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Abstract—We propose in this paper a new low rank filter
for MIMO STAP (Multiple Input Multiple Output Space Time
Adaptive Processing) based on the AU-HOSVD (Alternative
Unfolding Higher Order Singular Value Decomposition). This
decomposition called the AU-HOSVD is able to process data in
correlated dimensions which is desirable for STAP methods. We
apply the new filter to MIMO STAP simulated data. The results
are encouraging and outperforms the conventional STAP 2D filter
in terms of number of secondary data.

I. INTRODUCTION

In signal processing, more and more applications deal with
multidimensional data whereas most of the signal processing
algorithms are based on one or two dimensional models. Con-
sequently, multidimensional data have to be folded as vector
or matrix to be processed. The multidimensional structure
of the data is then not exploited. The multilinear algebra
[1], [2] provides a good framework to exploit these data by
preserving the structure information. In this context, data are
represented as multidimensional arrays called tensor. However,
generalizing matrix-based algorithms to the multilinear algebra
framework is not a trivial task.
Let us consider the case of the Singular Value Decomposition
(SVD). There is no single multilinear extension of the SVD,
with exactly the same properties as the SVD. Depending on
which properties are preserved, several extensions of the SVD
have been introduced as for example the Higher Order Singular
Value Decomposition (HOSVD) [2]. The HOSVD is based on
the classic tensor unfolding. This unfolding transforms a tensor
into a matrix in order to highlight one dimension. In other
words, HOSVD only considers simple information, which is
the information contained in each dimension taken separately.
The correlated information, which is the information contained
in a combination of dimensions, is neglected. In order to use
correlated information, we have previously proposed in [3],
[4] a new set of orthogonal decompositions, the Alternative
Unfolding HOSVD (AU-HOSVD). This new decomposition
is then well adapted to applications for which the use of
combined dimension is needed. This is the case for detection of
moving target embedded in clutter using Space-Time Adaptive
Processing (STAP) [5]. Indeed, both spatial and Doppler
dimensions are needed to efficiently suppress the clutter. A new
Low-Rank (LR) filter based on the HOSVD has been proposed
in [3], [4] for polarimetric STAP data. This new filter shows
good results, especially in terms of number of secondary data

needed for the suppression of the clutter.
We propose in this paper to derived a LR filter based on the
AU-HOSVD for MIMO STAP. MIMO radar [6] is a system
with multiple transmit antennas and multiple receive antennas
which transmit and receive multiple pulses for the detection of
moving targets. Compared to conventional array, MIMO radar
offers additional degrees of freedom and specifically waveform
diversity for coherent MIMO where transmit and receive
antennas are colocated (we only consider this configuration
in this study). Specifically orthogonal waveforms allows to
generate a long virtual antenna array and thus improve angular
resolution. STAP processing has been naturally extended to
MIMO radar [6]. Assuming ideally orthogonal waveforms,
MIMO STAP allows narrower clutter rejection with the same
number of antennas compared to the phased array. By nature,
MIMO data are multidimensional. It seems that the LR filter
based on the AU-HOSVD is well adapted to the MIMO STAP.
The performances of the LR filter for the MIMO data are
evaluated on simulated data.
The paper is organized as follows. Section II gives a brief
overview of the HOSVD and the AU-HOSVD. In Section III
we present the MIMO STAP and the derivation of the LR
filter based on the AU-HOSVD and dedicated to MIMO data.
Finally we apply and evaluate the proposed approach with
simulated data.
The following convention is adopted: scalars are denoted as
italic letters, vectors as lower-case bold-face letters, matrices
as bold-face capitals, and tensors are written as bold-face
calligraphic letters. We use the superscripts † for Hermitian
transposition and ∗ for complex conjugation.

II. TENSOR DECOMPOSITION

In this section, we present an brief overview of the HOSVD
and the new decomposition, the AU-HOSVD. More details on
the AU-HOSVD and its application to polarimetric STAP can
be found in [3], [4].

A. Higher Order Singular Value Decomposition

The Higher Order Singular Value Decomposition
(HOSVD) is a particular case of Tucker decomposition [2] with
orthogonality properties. We consider a tensor H ∈ CI1×...×IP

of order P . The HOSVD decomposes H as follows [2]:

H = K×1 U(1) . . .×P U(P ), (1)



where ∀n, U(n) ∈ CIn×In is an orthonormal matrix and
K ∈ CI1×...×IP is the core tensor, which satisfies the
all-orthogonality conditions [2]. The matrix U(n) is given
by the SVD of the n-dimension unfolding tensor, [H]n =
U(n)Σ(n)V(n)H . Using classical unfolding, the HOSVD only
considers the information in each dimension separately. This
may not be suitable for some applications that are based on
the use of combined dimensions such as STAP.

B. Alternative Unfolding HOSVD

In order to use information of combined dimensions, we
have proposed in [3], [4] a new decomposition called the AU-
HOSVD. We consider the same tensor H as previously. The
entire set of dimensions of H is denoted by A = {1, . . . , P}
and a subset l of A is denoted by Al. Then, the AU-HOSVD
decomposes H as follows:

H = KA1/.../AL
×A1

U(A1) . . .×AL
U(AL), (2)

where ∀l ∈ [1, L], U(Al) ∈ CAl×Al is an orthonormal matrix1.
KA1/.../AL

∈ CI1×...×IP is the core tensor which possesses
the same properties as the HOSVD core tensor. ×Al

is the
multimode product2. There are multiple ways to decompose
a tensor with this approach, depending of the choice of the
partition A1, . . . ,AL. We proposed in the following section to
design a LR MIMO STAP filter based on the AU-HOSVD.

C. Extension of the orthogonal projector

Let H, Hc, H0 be three P th order tensors such that:

H = Hc +H0, (3)

where Hc is a (rA1
, . . . , rAL

) low rank tensor (rAl
=

rank([Hc]Al
)). Then H0 is approximated by:

H0 ≈H×A1
U

(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 (4)

where U
(Al)
0 = [u

(Al)
rAl+1 . . . u

(Al)
Al

]. The same approximation
can be applied to the HOSVD3.

III. MIMO STAP

We present in this section the model and the processing
of the MIMO STAP data using firstly conventional approach
and secondly multidimensional approach based on the AU-
HOSVD. We focus on LR filters for STAP in both vectorial
and multidimensional approaches.

A. Conventional MIMO STAP approach

1) Signal model: We consider a MIMO radar with M
transmit antennas spaced by de and N receive antennas spaced
by dr. We assume that the radar system is in the coherent
and colocated MIMO configuration, i.e. the transmit and the
receive arrays are closely located to ensure that the received
signal is coherent between the pairs of transmit and receive
elements. We also consider L pulses with a pulse repetition

1U(Al) is computed from the SVD of different kind of unfolding denoted
[.]Al

. This allows to have a matrix of dimensions Al × A \ Al.
2This product is the extension of the n-mode product used for the HOSVD.

It allows to multiply a tensor with a matrix along a combination of dimensions.
3By analogy with HOSVD, even if the truncation for the AU-HOSVD is

not optimal, we assume that it provides a correct approximation.

interval Tr. We assume that M waveforms are ideally orthog-
onal and can then be perfectly disentangle at each receiver.
In addition of the cell under test (CUT), we assume that K
observations are available. We assume that the CUT and the K
observation cells are independent and identically distributed.
The received signal x ∈ CMNL×1 for CUT and the received
signal xk ∈ CMNL×1 for the k−th observation cell can be
written as follows:

x = αs(fs, fd) + c + n ,
xk = ck + nk k ∈ [1,K],

(5)

where α and s(fs, fd) are respectively the complex amplitude
and the steering vector of the target, (fs, fd) being the spatial
and the Doppler frequencies of the target. c and ck are
the responses of the clutter with the following distribution
CN (0,Rc) with Rc the clutter covariance matrix. n and nk

are the responses of the thermal noise with the following
distribution CN (0, σ2IMNL) with σ2 the power of the thermal
noise.
As we consider ideally orthogonal waveforms and colocated
MIMO, the steering vector s(fs, fd) ∈ CMNL×1 is derived as
follows [7]:

s(fs, fd) = a(fs)⊗ v(fs)⊗ b(fd) (6)

where

• a(fs) = [1 exp(j2πfs) . . . exp(j2π(N − 1)fs)]
T is

the receive spatial steering vector,

• v(fs) = [1 exp(j2πγfs) . . . exp(j2πγ(M −1)fs)]
T

is the transmit spatial steering vector with γ = de/dr,

• b(fd) = [1 exp(j2πfdTr) . . . exp(j2π(L −
1)fdTr)]

T is the Doppler steering vector.

2) LR MIMO 2D STAP Filter: The goal of STAP is to
efficiently reduce the clutter and noise responses for extracting
the target response. The STAP methods initially developed for
SIMO (Single Input Multiple Input), can be easily extended
to the coherent MIMO with ideally orthogonal waveforms [6]
by concatenating the responses of each transmitters for each
receiver and each pulse.
It has been shown [5], [6] that the optimal STAP filter
wopt(fs, fd) ∈ CMNL×1 is defined as:

wopt(fs, fd) = R−1s(fs, fd) (7)

where R = Rc + σ2IMNL. As the covariance clutter-plus-
noise matrix R is practically unknown, we use the estimate
of this latter by using the K additional observations R̂ =
1
K

∑K
k=1 xkx†k. Usually the clutter subspace is low-rank and

LR STAP methods have been developed to exploit this property
[8], [7]. The LR STAP filter is based on the SVD of R̂.
The rank r of the clutter subspace can computed using the
Generalized Brennan rule [7]. The SVD of R̂ is written as
R̂ = ÛΣ̂V̂†. Û0 = [ûr+1 . . . ûNML] is a basis of the orthog-
onal of the clutter subspace, where ûi are the (NML − r)
last columns of Û. The LR STAP filter ŵLR(fs, fd) and the
output yLR(fs, fd) of this filter are written as follows:

ŵLR(fs, fd) = Û0Û
†
0s(fs, fd)

yLR(fs, fd) = ŵ†LR(fs, fd)x
(8)



The LR methods allow to achieve good performances with a
reduced number of secondary data (SINR loss4 of 3dB for
K = 2r) compared to fully adaptive STAP (SINR loss of 3dB
for K = 2NML).

B. AU-Unfolding approach

1) Signal Model: To derive and to apply the tensorial LR
filter, we propose to rewrite the received signal model of
Eq. (5) as follows:

X = αS(fs, fd) + C+N
Xk = Ck +Nk k ∈ [1,K],

(9)

where X, Xk ∈ CN×M×L are the received signal tensors.
S(fs, fd) ∈ CN×M×L is the steering tensor and is derived as
follows:

S(fs, fd) = vec−1(s(fs, fd)) (10)

where vec(Q) is the operator which transform a tensor Q into
a vector q. vec−1 is the inverse operator.
In the same way we derive the tensors of the clutter re-
sponses C, Ck ∈ CN×M×L and the tensors of the thermal
noise N, Nk ∈ CN×M×L. The clutter covariance tensor
R̂ ∈ CN×M×L×N×M×L is derived as follows:

R̂ = SqMat−1(R̂) (11)

where SqMat(A) is the operator which transforms the square
tensor A ∈ CI1×I2×...×IP×I1×I2×...×IP into a square matrix
A ∈ CI1I2...IP×I1I2...IP . SqMat−1 is the inverse operator.

2) Tensorial LR STAP filter: The tensorial LR STAP filter
developed in [3], [4] is constructed in a similar way as the
vectorial LR STAP filter. Based on the LR approximation
of the AU-HOSVD in Eq. (4), the tensorial LR STAP filter
Ŵlr(A1,...,AL)(fs, fd) and its output y can be written as fol-
lows:

Ŵlr(A1,...,AL)(fs, fd) = S(fs, fd)×A1
Û

(A1)
0 Û

(A1)†
0 ×

. . .×AL
Û

(AL)
0 Û

(AL)†
0

y = | < ŴA1,...,AL
,X > |

(12)
where Û

(Al)
0 is derived from the AU-HOSVD of R̂,

Û
(Al)
0 = [û

(Al)
rAl+1 . . . û

(Al)
Al

] and (rAl
= rank([R̂]Al

)). < , >
is the scalar product operator.

3) Choice of the partition A: We only consider in this
study the unfolding along the three dimensions of the data,
i.e. along the N receivers (dimension 1), the M transmitters
(dimension 2) and L pulses (dimension 3). The different
choices of partition are presented in table III-B3. The two first
partitions can be seen as particular case of the AU-HOSVD.
The first one A1 = {1, 2, 3} corresponds to the conventional
vectorial STAP filter written in Eq. (8). The second one is the
HOSVD. By combining two dimensions, we obtain the three
last possible partitions. The ranks relative to the LR filters for
each partition can be computed using the Generalized Brennan
rule and other clutter rank computation rule. Due to a lack of
space, the computation of the ranks is not studied here and
will be proposed in a future paper.

4The SINR (Signal to Interference plus Noise Ratio) loss is the ratio
between the SINR at the output of the STAP filter used and the SINR at
the output of the optimal STAP filter.

Partition Filters methods
A1 = {1, 2, 3} Ŵlr(1,2,3) = ŵLR Vector

A1 = {1}, A2 = {2}, A3 = {3} Ŵlr(1/2/3) HOSVD

A1 = {1, 2}, A2 = {3} Ŵlr(1,2/3) AU-HOSVD

A1 = {1}, A2 = {2, 3} Ŵlr(1/2,3) AU-HOSVD

A1 = {1, 3}, A2 = {2} Ŵlr(1,3/2) AU-HOSVD

TABLE I. DESCRIPTION OF THE LR FILTERS PROVIDED BY
AU-HOSVD FOR MIMO STAP.

IV. SIMULATION RESULTS

A. Configuration

We consider a colocated MIMO radar (and then coherent)
with M = 4 transmitters, N = 4 receivers and L = 64
pulses. The MIMO radar is in side-looking configuration. We
simulate a ground clutter using Ward model [5] with β = 1.
We assume that the waveforms are ideally orthogonal and
can then be perfectly disentangle at each receiver. At last,
we consider two coherent MIMO geometrical configurations,
MIMO sparse with dr = λ0/2 and de = Ndr and MIMO
filled with dr = λ0/2 and de = dr (λ0 is the wavelength of the
transmit signals). The length of the virtual antenna array of the
MIMO directly depends on the spacing between the transmit
and the receive antennas. It has been shown [6] that the MIMO
filled generates a virtual antenna array longer than the SIMO.
The longest virtual antenna array is generated with the MIMO
sparse. For comparison we also consider the SIMO (Single
Input Multiple Input) configuration which is the conventional
phased array with 4 receivers and 1 transmitters.

B. SINR loss

To evaluate the performances of the LR STAP filters
based on the AU-HOSVD for MIMO, we perform simulations
with 100 Monte Carlo runs. We present in Figure 1 and in
Figure 2, the SINR losses in terms of the normalized Doppler
frequencies for the SIMO using the LR STAP 2D filter and
for the MIMO using the LR STAP 2D filter (LR filter) and
the LR AU-HOSVD filters (AU-HOSVD) of each partition.
We present results for the MIMO filled (MIMOf) in Figure
1 and for MIMO sparse (MIMOs) in Figure 2. The number
of secondary data is equal to 2r with r being the rank of the
clutter covariance matrix in the vectorial case (r = 67 for
SIMO, r = 70 for MIMOf and r = 79 for MIMOs).
We see in both figures that the SINR losses of the partitions
{1, 2/3} and {1/2/3} are lower than −20dB and then are
not visible. For these two partitions, the spatial and the
Doppler dimensions are not combined. Since the ranks for
single dimension are not deficient, there is no projection into
the orthogonal of the clutter subspace. Thus the suppression
of the clutter is very bad. The vectorial LR filters for the
SIMO and the MIMOf and MIMOs give the expected results
with SINR losses around −3dB; we also see that the clutter
notch is narrower for the MIMO configurations compared
to SIMO, especially for MIMOs which generates the longer
virtual antenna. The two other partitions {1, 3/2} and {2, 3/1}
combine one of the spatial dimension (transmitter or receiver)
with the Doppler dimension. Compared to vectorial filters, the
tensorial LR filters using these partitions give better results



with almost the same number of secondary data with SINR
loss around −1dB. Nevertheless, the tensorial LR filters based
on these partitions exploit only the physical transmit or receive
antenna array (and not the virtual antenna array) as the two
spatial dimensions are used separately. This means that the
suppression of the clutter is only made on the receiver/Doppler
dimensions or transmitter/Doppler dimensions. For the MIMOf
in Figure 1, the LR filters based on the two partitions {1, 3/2}
and {2, 3/1} have exactly the same performances because the
transmit and the receive arrays are identical. Compared to the
vectorial filter, the clutter notch of the tensorial filters are larger
and equal to the SIMO. In MIMOs configuration in Figure
2, the two partitions {1, 3/2} and {2, 3/1} do not have the
same performances as the transmit and the receive arrays are
different. For the partition {2, 3/1}, the LR tensorial filter is
derived using the combination of the transmit array and the
Doppler dimension. As the transmit array is sparse, there are
grating lobes which generate multiple narrow clutter notches
in their positions. For the partition {1, 3/2}, the LR tensorial
filter is derived using the combination of the received array
and the Doppler dimension; we obtain the same performance
as for the MIMOf with a clutter notch as large as for the
SIMO. Figure 3 presents the SINR losses versus the number

Fig. 1. SINR Losses versus Doppler frequency for each partition. MIMOf
configuration.

Fig. 2. SINR Losses versus Doppler frequency for each partition. MIMOs
configuration.

of secondary data for a fast target located far from the clutter.
We present the results of the LR 2D STAP filter for the SIMO
and both MIMOf and MIMOs. We also present for both MIMO
configurations, the results of LR STAP filter based on the
AU-HOSVD of the partition {1, 3/2} (the other partitions do
no give satisfying results for MIMO STAP). As we are far
from the clutter notch, the maximum performance for all the
cases and for a large number of secondary data, is the same
and is approximately equal to −1dB. We clearly see that the

SINR losses converge faster for both MIMO configurations
using the LR filter based on the AU-HOSVD with less than
200 secondary data. Around the double of secondary data is
needed to achieve a SINR loss of −1dB with the SIMO and
the MIMOf and MIMOs using the LR 2D STAP.

Fig. 3. SINR Losses versus the number of secondary data (K). Fast target
(fs = 0,v = −40m.s−1).

V. CONCLUSION

We have presented in this study a new LR filter for MIMO
STAP based on multidimensional approach. The new decom-
position obtained with the AU-HOSVD allows to process cor-
related data. We have chosen the most direct unfolding along
the dimensions of the MIMO data. The STAP performances on
simulated data are encouraging as we managed to reduce the
number of secondary data needed to achieve good SINR losses.
However, the chosen unfolding may not be the best one as we
lose the generation of the virtual antenna for the suppression of
the clutter. Further studies are needed, especially on the choice
of the unfolding, in order to preserve the narrower clutter notch
provided by the MIMO virtual antenna and the reduced number
of secondary data provided by the AU-HOSVD approach.
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