that will be used in the actual restriction and prolongation

MatVecs are computed and stored.

The discrete system of equations is solved using the Conjugate Gradient algorithm precon-

ditioned with the multigrid scheme.

4.3 Numerical experiments

In this section, we consider solving for u in Equation 18 and u in Equations 19, 20, 21 and 22.

Equation 18 represents a 3-dimensional, linear elastostatics (vector) problem with isotropic

and homogeneous Lamé moduli (µ and λ) and homogeneous Dirichlet boundary conditions.

Equations 19 through 22 represent 3-dimensional, linear Poisson (scalar) problems with

93

inhomogeneous material properties and homogeneous Neumann boundary conditions.

µ∆u + (λ+ µ)∇ Div u = f in Ω

u = 0 in ∂Ω

µ = 1; λ = 4; Ω = [0, 1]3 (18)

−∇ · (ε∇u) + u = f in Ω

n̂ · ∇u = 0 in ∂Ω

ε(x, y, z) =
(
1 + 106

(
cos2(2πx) + cos2(2πy) + cos2(2πz)

))
(19)

ε(x, y, z) =

 107 if 0.3 ≤ x, y, z ≤ 0.6

1.0 otherwise
(20)

ε(x, y, z) =



107 if the index of the octant

containing (x, y, z) is divisible by

some given integer K

1.0 otherwise

(21)

ε(x, y, z) =



107 if (x, y, z) ∈ [0, 0.5)× [0, 0.5)× [0, 0.5)

∪ [0.5, 1.0]× [0.5, 1.0]× [0, 0.5)

∪ [0, 0.5)× [0.5, 1.0]× [0.5, 1.0]

∪ [0.5, 1.0]× [0, 0.5)× [0.5, 1.0]

1.0 otherwise

(22)

We discretized these problems on various octree meshes generated using Gaussian and

log-normal distributions.7 Figures 28(a) and 28(b) respectively show samples of the Gaus-

sian and log-normal distributions that were used in all our experiments. The number of

elements in these meshes range from about 25 thousand to over 2 billion and were solved

on up to 32000 processors on the Teragrid system: “Ranger” (63K Barcelona cores with

Infiniband). Details for this system can be found in [122]. Our C++ implementation uses

MPI, PETSc [10, 9] and SuperLU Dist [81]. The runs were profiled using PETSc.

In this Section, we present the results from four sets of experiments: (A) a convergence

7In the following experiments, the octrees were not generated based on the underlying material properties.

94

(a) (b)

Figure 28: Samples of the point distributions used for the numerical experiments: (a) A
Gaussian point distribution with mean at the center of the unit cube and (b) A log-normal
point distribution with mean near one corner of the unit cube and it’s mirror image about
the main diagonal.

test, (B) a robustness test, (C) isogranular scalability, and (D) fixed size scalability. The

parameters used in the experiments are listed below:

• For experiment (A), we set u = cos(2πx) cos(2πy) cos(2πz) and constructed the cor-

responding force (f).

• For experiments (B) through (D), we used a random solution (u) to construct the

force (f).

• A zero initial guess was used in all experiments.

• One multigrid V-cycle was used as a preconditioner to the Conjugate Gradient (CG)

method in all experiments. This is known to be more robust than the stand alone

multigrid algorithm for variable-coefficient problems [123].

• The damped Jacobi method was used as the smoother at each multigrid level.

• SuperLU Dist [81] was used to solve the coarsest grid problem in all cases.

• In order to minimize communication costs, the coarsest grid used fewer processors

than the finer grids. This keeps the setup cost for SuperLU Dist low.

95

Table 5: L2 norm of the error between the true solution and its finite element approxima-
tion for the variable coefficient problem (Equation 19). The sequence of meshes used in this
experiment were constructed by using a base discretization of ≈ 0.25M elements generated
using a Gaussian point distribution followed by successive uniform refinements of the coarse
elements of this mesh.

Max. Element Size (hmax) 1/16 1/32 1/64 1/128 1/256
L2 norm of the error 3.98 ×10−3 9.62 ×10−4 2.46 ×10−4 6.18 ×10−5 1.56 ×10−5

4.3.1 Convergence test

In the first experiment, a base discretization of approximately ≈ 0.25M elements generated

using the Gaussian distribution was used to solve the variable-coefficient problem (Equation

19). We measured the L2 norm of the error as a function of the maximum element size

(hmax) by uniformly refining the coarse elements8 in the base mesh. In Table 5, we report

the L2 norm of the error between the true solution and its finite element approximation

for the sequence of meshes constructed as described above. A second order convergence is

observed just as predicted by the theory.

4.3.2 Robustness test

In the second experiment, we tested the robustness of the multigrid solver in the presence of

strong jumps in the material properties. We discretized Equations 21 and 22 on an uniform

octree with about 2M elements and measured the convergence rate for different values of

K. Six multigrid levels were used for these problems. In Table 6, we report the number

of iterations that were required to reduce the 2-norm of the residual in Equation 21 by a

factor of 10−8 for different values of K; the number of jumps decreases as K increases. It is

apparent that the solver is quite sensitive to the number of jumps. However, there are other

factors that determine the overall performance of the solver. For example, it only takes

7 iterations to solve Equation 22 to the same tolerance; although there are more number

of jumps in Equation 22 than Equation 21 for log2K = 10, 13, 16 or 19. While the fine

grid material properties in Equation 22 are represented exactly on all coarser grids, the fine

grid material properties in Equation 21 are not represented accurately on any of the coarse

8Any element whose length is greater than hmax.

96

Table 6: The number of iterations required to reduce the 2-norm of the residual in Equation
21 by a factor of 10−8 for different values of K, a parameter that controls the frequency of
jumps. A regular grid with 128 elements in each dimension was used for this experiment.

log2K 1 4 7 10 13 16 19
Its. 119 18 25 55 66 43 17

grids. This would explain why coarse grid correction works better for Equation 22 than for

Equation 21. The results of this experiment show that the current scheme is not robust in

the presence of discontinuous coefficients.

4.3.3 Parallel scalability results

We tested the scalability of our implementation on the TeraGrid system: Ranger. In all the

fixed-size (strong) and iso-granular (weak) scalability results, the reported times for each

component are the maximum values for that component across all the processors. Hence,

in some cases the total time9 is lower than the sum of the individual components. We also

report the theoretical predictions10 for the total setup and solve times. This was computed

using the asymptotic complexity estimates for the setup (O(Nnp
log N

np
) +O(np log np)) and

solve (O(Nnp
) +O(log np)) times. The coefficients in the expressions for the complexity were

computed so that the sum of squares of the deviation between the theoretical estimates

and the actual data is minimized. While determining these coefficients, we skipped the

last data point (corresponding to the greatest number of processors) in each experiment.

This was done so that we could use our model to predict the value for the last data point

and compare our predictions with the observed results. The number of multigrid levels

and the total number of meshes generated for each case is also reported. Note that due to

the addition of auxiliary meshes, the total number of meshes is greater than the number

of multigrid levels. The setup cost includes the time for constructing the mesh for all the

multigrid levels (including the finest), constructing and balancing all the coarser multigrid

levels and setting up the intergrid transfer operators by performing one PreMatVec at each

multigrid level. The time to create the work vectors for the MG scheme and the time to

9This is reported in bold face.
10This is reported within parenthesis just below the total setup and solve times.

97

build the coarsest grid matrix are also included in the total setup time, but are not reported

individually since they are insignificant. “Scatter” refers to the process of transferring the

vectors between two different partitions of the same multigrid level during the intergrid

transfer operations, required whenever the coarse and fine grids do not share the same

partition. The time spent in applying the Jacobi preconditioner, computing the inner-

products within CG, and solving the coarsest grid problems using LU are all accounted for

in the total solve time, but are not reported individually since they are insignificant. When

we report MPI Wait() times, we refer to synchronization for non-blocking operations during

the Restriction, Prolongation and Finite Element MatVecs.

4.3.3.1 Isogranular (weak) scalability

Isogranular scalability analysis was performed by tracking the execution time while increas-

ing the problem size and the number of processors proportionately. The results from isogran-

ular scalability experiments on the octrees generated from Gaussian point distributions are

reported in Tables 7, 8 and 9. Tables 7 and 8 report the results for the constant coefficient

elasticity (Equation 18) problem for two different grain sizes and Table 9 reports the results

for the variable-coefficient Poisson problem (Equation 19). The results from an isogranular

scalability experiment for solving the variable-coefficient Poisson problem (Equation 19) on

octrees generated from log-normal point distributions are reported in Table 10. There is

little variation between the Gaussian distribution case and the log-normal distribution case.

For the Gaussian distribution cases, the coarsest octant at the finest multigrid level was at

level three; the level of the finest octant at the finest multigrid level for each case is reported

in the tables. The octrees considered here are extremely non-uniform—roughly five-orders

of magnitude variation in the leaf size. It is also quite promising that the setup costs are

smaller than the solution costs, suggesting that the method is suitable for problems that

require the construction and solution of linear systems of equations numerous times. The

increase in running times for the large processor cases can be primarily attributed to poor

load balancing. This is evident from (a) the imbalance in the number of elements per

processor and (b) the time spent in calls to MPI Wait(). These numbers are reported in

98

Table 7: Isogranular scalability for solving the constant coefficient linear elastostatics
problem on a set of octrees with a grain size (on the finest multigrid level) of 30K (approx)
elements per CPU (np) generated using a Gaussian distribution of points. A relative toler-
ance of 10−10 in the 2-norm of the residual was used. 11 iterations were required in each case,
to solve the problem to the specified tolerance. The size of the problem is indicated in the
“Elements” row, the “Max/Min elements” row gives the load imbalance across processors,
the “MG levels” row indicates the number of multigrid levels (it differs from the number of
“Meshes” because our algorithm duplicates meshes to allow for incompatible partitioning),
“R+P” indicates restriction and prolongation costs, and “LU” is the coarse-grid solve. In
the “Theory row”, we report an estimate of the time required using the asymptotic analy-
sis complexity using constants fitted by the runs on 12 – 12288 processors. The fine-level
input octrees are highly non-uniform. The largest octants are at tree-level three and the
smallest octants are at a tree-level reported in the “Finest Octant’s level” row. All timings
are reported in seconds.
CPUs 12 48 192 768 3072 12288 32000
Coarsening 0.33 0.56 0.95 1.66 2.18 4.39 1.90
Balancing 0.77 0.99 1.23 1.84 4.48 12.66 9.67
Meshing 0.973 1.44 1.82 3.32 15.09 32.89 21.67
R-setup 0.092 0.125 0.122 0.14 0.172 0.173 0.355
Total Setup 2.41 3.22 3.87 6.51 23.4 53.21 47.14
(Theory) (4.94) (4.97) (5.25) (7.02) (15.48) (54.86) (148.39)
LU 0.189 0.4 0.017 0.171 0.543 0.015 0.0025
R + P 2.53 3.62 4.23 5.36 8.55 8.96 11.97
Scatter 3.11 6.49 8.59 13.13 16.98 21.15 27.88
FE Matvecs 51.63 57.73 60.20 64.58 68.78 69.87 66.91
Total Solve 54.82 63.74 66.14 73.5 80.96 85.28 89.77
(Theory) (55.87) (61.73) (67.39) (73.60) (79.79) (86.06) (90.33)
Meshes 11 16 19 24 25 28 29
MG Levels 8 11 12 14 14 15 16
Elements 337.8K 1.34M 5.29M 21.15M 84.5M 338.3M 880.3M
Max/Min Elements 1.89 1.79 2.04 2.82 3.9 3.08 3.12
MPI Wait 21.32 24.32 29.58 32.65 39.8 39.19 95.75
Finest Octant’s 12 15 16 18 18 19 19
Level

99

Table 8: Isogranular scalability for solving a linear elastostatics problem on a set of octrees
with a grain size (on the finest multigrid level) of 80K (approx) elements per processor
generated using a Gaussian distribution of points. A relative tolerance of 10−10 in the 2-
norm of the residual was used. 11 iterations were required in each case, to solve the problem
to the specified tolerance. All timings are reported in seconds.

CPUs 12 48 192 768 3072 12288 32000
Coarsening 0.85 1.27 2.18 3.09 4.17 6.28 4.01
Balancing 1.76 2.08 2.96 3.87 7.19 13.33 12.97
Meshing 2.41 3.21 6.53 7.4 21.06 33.41 34.03
R-setup 0.27 0.32 0.323 0.32 0.35 0.54 0.63
Total Setup 4.64 5.95 11.04 12.85 31.89 54.69 70.14
(Theory) (10.24) (10.36) (10.69) (12.34) (20.29) (57.18) (144.99)
LU 0.025 0.02 0.517 0.048 4.92 0.019 0.041
R + P 6.22 7.89 12.87 13.8 14.87 56.2 30.16
Scatter 3.9 6.1 13.83 15.26 20.63 62.61 50.76
FE Matvecs 145.8 166.73 174.27 173.64 186.11 221.01 169.81
Total Solve 152.36 175.2 187.27 188.38 212.04 242.37 208.06
(Theory) (152.35) (169.13) (185.13) (201.06) (217.24) (232.69) (244.25)
Meshes 13 16 22 25 27 29 30
MG Levels 10 11 12 14 15 16 16
Elements 986.97K 3.97M 15.87M 63.4M 253.8M 1.01B 2.64B
Max/Min Elements 1.66 1.9 2.44 2.43 2.73 2.88 2.89
MPI Wait 53.95 80.23 97.86 88.1 97.83 173.82 118.1
Finest Octant’s 14 15 17 18 19 20 20
Level

Table 9: Isogranular scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on the set of octrees with a grain size (on the finest multigrid level) of 0.25M
elements (approx.) per processor (np) generated using a Gaussian distribution of points.
The iterations were terminated when the 2-norm of the residual was reduced by a factor of
10−10. 5 iterations were required in each case. All timings are reported in seconds.

CPUs 1 4 16 64 256 1024 4096
Coarsening 0.02 0.09 2.79 3.41 4.48 5.44 6.75
Balancing 0.34 2.32 4.66 5.23 6.18 7.96 8.92
Meshing 2.66 7.44 7.12 8.12 20.43 19.54 29.14
R-setup 0.48 1.04 0.85 0.88 1.01 0.99 1.04
Total Setup 3.59 11.11 13.07 15.32 30.29 30.58 44.95
LU 1.16 0.27 1.11 2.69 5.4 11.69 10.99
R + P 2.07 5.61 5.26 6.75 6.99 7.26 10.22
Scatter 0 0 0.11 0.32 2.55 3.65 6.79
FE Matvecs 20.37 43.92 37.46 39.97 40.64 40.96 52.53
Total Solve 24.19 49.98 43.53 48.19 53.06 60.37 73.46
Elements 239.4K 995.4K 3.97M 16.0M 64.4M 256.8M 1.04B
Vertices 151.7K 660.1K 2.68M 10.52M 42.0M 172.4M 702.9M
Meshes 4 7 8 9 15 17 19
MG Levels 4 7 7 7 8 9 10
Finest Octant’s 8 14 14 16 18 19 21
Level

100

Table 10: Isogranular scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on a set of octrees with a grain size (on the finest multigrid level) of 25K elements
(approx.) per processor (np) generated using a log-normal distributions of points located
on two diagonally opposite corners of the unit cube. The iterations were terminated when
the 2-norm of the residual was reduced by a factor of 10−10. The levels of the coarsest and
finest octants at the finest multigrid level are reported in the table. All timings are reported
in seconds.

CPUs 1 4 16 64 256 1024
Coarsening 0.015 0.036 0.18 0.43 0.58 0.76
Balancing 0.03 0.16 0.4 0.72 0.89 5.99
Meshing 0.28 0.59 0.76 1.26 2.73 6.13
R-setup 0.059 0.092 0.08 0.102 0.12 0.14
Total Setup 0.95 0.92 1.33 3.07 5.15 14.13
LU 0.55 0.56 0.19 0.07 0.75 0.96
R + P 0.24 0.58 0.57 1.14 0.99 1.32
Scatter 0 0 0.08 0.46 0.88 1.39
FE Matvecs 2.05 3.8 3.47 5.42 4.45 5.52
Total Solve 3.09 4.96 4.38 6.48 6.69 8.48
CG Its. 5 5 5 7 6 7
Meshes 3 4 6 11 15 15
MG Levels 3 4 5 7 8 8
Finest Octant’s 9 13 13 13 15 16
Level
Coarsest Octant’s 3 3 4 4 5 5
Level
Elements 24.6K 99.3K 362.6K 1.42M 5.64M 22.4M
Vertices 17.4K 68.2K 243.3K 952.2K 3.79M 14.9M

101

Table 11: Fixed-size scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on an octree with 31.9M elements generated from a Gaussian distribution of points.
8 multigrid levels were used. 5 iterations were required to reduce the 2-norm of the residual
by a factor of 10−10. 468 Matvecs, 72 of which are on the finest grid, were required. All
timings are reported in seconds.

CPUs 32 64 128 256 512 1024
Coarsening 9.02 5.81 4.08 2.73 1.85 1.44
Balancing 15.02 9.03 5.91 3.83 2.43 1.73
Meshing 30.69 24.81 9.25 7.99 5.94 4.15
R-setup 3.64 1.97 0.94 0.56 0.3 0.19
Total Setup 51.14 37.52 17.32 13.89 10.39 7.82
LU 1.82 2.08 1.59 1.70 1.71 1.77
R + P 24.59 12.06 7.30 4.18 2.11 1.35
Scatter 0.25 1.62 0.61 0.89 1.45 1.46
FE Matvecs 159.0 77.94 41.28 25.11 10.93 5.99
Total Solve 181.9 91.59 48.94 31.23 15.28 9.98
Meshes 10 11 12 14 15 15

Tables 7 and 8 (in the introduction).11 Load balancing is a challenging problem due to the

following reasons:

• We need to make an accurate a-priori estimate of the computation and communication

loads. It is difficult to make such estimates for arbitrary distributions.

• For the intergrid transfer operations, the coarse and fine grids need to be aligned.

It is difficult to get good load balance for both grids, especially for non-uniform

distributions.

• Partitioning each multigrid level independently to get good load balance for the

smoothing operations would require the creation of an auxiliary mesh for each multi-

grid level and a scatter operation for each intergrid transfer operation at each multigrid

level. This would increase the setup costs and the communication costs.

4.3.3.2 Fixed-size (strong) scalability

Fixed-size scalability was performed on the octrees generated from Gaussian and log-normal

point distributions to compute the speedup when the problem size is kept constant and the

11We only report the Max/Min elements ratios for the finest multigrid level although the trend is similar
for other multigrid levels as well.

102

Table 12: Fixed-size scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on an octree with 22.4M elements generated using a log-normal distribution of
points located on two diagonally opposite corners of the unit cube. 8 multigrid levels were
used. 5 iterations were required to reduce the 2-norm of the residual by a factor of 10−10.
All timings are reported in seconds.

CPUs 32 64 128 256 512 1024
Coarsening 5.9 4.57 2.78 1.67 1.12 0.84
Balancing 9.9 6.52 4.12 2.51 1.75 1.70
Meshing 20.17 14.28 6.61 5.39 6.4 6.17
R-setup 2.29 1.47 0.64 0.34 0.25 0.14
Total Setup 33.51 24.36 12.59 9.03 10.36 9.71
LU 0.59 1.87 1.3 0.58 0.95 0.84
R + P 13.73 9.42 4.17 2.56 2.44 1.34
Scatter 0.2 0.57 0.37 0.69 1.51 1.31
FE Matvecs 99.76 63.01 27.35 14.45 12.44 5.88
Total Solve 113.77 73.86 32.48 17.41 16.62 9.1
Meshes 10 11 12 14 15 15

Table 13: Fixed-size scalability for solving the variable-coefficient Poisson problem (Equa-
tion 19) on an octree with 5.64M elements generated using a log-normal distribution of
points located on two diagonally opposite corners of the unit cube. 8 multigrid levels were
used. 5 iterations were required to reduce the 2-norm of the residual by a factor of 10−10.
All timings are reported in seconds.

CPUs 32 64 128 256 512 1024
Coarsening 2.75 2.11 0.99 0.59 0.41 0.35
Balancing 4.56 2.95 1.36 0.91 0.96 1.09
Meshing 8.46 4.95 2.68 2.68 2.61 2.59
R-setup 0.66 0.35 0.21 0.16 0.18 0.087
Total Setup 15.54 9.59 5.52 4.55 5.21 7.43
LU 1.08 0.89 0.82 0.17 0.69 0.79
R + P 4.57 2.89 1.68 0.95 0.81 0.72
Scatter 0.32 0.58 0.46 0.84 1.45 1.44
FE Matvecs 28.69 14.74 8.68 4.36 3.35 2.47
Total Solve 35.61 18.49 11.45 5.65 5.73 5.12
Meshes 11 12 13 15 15 15

103

number of processors is increased. The results from fixed size scalability experiments for

the solving the variable-coefficient problem (Equation 19) on an octree with 32M (approx)

elements generated from Gaussian point distribution are reported in Table 11. This ex-

periment was repeated on octrees with 6M and 22M (approx) elements generated from

log-normal point distributions and the corresponding results are reported in Tables 13 and

12, respectively. The results for the Gaussian and log-normal distributions are similar. We

observe good speed-ups for the setup phase on up to 256 processors and the speed-ups

begin to deteriorate beyond that. We believe that the surface computation (e.g. meshing

for ghost elements) begins to dominate beyond 256 processors. Note that the number of

meshes also grow with the number of processors. This is another reason why we don’t ob-

serve ideal speed-ups for the setup phase. The speed-ups for the solve phase, although not

ideal, seem to be quite good. Poor load balancing, which affects isogranular scalability on

large processor counts, seems to be another factor that affects the speed-ups for the setup

and solve phases in the fixed-size scalability experiments.

4.4 Conclusions

In this chapter, we described a parallel geometric multigrid method for solving elliptic partial

differential equations using finite elements on octree-based discretizations. The features of

the described method are summarized below:

• We automatically generate a sequence of coarse meshes from an arbitrary 2:1 bal-

anced fine octree. We do not impose any restrictions on the number of meshes in

this sequence or the size of the coarsest mesh. We do not require the meshes to be

aligned and hence the different meshes can be partitioned independently to satisfy

any user-defined constraint such as a limit on the load imbalance. Although, the pro-

cess of constructing coarser meshes from a fine mesh is harder than iterative global

refinements of a coarse mesh to generate a sequence of fine meshes; this is more prac-

tical since the fine mesh can be defined naturally depending on modeling restrictions,

and/or physics of the problem as opposed to the coarse mesh, which is purely an

artifact of the numerical method. It is also natural and more desirable to be able

104

to control the fine mesh in an adaptive algorithm rather than controlling the coarse

mesh.

• We demonstrated good scalability of our implementation and can solve problems with

billions of elements on thousands of processors in less than 10 minutes. However,

load balancing remains an open problem and this begins to affect our iso-granular

scalability beyond a thousand processors. This is a difficult problem to tackle because

there are many competing factors: Restriction, prolongation, scatters and MatVecs.

• Finally, we demonstrated that our implementation works well even on problems with

variable coefficients.

There are two important extensions for the present work: higher-order discretizations

and integration with domain-decomposition methods such as the Hierarchical Hybrid Grids

(HHG) scheme described in [15]. The former will result in improved accuracy with fewer

elements and the latter will help solve problems involving complicated geometries with fewer

elements. The last point stems from the fact that using a single octree to mesh a domain is

more restrictive than allowing the use of multiple octrees, each of which is only responsible

for a part of the entire domain.

105

CHAPTER V

ELASTIC REGISTRATION USING OCTREES

In this chapter, we present a parallel algorithm for intensity-based elastic image registra-

tion. This is one of the most challenging problems in image processing. It is the process

of overlaying two or more images of the same scene taken at different times, from different

viewpoints, and/or by different sensors [145]. Specifically, we want to find a suitable trans-

formation or mapping such that a transformed image becomes similar to another image [88].

This is illustrated in Figure 29. It is a pre-processing step for the following applications:

• Integrating complementary information contained in images of the same subject ob-

tained using different modalities.

• Aligning temporal sequences of images to compensate for motion of the subject.

• Image guidance during surgery.

• Aligning images from multiple subjects in statistical studies.

• Comparing images taken at different stages of progression of a disease such as in tumor

growth.

The image registration problem can be viewed as a non-convex optimization problem;

such problems typically have multiple local optima [92]. Also, it is an ill-posed problem

and we need to impose a regularization that constrains the displacement field. The choice

of regularization is an important feature that can be used to distinguish between differ-

ent registration algorithms. In this work, we will use the elastic deformation energy as the

regularization and hence this procedure is known as “elastic registration”. This choice is mo-

tivated by the fact that many biological materials that are imaged are elastic. In particular,

we will use the linear theory of elasticity to derive the deformation energy. The optimal-

ity condition for the elastic registration problem is a nonlinear partial differential equation

106

Moving Image Fixed Image

P

Q P

u

Figure 29: Illustration of the image registration problem. The point “Q” on the “moving”
image and the point “P” on the “fixed” image have the same physical coordinates but
they represent different material points. The points “P” on the fixed and moving images
represent the same material points but have different physical coordiantes. We need to find
the displacement “u” between the points “P” and “Q” on the moving image.

(PDE) and the corresponding linearization suffers from indefiniteness and ill-conditioning.

Registration methods can be broadly classified into two types: (a) Landmark/feature-

based and (b) Intensity-based. In the former approach, few distinct features in the images

are identified and the registration is performed by first establishing point correspondences

between the features in the source and target images, followed by an interpolation or approx-

imation scheme to map the remaining regions of the images. In contrast, intensity-based

approach work directly with intensity values in the pixels/voxels. Typically, landmark-

based approaches have the drawback of requiring manual intervention to select landmarks.

Since medical images seldom have distinct features, it is difficult and error prone to iden-

tify landmarks. For this reason, intensity-based approaches are easier to automate. How-

ever, intensity-based approaches lack the anatomical information contained in features and

are generally more computationally intensive than feature-based approaches. Hybrid ap-

proaches that combine intensity-based and feature-based criteria have also been proposed.

In the present work, we adopt an intensity-based approach.

There are many different registration algorithms and all of them require the following

components: (a) a metric to measure the similarity between any given pair of images, (b)

107

a model for the desired transformation, (c) an interpolation scheme and (d) an optimizer.

Some of the commonly used similarity metrics are (a) Sum of squared differences (SSD),

(b) correlation coefficient, (c) correlation ratio and (d) mutual information [33, 96]. SSD

is used when the registered images differ only by a Gaussian noise. Correlation coefficient

is used when the registered images have a linear intensity relationship. Correlation ratio is

used when the registered images have some nonlinear intensity relationship. Mutual infor-

mation only assumes a probabilistic relationship between the intensities of the registered

images. SSD and correlation coefficient are used for single modality1 registration and the

other metrics are used for multiple modality registration. We use the SSD metric in this

work. The transformation models can be classified into two types: (a) Parametric and (b)

Non-parametric. Parametric models such as rigid/affine or spline-based deformations are

computationally efficient because of their small search space; and they have limited flex-

ibility for the same reason. In the non-parametric case, the transformation model comes

directly from the discretization scheme such as finite differencing or finite elements. They

have greater flexibility, but are more expensive and need explicit regularization to constrain

the deformation. D-linear and cubic spline interpolation are typically used in registration

algorithms to interpolate the discrete images. D-linear interpolation is not suitable for

gradient-based optimization algorithms for image registration because these algorithms re-

quire the gradient of the image and d-linear image approximations are not continuously

differentiable. On the other hand, spline approximations can be differentiated and hence

are typically used in gradient-based algorithms. In this work, we use piecewise tricubic

polynomial approximations to the images. The advantage of this interpolation scheme is

that the coefficients are simply the image intensity and its first derivatives at the grid points,

which can be computed quickly using finite differences and its easy to parallelize. Different

types of optimizers have been used for image registration; these range from derivative-free

approaches [37, 89, 131] to quasi-Newton [58, 59] and inexact-Newton type algorithms [60].

In this work, we use the Gauss-Newton algorithm for solving the optimization problem.

1Modality refers to the technique used to acquire the images. Some popular modalities include ultrasound,
magnetic resonance imaging and computed tomography.

108

Elastic image registration is a computationally intensive problem that involves the nu-

merical solution of large linear systems of equations several times. To reduce the compu-

tation time for registration, we considered a combination of various techniques. To reduce

the amount of processed data we used a non-uniform discretization scheme. Such a dis-

cretization scheme would also be useful for further extensions of the work that will include

adaptive mesh refinement proceedures. Due to the sheer size of the problem and storage

limitations we considered matrix-free schemes and parallel implementations. Since, generic

unstructured meshes are not suitable for matrix-free schemes, we considered octree dis-

cretizations instead. Moreover, generic unstructured meshing schemes tend to break down

due to bad element quality during the remeshing step. We used iterative solvers since direct

solvers do not work with matrix-free schemes and moreover they are known to not scale

well. The convergence rates of most iterative solvers deteriorate with the condition number

of the matrix to be inverted. The matrices that need to be inverted to solve the registration

problem suffer from ill-conditioning and so it was very important to address this problem.

Multigrid methods are known to be robust for such ill-conditioned systems; so, we used

the geometric multigrid algorithm described in Chapter 4 to solve the linear system formed

in each Gauss Newton iteration. Since this has a low setup cost it was ideal for this ap-

plication in which we need to setup and solve numerous linear systems of equations. We

demonstrate the performance of our method on synthetic as well as clinical images. Also,

we demonstrate the scalability of our implementation on up to 2048 processors on the Sun

Constellation Linux Cluster “Ranger” at the Texas Advanced Computing Center (TACC).

Contributions. The main contributions of this work are as follows:

• We use parallel octree discretizations to reduce the computation time for the registra-

tion problem. This implementation will also allow us to register images that are too

large to fit on a single processor’s memory.

• We use a multigrid algorithm to solve the linear system that arises in each optimization

iteration. In particular, we use a matrix-free geometric multigrid algorithm, which has

lower setup costs compared to its algebraic counterpart. This is significant because

109

we need to setup the linear system of equations for the multigrid scheme in every

optimization iteration.

Limitations. There are a few limitations in the proposed framework:

• The linear theory of elasticity is only valid for small deformations. Other regulariza-

tion approaches may be more appropriate for large deformations.

• We do not incorporate any biophysical information to additionally constrain the de-

formation. It has been suggested that incorporating such information will provide

intelligent priors and reduce the ill-posedness of the registration problem [117].

• We do not use adaptive integration in our present implementation. Instead, we fix

the order of the Gauss quadrature rule for integration a-priori. The use of adaptive

integration can further reduce the computation costs for evaluating the objective

function and gradient.

Organization of the chapter. The rest of this chapter is organized as follows. We give

the mathematical problem formulation in Section 5.1 and describe the octree discretization

and image interpolation schemes in Sections 5.2 and 5.3, respectively. Section 5.4 describes

the linear and nonlinear solvers used to solve the optimization problem. Finally, in Section

5.5 we present the results from using the proposed algorithm for registering synthetic as

well as clinical images.

5.1 Problem description

Given two images, S(x) and T (x), we want to find a displacement field, u(x), that is a

solution to the following minimization problem:

min
u
J (u) =

1
2

∫
[S − T (u)]2 dx+

γ

2
a(u, u)

a(u, v) = −
∫
v · (∆u+ (λ+ 1)∇div u) dx (23)

S is referred to as the fixed image, T is referred to as the moving image and γ is the

110

regularization parameter. a(u, u) represents the elastic potential energy due to the defor-

mation and λ is the Lamé constant. In this framework, we are trying to find a displacement

field that simulataneously minimizes the dissimilarity between the fixed and moving images

and the associated deformation energy. The optimality condition for this problem is given

by Equation 24:

g(u) · v = γ a(u, v)−
∫

(S − T (u))∇T (u) · v dx = 0 ∀v (24)

where, g(u) represents the gradient of the objective function. This is the weak form of

a nonlinear coupled partial differential equation. We need to specify appropriate boundary

conditions to solve this equation; we chose to enforce homogeneous Dirichlet boundary

conditions in this work.

5.2 Octree discretization

In this section, we describe how we construct the parallel octree discretization from the

high resolution fixed and moving images discretized on an uniform grid. We assume that

the number of elements in each dimension of the uniform grid is a power of 2. Note that

we only use the octree discretization for the displacements; we continue to use the original

uniform grid representation for the given images. To make the distinction between the two

discretizations clear, we use the term “octants” to refer to elements in the octree discretiza-

tion and the term “voxels” to refer to elements in the original regular grid discretization.

We first construct two parallel complete linear octrees; one for the fixed image and

another for the moving image. The uniform grids for the input images can be viewed as

octrees in which all the octants are at the same octree-level. We coarsen these octrees by

replacing every set of 8 siblings by their parent as long as the maximum difference between

the image values of the siblings is less than an user-specified threshold (δ). After coarsening,

we set the image value of the parent to be the average of the values of its children and repeat

the process until further coarsening is not possible. This is illustrated in Figure 30. Next,

we merge the two octrees and linearize the result using the algorithm described in Chapter

111

1 1

1 1

2 2

2 2

4 4

4 4

3 3

3 3

1 1

1 1

1 1

1 1

2 2

2 2

1 1

1 1

3 3

3 3

3 3

3 3

2 2

2 2

2 2

2 2

1 10

100 500

100 101

100 102

10 12

10 11

4 10

50 100

(a) Regular Grid (b) Linear Octree

Figure 30: (a) A regular grid image and (b) the linear octree constructed by coarsening
the regular grid image.

2.2 We then use the algorithm described in Chapter 2 to enforce the 2:1 balance constraint.

We construct an octree mesh from the 2:1 balanced octree using the algorithm described

in Chapter 3. We discretize the optimization problem given in Equation 23 using trilinear

finite elements on this octree mesh as described in Chapter 3.

5.3 Interpolation

Since the input images are discrete, we need to construct continuous approximations to the

images that can be used to evaluate their intensity values at arbitrary locations within the

domain. Such evaluations are necessary for computing the integrals in Equation 23 and

Equation 24 numerically. In this work, we use a gradient-based optimization algorithm and

to compute the gradient, g(u), (Equation 24) we also need derivatives of the approximation

of the moving image, T (x). Although computationally efficient, piecewise trilinear image

approximations are not suitable for our purposes as they are not continuously differentiable.

Instead, we used higher order polynomial approximations. In this section, we describe

how we construct continuously differentiable approximations to the images using piecewise

tricubic polynomials. First, we define 32 tricubic polynomials in the reference voxel’s local

2Our implementation is capable of simultaneously registering multimodal images. For simplicity, we only
explain the monomodal case. For the multimodal case, an octree is constructed for each modality and all
the octrees are merged in the end.

112

coordinates, (ξ, η, ζ) ∈ [−1, 1]× [−1, 1]× [−1, 1] using combinations of 4 cubic polynomials

in each of the variables ξ, η and ζ. A generic cubic polynomial in the variable ξ is given in

Equation 25.

P (ξ) =
3∑
i=0

aiξ
i (25)

The 4 cubic polynomials can be constructed by computing the coefficients, ai, in Equa-

tion 25 such that exactly one of P (−1), P (1), dP (−1)
dξ and dP (1)

dξ is 1 and the rest are 0; each

combination gives one unique polynomial. These 4 cubic polynomials are listed in Equation

26.

P 0
0 (ξ) =

2− 3ξ + ξ3

4

P 1
0 (ξ) =

1− ξ − ξ2 + ξ3

4

P 0
1 (ξ) =

2 + 3ξ − ξ3

4

P 1
1 (ξ) =

−1− ξ + ξ2 + ξ3

4
(26)

Using tensor products, we define:

N lmn
ijk (ξ, η, ζ) = P li (ξ)P

m
j (η)Pnk (ζ)

i, j, k ∈ {0, 1}

l,m, n ∈ {0, 1}

l +m+ n ≤ 1 (27)

The approximations to the images within each voxel are then given by Equation 28. We

used the second order accurate central difference scheme to compute the derivatives of T in

Equation 28.

113

T (x, y, z) =
1∑

i,j,k=0

1∑
l,m,n=0
l+m+n≤1

T̂ lmnijk N lmn
ijk (ξ, η, ζ)

T̂ lmnijk =
(
h

2

)l+m+n ∂(l+m+n)T

∂xl∂ym∂zn
x=x0+ih
y=y0+jh
z=z0+kh

ξ = −1 +
2(x− x0)

h

η = −1 +
2(y − y0)

h

ζ = −1 +
2(z − z0)

h

(x, y, z) ∈ [x0, x0 + h)× [y0, y0 + h)× [z0, z0 + h) (28)

5.3.1 Image partition

In our parallel implementation, we partition the images across the processors. The displace-

ments computed during the solve may be such that some processors may need to access

portions of the images owned by other processors in order to perform interpolation. To

reduce the communication costs associated with this operation we impose the partition for

the finest octree onto the images as well; hence, the portion of the images owned by each

processor is aligned with the part of the finest octree owned by that processor. We then

expand this initial partition of the images to include a layer of image voxels that is owned

by other processors; the thickness of this layer is a few voxels and it is a parameter that can

be controlled. This is illustrated in Figure 31. For the case of small deformations, most of

the points, where the images and their gradients need to be evaluated, generated by each

processor will lie within the portion of the images owned by that processor. We commu-

nicate the remaining points to the processors that own the respective image voxels, the

recieving processor will evaluate the image and gradients at these points and communicate

the results back to the processor that generated these points.

5.4 Solvers

In this section, we describe three techniques used to accelerate the solution of the elastic

registration problem. First, we describe a Gauss Newton method that generates good search

114

(a) (b)

Ghost Layer

(c)

Figure 31: Illustration of image partition: (a) An octree distributed on 3 processors, (b)
the input image aligned with the octree and (c) the part of the input image owned by the
first processor. In this example, the ghost layer recieved from other processors is 2 voxels
thick.

115

directions for the optimization and thereby keeping the number of optimization iterations

small. Next, we describe a multigrid scheme to efficiently solve the linear system of equations

that arise in each optimization iteration. Finally, we describe a grid continuation scheme

that solves a sequence of optimization problems on increasingly finer grids to reduce the

overall computational cost and to improve the convergence of the algorithm.

5.4.1 Gauss Newton approximation

In this section, we describe how we solve Equation 24 using a Newton-type method. In the

Newton’s algorithm, the search directions, p, are generated by inverting the Hessian, H, in

Equation 29:

H(un−1)pn−1 = −g(un−1)

un = un−1 + αn−1pn−1 (29)

where, αn−1 satisifies the Armijo backtracking condition [92].

w ·H(u)p = γ a(w, p) +
∫
w · (∇T (u)⊗∇T (u)) p dx

−
∫

(S − T (u))w ·
(
∇2T (u)

)
p dx ∀p, w (30)

The true Hessian for the registration problem, given by Equation 30, can be shown to

be indefinite and so the Newton step might not be a descent direction. Instead, we use a

Gauss-Newton approximation (Equation 31) for the Hessian.

w ·H(u)p = γ a(w, p) +
∫
w · (∇T (u)⊗∇T (u)) p dx ∀p, w (31)

The approximate Hessian is derived by dropping the terms involving the second deriva-

tive of the “moving” image from the true Hessian. The approximate Hessian has an elasticity

part and an image part. We evaluate the integral for the elasticity part exactly using pre-

computed stencils and we use numerical integration to approximate the integral for the

image part. To reduce the computational costs, we only use the values of ∇T (u) evaluated

116

Algorithm 20 Gauss Newton Algorithm

Repeat until convergence:

1. Given u, use interpolation to compute T (u) and ∇T (u).

2. Evaluate the objective function and the gradient of the objective
function.

3. Compute the Newton step, p, in Equation 30 using the multigrid solver.

4. Use line search to scale the step:

• Let w be the Newton step.

• Set α = 1

• While J(u+ αw) > (J(u) + c1α∇J(u)Tw)

– set α = c2α. (c2 ∈ (0, 1))

A trust region approach could be used instead of line search.

5. Update u as shown in Equation 30.

6. Declare convergence if one of the following holds:

• The step-length is smaller than a given tolerance, which is
typically some fraction of the voxel size.

• Reduction in gradient is sufficient.

at the non-hanging vertices of the octree in our numerical integration rule. This results in

a block diagonal approximation to the image part of the Hessian matrix. This approximate

Hessian is positive definite, but can be highly ill-conditioned. We tackle the problem of

ill-conditioning using the multigrid method, which is known to be robust for ill-conditioned

systems. The Gauss Newton algorithm is listed in Algorithm 20.

5.4.2 Multigrid preconditioner

We solve Equation 29 using a Conjugate Gradient (CG) algorithm preconditioned using

one multigrid V-cycle. Here, we use the multigrid algorithm described in Chapter 4. We

use a 3× 3 block-Jacobi smoother at each level and use a direct solver (LU) at the coarsest

grid. To form the coarse grid operator, we first copy the values of ∇T (u) from the fine grid

vertices to the coarse grid vertices by injection. We then assemble the coarse grid operators

by using the coarse grid discretization for the elasticity part and nodal integration for the

117

Algorithm 21 Grid Continuation

1. Construct a sequence of coarse images from the given image by
averaging.

2. Solve the optimization problem on the coarsest grid using zero guess.

3. Interpolate the solution to the next finer grid and use it as an
initial guess for the optimization problem on that grid.

4. Repeat the last step until the finest grid is reached.

image part as decribed earlier.

5.4.3 Grid continuation

To reduce the overall computational cost and to improve the convergence of the algorithm

we use a multiscale optimization algorithm. This idea has been used in other works as well

[4, 60, 63]. In this approach, we solve a sequence of optimization problems on increasingly

finer grids. The solution of each optimization problem is used as an initial guess for the

subsequent optimization on the next finer level. The coarser grid iterations are cheaper

than the fine grid iterations and they help escape local minima by aligning the coarse-level

details. We also use the initial guess to construct an octree corresponding to the deformed

moving image instead of the original moving image. The multiscale optimization algorithm

is listed in Algorithm 21.

5.5 Results

In this section, we present the results from using the multiscale Gauss Newton algorithm

to register synthetic as well as clinical images. We performed four sets of experiments:

• We tested the performance of the algorithm on two synthetic examples.

• We tested the performance of the algorithm on clinical MR images of brains.

• We tested the effect of the thresholding parameter (δ) on the registration accuracy

and the corresponding reduction in problem size. This parameter controls the number

of elements in the octree; For a given image, using higher values of δ would result in

coarser octrees compared to those constructed using lower values of δ.

118

• We tested the fixed-size and isogranular scalability of our MPI-based implementation

of the proposed algorithms on the Sun Constellation Linux Cluster “Ranger” at the

Texas Advanced Computing Center (TACC).

The Newton iterations in all these experiments were terminated when the maximum step

length was less than 0.1 × h, where h is the regular grid spacing. In these experiments,

we measured the performance of registration for different regularization parameters (γ)

using the following metrics: (A) the reduction in absolute value of the mismatch between

the registered and fixed images, (B) the number of optimization iterations, (C) the relative

reductions in objective function, and (D) the relative reduction in the 2-norm of the gradient.

We also computed the determinants of the Jacobians of the recovered deformations at a

small number (7) of points within each element and report the maximum and minimum

values across all elements; values closer to 1 indicate small deformations, values greater than

1 indicate expansion, values lesser than 1 indicate compression and negative values indicate

non-physical deformations such as those involving intersecting or flipped elements.

5.5.1 Synthetic examples

We first present two synthetic example problems of resolution 256×256×256 in Figures 32

and 35. In the former example, the moving image was chosen to be 255 sin2(2πx) sin2(2πy) sin2(2πz)

and the fixed image was generated by applying 3 successive synthetic diffeomorphic displace-

ment field to this image. We found the maximum and minimum values for the determinants

of the Jacobians of the first deformation to be 1.12 and 0.84, respectively; the corresponding

values for the second deformation were 1.28 and 0.64, respectively and the corresponding

values for the third deformation were 1.70 and 0.08, respectively. In the latter example, the

moving image is a sphere and the fixed image is a partial torus. In the figures, we only show

a few selected slices in which the differences between the fixed and moving images are easily

noticeable. We report the results from solving these registration problems using different

regularization parameters in Figures 33 and 36, respectively. We show the corresponding

recovered deformations for these two examples in Figures 34 and 37, respectively. We also

report the corresponding number of Gauss Newton iterations and relative reductions in

119

(a) Fixed (Slice A) (b) Moving (c) Registered

(d) Fixed (Slice B) (e) Moving (f) Registered

(g) Fixed (Slice C) (h) Moving (i) Registered

Figure 32: First synthetic example. The moving image was chosen to be 255 sin2(2πx)
sin2(2πy) sin2(2πz) and the fixed image was generated by applying 3 successive synthetic
diffeomorphic displacement field to this image. The resolution of each image was 256 ×
256× 256. Each row shows a z-crosssectional slice of the fixed, moving and corresponding
registered (deformed moving) images using the regularization parameter: γ = 1000.

objective function and gradient for each level of the multiscale algorithm in Tables 14 and

15, respectively.

5.5.2 Clinical examples

Next, we tested the performance of the algorithm on clinical MR images of resolution

256 × 256 × 256. Figure 38 shows a few z-crosssectional slices of the fixed, moving and

registered MR images of the brain of the same subject taken at different times. We show

the result of registration for different choices of the regularization parameter in Figure 39.

120

(a) Initial Mismatch (b) Final (γ = 102) (c) Final (γ = 103) (d) Final (γ = 104)

(e) Initial Mismatch (f) Final (γ = 102) (g) Final (γ = 103) (h) Final (γ = 104)

(i) Initial Mismatch (j) Final (γ = 102) (k) Final (γ = 103) (l) Final (γ = 104)

Figure 33: Results from using the proposed methology on the images shown in Figure
32. Each row shows a z-crosssectional slice of the initial mismatch between the fixed and
moving images and the final mismatch between the registered and fixed images for different
regularization parameters (γ).

Table 14: Performance of the optimizer for the synthetic images shown in Figure 32. J is
the objective function and g is the 2-norm of the gradient. γ is the regularization parameter.
Approximately 104 elements were used in the finest grid. The Newton iterations were
terminated when the maximum step-length was less than 0.1 × h, where h is the regular
grid spacing for that level. The maximum and minimum values of the determinants of
the Jacobian of the recovered deformation for γ = 102 was found to be 1.89 and -0.14,
respectively. The maximum and minimum values of the determinants of the Jacobian
of the recovered deformation for γ = 103 was found to be 1.56 and 0.35, respectively.
The maximum and minimum values of the determinants of the Jacobian of the recovered
deformation for γ = 104 was found to be 1.21 and 0.85, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)
Its. J

J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

102 16 0.07 0.06 8 0.67 0.03 12 0.92 0.01 15 0.98 0.01 9 0.99 0.01
103 4 0.30 0.07 3 0.92 0.04 2 0.99 0.18 3 0.99 0.06 3 0.99 0.05
104 2 0.78 0.14 2 0.98 0.03 2 0.99 0.05 2 0.99 0.04 2 0.99 0.04

121

(a) Slice A (b) Slice B

(c) Slice C

Figure 34: The z-crosssectional slice of the reconstructed deformation for the example
shown in Figure 32.

Table 15: Performance of the optimizer for the synthetic images shown in Figure 35. J is
the objective function and g is the 2-norm of the gradient. γ is the regularization parameter.
Approximately 2.9× 105 elements were used in the finest grid. The Newton iterations were
terminated when the maximum step-length was less than 0.1 × h, where h is the regular
grid spacing for that level or after 30 iterations. The maximum and minimum values of
the determinants of the Jacobian of the recovered deformation for γ = 103 was found to
be 84.82 and -11.94, respectively. The maximum and minimum values of the determinants
of the Jacobian of the recovered deformation for γ = 104 was found to be 3.33 and -0.42,
respectively. The maximum and minimum values of the determinants of the Jacobian of
the recovered deformation for γ = 105 was found to be 1.07 and 0.97, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)
Its. J

J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

103 17 0.21 0.06 30 0.55 0.12 21 0.81 0.16 30 0.88 0.18 30 0.91 0.19
104 5 0.75 0.17 8 0.93 0.08 11 0.97 0.09 30 0.98 0.06 30 0.99 0.16
105 2 0.97 0.15 1 0.99 - 2 0.99 0.09 2 0.99 0.07 2 0.99 0.07

122

(a) Fixed (Slice A) (b) Moving (c) Registered (γ = 103) (d) Registered (γ = 104)

(e) Fixed (Slice B) (f) Moving (g) Registered (γ = 103) (h) Registered (γ = 104)

(i) Fixed (Slice C) (j) Moving (k) Registered (γ = 103) (l) Registered (γ = 104)

(m) Fixed (Slice D) (n) Moving (o) Registered (γ = 103) (p) Registered (γ = 104)

(q) Fixed (Slice E) (r) Moving (s) Registered (γ = 103) (t) Registered (γ = 104)

Figure 35: Second synthetic example. The moving image is a sphere and the fixed image
is a partial torus. The resolution of each image was 256 × 256 × 256. Each row shows a
z-crosssectional slice of the fixed, moving and corresponding registered (deformed moving)
images for the regularization parameters: γ = 103 and γ = 104.

123

(a) Initial Mismatch (b) Final (γ = 103) (c) Final (γ = 104)

(d) Initial Mismatch (e) Final (γ = 103) (f) Final (γ = 104)

(g) Initial Mismatch (h) Final (γ = 103) (i) Final (γ = 104)

(j) Initial Mismatch (k) Final (γ = 103) (l) Final (γ = 104)

(m) Initial Mismatch (n) Final (γ = 103) (o) Final (γ = 104)

Figure 36: Results from using the proposed methology on the images shown in Figure
35. Each row shows a z-crosssectional slice of the initial mismatch between the fixed and
moving images and the final mismatch between the registered and fixed images for different
regularization parameters (γ).

124

(a) Slice A (b) Slice B

(c) Slice C (d) Slice D

(e) Slice E

Figure 37: The z-crosssectional slice of the reconstructed deformation for the example
shown in Figure 35.

125

Table 16: Performance of the optimizer for the MR images shown in Figure 38. J is the
objective function and g is the 2-norm of the gradient. γ is the regularization parameter.
Approximately 1.28×106 elements were used in the finest grid. The Newton iterations were
terminated when the maximum step-length was less than 0.1 × h, where h is the regular
grid spacing for that level. The maximum and minimum values of the determinants of
the Jacobian of the recovered deformation for γ = 200 was found to be 2.79 and 0.087,
respectively. The maximum and minimum values of the determinants of the Jacobian
of the recovered deformation for γ = 500 was found to be 1.65 and 0.49, respectively.
The maximum and minimum values of the determinants of the Jacobian of the recovered
deformation for γ = 1000 was found to be 1.35 and 0.67, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

200 4 0.67 0.34 11 0.69 0.16 11 0.77 13.1 11 0.89 1.6e-2 12 0.97 8.9e-3
500 6 0.73 0.29 4 0.82 0.36 4 0.85 0.195 4 0.94 0.055 4 0.98 0.038
1000 3 0.78 0.21 4 0.87 0.16 4 0.92 0.106 27 0.97 3.1e-3 15 0.99 6.3e-3

The corresponding number of Gauss Newton iterations and relative reductions in objective

function and gradient for each level of the multiscale algorithm is reported in Table 16.

Another clinical example is shown in Figure 40; this is an example of inter-subject registra-

tion. The mismatch between the fixed and moving images before and after registration is

shown in Figure 41. This experiment was repeated for different registration parameters and

for each case the respective performance metrics like the number of optimization iterations

and relative reductions in objective function and gradient are reported in Table 17. The

reconstructed deformation for the inter-subject registration example is shown in Figure 42.

We also computed the determinants of the Jacobians of the deformation at the centers of

each voxel and this is shown in Figure 43.

5.5.3 Effect of the thresholding parameter

In Figure 44, we show the effect of the thresholding parameter, δ, on the registration

accuracy for the example shown in Figure 40. We also report the relative reduction in

mismatch between the registered and fixed images and the corresponding number of octants

in the finest octree in Table 18. It is quite promising that the thresholding parameter has

little effect on the registration accuracy but has a significant effect on the number of octants.

This suggests that we can significantly reduce the computation time without sacrificing

registration accuracy.

126

(a) Fixed (Slice A) (b) Moving (c) Registered

(d) Fixed (Slice B) (e) Moving (f) Registered

(g) Fixed (Slice C) (h) Moving (i) Registered

(j) Fixed (Slice D) (k) Moving (l) Registered

(m) Fixed (Slice E) (n) Moving (o) Registered

Figure 38: Skull stripped MR images of the brain of the same subject taken at different
times and the corresponding registered (deformed moving) image for γ = 200. Each row
shows a z-crosssectional slice of the fixed, moving and registered images.

127

(a) Initial Mismatch (b) Final (γ = 200) (c) Final (γ = 500) (d) Final (γ = 1000)

(e) Initial Mismatch (f) Final (γ = 200) (g) Final (γ = 500) (h) Final (γ = 1000)

(i) Initial Mismatch (j) Final (γ = 200) (k) Final (γ = 500) (l) Final (γ = 1000)

(m) Initial Mismatch (n) Final (γ = 200) (o) Final (γ = 500) (p) Final (γ = 1000)

(q) Initial Mismatch (r) Final (γ = 200) (s) Final (γ = 500) (t) Final (γ = 1000)

Figure 39: Results from using the proposed methology for registering the example shown
in Figure 38. Each row shows a z-crosssectional slice of the initial mismatch between the
fixed and moving images and the final mismatch between the registered and fixed images
for different regularization parameters (γ).

128

(a) Fixed (Slice A) (b) Moving (c) Registered

(d) Fixed (Slice B) (e) Moving (f) Registered

(g) Fixed (Slice C) (h) Moving (i) Registered

(j) Fixed (Slice D) (k) Moving (l) Registered

(m) Fixed (Slice E) (n) Moving (o) Registered

Figure 40: Skull stripped MR images of the brains of two different subjects and the
corresponding registered (deformed moving) image for γ = 3000. Each row shows a z-
crosssectional slice of the fixed, moving and registered images.

129

(a) Initial Mismatch (b) Final (γ = 1000) (c) Final (γ = 3000) (d) Final (γ = 5000)

(e) Initial Mismatch (f) Final (γ = 1000) (g) Final (γ = 3000) (h) Final (γ = 5000)

(i) Initial Mismatch (j) Final (γ = 1000) (k) Final (γ = 3000) (l) Final (γ = 5000)

(m) Initial Mismatch (n) Final (γ = 1000) (o) Final (γ = 3000) (p) Final (γ = 5000)

(q) Initial Mismatch (r) Final (γ = 1000) (s) Final (γ = 3000) (t) Final (γ = 5000)

Figure 41: Results from using the proposed methology for registering the example shown
in Figure 40. Each row shows a z-crosssectional slice of the initial mismatch between the
fixed and moving images and the final mismatch between the registered and fixed images
for different regularization parameters (γ).

130

Table 17: Performance of the optimizer for registering the MR images shown in Figure
40. J is the objective function and g is the 2-norm of the gradient. γ is the regular-
ization parameter. The threshold parameter, δ, was set equal to 10 in this experiment.
Approximately 1.4× 106 elements were used in the finest grid. The Newton iterations were
terminated when the maximum step-length was less than 0.1×h, where h is the regular grid
spacing for that level. We computed the determinant of the Jacobians of the deformation
at 7 points within each voxel. The maximum and minimum values of the determinants of
the Jacobian of the recovered deformation for γ = 1000 was found to be 11.15 and -1.34,
respectively. The maximum and minimum values of the determinants of the Jacobian of the
recovered deformation for γ = 3000 was found to be 3.83 and 0.53, respectively. The maxi-
mum and minimum values of the determinants of the Jacobian of the recovered deformation
for γ = 5000 was found to be 2.19 and 0.74, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)
Its. J

J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

1e3 8 0.26 0.06 9 0.69 0.08 20 0.70 0.01 43 0.84 4e-3 14 0.95 6e-3
3e3 3 0.44 0.13 3 0.82 0.20 7 0.84 0.04 24 0.92 0.01 33 0.98 3e-3
5e3 2 0.54 0.25 2 0.86 0.33 9 0.88 0.02 9 0.95 0.01 12 0.98 5e-3

Table 18: Effect of the thresholding parameter (δ) used for octree construction for the
example shown in Figure 40. The regularization parameter, γ, was set equal to 3000 in
this experiment. We report the sum of the square of the mismatch between the fixed and
registered images normalized by the sum of the square of the mismatch between the fixed
and moving images. We also report the number of octants in the finest octree for each case.

δ Relative SSD Number of Elements
0 0.151 1.678× 107

10 0.152 1.37× 106

20 0.152 1.18× 106

30 0.153 9.4× 105

40 0.154 6.7× 105

50 0.155 4.3× 105

131

(a) Slice A (b) Slice B

(c) Slice C (d) Slice D

(e) Slice E

Figure 42: The z-crosssectional slice of the reconstructed deformation for the example
shown in Figure 40.

132

(a) Slice A (b) Slice B

(c) Slice C (d) Slice D

(e) Slice E

Figure 43: Determinants of the Jacobians at the centers of voxels for the example shown
in Figure 40.

133

(a) δ = 0 (Slice A) (b) δ = 20 (c) δ = 50

(d) δ = 0 (Slice B) (e) δ = 20 (f) δ = 50

(g) δ = 0 (Slice C) (h) δ = 20 (i) δ = 50

(j) δ = 0 (Slice D) (k) δ = 20 (l) δ = 50

(m) δ = 0 (Slice E) (n) δ = 20 (o) δ = 50

Figure 44: Effect of the thresholding parameter (δ) used for octree construction for the
example shown in Figure 40. Each row shows a z-crosssectional slice of the registered
(deformed moving) images for γ = 3000.

134

5.5.4 Parallel scalability

Finally, we tested the parallel scalability of our implementation on the Sun Constellation

Linux Cluster “Ranger” at the Texas Advanced Computing Center (TACC). We report

the results from the fixed-size scalability and isogranular scalability experiments in Tables

19 and 20, respectively. In the fixed-size scalability experiment, we track the execution

time to solve a fixed problem on different processor counts. In the isogranular scalability

experiment, we track the execution time while increasing the problem size and the number

of processors proportionately. Overall the scalability of the algorithms is reasonable but the

overhead associated with building the image patches needs to be reduced.

5.6 Summary

In this chapter, we presented a parallel algorithm for solving the elastic image registration

problem using octrees. We used a Gauss Newton optimization algorithm and solved the

linear system that arises in each optimization iteration using a multigrid preconditioned

Conjugate Gradient algorithm. We also used a multiscale optimization approach to speed

up the computation and to escape local minima. We demonstrated the performance of the

algorithm on synthetic as well as clinical images.

135

Table 19: Fixed-size scalability for the example shown in Figure 40 using γ = 3000 and
δ = 50. Approximately 4.3 × 105 elements were used in the finest grid. The time spent in
evaluating the objective function is reported in the row labelled “Objective”. The time spent
in evaluating the gradient is reported in the row labelled “Gradient”. Interpolation at the
Gauss points were required to evaluate the objective function and the gradient. 4-th order
Gauss quadrature rule was used so there are 64 Gauss points per element. Interpolation at
vertices were required to build the approximate Hessian using under-integration. The total
time spent in the optimization function is reported in the row labelled “Gauss Newton”.
The total time spent in the linear solves in each Newton iteration is reported in the row
labelled “KSP solve”. The time spent in the Matvecs for the elasticity operator is reported
in the row labelled “Elas-Matvec”; this is only used to evaluate the objective and the
gradient and not for the Hessian. The time spent in the Hessian Matvecs is reported in the
row labelled “Hess-Matvec”. The time required to update the Hessian is reported in the
row labelled “Update-Hess”; this includes the time spent in interpolations. The time spent
in building the image patches on each processor and gathering the image values from the
Petsc DA ordering to the local ordering is reported in the row labelled “Build Patches”.
The time spent in setting up the multigrid solver is reported in the row labelled “MG-
Setup”; this includes the time spent in coarsening and balancing all the coarser octrees for
the multigrid and meshing for all the multigrid levels. The total runtime is the sum of the
times spent in setting up the Multigrid, building the image patches and the Gauss Newton
iterations. These rows are printed in boldface. All timings are reported in seconds. This
experiment was performed on the Teragrid system “Ranger” [122]. Although, the last run
was submitted to 512 processors only 374 processors could be used because the grain size
(elements per processor) for the finest octree was too small.

Processors 16 32 64 128 256 374
Objective 35.28 153.04 42.68 35.81 16.22 11.19
Gradient 28.37 20.12 10.27 8.66 6.85 6.94
Interpolation 861.60 606.03 273.44 157.15 83.38 72.51
at Gauss points
Interpolation 5.41 3.84 1.68 1.04 0.57 0.50
at Vertices
Gauss Newton 2.37e3 1.65e3 912.70 620.77 474.32 446.13
KSP Solve 1.46e3 1.01e3 622.79 443.01 379.48 354.93
Elas-Matvec 43.2 62.4 42.17 28.75 16.45 15.28
Hess-Matvec 1.30e3 892.8 523.52 345.91 303.73 266.74
Update-Hess 654.30 462.77 212.53 126.68 70.31 62.33
Build Patches 92.95 92.08 87.02 80.54 78.76 83.03
MG-Setup 3.02 3.77 3.53 2.92 5.03 3.79

136

Table 20: Isogranular scalability for synthetic examples. The row labelled “N” gives the
number of voxels in each dimension of the images and the corresponding number of octants
at the finest octree is reported in the row labelled “Octants”. The time spent in evaluating
the objective function is reported in the row labelled “Objective”. The time spent in
evaluating the gradient is reported in the row labelled “Gradient”. Interpolation at the
Gauss points were required to evaluate the objective function and the gradient. 4-th order
Gauss quadrature rule was used so there are 64 Gauss points per element. Interpolation at
vertices were required to build the approximate Hessian using under-integration. The total
time spent in the optimization function is reported in the row labelled “Gauss Newton”. The
total time spent in the linear solves in each Newton iteration is reported in the row labelled
“KSP solve”. The time spent in the Matvecs for the elasticity operator is reported in the
row labelled “Elas-Matvec”; this is only used to evaluate the objective and the gradient and
not for the Hessian. The time spent in the Hessian Matvecs is reported in the row labelled
“Hess-Matvec”. The time required to update the Hessian is reported in the row labelled
“Update-Hess”; this includes the time spent in interpolations. The time spent in building
the image patches on each processor and gathering the image values from the Petsc DA
ordering to the local ordering is reported in the row labelled “Build Patches”. The time
spent in setting up the multigrid solver is reported in the row labelled “MG-Setup”; this
includes the time spent in coarsening and balancing all the coarser octrees for the multigrid
and meshing for all the multigrid levels. The total runtime is the sum of the times spent
in setting up the Multigrid, building the image patches and the Gauss Newton iterations.
These rows are printed in boldface. All timings are reported in seconds. This experiment
was performed on the Teragrid system “Ranger” [122].

Processors 4 32 256 2048
N 64 128 256 512
Octants 1.7× 105 1.08× 106 5.04× 106 5.614× 106

Objective 2.04 1.19 3.41 2.71
Gradient 3.06 2.59 2.02 1.27
Interpolation 50.39 43.71 39.41 15.39
at Gauss points
Interpolation 0.37 0.31 0.28 0.18
at Vertices
Gauss Newton 101.99 96.29 84.67 54.37
KSP Solve 50.85 52.40 42.65 33.43
Elas-Matvec 2.75 1.85 2.60 2.41
Hess-Matvec 46.50 46.86 32.15 19.28
Update-Hess 35.08 30.76 29.15 13.34
Build Patches 3.46 4.49 9.05 28.51
MG-Setup 1.68 3.02 4.59 7.45

137

APPENDIX A

PROPERTIES OF MORTON ENCODING

Property 1 Sorting all the leaves in the ascending order of their Morton ids is identical

to a preorder traversal of the leaves of the octree. If one connects the centers of the leaves

in this order, one can observe a Z-pattern in the Cartesian space. The space-filling Z-

order curve has the property that spatially nearby octants tend to be clustered together. The

octants in Figures 4(b) and 4(c) are all labeled according to this order. Depending on the

order of interleaving the coordinates, different Z-order curves are obtained. The two possible

Z-curves in 2-D are shown in the Figure 45. Similarly, in 3-D six different types of Morton

ordering are possible.

Property 2 Given three octants, a < b < c and c /∈ {D(b)}:

a < d < c, ∀d ∈ {D(b)}.

Property 3 The Morton id of any node is less than those of its descendants.

X

Y

X

Y

Type-1 Type-2

Figure 45: Two types of z-ordering in quadtrees.

138

Property 4 Two distinct octants overlap if and only if one is an ancestor of the other.

Property 5 The Morton id of any node and of its first child1 are consecutive. It follows

from Property 3 that the first child is also the child with the least Morton id.

Property 6 The first descendant at level l, denoted by FD (N, l), of any node N is the

descendant at level l with the least Morton id. This can be arrived at by following the first

child at every level starting from N . FD (N,Dmax) is also the anchor of N and is also

referred to as the deepest first descendant, denoted by DFD(N), of node N .

Property 7 The range (N,DFD(N)] only contains the first descendants of N at different

levels and hence there can be no more than one leaf in this range in the entire linear octree.

Property 8 The last descendant at level l, denoted by LD (N, l), of any node N is the

descendant at level l with the greatest Morton id. This can be arrived at by following the

last child2 at every level starting from N . LD (N,Dmax) is also referred to as the deepest

last descendant, denoted by DLD(N), of node N .

Property 9 Every octant in the range (N,DLD(N)] is a descendant of N .

1the child that has the same anchor as the parent
2child with the greatest Morton id

139

APPENDIX B

MULTICOMPONENT MORTON REPRESENTATION

Every Morton id is a set of 4 entities: The three co-ordinates of the anchor of the octant

and the level of the octant. We have implemented the node as a C++ class, which contains

these 4 entities as its member data. To use this set as a locational code for octants, we

define two primary binary logical operations on it: a) Comparing if 2 ids are equal and b)

Comparing if one id is lesser than the other.

Two ids are equal if and only if all the 4 entities are respectively equal. If two ids have

the same anchor then the one at a coarser level has a lesser Morton id. If the anchors are

different, then we can use Algorithm 22 to determine the lesser id. The Z-ordering produced

by this operator is identical to that produced by the scalar Morton ids described in section

2.1.1. The other logical operations can be readily derived from these two operations.

Algorithm 22 Finding the lesser of two Morton ids (sequential)

Input: Two Morton ids, A and B with different anchors.
Output: R, the lesser of the two Morton ids.

1. Xi ← (Ai ⊕Bi), i ∈ {x, y, z}
2. e← arg max

i
(blog2(Xi)c)

3. if Ae < Be
R← A

4. else
R← B

5. end if

140

APPENDIX C

ANALYSIS OF THE BLOCK PARTITIONING ALGORITHM

Assume that the input to the partitioning algorithm is a sorted distributed list of N octants.

Then, we can guarantee coarsening of the input if there are more than eight octants1 per

processor. The minimum number of octants on any processor, nmin, can be expressed in

terms of N and the imbalance factor2, c, as follows:

nmin =
N

1 + c(np − 1)
.

This implies that the coarsening algorithm will coarsen the octree if,

nmin =
N

1 + c(np − 1)
> 2d,

=⇒ N > 2d(1 + c(np − 1)).

The total number of blocks created by our coarsening algorithm is O(p). Specifically,

the total number of blocks produced by the coarsening algorithm, Nblocks, satisfies:

p ≤ Nblocks < 2dp.

If the input is sorted and if c ≈ 1, then the communication cost for this partition is

O(Nnp
).

12d cells for a d-tree.
2The imbalance factor is the ratio between the maximum and minimum number of octants on any

processor.

141

APPENDIX D

SPECIAL CASE DURING CONSTRUCTION

We can not always guarantee the coarsest possible octree for an arbitrary distribution of

N points and arbitrary values of Np
max, especially when Np

max ≈ N
np

. However, if every

processor has at least two well-separated 1 points and if Np
max = 1, then the algorithm

will produce the coarsest possible octree under these constraints. However, this is not too

restrictive because the input points can always be sampled in such a way that the algorithm

produces the desired octree. Besides, the maximum depth of the octree can also be used

to control the coarseness of the resulting octree. In all our experiments, we used Np
max = 1

and we always got the same octree for different number of processor counts (Table 3).

1Convert the points into octants at Dmax level. If there exists at least one coarse octant between these
two octants, then the points are considered to be well-separated.

142

APPENDIX E

AK IS A SYMMETRIC POSITIVE OPERATOR W.R.T. (·, ·)K

Since Vk is a finite-dimensional normed space, every linear operator on Vk is bounded, in

particular Ak is bounded. Since Vk is a finite-dimensional space, it is complete with respect

to any norm defined on that space and in particular with respect to the norm induced by

the inner-product under consideration. Hence, the space Vk along with the respective inner-

product (·, ·)k forms a Hilbert space [74]. Hence, Ak has a unique Hilbert-adjoint operator;

in fact, as Equation 32 shows Ak is also self-adjoint. Equation 5, the coercivity of a(u, v)

and the symmetricity of a(u, v) and (·, ·)k together lead to Equation 32.

(Akv, v)k = a(v, v) > 0 ∀v 6= 0 ∈ Vk

(Akw, v)k = a(v, w) = (Akv, w)k = (w,Akv)k ∀v, w ∈ Vk (32)

143

APPENDIX F

THE PROLONGATION MATRIX

Since the coarse-grid vector space is a subspace of the fine-grid vector space, any coarse-grid

vector, v, can be expanded independently in terms of the fine and coarse-grid basis vectors.

v =
#(Vk−1)∑
n=1

vn,k−1φ
k−1
n =

#(Vk)∑
m=1

vm,kφ
k
m (33)

In Equation 33, vn,k and vn,k−1 are the coefficients in the basis expansions for v on the fine

and coarse grids, respectively. If we choose the standard finite element shape functions,

then for each φki there exists a unique pi ∈ Ω such that

φkj (pi) = δij ∀i, j = 1, 2, . . . ,#(Vk) (34)

In Equation 34, δij is the Kronecker delta function and pi is the fine-grid vertex associated

with φki . Equations 33 and 34 lead to

vi,k =
#(Vk−1)∑
j=1

vj,k−1φ
k−1
j (pi) (35)

We can view the prolongation operator as a MatVec with the input vector as the coarse-grid

nodal values (co-efficients in the basis expansion using the finite element shape functions as

the basis vectors) and the output vector as the fine-grid nodal values. The matrix entries

are then just the coarse-grid shape functions evaluated at the fine-grid vertices (Equation

36).

P1(i, j) = φk−1
j (pi). (36)

An equivalent formulation is to satisfy Equation 10 in the variational sense by taking an

inner-product with an arbitrary fine-grid test function. This formulation also produces the

vector of fine-grid nodal values as a result of a MatVec with the vector of coarse-grid nodal

values and the matrix is defined by Equation 37.

P2 = (Mk
k)−1Mk

k−1 (37)

144

where,

Mk
k−1(i, j) = (φki , φ

k−1
j)k. (38)

Since the two formulations are equivalent, we have

P1 = P2. (39)

145

APPENDIX G

DERIVATION OF THE GALERKIN CONDITION

Define the functional

F k(vk) =
1
2

(Akvk, vk)k − (fk, vk)k ∀vk ∈ Vk (40)

Since Ak is a symmetric positive operator w.r.t (·, ·)k, the solution uk to the Equation 6

satisfies

uk = arg min
∀vk∈Vk

F k(vk) (41)

This is simply the Ritz FEM formulation. In the multigrid scheme, we want to find

vk−1 = arg min
wk−1∈Vk−1

F k(vk + Pwk−1) (42)

Here, P is the prolongation operator defined in Section 4.1.2.

F k(vk + Pwk−1) =

1
2((Akvk +AkPwk−1), (vk + Pwk−1))k − (fk, vk + Pwk−1)k

= 1
2(Akvk, vk)k + 1

2(AkPwk−1, vk)k + 1
2(Akvk, Pwk−1)k

+1
2(AkPwk−1, Pwk−1)k − (fk, vk)k

−1
2(fk, Pwk−1)k − 1

2(fk, Pwk−1)k

= F k(vk) + 1
2(AkPwk−1, vk)k + 1

2((Akvk − fk), Pwk−1)k

−1
2(fk, Pwk−1)k + 1

2(P ∗AkPwk−1, wk−1)k−1 (43)

Here, P ∗ is the Hilbert adjoint operator of P with respect to the inner-products considered.

Since, Ak is symmetric with respect to (·, ·)k and since the vector spaces are real we have,

1
2

(AkPwk−1, vk)k =
1
2

(Pwk−1, Akvk)k =
1
2

(Akvk, Pwk−1)k (44)

Hence, we have

F k(vk + Pwk−1) = F k(vk) + F k−1
G (wk−1) (45)

146

with F k−1
G defined by

F k−1
G (vk−1) =

1
2

(AGk−1vk−1, vk−1)k−1 − (fGk−1, vk−1)k−1. (46)

AGk−1 and fGk−1 are defined by Equation 14 (The “Galerkin” condition). Equations 42 and

45 together lead to

vk−1 = arg min
wk−1∈Vk−1

F k−1
G (wk−1) (47)

Equation 48 shows that AGk−1 is symmetric with respect to (·, ·)k−1 and Equation 49 shows

that it is also positive.

(AGk−1u, v)k−1 = (AkPu, Pv)k = (Pu,AkPv)k = (u,AGk−1v)k−1 ∀u, v ∈ Vk−1 (48)

(AGk−1u, u)k−1 = (AkPu, Pu)k ∀u ∈ Vk−1

∀u ∈ Vk−1, ∃ wu ∈ Vk | Pu = wu

⇒ (AGk−1u, u)k−1 = (Akwu, wu)k ≥ 0 ∀u ∈ Vk−1 (49)

Hence, the solution vk−1 to Equation 13 satisfies Equation 47.

147

APPENDIX H

RESTRICTION MATRIX

Any fine-grid vector, w, and coarse-grid vector, v can be expanded in terms of the fine and

coarse grid basis vectors respectively

w =
#(Vk)∑
m=1

wmφ
k
m and v =

#(Vk−1)∑
n=1

vnφ
k−1
n (50)

Now, let

Rφkm =
#(Vk−1)∑
l=1

R(l,m)φk−1
l ∀m = 1, 2, . . . ,#(Vk) (51)

Using the definition of the restriction operator (Equation 15), we have

(Rφkm, φ
k−1
n)k−1 =

#(Vk−1)∑
l=1

R(l,m)(φk−1
l , φk−1

n)k−1 = (φkm, φ
k−1
n)k,

∀m = 1, 2, . . . ,#(Vk) and ∀n = 1, 2, . . . ,#(Vk−1).

(52)

Thus,

R = (Mk−1
k−1)−1Mk−1

k (53)

where,

Mk−1
k (i, j) = (φk−1

i , φkj)k = Mk
k−1(j, i) (54)

148

APPENDIX I

AN EQUIVALENT MULTIGRID SCHEME

The coarse-grid operator defined in Equation 14 is expensive to build. Here, we will show

that this operator is equivalent to the coarse-grid version of the operator defined in Equation

5. This operator can be implemented efficiently using a matrix-free scheme. Using Equations

8, 37, 14, and 16 we have

AG
k−1 = (Mk−1

k−1)−1ÃG
k−1

ÃG
k−1 = Mk−1

k (Mk
k)−1Ãk(Mk

k)−1Mk
k−1 (55)

Since Vk−1 ⊂ Vk, we can expand the coarse-grid basis vectors in terms of the fine-grid basis

vectors as follows:

φk−1
j =

#(Vk)∑
i=1

c(i, j)φki ∀j = 1, 2, . . . ,#(Vk−1) (56)

By taking inner-products with arbitrary fine-grid test functions on either side of Equation

56, we have

(φkl , φ
k−1
j)k =

#(Vk)∑
i=1

c(i, j)(φkl , φ
k
i)k, ∀j = 1, 2, . . . ,#(Vk−1), ∀l = 1, 2, . . . ,#(Vk) (57)

This leads to

ck−1
k = (Mk

k)−1Mk
k−1 (58)

Using Equations 17, 55, 56, and 58 we can show that

Ãk−1 = ÃG
k−1 ; Ak−1 = AG

k−1 (59)

Note that the fine-grid problem defined in Equation 6, the corresponding coarse-grid prob-

lem (Equation 13) and the restriction operator (Equation 16) all require inverting a mass-

matrix. This could be quite expensive. Instead, we solve the following problem on the

fine-grid

Ãkuk = f̃k (60)

149

and solve the following corresponding coarse-grid problem

Ãk−1ek−1 = Mk−1
k−1fG

k−1 = R̃rk = rk−1 (61)

for the coarse-grid representation of the error, ek−1, using the fine-grid residual, rk, after

a few smoothing iterations. Here, R̃ is the modified restriction operator, which can be

expressed as

R̃ = Mk−1
k−1R(Mk

k)−1 (62)

Note, that this operator is the matrix-transpose of the prolongation operator derived using

the variational formulation.

R̃ = P2
T (63)

Since, P1 = P2, we can use P1
T instead of R̃.

150

REFERENCES

[1] Adams, M. F., Bayraktar, H. H., Keaveny, T. M., and Papadopoulos, P.,
“Ultrascalable implicit finite element analyses in solid mechanics with over a half a
billion degrees of freedom,” in SC ’04: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, ACM/IEEE, 2004.

[2] Adams, M. and Demmel, J. W., “Parallel multigrid solver for 3D unstructured
finite element problems,” in SC ’99: Proceedings of the 1999 ACM/IEEE Conference
on Supercomputing, ACM Press, 1999.

[3] Akcelik, V., Bielak, J., Biros, G., Epanomeritakis, I., Fernandez, A.,
Ghattas, O., Kim, E. J., Lopez, J., O’Hallaron, D. R., Tu, T., and Urbanic,
J., “High resolution forward and inverse earthquake modeling on terascale comput-
ers,” in SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
ACM, 2003.

[4] Akcelik, V., Biros, G., and Ghattas, O., “Parallel multiscale Gauss-Newton-
Krylov methods for inverse wave propagation,” in SC ’02: Proceedings of the 2002
IEEE/ACM Conference on Supercomputing, IEEE, 2002.

[5] Alexander, D., Gee, J., and Bajcsy, R., “Elastic matching of diffusion ten-
sor MRIs,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 244 – 249, 1999.

[6] Anderson, W., Gropp, W., Kaushik, D., Keyes, D., and Smith, B., “Achieving
high sustained performance in an unstructured mesh CFD application,” in SC ’99:
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, 1999.

[7] Arganda-Carreras, I., Sorzano, C. O., Marabini, R., Carazo, J. M.,
de Solorzano, C. O., and Kybic, J., “Consistent and elastic registration of his-
tological sections using vector-spline regularization,” in Computer Vision Approaches
to Medical Image Analysis (CVAMIA), vol. 4241 of LNCS, pp. 85 – 95, 2006.

[8] Ayala, D., Brunet, P., Juan, R., and Navazo, I., “Object representation by
means of nonminimal division quadtrees and octrees,” ACM Transactions on Graph-
ics, vol. 4, no. 1, pp. 41 – 59, 1985.

[9] Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Kne-
pley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H., “PETSc users man-
ual,” Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

[10] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G.,
McInnes, L. C., Smith, B. F., and Zhang, H., “PETSc home page,” 2001.
http://www.mcs.anl.gov/petsc (Accessed on March 20, 2009).

[11] Bank, R. E. and Dupont, T., “An optimal order process for solving finite element
equations,” Mathematics of Computation, vol. 36, no. 153, pp. 35 – 51, 1981.

151

[12] Bastian, P., Hackbusch, W., and Wittum, G., “Additive and multiplicative
multi-grid A comparison,” Computing, vol. 60, no. 4, pp. 345 – 364, 1998.

[13] Becker, R. and Braack, M., “Multigrid techniques for finite elements on locally
refined meshes,” Numerical Linear Algebra with Applications, vol. 7, pp. 363 – 379,
2000.

[14] Becker, R., Braack, M., and Richter, T., “Parallel multigrid on locally refined
meshes,” in Reactive Flows, Diffusion and Transport, pp. 77 – 92, Springer Berlin
Heidelberg, 2007.

[15] Bergen, B., Hulsemann, F., and Rude, U., “Is 1.7 × 1010 unknowns the largest
finite element system that can be solved today?,” in SC ’05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, IEEE Computer Society, 2005.

[16] Bern, M. W., Eppstein, D., and Teng, S.-H., “Parallel construction of quadtrees
and quality triangulations,” International Journal of Computational Geometry and
Applications, vol. 9, no. 6, pp. 517 – 532, 1999.

[17] Berti, G., “Image-based unstructured 3-D mesh generation for medical applica-
tions,” in European Congress on Computational Methods in Applied Sciences and
Engineering, 2004.

[18] Bittencourt, M. and Feij’oo, R., “Non-nested multigrid methods in finite ele-
ment linear structural analysis,” in Virtual Proceedings of the 8th Copper Mountain
Conference on Multigrid Methods (MGNET), 1997.

[19] Bohme, M., Hagenau, R., Modersitzki, J., and Siebert, B., “Non-linear image
registration on PC-clusters using parallel FFT techniques,” tech. rep., University of
Lubeck, 2002.

[20] Bookstein, F. L., “Principal warps: Thin plate splines and the decomposition of
deformations,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 6, pp. 567 – 585, 1989.

[21] Braess, D. and Hackbusch, W., “A new convergence proof for the multigrid
method including the V -cycle,” SIAM Journal on Numerical Analysis, vol. 20, no. 5,
pp. 967 – 975, 1983.

[22] Bramble, J. H., Pasciak, J. E., and Xu, J., “The analysis of multigrid algorithms
for nonsymmetric and indefinite elliptic problems,” Mathematics of Computation,
vol. 51, no. 184, pp. 389 – 414, 1988.

[23] Bramble, J. H., Pasciak, J. E., and Xu, J., “Parallel multilevel preconditioners,”
Mathematics of Computation, vol. 55, no. 191, pp. 1 – 22, 1990.

[24] Brenner, S. C. and Scott, L. R., The mathematical theory of finite element meth-
ods, vol. 15 of Texts in Applied Mathematics. Springer-Verlag, 1994.

[25] Briggs, W. L., Henson, V. E., and McCormick, S. F., A multigrid tutorial (2nd
ed.). Society for Industrial and Applied Mathematics, 2000.

152

[26] Bro-Nielsen, M. and Gramkow, C., “Fast fluid registration of medical images,”
in Visualization in Biomedical Computing (VBC’96), vol. 1131 of LNCS, pp. 267 –
276, 1996.

[27] Brunet, P. and Navazo, I., “Solid representation and operation using extended
octrees,” ACM Transactions on Graphics, vol. 9, no. 2, pp. 170 – 197, 1990.

[28] Bungartz, H.-J., Mehl, M., and Weinzierl, T., “A parallel adaptive cartesian
PDE solver using space-filling curves,” in Euro-Par 2006, Parallel Processing, 12th
International Euro-Par Conference (Nagel, E. W., Walter, V. W., and Lehner,
W., eds.), vol. 4128 of LNCS, pp. 1064 – 1074, Springer-Verlag, 2006.

[29] Burstedde, C., Ghattas, O., Gurnis, M., Stadler, G., Tan, E., Tu, T.,
Wilcox, L. C., and Zhong, S., “Scalable adaptive mantle convection simulation on
petascale supercomputers,” in SC ’08: Proceedings of the 2008 ACM/IEEE Confer-
ence on Supercomputing, IEEE Press, 2008.

[30] Campbell, P. M., Devine, K. D., Flaherty, J. E., Gervasio, L. G., and
Teresco, J. D., “Dynamic octree load balancing using space-filling curves,” Tech.
Rep. CS-03-01, Williams College Department of Computer Science, 2003.

[31] Clarenz, U., Droske, M., and Rumpf, M., “Towards fast nonrigid registration,”
in Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session In-
teraction of Inverse Problems and Image Analysis, pp. 67 – 84, AMS, 2002.

[32] Corman, T., Leiserson, C., and Rivest, R., Introduction to Algorithms. MIT
Press, 1990.

[33] Crum, W., Hartkens, T., and Hill, D., “Non-rigid image registration: Theory
and practice,” The British Journal of Radiology, vol. 77, pp. S140 – S153, 2004.

[34] Davis, M. H., Khotanzad, A., Flamig, D. P., and Harms, S. E., “Coordinate
transformation in 3D image matching by a physics based method-elastic body splines,”
in International Symposium on Computer Vision, pp. 218 – 222, 1995.

[35] Deen, W. M., Analysis of transport phenomena. Topics in Chemical Engineering,
Oxford University Press, 1998.

[36] Dendy, J. E., “Black box multigrid,” Journal of Computational Physics, vol. 48,
pp. 366 – 386, 1982.

[37] El-Ghazawi, T. A., Chalermwat, P., and Moigne, J. L., “Wavelet-based image
registration on parallel computers,” in SC ’97: Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, 1997.

[38] Finkel, R. A. and Bentley, J. L., “Quad trees: A data structure for retrieval on
composite keys,” Acta Informatica, vol. 4, pp. 1 – 9, 1974.

[39] Fischer, B. and Modersitzki, J., “Fast diffusion registration,” in AMS Contempo-
rary Mathematics, Inverse Problems, Image Analysis, and Medical Imaging, vol. 313,
pp. 117 – 129, 2002.

153

[40] Fischer, B. and Modersitzki, J., “Curvature based image registration,” Journal
of Mathematical Imaging and Vision, vol. 18, pp. 81 – 85, 2003.

[41] Fornefett, M., Rohr, K., and Stiehl, H., “Radial basis functions with compact
support for elastic registration of medical images,” Image and Vision Computing,
vol. 19, pp. 87 – 96, 2001.

[42] Fornefett, M., Rohr, K., and Stiehl, H. S., “Elastic registration of medical
images using radial basis functions with compact support,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 402 – 407, 1999.

[43] Freitag, L. and Loy, R., “Adaptive, multiresolution visualization of large data sets
using a distributed memory octree,” in SC ’99: Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing, 1999.

[44] Frisken, S. and Perry, R., “Simple and efficient traversal methods for quadtrees
and octrees,” Journal of Graphics Tools, vol. 7, no. 3, pp. 1 – 11, 2002.

[45] Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D., and Periaux, J.,
“A fictitious domain method with distributed lagrange multipliers for the numerical
simulation of particulate flow,” Contemporary Mathematics, vol. 218, pp. 121 – 137,
1998.

[46] Golomb, S., “Run-length encodings,” IEEE Transactions on Information Theory,
vol. 12, no. 3, pp. 399 – 401, 1966.

[47] Gorelick, L., Galun, M., and Brandt, A., “Shape representation and classi-
fication using the Poisson equation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 12, pp. 1991 – 2005, 2006.

[48] Goshtasby, A., “Piecewise cubic mapping functions for image registration,” Pattern
Recognition, vol. 20, pp. 525 – 533, 1987.

[49] Goshtasby, A., “Image registration by local appoximation methods,” Image and
Vision Computing, vol. 6, no. 4, pp. 255 – 261, 1988.

[50] gottesfeld brown, L., “A survey of image registration techniques,” ACM Com-
puting Surveys, vol. 24, no. 4, pp. 325 – 376, 1992.

[51] Grama, A., Gupta, A., Karypis, G., and Kumar, V., An Introduction to Parallel
Computing: Design and Analysis of Algorithms. Addison Wesley, second ed., 2003.

[52] Greaves, D. M. and Borthwick, A. G. L., “Hierarchical tree-based finite ele-
ment mesh generation,” International Journal for Numerical Methods in Engineering,
vol. 45, no. 4, pp. 447 – 471, 1999.

[53] Griebel, M. and Zumbusch, G., “Parallel multigrid in an adaptive PDE solver
based on hashing and space-filling curves,” Parallel Computing, vol. 25, no. 7, pp. 827
– 843, 1999.

[54] Griffiths, D. J., Introduction to electrodynamics. Prentice-Hall, 1999.

154

[55] Gropp, W., Kaushik, D., Keyes, D., and Smith, B., “Performance modeling and
tuning of an unstructured mesh CFD application,” in SC2000: Proceedings of the
2000 ACM/IEEE Conference on Supercomputing, 2000.

[56] Gurtin, M. E., An introduction to continuum mechanics, vol. 158 of Mathematics
in Science and Engineering. Academic Press, 2003.

[57] Haber, E. and Heldmann, S., “An octree multigrid method for quasi-static
Maxwell’s equations with highly discontinuous coefficients,” Journal of Computational
Physics, vol. 223, no. 2, pp. 783 – 796, 2007.

[58] Haber, E., Heldmann, S., and Modersitzki, J., “An octree method for para-
metric image registration,” SIAM Journal on Scientific Computing, vol. 29, no. 5,
pp. 2008 – 2023, 2007.

[59] Haber, E., Heldmann, S., and Modersitzki, J., “Adaptive mesh refinement for
nonparametric image registration,” SIAM Journal on Scientific Computing, vol. 30,
no. 6, pp. 3012 – 3027, 2008.

[60] Haber, E. and Modersitzki, J., “A multilevel method for image registration,”
SIAM Journal on Scientific Computing, vol. 27, no. 5, pp. 1594 – 1607, 2006.

[61] Hackbusch, W., Multigrid methods and applications, vol. 4 of Springer Series in
Computational Mathematics. Springer-Verlag, 1985.

[62] Hariharan, B., Aluru, S., and Shanker, B., “A scalable parallel fast multipole
method for analysis of scattering from perfect electrically conducting surfaces,” in SC
’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pp. 1 – 17,
IEEE Computer Society Press, 2002.

[63] Henn, S. and Witsch, K., “Iterative multigrid regularization techniques for image
matching,” SIAM Journal on Scientific Computing, vol. 23, no. 4, pp. 1077 – 1093,
2001.

[64] Henson, V. E. and Yang, U. M., “BoomerAMG: A parallel algebraic multigrid
solver and preconditioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155 –
177, 2002.

[65] Herzen, B. V. and Barr, A. H., “Accurate triangulations of deformed, intersect-
ing surfaces,” in SIGGRAPH ’87: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 103 – 110, ACM Press, 1987.

[66] Hill, D. L. G., Batchelor, P. G., Holden, M., and Hawkes, D. J., “Medical
image registration,” Physics in Medicine and Biology, vol. 46, pp. R1 – R45, 2001.

[67] Homke, L., “A multigrid method for anisotropic PDEs in elastic image registration,”
Numerical Linear Algebra with Applications, vol. 13, pp. 215 – 229, 2006.

[68] Ibanez, L., Schroeder, W., Ng, L., and Cates, J., The ITK Software Guide.
Kitware, Inc., second ed., 2005.

155

[69] Ino, F., Kawasaki, Y., Tashiro, T., Nakajima, Y., Sato, Y., Tamura, S.,
and Hagihara, K., “A parallel implementation of 2-D/3-D image registration for
computer-assisted surgery,” in 11th International Conference on Parallel and Dis-
tributed Systems (ICPADS’05), 2005.

[70] Ino, F., Ooyama, K., and Hagihara, K., “A data distributed parallel algorithm
for nonrigid image registration,” Parallel Computing, vol. 31, pp. 19 – 43, 2005.

[71] Jones, A. and Jimack, P., “An adaptive multigrid tool for elliptic and parabolic
systems,” International Journal for Numerical Methods in Fluids, vol. 47, pp. 1123 –
1128, 2005.

[72] Kalmoun, E. M., Kostler, H., and Rude, U., “3-D optical flow computation
using a parallel variational multigrid scheme with application to cardiac C-arm CT
motion,” Image and Vision Computing, vol. 25, pp. 1482 – 1494, 2007.

[73] Kim, E., Bielak, J., Ghattas, O., and Wang, J., “Octree-based finite element
method for large-scale earthquake ground motion modeling in heterogeneous basins,”
AGU Fall Meeting Abstracts, 2002.

[74] Kreyszig, E., Introductory functional analysis with applications. John Wiley and
Sons, Inc., 1989.

[75] Kruger, S. and Calway, A., “Image registration using multiresolution frequency
domain correlation,” in British Machine Vision Conference, pp. 316 – 325, 1998.

[76] Kybic, J. and Unser, M., “Multiresolution spline warping for EPI registration,” in
Proceedings of SPIE, pp. 571 – 579, 1999.

[77] Kybic, J. and Unser, M., “Fast parametric elastic image registration,” IEEE Trans-
actions on Image Processing, vol. 12, no. 11, pp. 1427 – 1442, 2003.

[78] Lang, S., “Parallel-adaptive simulation with the multigrid-based software framework
UG,” Engineering with Computers, vol. 22, pp. 157 – 179, 2006.

[79] Lelewer, D. A. and Hirschberg, D. S., “Data compression,” ACM Computing
Surveys, vol. 19, no. 3, pp. 261 – 296, 1987.

[80] Lester, H. and Arridge, S. R., “A survey of hierarchical non-linear medical image
registration,” Pattern Recognition, vol. 32, pp. 129 – 149, 1999.

[81] Li, X. S. and Demmel, J. W., “SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems,” ACM Transactions on Mathe-
matical Software, vol. 29, pp. 110 – 140, June 2003.

[82] Maintz, J. B. A. and Viergever, M. A., “A survey of medical image registration,”
Medical Image Analysis, vol. 2, no. 1, pp. 1 – 36, 1998.

[83] Mavriplis, D. J., Aftosmis, M. J., and Berger, M., “High resolution aerospace
applications using the NASA Columbia Supercomputer,” in SC ’05: Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing, IEEE Computer Society, 2005.

[84] Meagher, D., “Geometric modeling using octree encoding,” Computer Graphics and
Image Processing, vol. 19, pp. 129 – 147, 1982.

156

[85] Mehl, M., “Cache-optimal data-structures for hierarchical methods on adaptively
refined space-partitioning grids,” Sept. 2006.

[86] Modersitzki, J., Lustig, G., Schmitt, O., and Obeloer, W., “Elastic regis-
tration of brain images on large pc-clusters,” Future Generation Computer Systems,
vol. 18, pp. 115 – 125, 2001.

[87] Modersitzki, J., ObelSer, W., Schmitt, O., and Lustig, G., “Elastic matching
of very large digital images on high performance clusters,” in Proceedings of the 7th
International Conference on High-Performance Computing and Networking, vol. 1593
of LNCS, pp. 141 – 149, 1999.

[88] Modersitzki, J., Numerical Methods for Image Registration. Numerical Mathemat-
ics and Scientific Computation, Oxford Univ Press, 2004.

[89] Moigne, J. L., Campbell, W. J., and Cromp, R. F., “An automated paral-
lel image registration technique based on the correlation of wavelet features,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 40, no. 8, pp. 1849 – 1864, 2002.

[90] Moore, D., “The cost of balancing generalized quadtrees.,” in Symposium on Solid
Modeling and Applications, pp. 305 – 312, 1995.

[91] Narasimhan, S., Mundani, R.-P., and Bungartz, H.-J., “An octree and a graph-
based approach to support location aware navigation services,” in Proceedings of
the 2006 International Conference on Pervasive Systems & Computing, (PSC 2006),
pp. 24 – 30, CSREA Press, 2006.

[92] Nocedal, J. and Wright, S. J., Numerical Optimization. Springer series in oper-
ations research, Springer, 2006.

[93] Popinet, S., “Gerris: A tree-based adaptive solver for the incompressible Euler
equations in complex geometries,” Journal of Computational Physics, vol. 190, pp. 572
– 600, 2003.

[94] Ramière, I., Angot, P., and Belliard, M., “A general fictitious domain method
with immersed jumps and multilevel nested structured meshes,” Journal of Compu-
tational Physics, vol. 225, no. 2, pp. 1347 – 1387, 2007.

[95] Rice, R. F., “Some practical universal noiseless coding techniques,” Tech. Rep. JPL
Publication 79-22, Jet Propulsion Laboratory, Pasadena, California, 1979.

[96] Roche, A., Malandain, G., Ayache, N., and Prima, S., “Towards a better com-
prehension of similarity measures used in medical image registration,” in Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI), vol. 1679 of LNCS,
pp. 555 – 567, 1999.

[97] Rohr, K., Stiehl, H., Sprengel, R., Beil, W., Buzug, T., Weese, J., and
Kuhn, M., “Point-based elastic registration of medical image data using approxi-
mating thin-plate splines,” Visualization in Biomedical Computing, pp. 297 – 306,
1996.

[98] Rohr, K., “Spline-based elastic image registration,” Proceedings in Applied Mathe-
matics and Mechanics, vol. 3, pp. 36 – 39, 2003.

157

[99] Sainte-Marie, J., Chapelle, D., Cimrman, R., and Sorine, M., “Modeling
and estimation of the cardiac electromechanical activity,” Computers and Structures,
vol. 84, pp. 1743 – 1759, 2006.

[100] Samet, H., “The quadtree and related hierarchical data structures,” ACM Comput-
ing Surveys, vol. 16, no. 2, pp. 187 – 260, 1984.

[101] Sampath, R. S., Adavani, S. S., Sundar, H., Lashuk, I., and Biros, G., “Den-
dro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees,” in
SC ’08: Proceedings of the 2008 IEEE/ACM Conference on Supercomputing, IEEE,
2008.

[102] Sampath, R. S. and Biros, G., “A parallel geometric multigrid method for finite
elements on octree meshes,” 2008. Submitted for publication.

[103] Sampath, R. S. and Biros, G., “Parallel elastic registration using a multigrid pre-
conditioned Gauss Newton Krylov solver, grid continuation and octrees,” 2009. Sub-
mitted for publication.

[104] Sampath, R. S., Sundar, H., Adavani, S. S., Lashuk, I., and Biros, G., “Dendro
home page,” 2008. http://www.cc.gatech.edu/csela/dendro (Accessed on March 20,
2009).

[105] Schmitt, O., Modersitzki, J., Heldmann, S., Wirtz, S., and Fischer, B.,
“Image registration of sectioned brains,” International Journal of Computer Vision,
vol. 73, no. 1, pp. 5 – 39, 2007.

[106] Schneiders, R., “An algorithm for the generation of hexahedral element meshes
based on an octree technique,” in Proceedings of the 6th International Meshing
Roundtable, pp. 183 – 194, 1997.

[107] Schneiders, R., Schindler, R., and Weiler, F., “Octree-based generation of hex-
ahedral element meshes,” in Proceedings of the 5th International Meshing Roundtable,
pp. 205 – 216, 1996.

[108] Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimi-
avona, R., Cimrman, R., Hill, D., Chapelle, D., and Razavi, R., “Cardiac
function estimation from MRI using a heart model and data assimilation: Advances
and difficulties,” Medical Image Analysis, vol. 10, pp. 642 – 656, 2006.

[109] Shapira, Y., “Multigrid for locally refined meshes,” SIAM Journal on Scientific
Computing, vol. 21, no. 3, pp. 1168 – 1190, 1999.

[110] Shephard, M. and Georges, M., “Automatic three-dimensional mesh generation
by the finite octree technique,” International Journal for Numerical Methods in En-
gineering, vol. 26, pp. 709 – 749, 1991.

[111] Shewchuk, J. R., “Tetrahedral mesh generation by Delaunay refinement,” in Pro-
ceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 86 –
95, Association for Computing Machinery, June 1998.

158

[112] Somani, A. K. and Sansano, A. M., “Minimizing overhead in parallel algorithms
through overlapping communication/computation,” tech. rep., Institute for Computer
Applications in Science and Engineering (ICASE), 1997.

[113] Sorzano, C. O. S., Thevenaz, P., and Unser, M., “Elastic registration of bio-
logical images using vector-spline regularization,” IEEE Transactions on Biomedical
Engineering, vol. 52, no. 4, pp. 652 – 663, 2005.

[114] Spekreijse, S. P., “Elliptic grid generation based on Laplace equations and algebraic
transformations,” Journal of Computational Physics, vol. 118, no. 1, pp. 38 – 61, 1995.

[115] Stefanescu, R., Pennec, X., and Ayache, N., “Grid-enabled non-rigid registra-
tion of medical images,” Parallel Processing Letters, vol. 14, no. 2, pp. 197 – 216,
2004.

[116] Strasters, K. and Gerbrands, J., “3-dimensional image segmentation using a
split, merge and group-approach,” Pattern Recognition Letters, vol. 12, pp. 307 – 325,
May 1991.

[117] Sundar, H., Spatio-temporal deformation analysis of cardiac MR images. PhD thesis,
University of Pennsylvania, 2008.

[118] Sundar, H., Sampath, R. S., Adavani, S. S., Davatzikos, C., and Biros, G.,
“Low-constant parallel algorithms for finite element simulations using linear octrees,”
in SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, ACM
Press, 2007.

[119] Sundar, H., Sampath, R. S., and Biros, G., “Bottom-up construction and 2:1 bal-
ance refinement of linear octrees in parallel,” SIAM Journal on Scientific Computing,
vol. 30, no. 5, pp. 2675 – 2708, 2008.

[120] Szeliski, R. and Lavallee, S., “Matching 3-D anatomical surfaces with nonrigid
deformations using octree-splines,” International Journal of Computer Vision, vol. 18,
no. 2, pp. 171 – 186, 1996.

[121] Szeliski, R. and Shum, H.-Y., “Motion estimation with quadtree splines,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 12, pp. 1199
– 1210, 1996.

[122] TACC, “Ranger’s system architecture.” http://www.tacc.utexas.edu (Accessed on
March 20, 2009).

[123] Tatebe, O. and Oyanagi, Y., “Efficient implementation of the multigrid precon-
ditioned Conjugate Gradient method on distributed memory machines,” in Super-
computing ’94: Proceedings of the 1994 ACM/IEEE Conference on Supercomputing,
pp. 194 – 203, ACM, 1994.

[124] Teng, S.-H., “Provably good partitioning and load balancing algorithms for parallel
adaptive N-body simulation,” SIAM Journal on Scientific Computing, vol. 19, no. 2,
pp. 635 – 656, 1998.

[125] Tropf, H. and Herzog, H., “Multidimensional range search in dynamically bal-
anced trees,” Angewandte Informatik, vol. 2, pp. 71 – 77, 1981.

159

[126] Trottenberg, U. and Oosterlee, C. W. and Schuller, A., Multigrid. Aca-
demic Press Inc., 2001.

[127] Tu, T. and O’Hallaron, D. R., “Balance refinement of massive linear octree
datasets,” CMU Technical Report, vol. CMU-CS-04, no. 129, 2004.

[128] Tu, T. and O’Hallaron, D. R., “Extracting hexahedral mesh structures from
balanced linear octrees,” in Proceedings of the 13th International Meshing Roundtable,
pp. 191 – 200, 2004.

[129] Tu, T., O’Hallaron, D. R., and Ghattas, O., “Scalable parallel octree meshing
for terascale applications,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, IEEE Computer Society, 2005.

[130] Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.-L.,
and O’Hallaron, D. R., “From mesh generation to scientific visualization: An
end-to-end approach to parallel supercomputing,” in SC ’06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, ACM Press, 2006.

[131] Wachowiak, M. P. and Peters, T. M., “Parallel optimization approaches for
medical image registration,” in Medical Image Computing and Computer-Assisted
Intervention (MICCAI), vol. 3216 of LNCS, pp. 781 – 788, Springer-Verlag, 2004.

[132] Wang, W., “Special bilinear quadrilateral elements for locally refined finite element
grids,” SIAM Journal on Scientific Computing, vol. 22, pp. 2029 – 2050, 2001.

[133] Warren, M. S. and Salmon, J. K., “Astrophysical N-body simulations using hier-
archical tree data structures,” in SC ’92: Proceedings of the 1992 ACM/IEEE Con-
ference on Supercomputing, pp. 570 – 576, IEEE Computer Society Press, 1992.

[134] Warren, M. S. and Salmon, J. K., “A parallel hashed octree N-body algorithm,”
in SC ’93: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 1993.

[135] White, B. S., McKee, S. A., de Supinski, B. R., Miller, B., Quinlan, D.,
and Schulz, M., “Improving the computational intensity of unstructured mesh ap-
plications,” in ICS ’05: Proceedings of the 19th Annual International Conference on
Supercomputing, pp. 341 – 350, ACM Press, 2005.

[136] Wirtz, S., Fischer, B., Modersitzki, J., and Schmitt, O., “Super-fast elastic
registration of histologic images of a whole rat brain for three-dimensional reconstruc-
tion,” Medical Imaging, vol. 5370, pp. 328 – 334, 2004.

[137] Wollny, G. and Kruggel, F., “Computional cost of nonrigid registration algo-
rithms based on fluid dynamics,” IEEE Transactions on Medical Imaging, vol. 21,
no. 8, pp. 946 – 952, 2002.

[138] Worz, S. and Rohr, K., “Physics-based elastic registration using non-radial basis
functions and including landmark localization uncertainties,” Computer Vision and
Image Understanding, vol. 111, pp. 263 – 274, 2008.

[139] Ying, L., Biros, G., and Zorin, D., “A kernel-independent adaptive fast multipole
algorithm in two and three dimensions,” Journal of Computational Physics, vol. 196,
no. 2, pp. 591 – 626, 2004.

160

[140] Ying, L., Biros, G., Zorin, D., and Langston, H., “A new parallel kernel-
independent fast multipole method,” in SC ’03: Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, IEEE Computer Society, 2003.

[141] Yserentant, H., “On the convergence of multi-level methods for strongly nonuni-
form families of grids and any number of smoothing steps per level,” Computing,
vol. 30, pp. 305 – 313, 1983.

[142] Yserentant, H., “The convergence of multilevel methods for solving finite-element
equations in the presence of singularities,” Mathematics of Computation, vol. 47,
no. 176, pp. 399 – 409, 1986.

[143] Zhang, S., “Optimal-order nonnested multigrid methods for solving finite ele-
ment equations. I. On quasi-uniform meshes,” Mathematics of Computation, vol. 55,
no. 191, pp. 23 – 36, 1990.

[144] Zhang, S., “Optimal-order nonnested multigrid methods for solving finite element
equations. II. On nonquasiuniform meshes,” Mathematics of Computation, vol. 55,
no. 192, pp. 439 – 450, 1990.

[145] Zitova, B. and Flusser, J., “Image registration methods: A survey,” Image and
Vision Computing, vol. 21, pp. 977 – 1000, 2003.

161

