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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47280562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.univ-grenoble-alpes.fr/hal-00943570


Non lattice periodic tilings of R3 by single

polycubes

I. Gambini † and L. Vuillon∗¶‖∗∗

January 31, 2012

Abstract

In this paper, we study a class of polycubes that tile the space by
translation in a non lattice periodic way. More precisely, we construct
a family of tiles indexed by integers with the property that Tk is a
tile having k ≥ 2 has anisohedral number. That is k copies of Tk are
assembled by translation in order to form a metatile. We prove that
this metatile is lattice periodic while Tk is not a lattice periodic tile.

Keywords: Tilings of R
3, polycubes, tilings by translation, lattice

periodic tilings, anisohedral number.

1 Introduction

Finding a single tile that tiles the plane (or the space) by translation in
an aperiodic way is still a challenge. Tile is used in a general meaning
(with rectifiable or not boundary) that is an object of the plane (or of
the space) that makes a partition (without overlapping and without
holes) of the plane (or of the space) by translated copies of an origin
tile. In fact along this article we denote by polyomino [6] a simply
connected union of unit squares and by polycube [8] a simply connected
union of unit cubes. Indeed, many nice constructions are given in
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particular to exhibit a single 3D tile that tiles in an non periodic way
(this kind of tile is called einstein by Danzer [3]). The first construction
using a tile T and infinitely many copies of T with an irrational rotation
of the original tile was given by Danzer [3]. A recent article by Socolar
and Taylor uses an einstein in 2D with coloration and matching rules
in order to find layers that are non periodic [10, 11]. In two dimension,
it is still an open problem to find a single tile that tiles the plane by
translation only in a non periodic way. More precisely by a theorem
of Beauquier-Nivat [1, 13] if a tile T with rectifiable boundary tiles
the plane then T tiles also the plane in a lattice periodic way, that is
the position of each tile is given by an integer combination of two non
collinear vectors. Thus, if we search a tile in the plane that tiles in a
non lattice periodic way then it must have a non rectifiable boundary;
in other terms such a candidate for a non periodic tiling of the plane
with a single tile must be with a fractal boundary. Furthermore, to
measure the degree of aperiodicity of a tiling, it is classical to define the
anisohedral number [7]. By definition adapted to the case of tilings
by a single tile, the anisohedral number is k if we use the distinct
union of k copies of T to construct a metatile that tiles the plane by
translation in a lattice periodic way. In fact, the tiling with T will
be aperiodic if the anisohedral number of T is infinite for all tilings
with T (see [9, 8]). In dimension 2, we have many constructions of
a tiling such that the metatile is given by copies by translation and
rotation of T [7, 12]. Nevertheless, in 3D it was an open problem to
find anisohedral numbers only by translation of a single tile and in this
article we give an example of polycube for each anisohedral number.
A discrete model for tilings of the plane is given by polyominoes and
there exists a nice characterization of polyominoes that tile the plane
by translation by contour words of polyominoes [1]. In 3D, we use
polycubes to investigate tilings of the space and we show that the
dimension 3 is much more difficult than the dimension 2 (see also [5]).
Indeed, in dimension 2 each rectifiable tile tiles the plane in a lattice
periodic way while in dimension 3 we construct an infinite family of
polycubes that tiles the space in a non lattice periodic way.

In this article, we construct a family of polycubes Tk with the prop-
erty that k ≥ 2 copies of Tk are assembled by translation in order to
form a metatile and this metatile is lattice periodic and any assembly
of strictly less than k copies of Tk by translation is not a lattice peri-
odic. In addition to that T2 is the smallest tile in number of cubes in
the polycube with an anisohedral number equals to 2. Unfortunately
the number of cubes increases with k and then when k tends to infinity,
the number of cubes goes to infinity, thus it is still an open problem
to find a single tile that tiles the space by translation on an aperiodic
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way.

2 A 2-anisohedral tile

We begin our study by searching the smallest polycube that has aniso-
hedral number equals to 2. We give the first candidate with 8 cubes.
The picture Fig. 1 presents the representation of the polycube T2.

Figure 1: A representation in 3D of the polycube T2.

In order to fix the construction, each polycube is given by a list of
positions of its unit cubes.

T2 is constructed by the union of an horizontal bar of 4 unit cubes
B = {(0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0)} with two extra vertical bars
of 2 unit cubes U = {(1, 2, 1), (1, 2, 0)} and L = {(1, 0, 0), (1, 0,−1)}
(see Fig. 1).

Theorem 2.1. The polycube

T2 = {(0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0), (1, 2, 1), (1, 2, 0), (1, 0, 0), (1, 0,−1)}

is the smallest tile in number of unit cubes with anisohedral number
equals to 2.

Proof. We have to prove that T2 tiles the space in a non lattice periodic
way. In fact by construction of T2 there is a gap between the two
vertical bars U and L, namely a unit cube with position (1, 1, 0). Thus
we must fill the position (1, 1, 0) by a copy of T2. There is only two
ways of filling the gap by a copy of T2. We take either a copy of T2 by
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the translation (0, 1, 1) or by the translation (0,−1,−1). In fact the
two translations are congruent because it leads to the same metatile
up to a translation. We only investigate the translation (0, 1, 1) and
we construct the metatile

M2 = T2 ∪ (T2 + (0, 1, 1)).

This metatile contains the following 16 distinct unit cubes

M2 = {(0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0), (1, 2, 1), (1, 2, 0), (1, 0, 0), (1, 0,−1)}

∪{(0, 4, 1), (0, 3, 1), (0, 2, 1), (0, 1, 1), (1, 3, 2), (1, 3, 1), (1, 1, 1), (1, 1, 0)}.

In order to prove that M2 tiles the space, we will show that M2 up to
well chosen moduli defines a fundamental domain. We use the moduli
on each coordinate given by (2, 4, 2) that is we use the modulo 2 for
the first coordinate, the modulo 4 for the second coordinate and the
modulo 2 for the last coordinate. Thus, we must prove that the unit
cubes of M2 goes by moduli on the box 2× 4× 2 (see Fig. 2).

Figure 2: The polycube T2 ∪ (T2 + (0, 1, 1)) .

By computation of the moduli,

T2 mod (2, 4, 2) =

{(0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0), (1, 2, 1), (1, 2, 0), (1, 0, 0), (1, 0, 1)}

and
(T2 + (0, 1, 1)) mod (2, 4, 2) =
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{(0, 0, 1), (0, 3, 1), (0, 2, 1), (0, 1, 1), (1, 3, 0), (1, 3, 1), (1, 1, 1), (1, 1, 0)}.

And, we find each unit cube of M2 one time in the box 2 × 4 × 2.
Indeed, (0, j, 0) appears with j = 0, 1, 2, 3 (this is exactly the bar B

modulo (2, 4, 2)). The unit cube (0, j, 1) appears with j = 0, 1, 2, 3 (this
is exactly the bar B + (0, 1, 1) modulo (2, 4, 2)). The cubes (1, j, 0)
and (1, j, 1) appear one time in U,U + (0, 1, 1), L and L + (0, 1, 1)
modulo (2, 4, 2). There is no overlapping thus M2 defines a fundamental
domain. Thus M2 tiles the plane by integral combination of vectors
v1 = (2, 0, 0), v2 = (0, 4, 0) and v3 = (0, 0, 2). In other words M2 forms
a lattice periodic tiling with lattice vectors v1, v2, v3.

Remark that the translation (0, 1, 1) is not an integral combination
of v1, v2, v3 and then T2 is not lattice periodic while M2 is lattice
periodic with two copies of T2. Thus T2 has an anisohedral number
equals to 2.

We can now check the fact that T2 is the smallest in number of unit
cubes by a direct examination of the enumeration of polycubes of size
1 to 7. A more geometrical explanation comes from the fact that a gap
is constructed by at least 5 cubes in a same layer surrounding the gap
(namely the cubes in positions : (1, 2, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0), (1, 0, 0))
and to block the 3 directions in space, we must add three extra cubes
in positions (0, 3, 0), (1, 2, 1) and (1, 0,−1). Thus, we find exactly T2

by this reasoning.

3 A k-anisohedral tile

In this section, we construct a k-anisohedral tile for each k ≥ 2 by
generalization of the construction of T2. We take a fixed k in N−{0, 1}.
The polycube Tk is constructed by the union of an horizontal bar of
2k unit cubes

Bk = {(0, 2k − 1, 0), (0, 2k − 2, 0), · · · , (0, 0, 0)}

with two extra vertical bars of k unit cubes

Uk = {(1, k, k − 1), (1, k, k − 2), · · · , (1, k, 0)}

and
Lk = {(1, 0, 0), (1, 0,−1), · · · , (1, 0,−k + 1)}.

Theorem 3.1. The polycube Tk = Bk ∪ Uk ∪ Lk has an anisohedral
number equals to k.

Proof. We have to prove that Tk tiles the space in a non lattice periodic
way. In fact by construction of Tk there is a gap with k − 1 cubes
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between the two vertical bars Uk and Lk, namely the unit cubes with
positions (1, k−1, 0), (1, k−2, 0), · · · , (1, 1, 0). Thus we must fill these
positions by k − 1 copies of Tk. There is only two ways of filling these
gaps by copies of Tk. Either we take a copy of Tk by the translations
(0, j, j) with j = 1, 2, · · · , k− 1 or by the translations (0,−j,−j) with
j = 1, 2, · · · , k− 1. In fact the two translations are congruent because
it leads to the same metatile up to a translation. We only investigate
the translations (0, j, j) with j = 1, 2, · · · , k − 1 and we construct the
metatile

Mk = Tk

k−1⋃

j=1

(Tk + (0, j, j)).

By construction, this metatile Mk contains 4k2 distinct unit cubes.
Remark, that we are obliged to use k − 1 copies in order to fill the
k − 1 gaps of the origin tile.

In order to prove that Mk tiles the space, we will show that Mk

up to well chosen moduli defines a fundamental domain. We use the
moduli (2, 2k, k) that is we use the modulo 2 for the first coordinate,
the modulo 2k for the second coordinate and the modulo k for the last
coordinate. We must prove that the unit cubes of Mk goes by moduli
on the box 2× 2k × k.

By computation of the moduli,

Tk mod (2, 2k, k) = Bk ∪ Uk ∪ {(1, 0, 0), (1, 0, k − 1), · · · , (1, 0, 1)}

and

(Tk + (0, 1, 1)) mod (2, 2k, k) = Bk + (0, 0, 1) ∪ Uk + (0, 1, 0)

∪{(1, 1, 0), (1, 1, k − 1), · · · , (1, 1, 1)},

...

(Tk+(0, k−1, k−1)) mod (2, 2k, k) = Bk+(0, 0, k−1)∪Uk+(0, k−1, 0)

∪{(1, k − 1, 0), (1, k − 1, k − 1), · · · , (1, k − 1, 1)}.

And, we find each unit cube of Mk mod (2, 2k, k) one time in the
box 2 × 2k × k, indeed, (0, j, ℓ) appears with j = 0, 1, · · · 2k − 1 and
ℓ = 0, 1, · · · k−1 (this is exactly the bar Bk+(0, ℓ, ℓ) modulo (2, 2k, k)).
The cubes (1, j, 0), (1, j, 1), · · · (1, j, k) with j = 0, 1 · · · 2k − 1 , ap-
pear one time in Uk, Uk + (1, 1, 0), · · · , Uk + (0, k − 1, k − 1), Lk, Lk +
(1, 1, 0), · · · , Lk+(0, k−1, k−1) modulo (2, 2k, k). There is no overlap-
ping thus Mk defines a fundamental domain. The metatile Mk tiles the
plane by integral combination of vectors v1 = (2, 0, 0), v2 = (0, 2k, 0)
and v3 = (0, 0, k). In other words Mk forms a lattice periodic tiling
with lattice vectors v1, v2, v3.
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Remark that the translation (0, j, j) for each j = 1, 2, · · · , k − 1
is not an integral combination of v1, v2, v3 and then Tk is not lattice
periodic while Mk is lattice periodic with k copies of Tk. Thus Tk has
an anisohedral number equals to k.

4 Decidability result, experimental re-

sults and open questions

In 2D, many problems of tilings are undecidable [6], thus in 3D it
will be hard to find decidable results. Nevertheless, we find that it
is decidable for a finite polycube to tile the space by translation in a
periodic way :

Theorem 4.1. It is decidable to show that a polycube P with finite
volume tiles the space by translation in a lattice periodic way.

Proof. First, we make all the surrounding of the origin tile P by trans-
lated copies of P. For each surrounding, we verify that it cover the
surface of P with no overlapping between two translated copies of P.
If the vector v is used to find one translated tile in the surrounding of
P then −v is also used in the surrounding of P , indeed, in a lattice pe-
riodic tiling if v is a vector of the lattice then all integral combinations
of v are used and in particular −v is used.

Thus we make this first surrounding, we take all the vectors of
translation in the first surrounding and we try to extend the tiling
to the whole space. In fact, we try to make a surrounding of the
first surrounding using the vectors of translation given by the first
surrounding. If there is no gaps and no overlapping in this second
surrounding then the whole space can be tiled in a lattice periodic way.
As the volume of P is finite there is a finite number of first surrounding
and then a finite number of verification for the surrounding of the first
surrounding. In summary, it is decidable to show that a polycube P

with finite volume tiles the space by translation in a lattice periodic
way.

Now, the general problem of proving prove the decidability of tiling
by a polycube P is still open because the number of surrounding should
be not bounded (see [5]).

In fact, Theorem 4.1 is true in each dimension d with d ≥ 2. Because
in dimension d = 2, it comes from the Theorem of Beauquier-Nivat
[1] and this is the key argument for proving the characterization for
polyomino that tiles the plane. In the original article of Beauquier-
Nivat, they use a double counting of the perimeter of the boundary of
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the first surrounding and the interior of the second surrounding in order
to prove the tiling property. In dimension 3, we don’t have analogous
of such characterization but we are able to manage when we focus
on lattice periodic tilings (see [5]). In particular, our algorithm that
constructs all the lattice periodic tilings checks the double surrounding
of P in order to construct all the lattice tilings of P. In higher dimension
the proof is the same:

Theorem 4.2. It is decidable to show that a hyperpolycube P with
finite volume tiles the hyperspace of dimension d ≥ 4 by translation in
a lattice periodic way.

Proof. Same arguments as Theorem 4.1. Because, we use the vec-
tors in a first surrounding (with the constraint that if v is used in
the surrounding then −v is also used in the surrounding) in order to
find a valid surrounding of this first surrounding with no gaps and no
overlapping.

We now give some experimental results about the number of lat-
tice periodic surrounded of polyominoes. The first column gives the
volume of the polyominoes. the second column counts the number of
polycubes. The third column counts the number of polycubes that
give lattice periodic tilings.

Nb. of cubes Nb. of polycubes Nb. of surrounded Quotient
polycubes

2 1 1 1
3 2 2 1
4 7 7 1
5 23 20 0.87
6 112 96 0.86
7 607 403 0.66
8 3,811 2,472 0.65
9 25,413 10,666 0.42

10 178,083 57,187 0.32
11 1,279,537 180,096 0.14

We remark that the number of polycubes which could be sur-
rounded in order to give a lattice tiling is really smaller than the
number of polycubes when the number of cubes is increasing. And
experimentally the quotient of the number of polycubes which could
be surrounded divided by the number of polycubes seems to go to 0
when the number of cubes of the polycubes goes to infinity.
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We are also able to compare the number of polycubes that give
lattice periodic tilings (second column) with the number of distinct
lattice periodic tilings (third column).

Nb. of cubes Nb. of surrounded Nb. of lattice Quotient
polycubes periodic tilings

2 1 4 4.00
3 2 12 6.00
4 7 56 8.00
5 20 97 4.85
6 96 579 6.03
7 403 991 2.46
8 2,472 7,314 2.96
9 10,666 19,206 1.80

10 57,187 99,939 1.75
11 180,096 212,760 1.18

We remark that the number of polycubes that give lattice periodic
tilings is not so far from the number of distinct lattice periodic tilings.
And experimentally the quotient of polycubes that give lattice periodic
tilings divided by the number of distinct lattice periodic tilings seems
to go to 1 when the number of cubes of the polycubes goes to infinity.
By direct computation, we see that the bar with k cubes has k2 distinct
lattice periodic surrounding. While the experimental results seem to
show that when k is increasing, there are more and more polycubes
with only one lattice periodic surrounding. We would like to prove
that for k ≫ 0 if we take a polycube at random in the set of lattice
periodic surrounding polycubes of size k then random polycubes are,
with probability equals to 1−ǫ, polycubes with only one lattice periodic
surrounding.

Many other interesting problems are still open problems. For ex-
ample, we think that the polycubes in Theorem 3.1 are in fact minimal
that is no polycube with anisohedral number equals to k and with vol-
ume less than 4k. In dimension 2, it is still a challenge to find a single
tile with fractal boundary that tile the space in an aperiodic way. In
fact, we think that such object does not exists in dimension 2. And
in dimension 3, it’s an open problem to find a single tile (polycube or
not) that tiles the space by translation in an aperiodic way.
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