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1. Introduction

Intersection types and the expansion mechanism. Intersection types were developed in the late
1970s to type λ-terms that are untypable with simple types; they do this by providing a kind of finitary
type polymorphism where the usages (types) of terms are listed rather than obtained by quantification.
They have been useful in reasoning about the semantics of the λ-calculus, and have been investigated for
use in static program analysis. Expansion was introduced at the end of the 1970s as a crucial procedure
for calculating principal typings for λ-terms in type systems with intersection types, allowing support
for compositional type inference. Coppo, Dezani, and Venneri [7] introduced the operation of expansion
on typings (pairs of a type environment and a result type) for calculating the possible typings of a term
when using intersection types. As a simple example, there exists an intersection type system S where
the λ-term M = (λx.x(λy.yz)) can be assigned the typing Φ1 = 〈{z 7→ a}, (((a�b)�b)�c)�c〉, which
happens to be its principal typing in S. The term M can also be assigned the typing Φ2 = 〈s{z 7→ a1 u
a2}, ((((a1�b1)�b1) u ((a2�b2)�b2))�c)�c〉, and an expansion operation can yield Φ2 from Φ1.

Expansion variables. Because the early definitions of expansion were complicated, E-variables were
introduced in order to make the calculations easier to mechanize and reason about. For example, in
System E [5], the typing Φ1 presented above is replaced by Φ3 = 〈{z 7→ ea}, ((e((a�b)�b))�c)�c〉,
which differs from Φ1 by the insertion of the E-variable e at two places (in both components of the Φ3),
and Φ2 can be obtained from Φ3 by substituting for e the expansion term E = (a := a1, b := b1)u (a :=
a2, b := b2). Carlier and Wells [6] have surveyed the history of expansion and also E-variables.

Designing a space of meanings for expansion variables. In many kinds of semantics, a type T
is interpreted by a second order function [T ]ν that takes two parameters, the type T and also a valuation
ν that assigns to type variables the same kind of meanings that are assigned to types. To extend this idea
to types with E-variables, we need to devise some space of possible meanings for E-variables. Given that
a type eT can be turned by expansion into a new type S1(T )uS2(T ), where S1 and S2 are arbitrary sub-
stitutions (which can themselves introduce expansions), and that this can introduce an unbound number
of new variables (both E-variables and regular type variables), the situation is complicated. Because it is
unclear how to devise a space of meanings for expansions and E-variables, we instead restrict ourselves
to E-variables and develop a space of meanings for types that is hierarchical in the sense that we can split
it w.r.t. a certain concept of degree. Although this idea is not perfect, it seems to go quite far in giving an
intuition for E-variables, namely that each E-variable occurring in a typing associated with a λ-term, acts
as a capsule that isolates parts of the λ-term. As future work, we wish to come up with a higher order
function that interprets types involving expansion terms by sets of λ-terms. We believe this function
would help regarding the substitution mechanism introduced by expansion in terms of λ-expressions.

Our semantic approach. The semantic approach we use in the current document is a realisability
semantics in the sense that it is derived from Kreisel’s modified realisability and its variants, where “a
formula “x realizes A” can be defined in a completely straightforward way: the type of the variable x
is determined by the logical form of A” [26], x being the code of a function. Our semantics is strongly
related to the semantic argument used in reducibility methods as used and developed by Tait [27] and
many others after him [24, 23, 13, 12, 14, 15]. Atomic types (e.g., type variables) are interpreted as
saturated sets of λ-terms, meaning that they are closed under β-expansion (the inverse of β-reduction).
Arrow types are interpreted by function spaces (see the semantics provided by Scott in the open problems
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published in the proceedings of the Lecture Notes in Computer Science symposium held in 1975 [4]) and
intersection types are interpreted by set intersections. Such a realisability semantics allows one to prove
soundness w.r.t. a type system S, i.e., the meaning of a type T contains all closed λ-terms that can be
assigned T in S. This has been shown useful for characterising the behaviour of typed λ-terms [24]. One
also wants to show the converse of soundness which is called completeness, i.e., every closed λ-term in
the meaning of T can be assigned T in S.

Completeness results. Hindley [17, 18, 19] was one of the first to investigate such completeness
results for a simple type system and he showed that all the types of that system have the completeness
property. He then generalised his completeness proof to an intersection type system [16]. Using his com-
pleteness theorem based on saturated sets of λ-terms w.r.t. βη-equivalence, Hindley showed that simple
types were “realised”1 by all and only the λ-terms which are typable by these types. Note that Hindley’s
completeness theorems were established with the sets of λ-terms saturated by βη-equivalence. In the
present document, our completeness result depends only on the weaker requirement of β-equivalence,
and we have managed to make simpler proofs that avoid needing η-reduction, confluence, or SN (al-
though we do establish both confluence and SN for both β and βη).

Similar approaches to type interpretation. Recent works on realisability related to ours include
that by Labib-Sami [25], Farkh and Nour [11], and Coquand [9], although none of this work deals with
intersection types or E-variables. Similar work on realisability dealing with intersection types includes
that by Kamareddine and Nour [21], which gives a sound and complete realisability semantics w.r.t. an
intersection type system. This system does not deal with E-variables and is therefore different from the
three hierarchical systems presented in this document. The main difference is the hierarchies which did
not exist in Kamareddine and Nour’s document [21].

Towards a semantics of expansion. Initially, we aimed to give a realisability semantics for a
system of expansions proposed by Carlier and Wells [6]. In order to simplify our study, we considered
the system with expansion variables but without the expansion rewriting rules (without the expansion
mechanism). In essence, this meant that the type syntax was: T ∈ Ty ::= a | ω | T1�T2 | T1 u T2 | eT
where a is a type variable ranging over a countably infinite type variable set TyVar and e is an expansion
variable ranging over a countably infinite expansion variable set ExpVar, and that the typing rules were
as follows:

x : 〈{x 7→T} ` T 〉
(var)

M : 〈∅ ` ω〉
(ω)

M : 〈Γ ] {x 7→T1} ` T2〉
λx.M : 〈Γ ` T1�T2〉

(abs)
M1 : 〈Γ1 ` T1�T2〉 M2 : 〈Γ2 ` T1〉

M1M2 : 〈Γ1 u Γ2 ` T2〉
(app)

M : 〈Γ1 ` T1〉 M : 〈Γ2 ` T2〉
M : 〈Γ1 u Γ2 ` T1 u T2〉

(u)
M : 〈Γ ` T 〉
M : 〈eΓ ` eT 〉

(e-app)

To provide a realisability semantics for this system, we needed to define the interpretation of a type
to be a set of terms having this type. For our semantics to be informative on expansion variables, we
needed to distinguish between the interpretation of T and eT . However, in the typing rule (e-app)

1We say that a λ-term M “realises” a type T if M is in T ’s interpretation. Hindley’s semantics is not a realisability semantics
but it bears some resemblance with modified realisability. One of Hindley’s semantics is called “the simple semantics” and is
based on the concept of model of the untyped λ-calculus [20]. Our type interpretation is also similar to Hindley’s[16].
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presented above, the term M is unchanged and this poses difficulties. For this reason, we modified
slightly the above type system by indexing the terms of the λ-calculus giving us the following syntax of
terms: M ::= xi | (MN) | (λxi.M) (where M and N need to satisfy a certain condition before (MN)
is allowed to be a term) and by slightly changing our type rules and in particular rule (e-app):

M : 〈Γ ` U〉
M+ : 〈eΓ ` eU〉

(e-app)

In this new (e-app) rule, M+ is M where all the indices are increased by 1. Obviously these indices
needed a revision regarding β-reduction and the typing rules in order to preserve the desirable properties
of the type system and the realisability semantics. For this, we defined the good terms and the good types
and showed that these notions go hand in hand (e.g., good types can only be assigned to good terms).

We developed a realisability semantics where each use of an E-variable in a type corresponds to an
index at which evaluation occurs in the λ-terms that are assigned the type. This was an elegant solution
that captured the intuition behind E-variables. However, in order for this new type system to behave
well, it was necessary to consider λI-terms only (removing a subterm from M also removes important
information aboutM as in the reduction (λx.y)M →β y whereM is thrown away). It was also necessary
to drop the universal type ω completely. This led us to the introduction of the λIN-calculus and to our
first type system `1 for which we developed a sound realisability semantics for E-variables.

However, although the first type system `1 is crucial to understand the intuition behind out indexed
calculus, the realisability semantics we proposed was not complete w.r.t. `1 (subject reduction does not
hold either). For this reason, we modified our system `1 by considering a smaller set of types (where
intersections and expansions cannot occur directly to the right of an arrow), and by adding subtyping
rules. This new type system `2 has subject reduction. Our semantics turned out to be sound w.r.t. `2.
As for completeness, we needed to limit the list of expansion variables to a single element list. This
completeness issue for `2 comes from the fact that the natural numbers as indexes do not allow one to
differentiate between the types e1T and e2T if e1 6= e2. Again, we were forced to revise our type system.
We decided to restrict our λ-terms by indexing them by lists of natural numbers (where each natural
number represents a difference expansion variable). We updated the type system `2 in consequence to
obtain the type system `3 based among other things on the following new (e-app) rule:

M : 〈Γ ` U〉
M+i : 〈eΓ ` eU〉

(e-app)

where i is the natural number associated with the expansion variable e and where M+i is M where all
the lists of natural numbers are augmented with i. This new rule (e-app) allows us to distinguish the
interpretations of the types e1T and e2T when e1 6= e2. Furthermore, our λ-terms are constructed in
such a way that K-reductions do not limit the information on the reduced terms (as in the λIN-calculus,
β-reduction is not always allowed, and in addition we impose further restriction on applications and
abstractions). In order to obtain completeness in presence of the ω-rule, we also consider ω indexed by
lists. This means that the new calculus becomes rather heavy but this seems unavoidable. It is needed
to obtain a complete realisability semantics where an arbitrary (possibly infinite) number of expansion
variables is allowed and where ω is present. The use of lists complicates matters and hence, needs to
be understood in the context of the first semantics where indices are natural numbers rather than lists of
natural numbers. In addition to the above, we consider three saturation notions (in line with the literature)
illustrating that these notions behave well in our complete realisability semantics.
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Road map. Sec. 2.1 gives the syntax of the indexed calculi considered in this document: the λIN-
calculus, which is the λI-calculus with each variable annotated by a natural number called a degree or
index, and the λLN-calculus which is the full λ-calculus (where K-redexes are allowed) indexed with
finite sequences of natural numbers. We show the confluence of β, βη and weak head h-reduction on
our indexed λ-calculi. Sec. 2.2 introduces the syntax and terminology for types used in both indexed
calculi. Sec. 2.3 introduces our three intersection type systems with E-variables `i for i ∈ {1, 2, 3},
where in the first one, the syntax of types is not restricted (and hence subject reduction fails) but in the
other two it is restricted but then the systems are extended with a subtyping relation. In Sec. 2.4.1 and
Sec. 2.4.2 we study the properties of our three type systems including subject reduction and expansion
with respect to our various reduction relations (β, βη, h). Sec. 3.1 introduces our realisability semantics
and show its soundness w.r.t. each of the three considered type systems (and for each reduction relation).
Sec. 3.2 discusses the challenges of showing completeness of the realisability semantics designed for the
first two systems. We show that completeness does not hold for the first system and that it also does not
hold for the second system if more than one expansion variable is used, but does hold for a restriction of
this system to one single E-variable. This is already an important step in the study of the semantics of
intersection type systems with expansion variables since a single expansion variable can be used many
times and can occur nested. Sec. 3.3 establishes the completeness of a given realisability semantics
w.r.t. `3 by introducing a special interpretation. We conclude in Sec. 4 and proofs are presented in the
expanded version of this article [22].

2. The λIN and λLN calculi and associated type systems

2.1. The syntax of the indexed λ-calculi
Definition 2.1. (Indices)
We introduce two kinds of indices: natural numbers for our first semantics and sequences of natural
numbers for our second semantics. Let LN = tuple(N). We let I , J , range over indices. The metavari-
ables I and J will range over N when considering the λIN-calculus and over LN when considering the
λLN-calculus (both these calculus are defined below). Let L,K ,R range over LN. We sometimes write
〈n1, . . . , nm〉 as (n1, . . . , nm) or as (ni)1≤i≤m or as (ni)m. We denote � the empty sequence of natural
numbers (� stands for 〈〉). Let :: add an element to a sequence: j :: (n1, . . . , nm) = (j, n1, . . . , nm).
We sometimes write L1@L2 as L1 :: L2. We define the relation � and � on LN as follows: L1 � L2 (or
L2 � L1) iff there exists L3 ∈ LN such that L2 = L1 :: L3.

Lemma 2.1. � is a partial order on LN.

Let x, y, z range over Var, a countable infinite set of term variables (or just variables).
We define below two indexed calculi: the λIN-calculus (whose set of terms isM1 as well asM2

for notational reasons) and the λLN-calculus (whose set of terms isM3). As obvious, indices in λIN are
simple but only allow the I-part of the calculus.

We let M,N,P,Q,R range over any ofM1,M2, andM3 (we make explicit when a term is taken
from either one of these sets). We use = for syntactic equality. We assume the usual definition of sub-
terms and the usual convention for parentheses and their omission (see Barendregt [2] and Krivine [24]).
We also consider in this part an extension of the function fv that gathers the indexed λ-term variables
occurring free in terms (redefined below).
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The joinability M � N of terms M and N ensures that in any term in which M and N occur, each
variable has a unique index (note that it is more accurate to include this as part of the simultaneous
inductions in Def. 2.3 and 2.5 definingM1,M2, andM3, but for clarity, we define it separately here).

Definition 2.2. (Joinability �)
Let i ∈ {1, 2, 3}.

• Let M,N be terms of λIN (resp. λLN) and let fv(M) and fv(N) be the corresponding free vari-
ables. We say that M and N are joinable and write M �N iff for all x ∈ Var, if xL1 ∈ fv(M) and
xL2 ∈ fv(N) (where L1,L2 ∈ N (resp. ∈ LN)) then L1 = L2.

• If M ⊆Mi such that ∀M,N ∈ M . M �N , we write �M .

• If M ⊆Mi and M ∈Mi such that ∀N ∈ M . M �N , we write M �M .

Now we give the syntax of λIN, an indexed version of the λI-calculus where indices (which range
over N) help categorise the good terms where the degree of a function is never larger than that of its
argument. This amounts to having the full λI-calculus at each index and creating new λI-terms through
a mixing recipe. Note that one could also define λIN by dividing Var into an countably infinite number
of sets and by defining a bijective function that associates a unique index with each of these sets. We did
not choose to do so because we believe explicitly writing down indexes to be clearer.

Definition 2.3. (The set of termsM1 (also calledM2))
The set of terms M1, M2 (where M1 = M2), the set of free variables fv(M) of M ∈ M2 and the
degree deg(M) of a term M , are defined by simultaneous induction:

• If x ∈ Var and n ∈ N then xn ∈M2, fv(xn) = {xn}, and deg(xn) = n.

• If M,N ∈M2 such that M �N (see Def. 2.2) then MN ∈M2, fv(MN) = fv(M)∪ fv(N) and
deg(MN) = min(deg(M), deg(N)) (where min returns the smallest of its arguments).

• IfM ∈M2 and xn ∈ fv(M) then λxn.M ∈M2, fv(λxn.M) = fv(M)\{xn}, and deg(λxn.M1) =
deg(M1).

Let ix ∈ IVar2 ::= xn and IVar1 = IVar2. For each n ∈ N, letMn
2 = {M ∈M2 | deg(M) = n}. Note

that a subterm of M ∈ M2 is also inM2. Closed terms are defined as usual: let closed(M) be true iff
M is closed, i.e., iff fv(M) = ∅.

Here is now the syntax of good terms in the λIN-calculus.

Definition 2.4. (The set of good terms M ⊂M2)
1. The set of good terms M ⊂M2 is defined by:

• If x ∈ Var and n ∈ N then xn ∈M.

• If M,N ∈M, M �N , and deg(M) ≤ deg(N) then MN ∈M.

• If M ∈M and xn ∈ fv(M) then λxn.M ∈M.

Note that a subterm of M ∈M is also in M.
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2. For each n ∈ N, we let Mn = M ∩Mn
2

Lemma 2.2. 1. (M ∈M and xn ∈ fv(M)) iff λxn.M ∈M.

2. (M1,M2 ∈M, M1 �M2 and deg(M1) ≤ deg(M2)) iff M1M2 ∈M.

Now, we give the syntax of λLN . Note that in M3, an application MN is only allowed when
deg(M) � deg(N). This restriction did not exist in λIN (in M2’s definition). Furthermore, we only
allow abstractions of the form λxL.M in λLN when L � deg(M) (a similar restriction holds in λIN since
it is a variant of the λI-calculus). The elegance of λIN is the ability to give the syntax of good terms,
which is not obvious in λLN .

Definition 2.5. (The set of termsM3)
The set of termsM3, the set of free variables fv(M) and degree deg(M) of M ∈ M3 are defined by
simultaneous induction:

• If x ∈ Var and L ∈ LN then xL ∈M3, fv(xL) = {xL}, and deg(xL) = L.

• If M,N ∈ M3, deg(M) � deg(N), and M � N (see Def. 2.2) then MN ∈ M3, fv(MN) =
fv(M) ∪ fv(N) and deg(MN) = deg(M).

• If x ∈ Var, M ∈ M3, and L � deg(M) then λxL.M ∈ M3, fv(λxL.M) = fv(M) \ {xL} and
deg(λxL.M) = deg(M).

Let ix ∈ IVar3 ::= xL. Note that each subterm of M ∈ M3 is also inM3. Closed terms are defined as
usual: let closed(M) be true iff M is closed, i.e., iff fv(M) = ∅.

In our systems, expansions change the degree of a term. Therefore we define functions to increase
and decrease indexes in terms (see Def. 2.6 and Def. 2.7). Note that both the increasing and the de-
creasing functions are well behaved operations with respect to all that matters (free variables, reduction,
joinability, substitution, etc.).

Definition 2.6. 1. For each n ∈ N, letM≥n2 = {M ∈M2 | deg(M) ≥ n} andM>n
2 =M≥n+1

2 .

2. We define + (∈M2 →M2) and − (∈M>0
2 →M2) as follows:

(xn)+ = xn+1 (M1M2)+ = M1
+M2

+ (λxn.M)+ = λxn+1.M+

(xn)− = xn−1 (M1M2)− = M1
−M2

− (λxn.M)− = λxn−1.M−

3. Let M ⊆M2. If ∀M ∈ M . deg(M) > 0, we write deg(M ) > 0. Also:

(M )+ = {M+ |M ∈ M } If deg(M ) > 0, (M )− = {M− |M ∈ M }

4. We define M−n by induction on deg(M) ≥ n > 0. If n = 0 then M−n = M and if n ≥ 0 then
M−(n+1) = (M−n)−.

Definition 2.7. Let i ∈ N and M ∈M3.
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1. For each L ∈ LN, let:

ML
3 = {M ∈M3 | deg(M) = L} M≥L3 = {M ∈M3 | deg(M) � L}

2. We define M+i as follows:

(xL)+i = xi::L (M1M2)+i = M+i
1 M+i

2 (λxL.M)+i = λxi::L.M+i

3. If deg(M) = i :: L, we define M−i as follows:

(xi::L)−i = xL (M1M2)−i = M−i1 M−i2 (λxi::L
′
.M)−i = λxL

′
.M−i

4. Let M ⊆M3. Let (M )+i = {M+i |M ∈ M }.
Note that (M 1 ∩M 2)+i = (M 1)+i ∩ (M 2)+i.

Definition 2.8. (Substitution, alpha conversion, compatibility, reduction)
• Let M,N1, . . . , Nn be terms of λIN (resp. λLN) and I1, . . . , In ∈ N (resp. LN). The simultaneous

substitution M [xI11 := N1, . . . , x
In
n := Nn] of Ni for all free occurrences of xIii in M , where

i ∈ {1, . . . , n}, is defined as a partial substitution satisfying these conditions:

– �M where M = {M} ∪ {Ni | i ∈ {1, . . . , n}}.
– ∀i ∈ {1, . . . , n}. deg(Ni) = Ii

2.

We sometimes writeM [xI11 := N1, . . . , x
In
n := Nn] asM [(xIii := Ni)1≤i≤n] (or simplyM [(xIii :=

Ni)n]).

• In λIN (resp. λLN), we take terms modulo α-conversion given by: λxI .M = λyI .(M [xI := yI ])
where ∀I ′. yI ′ 6∈ fv(M) (where I , I ′ ∈ N (resp. LN)).

• Let i ∈ {1, 2, 3}. We say that a relation onMi is compatible iff for all M,N,P ∈Mi:

– (iabs): If M rel N and λxI .M, λxI .N ∈Mi then (λxI .M) rel (λxI .N).

– (iapp1): If M rel N and MP,NP ∈Mi then MP rel NP .

– (iapp2): If M rel N , and PM,PN ∈Mi then PM rel PN .

• Let i ∈ {1, 2, 3}. The reduction relation _β on Mi is defined as the least compatible relation
closed under the rule: (λxI .M)N _β M [xI := N ] if deg(N) = I .

• Let i ∈ {1, 2, 3}. The reduction relation _η on Mi is defined as the least compatible relation
closed under the rule: λxI .MxI _η M if xI 6∈ fv(M).

• Let i ∈ {1, 2, 3}. The weak head reduction _h onMi is defined as the least relation closed by
rule (iapp2) presented above and also by the following rule: (λxI .M)N _h M [xI := N ] if
deg(N) = I .

2We can prove the following lemma: if M = {M} ∪ {Nj | j ∈ {1, . . . , n}} then we have (�M and ∀j ∈
{1, . . . , n}. deg(Nj) = Ij) iff M [xI11 := N1, . . . , x

In
n := Nn] ∈Mi where i ∈ {1, 2, 3}.
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• Let _βη=_β ∪_η.

• For a reduction relation _r, we denote by _∗r the reflexive (w.r.t.Mi) and transitive closure of
_r. We denote by 'r the equivalence relation induced by _∗r (symmetric closure).

The next theorem states that reductions do not introduce new free variables and preserve the degree
of a term.

Theorem 2.1. Let i ∈ {1, 2, 3}, M ∈Mi, and r ∈ {β, βη, h}.

1. If M _∗η N then fv(N) = fv(M) and deg(M) = deg(N).

2. If i = 3 and M _∗r N then fv(N) ⊆ fv(M) and deg(M) = deg(N).

3. If i 6= 3 and M _∗β N then fv(M) = fv(N), deg(M) = deg(N), and M ∈M iff N ∈M.

Proof:
1. By induction on M _∗η N . 2. Case r = β, by induction on M _∗β N . Case r = βη, by the β and η
cases. Case r = h, by the β case. 3. By induction on M _∗β N . ut

Normal forms are defined as usual.

Definition 2.9. (Normal forms)
Let i ∈ {1, 2, 3} and r ∈ {β, βη, h}.

• M ∈Mi is in r-normal form if there is no N ∈Mi such that M _r N .

• M ∈Mi is r-normalising if there is an N ∈Mi such that M _∗r N and N is in r-normal.

Finally, the indexed lambda calculi are confluent w.r.t. β-, βη- and h-reductions:

Theorem 2.2. (Confluence)
Let i ∈ {1, 2, 3}, M,M1,M2 ∈Mi, and r ∈ {β, βη, h}.

1. If M _∗r M1 and M _∗r M2 then there is M ′ ∈Mi such that M1 _∗r M ′ and M2 _∗r M ′.

2. M1 'r M2 iff there is a term M ∈Mi such that M1 _∗r M and M2 _∗r M .

Proof:
We establish the confluence using the parallel reduction method. Full details can be found in the ex-
panded version of this article [22]. ut

2.2. The types of the indexed calculi

Let us start by defining type variables and expansion variables.

Definition 2.10. (Type variables and expansion variables)
We assume that a, b range over a countably infinite set of type variables TyVar, and that e ranges over a
countably infinite set of expansion variables ExpVar = {e0, e1, . . . }.
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With each expansion variable we associate a unique natural number which is the subscript of the
expansion variable. Instead of explicitly naming the elements in ExpVar, we could also have considered
a bijective function from expansion variables to natural numbers in order to associate a unique natural
number with each expansion variable. We have decided not to do so for clarity reason. Our solution
avoids defining an extra function.

For λIN, we study two type systems (none of which has the ω-type). In the first, there are no
restrictions on where intersection types and expansion variables occur (see set ITy1 defined below). In
the second, intersections and expansions cannot occur directly to the right of an arrow (see set ITy2

defined below).

Definition 2.11. (Types, good types and degree of a type for λIN)
• The type set ITy1 is defined as follows:

T,U, V,W ∈ ITy1 ::= a | U1�U2 | U1 u U2 | eU

The type sets Ty2 and ITy2 are defined as follows (note that Ty2 ⊆ ITy2 ⊆ ITy1):

T ∈ Ty2 ::= a | U�T
U, V,W ∈ ITy2 ::= U1 u U2 | eU | T

• We define a function deg (∈ ITy1 → N) by (hence deg is also defined on ITy2):

deg(a) = 0

deg(eU) = deg(U) + 1

deg(U�T ) = min(deg(U), deg(T ))

deg(U u V ) = min(deg(U), deg(V ))

• We define the set GITy which is the set of good ITy1 types as follow (this also defines the set of
good ITy2 types: GITy ∩ ITy2):

a ∈ TyVar ⇒⇒⇒ a ∈ GITy

U ∈ GITy ∧∧∧ e ∈ ExpVar ⇒⇒⇒ eU ∈ GITy

U, T ∈ GITy ∧∧∧ deg(U) ≥ deg(T ) ⇒⇒⇒ U�T ∈ GITy

U, V ∈ GITy ∧∧∧ deg(U) = deg(V ) ⇒⇒⇒ U u V ∈ GITy

When U ∈ GITy, we sometimes say that U is good.

Let n ≤ m. Let ~ei(n:m)U or ~eLU where L = (in, . . . , im) denote ein . . . einU . Also, let ~ei(n:m),jU
denote e〈n,j〉 . . . e〈m,j〉U . We consider the application of an expansion variable to a type (eU ) to have
higher precedence than u which itself has higher precedence than �. In all our type systems, we quotient
types by taking u to be commutative (i.e., U1 u U2 = U2 u U1), associative (i.e., U1 u (U2 u U3) =
(U1 uU2)uU3) and idempotent (i.e., U uU = U ), by assuming the distributivity of expansion variables
over u (i.e., e(U1 u U2) = eU1 u eU2). We denote Un u . . . u Um by umi=nU (when n ≤ m).

The next lemma states when arrow, intersection and applications of expansion variables to types are
good.

Lemma 2.3. 1. On ITy1 (hence on ITy2), we have the following:
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(a) (U, T ∈ GITy and deg(U) ≥ deg(T )) iff U�T ∈ GITy.
(b) (U, V ∈ GITy and deg(U) = deg(V )) iff U u V ∈ GITy.
(c) U ∈ GITy iff eU ∈ GITy.

2. On ITy2, we have in addition the following:

(a) If T ∈ Ty2 then deg(T ) = 0.
(b) If deg(U) = n thenU is of the formumi=1~ej(1:n),iVi such thatm ≥ 1 and ∃i ∈ {1, . . . ,m}. Vi ∈

Ty2.
(c) If U ∈ GITy and deg(U) = n then U is of the form umi=1~ej(1:n),iTi such that m ≥ 1 and
∀i ∈ {1, . . . ,m}. Ti ∈ Ty2 ∩ GITy.

(d) U, T ∈ GITy iff U�T ∈ GITy (in ITy2 and ITy3).

For λLN , we study a type system (with the universal type ω). In this type system, in order to get
subject reduction and hence completeness, intersections and expansions cannot occur directly to the
right of an arrow (see ITy3 below). Note that the type sets ITy3 and Ty3 defined below are far more
restricted than the type sets considered for the λIN-calculus and that we do not have the luxury of giving
a separate syntax for good types. Note also that the definitions of degrees and types are simultaneous
(unlike for ITy2 and Ty2 where types were defined without any reference to degrees).

Definition 2.12. (Types and degrees of types for λLN)
• We define the two sets of types Ty3 and ITy3 such that Ty3 ⊆ ITy3, and a function deg (∈ ITy3 →
LN) by simultaneous induction as follows:

– If a ∈ TyVar then a ∈ Ty3 and deg(a) = �.
– If U ∈ ITy3 and T ∈ Ty3 then U�T ∈ Ty3 and deg(U�T ) = �.
– If L ∈ LN then ωL ∈ ITy3 and deg(ωL) = L.
– If U1, U2 ∈ ITy3 and deg(U1) = deg(U2) then U1 u U2 ∈ ITy3 and deg(U1 u U2) =
deg(U1) = deg(U2).

– U ∈ ITy3 and ei ∈ ExpVar then eiU ∈ ITy3 and deg(eiU) = i :: deg(U).

Note that deg uses the subscript of expansion variables in order to keep track of the expansion
variables contributing to the degree of a type.

• We let T range over Ty3, and U, V,W range over ITy3. We quotient types further by having ωL as
a neutral (i.e., ωL u U = U ). We also assume that for all i ≥ 0 and L ∈ LN, eiωL = ωi::L.

All our type systems use the following definition (of course within the corresponding calculus, with
the corresponding indices and types):

Definition 2.13. (Environments and typings)
• Let k ∈ {1, 2, 3}. We define the three sets of type environments TyEnv1, TyEnv2, and TyEnv3 as

follows: Γ,∆ ∈ TyEnvk = Vark → ITyk. When writing environments, we sometimes write x : y
instead of x 7→ y. We sometimes write {xI11 7→U1, . . . , x

In
n 7→Un} as xI11 : U1, . . . , x

In
n : Un or as

(xIii : Ui)n. We sometimes write () for the empty environment ∅. If dj(dom(Γ1), dom(Γ2)), we
write Γ1,Γ2 for Γ1 ∪ Γ2.
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• We say that Γ1 and Γ2 are joinable and write Γ1 � Γ2 iff (∀xI1 ∈ dom(Γ1). xI2 ∈ dom(Γ2) ⇒⇒⇒
I1 = I2).

• We say that Γ is OK and write ok(Γ) iff ∀xI ∈ dom(Γ). deg(Γ(xI )) = I .

• Let Γ1 = Γ′1 ] Γ′′1 and Γ2 = Γ′2 ] Γ′′2 such that dj(dom(Γ′′1), dom(Γ′′2)), dom(Γ′1) = dom(Γ′2),
and ∀xI ∈ dom(Γ′1). deg(Γ′1(xI )) = deg(Γ′2(xI )). We denote Γ1 u Γ2 the type environment
{xI 7→Γ′1(xI )uΓ′2(xI ) | xI ∈ dom(Γ′1)}∪Γ′′1∪Γ′′2 . Note that dom(Γ1uΓ2) = dom(Γ1)∪dom(Γ2)
and that, on environments, u is commutative, associative and idempotent.

• In λIN (i.e., on TyEnv1 and TyEnv2), we define the set of good type environments as follows:
GTyEnv = {Γ | ∀xI ∈ dom(Γ). Γ(xI ) ∈ GITy}. If Γ = (xnii : Ui)m then let deg(Γ) =
min(n1, . . . , nm, deg(U1), . . . , deg(Um)). Let eΓ = {xn+1 7→ eΓ(xn) | xn ∈ dom(Γ)}. So
e(Γ1 u Γ2) = eΓ1 u eΓ2.

• In λLN (i.e., on TyEnv3), if M ∈ M3 and fv(M) = {xL1
1 , . . . , xLnn } then let envø

M be the type
environment (xLii : ωLi)n. For all ej ∈ ExpVar, let ejΓ = {xj::L 7→ ejΓ(xL) | xL ∈ dom(Γ)}.
Note that e(Γ1 u Γ2) = eΓ1 u eΓ2. If Γ = (xLii : Ui)n and s = {L | ∀i ∈ {1, . . . , n}. L �
Li ∧ L � deg(Ui)} then deg(Γ) = L such that L ∈ s and ∀L′ ∈ s. L′ � L.

As we did for terms, we decrease the indexes of types and environments.

Definition 2.14. (Degree decreasing in λIN)
• If deg(U) > 0 then we inductively define the type U− as follows:

(U1 u U2)− = U1
− u U2

− (eU)− = U

If deg(U) ≥ n then we inductively define the type U−n as follows:

U−0 = U U−(n+1) = (U−n)−

• If deg(Γ) > 0 then let Γ− = {xn−1 7→Γ(xn)− | xn ∈ dom(Γ)}.
If deg(Γ) ≥ n then we inductively define the type Γ−n as follows:

Γ−0 = Γ Γ−(n+1) = (Γ−n)−.

Definition 2.15. (Degree decreasing in λLN)
1. If deg(U) � L then U−L is inductively defined as follows:

U−� = U (U1 u U2)−i::L
′

= U−i::L
′

1 u U−i::L
′

2 (eiU)−i::L
′

= U−L
′

We write U−i instead of U−(i).

2. If Γ = (xLii : Ui)m and deg(Γ) � L then by definition ∀i ∈ {1, . . . ,m}. Li = L :: L′i ∧ L �
deg(Ui), and we define Γ−L = (xL

′
i : U−Li )m. We write Γ−i instead of Γ−(i).
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Figure 1 Typing rules / Subtyping rules for `1 and `2

Let i ∈ {1, 2}. In `1, U and T range over ITy1. In `2, U ranges over ITy2 and T ranges only over Ty2.

T ∈ GITy deg(T ) = n

xn : 〈(xn : T ) `1 T 〉
(ax)

T ∈ GITy

x0 : 〈(x0 : T ) `2 T 〉
(ax)

M : 〈Γ, (xn : U) `i T 〉
λxn.M : 〈Γ `i U�T 〉

(�I)

M1 : 〈Γ1 `i U�T 〉 M2 : 〈Γ2 `i U〉 Γ1 � Γ2

M1M2 : 〈Γ1 u Γ2 `i T 〉
(�E)

M : 〈Γ `i U〉
M+ : 〈eΓ `i eU〉

(exp)

M : 〈Γ1 `i U1〉 M : 〈Γ2 `i U2〉
M : 〈Γ1 u Γ2 `i U1 u U2〉

(uI)
M : 〈Γ `2 U〉 Γ `2 U v Γ′ `2 U

′

M : 〈Γ′ `2 U
′〉

(v)

The following relation v is defined on ITy2, TyEnv2, and Typing2:

Ψ v Ψ
(ref)

Ψ1 v Ψ2 Ψ2 v Ψ3

Ψ1 v Ψ3
(tr)

U2 ∈ GITy deg(U1) = deg(U2)

U1 u U2 v U1
(uE)

U1 v V1 U2 v V2

U1 u U2 v V1 u V2
(u)

U2 v U1 T1 v T2

U1�T1 v U2�T2
(�)

U1 v U2

eU1 v eU2
(vexp)

U1 v U2 yn 6∈ dom(Γ)

Γ, (yn : U1) v Γ, (yn : U2)
(vc)

U1 v U2 Γ2 v Γ1

Γ1 `2 U1 v Γ2 `2 U2
(v〈〉)

2.3. The type systems `1 and `2 for λIN and `3 for λLN

In this section we introduce our three type systems `i for i ∈ {1, 2, 3}, our intersection type systems with
expansion variables. The system `1 uses the ITy1 types and the TyEnv1 type environments, and is for
λIN. The system `2 uses the ITy2 types and the TyEnv2 type environments, and is for λIN. The system
`3 uses the ITy3 types and the TyEnv3 type environments, and is for λLN . In `1, types are not restricted
and subject reduction (SR) fails. In `2, the syntax of types is restricted (see ITy2’s definition), and in
order to guarantee SR for this type system (and hence completeness later on), we introduce a subtyping
relation which allows intersection type elimination (which does not hold in the first type system). In `3,
the syntax of types is restricted further (see ITy3’s definition) so that completeness holds with an arbitrary
number of expansion variables.

Definition 2.16. (The type systems)
Let i ∈ {1, 2, 3}. The type system `i uses the set ITyi of Def. 2.11 (for i ∈ {1, 2}) and 2.12 (for i = 3).
The typing rules of `1 and `2 are given on the left of Fig. 13. In `1, U and T range over ITy1, and Γ
range over TyEnv1. In `2, U range over ITy2, T range over Ty2, and Γ range over TyEnv1. The typing
rules of `3 are given on the left of Fig. 2. In both figures, the last clause makes use of a subtyping relation
v which is defined on ITy2 in Fig. 1 and on ITy3 in Fig. 2. These subtyping relations are extended to
type environments and typings (defined below).
3The type system `1 is the smallest relation closed by the rules presented on the left of Fig. 1 (and similarly for `2).
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Figure 2 Typing rules / Subtyping rules for `3

U ranges over ITy3 and T Ty3.

x� : 〈(x� : T ) `3 T 〉
(ax)

M : 〈envø
M `3 ω

deg(M)〉
(ω)

M : 〈Γ, (xL : U) `3 T 〉
λxL.M : 〈Γ `3 U�T 〉

(�I)
M : 〈Γ `3 T 〉 xL 6∈ dom(Γ)

λxL.M : 〈Γ `3 ω
L�T 〉

(�′I)

M1 : 〈Γ1 `3 U�T 〉 M2 : 〈Γ2 `3 U〉 Γ1 � Γ2

M1M2 : 〈Γ1 u Γ2 `3 T 〉
(�E)

M : 〈Γ `3 U〉
M+j : 〈ejΓ `3 ejU〉

(exp)

M : 〈Γ `3 U1〉 M : 〈Γ `3 U2〉
M : 〈Γ `3 U1 u U2〉

(uI)
M : 〈Γ `3 U〉 Γ `3 U v Γ′ `3 U

′

M : 〈Γ′ `3 U
′〉

(v)

The following relation v is defined on ITy3, TyEnv3, and Typing3.

Ψ v Ψ
(ref)

Ψ1 v Ψ2 Ψ2 v Ψ3

Ψ1 v Ψ3
(tr)

deg(U1) = deg(U2)

U1 u U2 v U1
(uE)

U1 v V1 U2 v V2 deg(U1) = deg(U2)

U1 u U2 v V1 u V2
(u)

U2 v U1 T1 v T2

U1�T1 v U2�T2
(�)

U1 v U2

eU1 v eU2
(vexp)

U1 v U2 yL 6∈ dom(Γ)

Γ, yL : U1 v Γ, yL : U2

(vc)
U1 v U2 Γ2 v Γ1

Γ1 `3 U1 v Γ2 `3 U2
(v〈〉)

We define the three typing sets Typing1, Typing2, and Typing3 as follows: Φ ∈ Typingi ::= Γ `i U ,
where Γ ∈ TyEnvi and U ∈ ITyi.

Let Sorts = ∪3
i=1{Typingi,TyEnvi, ITyi} and let Ψ range over ∪s∈Sortss.

We say that Γ is `i-legal if there exist M,U such that M : 〈Γ `i U〉.
Let j ∈ {1, 2}. Let GTyping = {Γ `j U | Γ ∈ GTyEnv ∧ U ∈ GITy}. If Φ ∈ GTyping then we say

that Φ is good. Let deg(Γ `j U) = min(deg(Γ), deg(U)).
If s = {L | L � deg(Γ)∧L � deg(U)} then deg(Γ `3 U) = L such that L ∈ s and ∀L′ ∈ s. L′ � L.

To illustrate how our indexed type system works, we give an example:

Example 2.1. Let L1 = (3) � L2 = (3, 2) � L3 = (3, 2, 1) � L4 = (3, 2, 1, 0) and let a, b, c, d ∈
TyVar. Consider M,M ′, U as follows:

M = λxL2 .λyL1 .(yL1(xL2λuL3 .λvL4 .(uL3(vL4vL4)))) ∈M3

M ′ = λx2.λy1.(y1(x2λu3.λv4.(u3(v4v4)))) ∈M2

U = e3(e2(e1((e0b�c)�(e0(a u (a�b))�c))�d)�(((e2d�a) u b)�a)) ∈ ITy2 ∩ ITy3
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One can check that M : 〈() `3 U〉 and M ′ : 〈() `2 U〉. We simply give some steps in the derivation
of M : 〈() `3 U〉 (note that the derivation of M ′ : 〈() `2 U〉 only differs from the derivation of
M : 〈() `3 U〉 by replacing everywhere `3 by `2 and any list (n1, . . . , nk) by k for any k ≥ 0):

• v�v� : 〈v� : a u (a�b) `3 b〉

• v(0)v(0) : 〈v(0) : e0(a u (a�b)) `3 e0b〉

• u� : 〈u� : e0b�c `3 e0b�c〉

• u�(v(0)v(0)) : 〈u� : e0b�c, v(0) : e0(a u (a�b)) `3 c〉

• λv(0).u�(v(0)v(0)) : 〈u� : e0b�c `3 e0(a u (a�b))�c〉

• λu�.λv(0).u�(v(0)v(0)) : 〈() `3 (e0b�c)�(e0(a u (a�b))�c)〉

• λu(1).λv(1,0).u(1)(v(1,0)v(1,0)) : 〈() `3 e1((e0b�c)�(e0(a u (a�b))�c))〉

• x� : 〈x� : e1((e0b�c)�(e0(a u (a�b))�c))�d `3 e1((e0b�c)�(e0(a u (a�b))�c))�d〉

• x�(λu(1).λv(1,0).u(1)(v(1,0)v(1,0))) : 〈x� : e1((e0b�c)�(e0(a u (a�b))�c))�d `3 d〉

• x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0)))

: 〈x(2) : e2(e1((e0b�c)�(e0(a u (a�b))�c))�d) `3 e2d〉

• y�(x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0))))

: 〈x(2) : e2(e1((e0b�c)�(e0(a u (a�b))�c))�d), y� : (e2d�a) u b `3 a〉

• λy�.(y�(x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0)))))

: 〈x(2) : e2(e1((e0b�c)�(e0(a u (a�b))�c))�d) `3 ((e2d�a) u b)�a〉

• λx(2).λy�.(y�(x(2)(λu(2,1).λv(2,1,0).u(2,1)(v(2,1,0)v(2,1,0)))))

: 〈() `3 e2(e1((e0b�c)�(e0(a u (a�b))�c))�d)�(((e2d�a) u b)�a)〉

• λxL2 .λyL1 .(yL1(xL2(λuL3 .λvL4 .uL3(vL4vL4))))

: 〈() `3 e3(e2(e1((e0b�c)�(e0(a u (a�b))�c))�d)�(((e2d�a) u b)�a))〉

Let us now define our decreasing functions on the Typing2.

Definition 2.17. 1. If U ∈ ITy2 and Γ ∈ TyEnv2 such that deg(Γ) > 0 and deg(U) > 0 then we let
(Γ `2 U)− = Γ− `2 U

−.

2. If U ∈ ITy3 and Γ ∈ TyEnv3 such that deg(Γ) � L and deg(U) � L then we let (Γ `3 U)−L =
Γ−L `3 U

−L.

Next we show how ordering propagates to environments and relates degrees:

Lemma 2.4. 1. If Γ v Γ′, U v U ′, and xI 6∈ dom(Γ) then dom(Γ) = dom(Γ′) and Γ, (xI : U) v
Γ′, (xI : U ′).

2. Γ v Γ′ iff Γ = (xIii : Ui)n, Γ′ = (xIii : U ′i)n and ∀i ∈ {1, . . . , n}. Ui v U ′i .

3. Let j ∈ {2, 3}. Γ `j U v Γ′ `j U ′ iff Γ′ v Γ and U v U ′.

4. If U1 v U2 then deg(U1) = deg(U2) and U1 ∈ GITy⇔ U2 ∈ GITy.
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5. If Γ1 v Γ2 then deg(Γ1) = deg(Γ2).

6. Let j ∈ {2, 3}. The relation v is well defined on ITyj × ITyj , on TyEnvj × TyEnvj , and on
Typingj × Typingj .

7. If Γ1,Γ2 ∈ TyEnv2 and Γ1 v Γ2 then Γ1 ∈ GTyEnv⇔ Γ2 ∈ GTyEnv

Proof:
We prove 1. and 2. by induction on the derivation Γ v Γ′. We prove 3. by induction on the derivation
Γ `j U v Γ′ `j U ′. We prove 4. by induction on the derivation U1 v U2. We prove 5. by induction on
the derivation Γ1 v Γ2. We prove 6. by induction on a subtyping derivation. We prove 7. by induction
on the derivation of Γ1 v Γ2. ut

The next theorem states that typings are well defined, that within a typing, degrees are well behaved
and that we do not allow weakening.

Theorem 2.3. Let j ∈ {1, 2, 3}. We have:

1. `j is well defined onMj × TyEnvj × ITyj .

2. Let M : 〈Γ `j U〉.

(a) deg(M) = deg(U), ok(Γ), and dom(Γ) = fv(M).

(b) If j 6= 3 then U ∈ GITy, M ∈M, Γ ∈ GTyEnv, and deg(Γ) ≥ deg(M).

(c) If j = 3 then deg(Γ) � deg(U).

(d) If j = 2 and deg(U) ≥ k then M−k : 〈Γ−k `2 U
−k〉.

(e) If j = 3 and deg(U) � K then M−K : 〈Γ−K `3 U
−K 〉.

Proof:
We prove 1. and 2. by induction on the derivation M : 〈Γ `j U〉. ut

Let us now present admissible typing (and subtyping) rules.

Remark 2.1. 1. The rule
M : 〈Γ1 `3 U1〉 M : 〈Γ2 `3 U2〉

M : 〈Γ1 u Γ2 `3 U1 u U2〉
(u′I) is admissible

2. The rule
U ∈ GITy deg(U) = n

xn : 〈(xn : U) `2 U〉
(ax′)

is admissible

3. The rule xdeg(U) : 〈(xdeg(U) : U) `3 U〉
(ax′′)

is admissible

4. The rule U v ωdeg(U)
(ω′)

is admissible

Let us now present some results concerning the ω type and joinability.

Lemma 2.5. 1. If M : 〈Γ `3 U〉 then Γ v envø
M
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2. If dom(Γ) = fv(M) and ok(Γ) then M : 〈Γ `3 ω
deg(M)〉.

3. If i ∈ {1, 2, 3}, M1 : 〈Γ1 `i U1〉 and M2 : 〈Γ2 `i U2〉 then Γ1 � Γ2⇔M1 �M2.

Proof:

1. Let Γ = (xLii : Ui)n where fv(M) = {xL1
1 , . . . , xLnn } by Theorem 2.3.2a. By Remark 2.1.4, ∀i ∈

{1, . . . , n}. Ui v ωdeg(Ui). By Theorem 2.3.2a, ok(Γ) and therefore ∀i ∈ {1, . . . , n}. deg(Ui) =
Li. Finally, by Lemma 2.4.2, Γ v envø

M .

2. Let Γ = (xLii : Ui)n. Then by hypotheses fv(M) = {xL1
1 , . . . , xLnn } and ∀i ∈ {1, . . . , n}. deg(Ui) =

Li. By Remark 2.1.4, ∀i ∈ {1, . . . , n}. Ui v ωLi . By Lemma 2.4.2, Γ v envø
M = (xLi : ωLi)n.

Since by rule (ω),M : 〈envø
M `3 ω

deg(M)〉, we have by rules (v) and (v〈〉),M : 〈Γ `3 ω
deg(M)〉.

3. ⇐⇐⇐) Let xI1 ∈ dom(Γ1) and xI2 ∈ dom(Γ2) then by Theorem 2.3.2a, xI1 ∈ fv(M1) and xI2 ∈
fv(M2). Because M1 � M2, then I1 = I2 and therefore Γ1 � Γ2. ⇒⇒⇒) Let xI1 ∈ fv(M1) and
xI2 ∈ fv(M2) then by Theorem 2.3.2a, xI1 ∈ dom(Γ1) and xI2 ∈ dom(Γ2). Because Γ1 �Γ2, then
I1 = I2 and therefore M1 �M2.

ut

2.4. Subject reduction and expansion properties of our type systems

2.4.1. Subject reduction and expansion properties for `1 and `2

Now we list the generation lemmas for `1 and `2 (for proofs see the expanded version of this article [22]).

Lemma 2.6. (Generation for `1)
1. If xn : 〈Γ `1 T 〉 then Γ = (xn : T ).

2. If λxn.M : 〈Γ `1 T1�T2〉 then M : 〈Γ, xn : T1 `1 T2〉.

3. If MN : 〈Γ `1 T 〉 and deg(T ) = m then Γ = Γ1 u Γ2, T = uni=1~ej(1:m),iTi, n ≥ 1, M : 〈Γ1 `1

uni=1~ej(1:m),i(T
′
i�Ti)〉 and N : 〈Γ2 `1 uni=1~ej(1:m),iT

′
i 〉.

Lemma 2.7. (Generation for `2)
1. If xn : 〈Γ `2 U〉 then Γ = (xn : V ) where V v U .

2. If λxn.M : 〈Γ `2 U〉 and deg(U) = m then U = uki=1~ej(1:m),i(Vi�Ti) where k ≥ 1 and
∀i ∈ {1, . . . , k}. M : 〈Γ, xn : ~ej(1:m),iVi `2 ~ej(1:m),iTi〉.

3. If MN : 〈Γ `2 U〉 and deg(U) = m then U = uki=1~ej(1:m),iTi where k ≥ 1, Γ = Γ1 u Γ2,
M : 〈Γ1 `2 uki=1~ej(1:m),i(Ui�Ti)〉, and N : 〈Γ2 `2 uki=1~ej(1:m),iUi〉.

We also show that no β-redexes are blocked in a typable term.

Remark 2.2. (No β-redexes are blocked in typable terms)
Let i ∈ {1, 2} and M : 〈Γ `i U〉. If (λxn.M1)M2 is a subterm of M then deg(M2) = n and hence
(λxn.M1)M2 _β M1[xn := M2].
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Lemma 2.8. (Substitution for `2)
If M : 〈Γ, xI : U `2 V 〉, N : 〈∆ `2 U〉 and M �N then M [xI := N ] : 〈Γ u∆ `2 V 〉.

Proof:
By induction on the derivation M : 〈Γ, xI : U `2 V 〉. ut

Lemma 2.9. (Substitution and Subject β-reduction fails for `1)
Let a, b, c be different type variables. We have:

1. (λx0.x0x0)(y0z0) _β (y0z0)(y0z0).

2. x0x0 : 〈x0 : (a�c) u a `1 c〉.

3. (λx0.x0x0)(y0z0) : 〈y0 : b�((a�c) u a), z0 : b `1 c〉.

4. It is not possible that (y0z0)(y0z0) : 〈y0 : b�((a�c) u a), z0 : b `1 c〉.

Hence, the substitution and subject β-reduction lemmas fail for `1.

Proof:
1., 2., and 3. are easy.

For 4., assume (y0z0)(y0z0) : 〈y0 : b�((a�c) u a), z0 : b `1 c〉. By Lemma 2.6.3 twice, Theo-
rem 2.3 and Lemma 2.6.1:

• y0z0 : 〈y0 : b�((a�c) u a), z0 : b `1 uni=1(Ti�c)〉 and n ≥ 1.

• y0 : 〈y0 : b�((a�c) u a) `1 uni=1T
′
i�Ti�c〉.

• uni=1T
′
i�Ti�c = b�((a�c) u a).

Hence, for some i ∈ {1, . . . , n}, b = T ′i and Ti�c = (a�c) u a which is absurd. ut

Nevertheless, we show that β subject reduction and expansion hold in `2. This will be used in the
proof of completeness (more specifically in Lemma 3.6 which is the basis of the completeness Theo-
rem 3.1).

Lemma 2.10. (Subject reduction and expansion for `2 w.r.t. β)
1. If M : 〈Γ `2 U〉 and M _∗β N then N : 〈Γ `2 U〉.

2. If N : 〈Γ `2 U〉 and M _∗β N then M : 〈Γ `2 U〉.

2.4.2. Subject reduction and expansion properties for `3

Now we list the generation lemmas for `3 (for proofs see the expanded version of this article [22]).

Lemma 2.11. (Generation for `3)
1. If xL : 〈Γ `3 U〉 then Γ = (xL : V ) and V v U .

2. If λxL.M : 〈Γ `3 U〉, xL ∈ fv(M) and deg(U) = K then U = ωK or U = upi=1~eK(Vi�Ti)
where p ≥ 1 and ∀i ∈ {1, . . . , p}. M : 〈Γ, xL : ~eKVi `3 ~eKTi〉.
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3. If λxL.M : 〈Γ `3 U〉, xL 6∈ fv(M) and deg(U) = K then U = ωK or U = upi=1~eK(Vi�Ti)
where p ≥ 1 and ∀i ∈ {1, . . . , p}. M : 〈Γ `3 ~eKTi〉.

4. If MxL : 〈Γ, (xL : U) `3 T 〉 and xL 6∈ fv(M), then M : 〈Γ `3 U�T 〉.

Proof:
1. By induction on the derivation xL : 〈Γ `3 U〉. 2. By induction on the derivation λxL.M : 〈Γ `3 U〉.
3. Same proof as that of 2. 4. By induction on the derivation MxL : 〈Γ, xL : U `3 T 〉. ut

Lemma 2.12. (Substitution for `3)
If M : 〈Γ, xL : U `3 V 〉, N : 〈∆ `3 U〉 and M �N then M [xL := N ] : 〈Γ u∆ `3 V 〉.

Proof:
By induction on the derivation M : 〈Γ, xL : U `3 V 〉. ut

Since `3 does not allow weakening, we need the next definition since when a term is reduced, it may
lose some of its free variables and hence will need to be typed in a smaller environment.

Definition 2.18. Let Γ�s stand for sC Γ. We write Γ�M instead of Γ�fv(M).

Now we are ready to prove the main result of this section:

Theorem 2.4. (Subject reduction for `3)
If M : 〈Γ `3 U〉 and M _∗βη N then N : 〈Γ�N `3 U〉.

Proof:
By induction on the reduction M _∗βη N . ut

Corollary 2.1. 1. If M : 〈Γ `3 U〉 and M _∗β N then N : 〈Γ�N `3 U〉.

2. If M : 〈Γ `3 U〉 and M _∗h N then N : 〈Γ�N `3 U〉.

The next lemma is needed for expansion.

Lemma 2.13. IfM [xL := N ] : 〈Γ `3 U〉, deg(N) = L, xL ∈ fv(M), andM �N then there exist a type
V and two type environments Γ1,Γ2 such that deg(V ) = L, M : 〈Γ1, x

L : V `3 U〉, N : 〈Γ2 `3 V 〉,
and Γ = Γ1 u Γ2.

Proof:
By induction on the derivation M [xL := N ] : 〈Γ `3 U〉. ut

Since more free variables might appear in the β-expansion of a term, the next definition gives a
possible enlargement of an environment.

Definition 2.19. Let m ≥ n, Γ = (xLii : Ui)n and X = {xL1
1 , . . . , xLmm }. We write Γ↑X for xL1

1 :

U1, . . . , x
Ln
n : Un, x

Ln+1

n+1 : ωLn+1 , . . . , xLmm : ωLm . If dom(Γ) ⊆ fv(M), we write Γ↑M instead of
Γ↑fv(M).
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We are now ready to establish that subject β-expansion holds in `3 (Theorem. 2.5) and that subject
η-expansion fails (Lemma 2.14).

Theorem 2.5. (Subject β-expansion holds in `3)
If N : 〈Γ `3 U〉 and M _∗β N then M : 〈Γ↑M `3 U〉.

Proof:
By induction on the length of the derivation M _∗β N using the fact that if fv(P ) ⊆ fv(Q) then
(Γ↑P )↑Q = Γ↑Q. ut

Corollary 2.2. If N : 〈Γ `3 U〉 and M _∗h N then M : 〈Γ↑M `3 U〉.

Lemma 2.14. (Subject η-expansion fails in `3)
Let a be a type variable and let x 6= y. We have:

1. λy�.λx�.y�x� _η λy
�.y�.

2. λy�.y� : 〈() `3 a�a〉.

3. It is not possible that: λy�.λx�.y�x� : 〈() `3 a�a〉. Hence, subject η-expansion fails in `3.

Proof:
1. and 2. are easy. For 3., assume λy�.λx�.y�x� : 〈() `3 a�a〉. By Lemma 2.11.2, λx�.y�x� :
〈(y : a) `3 a〉. Again, by Lemma 2.11.2, a = ω� or there exists n ≥ 1 such that a = uni=1(Ui�Ti),
absurd. ut

3. Realisability semantics and their completeness

3.1. Realisability

Crucial to a realisability semantics is the notion of a saturated set:

Definition 3.1. (Saturated sets)
Let i ∈ {1, 2, 3} and M ,M 1,M 2 ⊆Mi.

1. Let M 1  M 2 = {M ∈Mi | ∀N ∈ M 1. M �N ⇒⇒⇒MN ∈ M 2}.

2. Let M 1 oM 2 iff ∀M ∈ M 1  M 2. ∃N ∈ M 1. M �N .

3. For r ∈ {β, βη, h}, let SATr = {M ⊆ Mi | (M _∗r N ∧N ∈ M )⇒⇒⇒ M ∈ M }. If M ∈ SATr

then we say that M is r-saturated.

Saturation is closed under intersection, lifting and arrows:

Lemma 3.1. Let i ∈ {1, 2, 3}, r ∈ {β, βη, h}, and M 1,M 2 ⊆Mi.

1. If M 1,M 2 are r-saturated sets then M 1 ∩M 2 is r-saturated.

2. If M 1 ⊆M2 is r-saturated then M 1
+ is r-saturated.
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3. If M 1 ⊆M3 is r-saturated then M
+i
1 is r-saturated.

4. If M 2 is r-saturated then M 1  M 2 is r-saturated.

5. If M 1,M 2 ⊆M2 then (M 1  M 2)+ ⊆ M 1
+  M 2

+.

6. If M 1,M 2 ⊆M3 then (M 1  M )+i ⊆ M
+i
1  M

+i
2 .

7. Let M 1,M 2 ⊆M2. If M 1
+ oM 2

+, then M 1
+  M 2

+ ⊆ (M 1  M 2)+.

8. Let M 1,M 2 ⊆M3. If M+i
1 oM

+i
2 , then M

+i
1  M

+i
2 ⊆ (M 1  M 2)+i.

9. For every n ∈ N, the set Mn is r-saturated.

The interpretations and meanings of types are crucial to a realisability semantics:

Definition 3.2. (Interpretations and meaning of types)
Let Var = Var1 ∪ Var2 such that dj(Var1,Var2) and Var1,Var2 are both countably infinite. Let i ∈
{1, 2, 3}.

1. Let x ∈ Vari and I an index. We define the following family of sets:

VARI
x = {M ∈Mi | ∃N1, . . . , Nn ∈Mi. M = xIN1 . . . Nn}.

2. In λIN, let r = β and I0 = 0. In λLN , let r ∈ {β, βη, h} and I0 = �.

(a) An ri-interpretation I is a function in TyVar→ P(MI0
i ) such that for all a ∈ TyVar:

I(a) ∈ SATr ∀x ∈ Var1. VAR
I0
x ⊆ I(a) In λIN, I(a) ⊆M0

(b) We extend I to ITy1 in case of λIN and to ITy3 in case of λLN as follows:

In λIN and λLN : I(U1 u U2) = I(U1) ∩ I(U2) I(U�T ) = I(U) I(T )

In λIN: I(eU) = I(U)+

In λLN : I(eiU) = I(U)+i I(ωL) =ML
3

Let Interpri = {I | I is a ri-interpretation}4.

(c) Let U ∈ ITyi. We define [U ]ri , the ri-interpretation of U as follows:

[U ]ri = {M ∈Mi | closed(M) ∧M ∈
⋂
I∈Interpri I(U)}

Because ∩ is commutative, associative, idempotent, (M 1 ∩ M 2)+ = M 1
+ ∩ M 2

+ in λIN, (M 1 ∩
M 2)+i = M

+i
1 ∩M

+i
2 in λLN , and I is well defined.

Type interpretations are saturated and interpretations of good types contain only good terms.

Lemma 3.2. Let r ∈ {β, βη, h}. Let i ∈ {1, 2, 3}.

1. (a) For all U ∈ ITyi and I ∈ Interpri , we have I(U) ∈ SATr.

4We effectively define five interpretation sets Interpβ1 , Interpβ2 , Interpβ3 , Interpβη3 , and Interph3
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(b) If deg(U) = L and I ∈ Interpr3 then ∀x ∈ Var1. VAR
L
x ⊆ I(U) ⊆ML

3 .

(c) On ITy1 (hence also on ITy2), if U ∈ GITy, deg(U) = n, and I ∈ Interpr2 then ∀x ∈
Var1. x

n ∈ VARnx ⊆ I(U) ⊆Mn.

2. Let i ∈ {2, 3}. If I ∈ Interpri and U v V then I(U) ⊆ I(V ).

Proof:
1a . By induction on U using Lemma 3.1. 1b. By induction on U . 1c. By definition, xn ∈ VARnx . We
prove VARnx ⊆ I(U) ⊆Mn by induction on U ∈ GITy. 2. By induction of the derivation U v V . ut

Corollary 3.1. (Meanings of good types consist of good terms)
On ITy1 (hence also on ITy2), if U ∈ GITy such that deg(U) = n then [U ]β2 ⊆Mn.

Proof:
By Lemma 3.2.1c, for any interpretation I ∈ Interpβ2 , I(U) ⊆Mn. ut

Lemma 3.3. (Soundness of `1, `2, and `3)
Let i ∈ {1, 2, 3}, r ∈ {β, βη, h}, I ∈ Interpri . If M : 〈(xIjj : Uj)n `i U〉, ∀j ∈ {1, . . . , n}. Nj ∈
I(Uj), and �{M,N1, . . . , Nn} then M [(x

Ij
j := Nj)n] ∈ I(U).

Proof:
By induction on the derivation M : 〈(xIjj : Uj)n `i U〉. ut

Corollary 3.2. Let r ∈ {β, βη, h} and i ∈ {1, 2, 3}. If M : 〈() `i U〉 then M ∈ [U ]ri .

Proof:
By Lemma 3.3, M ∈ I(U) for any I ∈ Interpri . By Theorem 2.3, fv(M) = dom(()) = ∅ and hence
M is closed. Therefore, M ∈ [U ]ri . ut

Lemma 3.4. (The meaning of types is closed under type operations)
Let r ∈ {β, βη, h} and j ∈ {1, 2, 3}. The following hold:

1. [eiU ]r3 = [U ]+ir3 and if j 6= 3 then [eU ]rj = [U ]rj
+.

2. [U u V ]rj = [U ]rj ∩ [V ]rj .

3. If U�T ∈ ITy3 then ∀I ∈ Interpr3 . I(U) o I(T ).

4. If U�T ∈ GITy then ∀I ∈ Interpβ2 . I(U) o I(T ).

5. On ITy1 only (since eU�eT 6∈ ITy2), we have: if U�T ∈ GITy then [e(U�T )]β2 = [eU�eT ]β2 .

Proof:
1. and 2. are easy.

3. Let deg(U) = L, M ∈ I(U)  I(T ) and x ∈ Var1 such that ∀K. xK 6∈ fv(M), hence M � xL
and by Lemma 3.2, xL ∈ I(U).
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4. Let deg(U) = n and M ∈ I(U)  I(T ). Take x ∈ Var1 such that ∀p. xp 6∈ fv(M). Hence,
M � xn. By Lemma 2.3, U ∈ GITy and by Lemma 3.2, xn ∈ I(U).

5. Since U�T ∈ GITy then, by Lemma 2.3, U, T ∈ GITy and deg(U) ≥ deg(T ). Again by
Lemma 2.3, eU, eT ∈ GITy, deg(eU) ≥ deg(eT ) and eU�eT ∈ GITy. Hence by 4., I(U)+ o
I(T )+. Thus, by Lemma 3.1.5 and Lemma 3.1.7, ∀I ∈ Interpβ2 . I(e(U�T )) = I(eU�eT ).

ut

Let us now put the realisability semantics in use.

Example 3.1. Let a and b be two distinct type variables in TyVar. We define:

• id0 = a�a and id1 = e1(id0).

• d = (a u (a�b))�b.

• nat0 = (a�a)�(a�a), nat1 = e1(nat0), and nat′0 = (e1a�a)�(e1a�a).

Moreover, if M,N are terms and n ∈ N, we define (M)nN by induction on n as follows: (M)0N = N
and (M)m+1N = M((M)mN).

We now illustrate our realisability semantics by providing the meaning of the types defined above:

1. [(a u b)�a]β1 = {M ∈M0 |M _∗β λy
0.y0}.

2. It is not possible that λy0.y0 : 〈() `1 (a u b)�a〉.

3. λy0.y0 : 〈() `2 (a u b)�a〉.

4. [id0]β3 = {M ∈M�3 | closed(M) ∧M _∗β λy
�.y�}.

5. [id1]β3 = {M ∈M(1)
3 | closed(M) ∧M _∗β λy

(1).y(1)}.

6. [d]β3 = {M ∈M�3 | closed(M) ∧M _∗β λy
�.y�y�}.

7. [nat0]β3 = {M ∈M�3 | closed(M)∧(M _∗β λf
�.f�∨(n ≥ 1∧M _∗β λf

�.λy�.(f�)ny�))}.

8. [nat1]β3 = {M ∈M(1)
3 | closed(M)∧(M _∗β λf

(1).f (1)∨(n ≥ 1∧M _∗β λf
(1).λx(1).(f (1))ny(1)))}.

9. [nat′0]β3 = {M ∈M�3 | closed(M) ∧ (M _∗β λf
�.f� ∨M _∗β λf

�.λy(1).f�y(1))}.

3.2. Completeness challenges in λIN

In this document we consider two realisability semantics of types involving E-variables. These semantics
are based on a hierarchy of types and terms. Considering how expansions can introduce new substitu-
tions, new expansions and an unbound number of new variables (type variables and E-variables), it was
decided to use a hierarchy on types and terms to give meanings to expansions to represent the encapsu-
lation of types by E-variables. An obvious (and naive) approach is to label types and terms with natural
numbers. This is the hierarchy we used in λIN. When assigning meanings to types, we ensured that each
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use of an E-variable in a typing simply changes the indexes of types and terms in the typing and that each
E-variable acted as a kind of capsule that isolates parts of the analysed λ-term in a typing. This captured
the intuition behind E-variables. However, there are two issues w.r.t. this indexing: it imposes that the
type ω should have all possible indexes (which is impossible5 and hence we eliminated ω from the type
systems forM2) and it implies that the realisability semantics can only be complete when a single E-
variable is used (as we will see in this section). In order to understand the challenges of the semantics of
E-variables with ω and the idea behind the hierarchy, we first studied two representative intersection type
systems for the λI-calculus. The restriction to λI (where in every (λx.M) the variable xmust occur free
in M ) was motivated by not supporting the ω type while preserving the intuitive indexes made of single
natural numbers. For `1, the first of these type systems, we showed that subject reduction and hence
completeness do not hold.

3.2.1. Completeness for `1 fails

Remark 3.1. (Failure of completeness for `1)
Items 1., 2., and 3. of Example 3.1 show that we can not have a completeness result (a converse of the
soundness Lemma 3.3 for closed terms) for `1. To type the term λy0.y0 by the type (a u b)�a, we need
an elimination rule for u which we do not have in `1.

Note that failure of completeness for `1 is related to the failure of its subject reduction. So, one might
think that since `2, the second type system for λIN, has subject reduction, its semantics is complete. This
is not entirely true.

3.2.2. Completeness for `2 fails with more than one E-variable

Remark 3.2. (Failure of completeness for `2 if more than one E-variable are used)
Let a be a type variable, e1 and e2 be two distinct expansion variable, and nat′′0 = (e1a�a)�(e2a�a).
Then:

1. λf0.f0 ∈ [nat′′0]β2 .

2. it is not possible that λf0.f0 : 〈() `2 nat′′0〉.

Hence λf0.f0 ∈ [nat′′0]β2 but λf0.f0 is not typable by nat′′0 and we do not have completeness in the
presence of more than one expansion variable.

However, we will see that we have completeness for `2 if only one expansion variable is used.

3.2.3. Completeness for `2 with only one E-variable

The problem shown in remark 3.2 comes from the fact that the realisability semantics designed for `2

identifies all expansion variables. In order to give a completeness theorem for `2 we will, in what
follows, restrict our system to only one expansion variable. In the rest of this section, we assume that the
set ExpVar contains only one expansion variable e1.

5Let us assume that that our type language contains the ω type annotated with integers, i.e., of the form ωn, then we would
need e1ω

n = ωn+1 and e2ω
n = ωn+1, and finally we would have e1ωn = e2ω

n.
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The need of one single expansion variable is clear in item 2. of Lemma 3.5 which would fail if we use
more than one expansion variable. For example, if e1 6= e2 then (e1a)− = a = (e2a)− but e1a 6= e2a.
This lemma is crucial for the rest of this section and hence, a single expansion variable is also crucial.

Lemma 3.5. Let U, V ∈ ITy2 and deg(U) = deg(V ) > 0.

1. e1U
− = U .

2. If U− = V − then U = V .

Proof:
1. is by induction on U . 2. goes as follows: if U− = V − then e1U

− = e1V
− and by 1., U = V . ut

Despite the difference in the number of considered expansion variables in the completeness proof
presented in the current section and the one of Sec. 3.3, both proofs share some similarities. We still
write these two proofs independently to illustrate the method and especially since the proof in the cur-
rent section is far simpler. Furthermore, in the current section we only show the completeness of our
semantics w.r.t. β-reduction.

The first step of the proof is to divide {yn | y ∈ Var2} into disjoint subset amongst types of order n.

Definition 3.3. Let U ∈ ITy2. We define the set of variables DVarU by induction on deg(U). If
deg(U) = 0 then DVarU is an infinite set {y0 | y ∈ Var2} such that ifU 6= V and deg(U) = deg(V ) = 0
then dj(DVarU ,DVarV ). If deg(U) = n+ 1 then DVarU = {yn+1 | yn ∈ DVarU−}.

Our partition of Var2 allows useful infinite sets containing type environments that will play a crucial
role in one particular type interpretation. These sets and environments are given in the next definition.

Definition 3.4. • Let IPreEnvn = {Lyn, UM | U ∈ ITy2 ∧ deg(U) = n ∧ yn ∈ DVarU} and
BPreEnvn =

⋃
m≥n IPreEnv

m (where “I” stands for “index” and “B” stands for “bound”). Note
that IPreEnvn and BPreEnvn are not type environments because they are not functions.

• If M ∈ M2 and U ∈ ITy2 then we write M : 〈BPreEnvn `2 U〉 iff there is a type environment
Γ ⊆ BPreEnvn where M : 〈Γ `2 U〉.

Now, for every n, we define the set of the good terms of order n which contain some free variable xi

where x ∈ Var1 and i ≥ n.

Definition 3.5. Let OPENn = {M ∈Mn | xi ∈ fv(M) ∧ x ∈ Var1 ∧ i ≥ n}.

Obviously, if x ∈ Var1 then VARnx ⊆ OPENn.
Here is the crucial β2-interpretation I for the proof of completeness:

Definition 3.6. Let I be the β2-interpretation defined as follows: for all type variables a, I(a) = OPEN0∪
{M ∈M0

2 |M : 〈BPreEnv0 `2 a〉}.

The function I is indeed a β2-interpretation and the interpretation of a type of order n contains the
good terms of order n which are typable in the special environments which are parts of the infinite sets
of definition 3.4:
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Lemma 3.6. 1. I is a β2-interpretation, i.e., for all a ∈ TyVar, I(a) is β-saturated and ∀x ∈ Var1,
VAR0

x ⊆ I(a) ⊆M0.

2. If U ∈ ITy2∩GITy and deg(U) = n then I(U) = OPENn∪{M ∈Mn |M : 〈BPreEnvn `2 U〉}.

Proof:
We prove 1. by first showing that I(a) is saturated: if M _∗β N then if N ∈ OPEN0 we prove that
M ∈ OPEN0 and if N ∈ {M ∈ M0

2 | M : 〈BPreEnv0 `2 a〉} then M ∈ {M ∈ M0
2 | M :

〈BPreEnv0 `2 a〉}. We then show ∀x ∈ Var1. VAR
0
x ⊆ I(a) ⊆ M0. We prove 2. by induction on

U ∈ GITy. ut

I is used to prove completeness (for the proof see the expanded version of this article [22])

Theorem 3.1. (Completeness)
Let U ∈ ITy2 ∩ GITy such that deg(U) = n. The following hold:

1. [U ]β2 = {M ∈Mn |M : 〈() `2 U〉}.

2. [U ]β2 is stable by reduction: if M ∈ [U ]β2 and M _∗β N then N ∈ [U ]β2 .

3. [U ]β2 is stable by expansion: if N ∈ [U ]β2 and M _∗β N then M ∈ [U ]β2 .

Proof:
The first item follows by Lemmas 3.6 and 3.3. We obtain the second item using subject reduction and
the third one using subject expansion. ut

3.3. Completeness for λLN

Having understood the challenges of E-variables and the difficulty of representing the type ω using
natural numbers as indices for the hierarchy, we moved to the presentation of indices as sequences of
natural numbers and we provided our third type system `3. We developed a realisability semantics where
we allow the full λ-calculus (i.e., where K-redexes are allowed) indexed with lists of natural numbers,
an arbitrary (possibly infinite) number of expansion variables and where ω is present, and we showed its
soundness. Now, we show its completeness.

We need the following partition of the set of indexed variables {yL | y ∈ Var2}.

Definition 3.7. • Let ITyL3 = {U ∈ ITy3 | deg(U) = L} and VarL = {xL | x ∈ Var2}.

• We inductively define, for every U ∈ ITy3, a set of variables DVarU as follows:

– If deg(U) = � then:

∗ DVarU is an infinite set of indexed variables of degree �.
∗ If U 6= V and deg(U) = deg(V ) = � then dj(DVarU ,DVarV ).
∗
⋃
U∈ITy�3

DVarU = Var�.

– If deg(U) = i :: L then DVarU = {yi::L | yL ∈ DVarU−i}.

Therefore, if deg(U) = L then DVarU = {yL | y� ∈ DVarU−L}.
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Let us now provide some simple results concerning the DVarU sets:

Lemma 3.7. 1. If deg(U) � L, deg(V ) � L, and U−L = V −L then U = V .

2. If deg(U) = L then DVarU is an infinite subset of VarL.

3. If U 6= V and deg(U) = deg(V ) = L then dj(DVarU ,DVarV ).

4.
⋃
U∈ITyL3

DVarU = VarL.

5. If yL ∈ DVarU then yi::L ∈ DVareiU .

6. If yi::L ∈ DVarU then yL ∈ DVarU−i .

Proof:
1. goes as follows: if L = (ni)m then we have U = en1 . . . enmU

′ and V = en1 . . . enmV
′; then

U−L = U ′, V −L = V ′ and U ′ = V ′; thus U = V . 2., 3. and 4. are by induction on L and using 1. We
obtain 5. because (eiU)−i = U . 6. is by definition. ut

The set Var2 as defined above allows us to give in the next definition useful infinite sets containing
type environments that will play a crucial role in one particular type interpretation.

Definition 3.8. • Let L ∈ LN. We denote IPreEnvL = {LyL, UM | U ∈ ITyL3 ∧ yL ∈ DVarU} and
BPreEnvL =

⋃
K�L IPreEnv

K . Note that IPreEnvL and BPreEnvL are not type environments
because they are not functions.

• Let L ∈ LN, M ∈M3 and U ∈ ITy3, we write:

– M : 〈BPreEnvL `3 U〉 iff there exists a type environment Γ ⊆ BPreEnvL such that M :
〈Γ `3 U〉.

– M : 〈BPreEnvL `∗3 U〉 iff M _∗βη N and N : 〈BPreEnvL `3 U〉.

Let us now provide some results concerning the BPreEnvL sets:

Lemma 3.8. 1. If Γ ⊆ BPreEnvL then ok(Γ).

2. If Γ ⊆ BPreEnvL then eiΓ ⊆ BPreEnvi::L.

3. If Γ ⊆ BPreEnvi::L then Γ−i ⊆ BPreEnvL.

4. If Γ1 ⊆ BPreEnvL, Γ2 ⊆ BPreEnvK , and L � K then Γ1 u Γ2 ⊆ BPreEnvL.

Proof:
1. is by definition. 2. and 3. are by Lemma 3.7. 4. First, by 1., Γ1uΓ2 is well defined. Also, BPreEnvK ⊆
BPreEnvL. Let (Γ1 u Γ2)(xL

′
) = U1 u U2 where Γ1(xL

′
) = U1 and Γ2(xL

′
) = U2, then deg(U1) =

deg(U2) = L′ and xL
′ ∈ DVarU1∩DVarU2 . Hence, by Lemma 3.7.3, U1 = U2 and Γ1uΓ2 = Γ1∪Γ2 ⊆

BPreEnvL. ut
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For every L ∈ LN, we define the set of terms of degree Lwhich contain some free variable xK where
x ∈ Var1 and K � L.

Definition 3.9. For every L ∈ LN, let OPENL = {M ∈ ML
3 | xK ∈ fv(M) ∧ x ∈ Var1 ∧K � L}. It

is easy to see that, for every L ∈ LN and x ∈ Var1, VARL
x ⊆ OPENL.

Let us now provide some results on the OPENL sets:

Lemma 3.9. 1. (OPENL)+i = OPENi::L.

2. If y ∈ Var2 and MyK ∈ OPENL then M ∈ OPENL.

3. If M ∈ OPENL, M �N , and L � K = deg(N) then MN ∈ OPENL.

4. If deg(M) = L, L � K, M �N , and N ∈ OPENK then MN ∈ OPENL.

Proof:
Easy using Def. 3.9. ut

The crucial interpretation I (the three interpretations Iβη, Iβ , and Ih for our three reduction relations)
used in the completeness proof is given as follows:

Definition 3.10. 1. Let Iβη be the βη3-interpretation defined by: for all type variables a, Iβη(a) =
OPEN� ∪ {M ∈M�3 |M : 〈BPreEnv� `∗3 a〉}.

2. Let Iβ be the β3-interpretation defined by: for all type variables a, Iβ(a) = OPEN� ∪ {M ∈
M�3 |M : 〈BPreEnv� `3 a〉}.

3. Let Ih be the h3-interpretation defined by: for all type variables a, Ih(a) = OPEN� ∪ {M ∈
M�3 |M : 〈BPreEnv� `3 a〉}.

The next crucial lemma shows that I (the three functions Iβη, Iβ , and Ih) is an interpretation and
that the interpretation of a type of order L contains terms of order L which are typable in these special
environments which are parts of the infinite sets of Def. 3.8.

Lemma 3.10. Let r ∈ {βη, β, h} and r′ ∈ {β, h}.

1. If Ir ∈ Interpr3 and a ∈ TyVar then Ir(a) ∈ SATr and ∀x ∈ Var1. VAR
�
x ⊆ Ir(a).

2. If U ∈ ITy3 and deg(U) = L then Iβη(U) = OPENL ∪ {M ∈ML
3 |M : 〈BPreEnvL `∗3 U〉}.

3. If U ∈ ITy3 and deg(U) = L then Ir′(U) = OPENL ∪ {M ∈ML
3 |M : 〈BPreEnvL `3 U〉}.

Proof:
We prove the first item by first showing that Ir(a) is saturated: if M _∗r N then if N ∈ OPEN� we
prove that M ∈ OPEN� and if N ∈ {M ∈ M�3 | M : 〈BPreEnv� `∗3 a〉} then M ∈ {M ∈ M�3 |
M : 〈BPreEnv� `∗3 a〉}. We then show that for all x ∈ Var1, VAR�x ⊆ OPEN� ⊆ Ir(a). We prove the
second and third items by induction on U . ut
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Now, we use this crucial I to establish completeness of our semantics.

Theorem 3.2. (Completeness of `3)
Let U ∈ ITy3 such that deg(U) = L.

1. [U ]βη3 = {M ∈ML
3 | closed(M) ∧M _∗βη N ∧N : 〈() `3 U〉}.

2. [U ]β3 = [U ]h3 = {M ∈ML
3 |M : 〈() `3 U〉}.

3. [U ]βη3 is stable by reduction: if M ∈ [U ]βη3 and M _βη N then N ∈ [U ]βη3 .

Proof:

1. Let M ∈ [U ]βη3 . Then M is closed and M ∈ Iβη(U). By Lemma 3.10.2, M ∈ OPENL ∪ {M ∈
ML

3 | M : 〈BPreEnvL `∗3 U〉}. Since M is closed, M 6∈ OPENL. Hence, M ∈ {M ∈ ML
3 |

M : 〈BPreEnvL `∗3 U〉} and so, M _∗βη N and N : 〈Γ `3 U〉 where Γ ⊆ BPreEnvL. By
Theorem 2.1.2, N is closed and, by Lemma 2.3.2a, N : 〈() `3 U〉.
Conversely, take M closed such that M _∗β N and N : 〈() `3 U〉. Let I ∈ Interpβ3 . By
Lemma 3.3, N ∈ I(U). By Lemma 3.2.1, I(U) is βη-saturated. Hence, M ∈ I(U). Thus
M ∈ [U ]βη3 .

2. Let M ∈ [U ]β3 . Then M is closed and M ∈ Iβ(U). By Lemma 3.10.3, M ∈ OPENL ∪ {M ∈
ML

3 | M : 〈BPreEnvL `3 U〉}. Since M is closed, M 6∈ OPENL. Hence, M ∈ {M ∈ ML
3 |

M : 〈BPreEnvL `3 U〉} and so, M : 〈Γ `3 U〉 where Γ ⊆ BPreEnvL. By Lemma 2.3.2a,
N : 〈() `3 U〉.
Conversely, take M such that M : 〈() `3 U〉. By Lemma 2.3.2a, M is closed. Let I ∈ Interpβ3 .
By Lemma 3.3, M ∈ I(U). Thus M ∈ [U ]β3 .

It is easy to see that [U ]β3 = [U ]h3 .

3. Let M ∈ [U ]βη3 and M _βη N . By 1., M is closed, M _∗βη P , and P : 〈() `3 U〉. By
confluence Theorem 2.2, there is Q such that P _∗βη Q and N _∗βη Q. By subject reduction
Theorem 2.4, Q : 〈() `3 U〉. By Theorem 2.1.2, N is closed and, by 1., N ∈ [U ]βη3 .

ut

4. Conclusion and future work

Expansion may be viewed to work like a multi-layered simultaneous substitution. Moreover, expansion
is a crucial part of a procedure for calculating principal typings and helps support compositional type in-
ference. Because the early definitions of expansion were complicated, expansion variables (E-variables)
were introduced to simplify and mechanize expansion. The aim of this document is to give a complete
semantics for intersection type systems with expansion variables.

We studied first the λIN-calculus, an indexed version of the λI-calculus. This indexed version was
typed using first a basic intersection type system with expansion variables but without an intersection
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elimination rule, and then using an intersection type system with expansion variables and an elimination
rule.

We gave a realisability semantics for both type systems showing that the first type system is not
complete in the sense that there are types whose semantics is not the set of λIN-terms having this type.
In particular, we showed that λy0.y0 is in the semantics of (a u b)�a but that it is not possible to give
λy0.y0 the type (a u b)�a in the type system `1 (see Example 3.1 in Ch. 3.1). The main reason for
the failure of completeness in the first system is associated with the failure of the subject reduction
property for this first type system. Hence, we moved to the second system which we showed to have
the desirable properties of subject reduction and expansion and strong normalisation. However, for this
second system, we showed again that completeness fails if we use more than one expansion variable but
that completeness succeeds if we restrict the system to a single expansion variable.

In order to overcome the problems of completeness, we changed our realisability semantics from
one which uses natural numbers as indices to one that uses lists of natural numbers as indices. The new
semantics is more complex and we lose the elegance of the first (especially in being able to define the
good terms and good types). However, we consider a third type system for this new indexed calculus
and we show that is has all the desirable properties of a type system and it handles all of the λ-calculus
(not simply the λI-calculus). We also show that this second semantics is complete when any number
(including infinite) of expansion variables is used w.r.t. our third type system. As far as we know, our
work constitutes the first study of a realisability semantics of intersection type systems with E-variables
and of the difficulties involved.

Note that a restricted version (restricted to normalised types6), which we call RCDV, of the well
known CDV intersection type system, both systems introduced by Coppo, Dezani and Venneri [7, 8] and
recalled by Van Bakel [1], can be embedded in our type system `3 without making use of expansion
variables (a more detailed remark can be found in the expanded version of this article [22]). We can
then restrict the range of our interpretations (see Def. 3.2) fromM3 to the “space of meaning”M�3 (see
Def. 2.7) which is then the only necessary set because expansion variables are not used and therefore they
do not allow one to change the index of terms. Unfortunately, we do not believe that it would be possible
to embed RCDV in our system such that we would make use of the expansion variables “as much as
possible” (everywhere where an expansion might be needed). For example, if M : 〈Γ `3 U1 u U2〉
is derivable from M : 〈Γ `3 U1〉 and M : 〈Γ `3 U2〉 by the intersection introduction rule and we
apply the expansion introduction rule to each of the branches of the derivation then we obtain the two
following typing judgements: M+i : 〈eiΓ `3 eiU〉 and M+j : 〈ejΓ `3 ejU〉. If we use two different
expansion variables (i 6= j) then, given these two new typing judgements, we cannot use the intersection
introduction rule because eiU u ejU is not a ITy3 type (deg(eiU) = i :: deg(U) 6= j :: deg(U) =
deg(ejU)). This might be overcome by considering trees instead of lists as indices in our semantics. We
let the investigation of such a system to future work.

In the present document we are not interested in a denotational semantics of the presented calculus.
We are neither interested in an extensional λ-model interpreting the terms of the untyped λ-calculus.
Instead, we are interested in building a realisability semantics by defining sets of realisers (programs
satisfying the requirements of some specification) of types. We believe such a model would help high-
lighting the relation between terms of the untyped λ-calculus and types involving expansion variables
w.r.t. a type system. Moreover, interpreting types in a model helps understanding the meaning of types

6Normalised types are types strongly related to normalisable (typable) terms.
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(w.r.t. the model) which are defined as purely syntactic forms and are clearly used as meaningful expres-
sions. For example, the integer type (whatever its notation is) is always used as the type of each integer.
An arrow type expresses functionality. In that way, models based on λ-models have been built for inter-
section type systems [16, 3, 10]. In these models, intersection types were interpreted by set-theoretical
intersections of meanings. Even though E-variables have been introduced to give a simple formalisation
of the expansion mechanism, i.e., as syntactic objects, we are interested in the meaning of such syntactic
objects. We are particularly interested in answering a number of questions such as:

1. Can we find a second order function, whose range is the set of λ-terms, and which interprets types
involving any kind of expansions (any expansion term and not just expansion variables)?

2. How can we characterise the realisers of a type involving expansion terms?

3. How can the relation between terms and types involving expansion terms be described w.r.t. a type
system?

4. How can we extend models such as the one given in Kamareddine and Nour [21] to a type system
with expansion?

These questions have not yet been answered. We leave their investigation for future work.
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