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Cedex, France; ® Laboratoire Ceniral des Ponts-et-Chaussées, 58 Boulevard Lefebvre,
75732 Paris Cedex, France

Summary. The purpose of this paper is to study Green functions for porous
saturated media and to present an example of numerical simulation using
these Green functions. In the first part the equations of the porous media
are recalled and the principal results concerning the features of the waves are
given. The second part is devoted to the determination of sources and Green
functions, We give the analytical solution, then we study some of its
properties. In the third part we focus on the construction of synthetic seismo-
grams. We show examples of bi-dimensional computation in a semi-infinite
stratified porous medium, for a double dipole or a fluid injection.

Key words: Green functions, sources, permeability, porous media, synthetic
seismograms, P, -wave

Introduction

The dynamics of porous saturated media was first developed by Biot (1956, 1962) using a
phenomenological approach. More recently, the application of homogenization process to
these materials (Auriault 1980; Auriault, Borne & Chambon 1985) has completed the Biot
formulation and enables the computation of effective coefficients when the microstructure
is periodic,

Many applications of Biot’s theory have been proposed in various domains (seismic,
acoustic, civil engineering). In the field of geophysics, the main contributions are those of
Deresiewicz et al. (1960—67) and Geertsma & Smit (1961}, which dealt with different plane-
wave studies, Love and Rayleigh waves. Different analytical solutions were obtained by Mei
& Foda (1981) using a boundary layer theory to solve wave propagation problems
concerning civil and earthquake engineering. In the scope of full-wave acoustic logging, the
work of Rosenbaum (1974) and Schmitt & Bouchon (1985) enabled synthetic siesmograms



in saturated porous formations to be obtained. The more specific subject of the
determination of Green functions has already been studied by different authors (Burridge
& Vargas 1979; Norris 1985; Bonnet 1987) but their solutions are either incomplete or
unsatisfactory,

The purpose of this paper is to apply the results of homogenization theory, to study
Green functions, which are very useful in solving complex problems with boundary integral
techniques, and to present an example of numerical simulation of seismic tests in stratified
soils.

In the first part, the equations of the porous saturated media are recalled and the
principal features of the waves are given.

The second part is devoted to the determination of the sources and harmonic Green
functions. We first present the theoretical method of resolution and give the analytical
solution in the 2-D and 3-D cases. Then we exhibit a reciprocity theorem and introduce
potentials corresponding to the different kinds of sources.

In the third part we focus on the construction of synthetic seismograms: we show
examples of bi-dimensional computation in a semi-infinite stratified medium for a double
dipole or a fluid injection. The important variation on the signal waveform with the perme-
ability is shown to be attributed to the emission of the 2, wave at the source. This result
suggests the possibility of obtaining a permeability measurement from a simple seismic
exploration.

1 The constitutive equations
1.1 BIOT THEORY

The main theory used for the description of saturated porous media is from Biot’s study
(1956). With the notations of Biot, the differential equations describing the motion of
porous media are:

Nug e + [(N + A)e + Qel ; — by — U) = pytis + p12
(Qe+R€)’i+b(lii— (.fi)=p12il',~+p22Ui = 1,3,

where 4, N, Q, R are elastic coefficients, b is a viscous coupling term, and py; are inertial
coupling parameters.

One essential problem in using Biot’s theory is knowing what values have to be given to
these coupling parameters, Important information is obtained on this subject by using the
homogenization method.

1.2 COMPLEMENTS FROM HOMOGENIZATION METHOD

The homogenization theory for periodic structures (Auriault 1980; Auriault er al. 1985)
leads to the following equations for the description of the harmonic behaviour of porous
saturated media:

Z=Ce(Us) — off (1)
div (Z) = —w?[ps(1 — MU + np, U] )
niw(U; — Us) = K(w) (w? p;Us — grad P) (3)

ndiv(U; — Uy = —adivU, —gP 4
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These equations assume that the medium is mechanically and geometrically isotropic, on
the microscopic and macroscopic scales. The fluid is supposed to be viscous and Newtonian.
T represents the total stress tensor; P represents the pressure (with the convention £> 0 in
compression); U; is the solid displacement; e(U) the strain tensor, U, is the fluid displace-
ment; C is the elastic tensor of the skeleton; A, u the Lamé’s coefficients: » is the porosity;
a=1-K,/K,, with K, bulk compressibility such that Ky, =(3\+ 2u)/3 and K solid
compressibility; § = (« — n)/K + n/K¢ with K¢ fluid compressibility; and K(w), w-dependent
with a complex value, is the generalized Darcy coefficient introduced by the homogenization
theory. In the case of unidirectional cylindrical ducts it can be shown that:

K(w) = (K)/(rw Wa(V = 8iw W/ — 8iw™);  k=nd’[8; " =wk/ny

with Jo, J, being the Bessel functions, a the radius of the ducts, and v the kinematic
viscosity of the fluid.
This expression will be used for the calculation in the third part.

Remarks

Note that the inverse Fourier transform of the set of equations (1)—(4) leads to transient
constitutive equations with a memory effect [due to the explicit frequency-dependent
character of the coefficient K(w)]. It is therefore more practicable to search for harmonic
Green functions than for transient Green functions. We give in Table 1 the relations between
all of these coefficients and Biot’s coefficients.

Table 1. Relations between Biot’s notations and homogenization notations.

Biat A N | M Q IR’ k | blw) P22

Momoge | A+(@-m2B| w{ WP | @-mn/B | n%B | vpK(0)| n%Hy(w) | nZH,(wle

nization

1.3 EQUATIONS OF PROPAGATION

By elimination of £ and P in equations (1)—(4) the propagation equations are obtained as
below:

pAU + (A + ) grad div (Ug) = — w? (1, Us + p12U)) + iwn(U, — U))

. ) (5

na/B grad div [(a/n — DU, + U;] = — w? (02,1 Us + p22Up) — iem(Us — U)),

strain inertial viscous

energy terms dissipation
where
H=H,; +iH, = 1/K(w)
with
P11 =(1 —n)ps + a(nH; /w — pr)
P12 =n(p; —aHy/w) n=anH,

P21 = a(py — nHy /w)
P22 = anHy /co.
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This set of equations (5), connecting the strain energy with the inertial terms and the
viscous dissipation, is similar to Biot’s set of equations (Biot 1956, 1962).
The characteristic frequency £, defined by:
vn

—k'211

C

separates the low-frequency range (f < F,), where the viscous terms are greater than the
intertial terms, and the high-frequency range (f < F.), where, conversely, the viscous terms
are negligible with respect to the inertial terms.

1.4 WAVES IN POROUS SATURATED MEDIUM

Using Helmhoitz theorem, the fields of solid and fluid displacements can be written in the
form:

U, = grad (®;) + curl (¥,) div (&) = o}

U = , . - (©)
, = grad (&) + curl (¥)); div(¥,)=0

Substituting these expressions in equation (5) we get the following differential equations:
the scalar potential satisfies: (A + 62) (A + 83)®=0;
the vector potential satisfies: (A + §3)¥ = 0,

which means that there are two compressional waves P; and P, and one shear wave §, having
5,,8,,83, respectively, as wavenumbers.

It may also be shown that the potentials of the fluid displacements are related to the
potentials of solid displacements by multiplicator coefficients u,, u, , i3, respectively, for
the P, P, and S waves. That is:

U, = grad (&) + grad (d,) + curl (¥) }

@)
U; = u, grad (®,) + u, grad ($,) + p; curl (W)

The expression of these wave numbers §; and coefficients y; involves the elastic
coefficients and the complex permeability K(w).

Therefore they are also w-dependent and complex valued. Consequently there is an
attenuation and a dispersion for the three waves (Biot 1956). Lastly, the calculation shows
that fluid and solid displacements are practically in phase opposition for the P, wave,

2 Harmonic Green functions in infinite porous saturated medium

Green functions in porous saturated media have already been studied by different authors:
Burridge & Vargas (1979) give a transient solution in far field, only for point forces; Norris
(1985) introduces point forces in the fluid, which is shown by Bonnet (1986) to be
unsatisfactory; Bonnet (1986) provides an harmonic solution by analogy with the thermo-
elasticity, but this solution does not allow clear identification of the sources involved in the
calculation. Our new formulation presents the following advantages:

We give the physical meaning for each kind of source;
The symmetry of the Green matrix leads to a reciprocity theorem;
The solution is valid at any frequency, for any distance.
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2.1 INDEPENDENT VARIABLES IN THE POROUS MEDIUM

The determination of Green functions is practicable only if we use independent variables.
Taking into account the fact that U; and U; can always be written in the form of equation
(7), it can be seen that the six components of the displacements are not independent. In
fact, we deduce from this system that there are only four degrees of freedom [corresponding
to ®,, ®, and two components of ¥ because of div (¥) = 0].

Therefore, we choose the solid displacement U, and the pressure P as independent
variables to describe the behaviour of the porous medium.

2.2 POINT EXCITATION AND DIFFERENTIAL SYSTEM

Green functions are the response of the medium to point excitations. To seek these
fundamental solutions, we have to add to the set of local equations (1)—(4) four
perturbations corresponding to the four degrees of freedom. Throughout this study we focus
on monochromatic behaviour, and consequently the excitations are assumed to be harmonic.

These perturbations will necessarily appear in the balance equations, that is, in the
dynamic equation (2) we add a vectorial quantity £8 |x | exp (iw?) which is the force density
corresponding to an harmonic point-force located at the origin and applied to the skeleton
(8 Ix| being the Dirac distribution), and in the continuity equation (4) we introduce a scalar
term V& Ix | exp (Jwr) which is the volume density corresponding to an harmonic punctual
volume injected (V > 0) at the origin.

Thus, a porous medium undergoing the harmonic sources F and V located at the origin is
described by the foregoing set of equations, where the time factor exp (iw?) has been
omitted:

Z =Ce(Us) —oP]

div (Z) = — w? [ps(1 — n) Ug + np,U;] — F8 x|
niw(U; — Uy) = K(w) (w? p;Ug — grad P)
ndiv (U, — Ug) = — adiv U — BP — V 8 x.

In order to solve this differential system we eliminate the variables U, and T. We obtain
the following system involving the independent variables U, and P

A + w) grad div (U) + pAUg + w?pUg — Ggrad P= — F§ |x | }

AP — BP — & div (U,) = — V8 x|, ®)
where
p=(1 —n)ps + oy [1n + P K(w)/iww] ; 6 = K(w)/iw

a=a+ puPK(w)fiw.
Let S be the four-component solicitation vector:
F
slv’
and R the four-component response vector:
R| U
P



http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/

Equation (8) can thus be put in the form:
BR + S8 |x|=4Q,
where 8 is the differential operator defined by:

2

o o 0 0
+ 6”#(A+ w2p)) (] "614)(1 — 6]4) + « (61'4 ‘ET+ 6]4 ‘—)

8;= ((?\ + 1)
X; 0x;

axian

X(8;4874 — 1)+ (0A —B) 8,48/a

with &;; being the Kronecker symbol; i, = 1,4 in the 3-D case. In the 2-D case, i, j are
running from 1 to 3.

Note that the 8 matrix is symmetrical which is related to the reciprocity theorem shown
in Section 2.5.

2.3 DETERMINATION OF THE BASIS SOLUTIONS: THE METHOD

The problem is to find the matrix G(4*4) solution of:

BG+[6|x|=0

{ being the unity matrix, or

Bgy +s81x1=0 k,i=1,4; gxi=Gris Ski=0ki> ©)

where gy is the response vector to the unit solicitation sy .

To obtain the different elements of the matrix G we use the Kupradze method (Kupradze
1979), which enablesus to determine the sixteen — or nine in a 2-D case — functions @; from
a single unknown function ¢:

Consider the differential operator 8 built from the cofactors of B. We have:

88" =DET (8){
Let us now assume that  is the scalar solution to the equation

DET (B)p + 8|x|=0 (10)
and that o satisfies also the condition:

[DET (8)[]p+8 | x| ~0

which gives:

B(B'p)+ [81x|=0.

Consequently, in comparison with equation (9) we get:
G=8y.

In conclusion, G is obtained by applying the differential operator 8’ to the function ¢. In
our case, the computation of the cofactors leads to:

8'=8'uA+5%) and DET(8)=u(A+83)D, (11
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where

a?.
8] = (_ [(A+ 1) (BA —B) — &1+ 8,8(\ + 2u) (A+ 8F) (A + 83 ))(1“5“)(1 — 4

9x; 0x;
]
+ p(A + 83) [ ( +5,4a )(5,45,4 1)+[(7\+2u)A+u6§]5i45,-4]
xl
D =p(n+2w)0(A + 83) (A + 8%) (A + 83). (12)

In the 2-D case we get 8'(3"3) by substituting in Bj; the Kronecker symbols 8,4, 8;4 by
the symbols 8,3, 8;3, i, / being run from 1 to 3 and we have DET (8) = D.

2.4 FUNDAMENTAL SOLUTION

We have to find the solution ¢ of equation (10). However, because of relations (11) the
problem reduces to the determination of x, solution of:

B(B"X)+8Ix|1=(Dx+81x)I=0.

On the other hand, because of the expression (12) of D, if £ satisfies the equation:
A+83)(A+63)(A+83)E+8(x|=

it can be seen that:

X = £/0u(\ + 2u).

By looking for £ in the form
3
= Z a;;
i=1

where
(A+82)E+68Ix|=0 i=1,3,
we obtain, after computation,
= (87 — 872/ M=(81 —8%) (83 — 81) (83 — 63); with8}; =87

which implies that:

X
Mw

Ei(8Fr1 — 8742)/(N + 2uuod1I.

i=1
The solutions &; of Helmholt’s equations corresponding to the three waves Py, P, and S
are well known functions: in the 3-D case: §; = exp (—i8; | x t) (1/4 7 { x |); in the 2-D case:
= (5 | x 1)(1/41), H} being the Hankel’s function of zero order.
By applymg the operator 8" to x, we get the Green matrix. Below we give this expression

in 2-D and 3-D cases.
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3-D case

1 5
% 4“ Z“ke"P("ak'XD/lxl) +—;l—exp(—163|x|)/|x](5,4 180 1)
i

=1

[ 14(2 §(— D exp(— ISkIXl)/IXI) +514(Z E(-1)exp (- 18k|xl)/|xl) ]
i ij

1
X(8;48i4 — 1) TR [o; exp (=8, I x )/ 1x 1+ 0y exp(—i8;|x|)/|x]] 6,-45,41] (13)
3

2-D case

1 3 8y
Gy=— [l |-{ X axHiGklx]) +—— H3G31x ]G3 — 1D (6;3— 1)
47 -
k=1 Jif

613 ]3

2
las HE(S, |x1) + o, HE (8, 1x )] + [6,3( Y z(—l)"H?,(aklxn)
k=1 N

2
aia( Zz(—l)kﬂ%,(aklxn)) ](6,-38,3 —1)I| (14)
k=1 J

with

= (83 — b3 /(N +2w)/ub3(83 —81)  §=1/n(u; — i)
@ = (83 — B30+ 2w /85 (83 —82) 0 = K(w)fiw
oy = —1/us?.

Note that the Green matrix is symmetric, as is the 8 matrix.

2.5 PHYSICAL INTERPRETATION
2.5.1 Reciprocity theorem

The main characteristic of the Green matrix is its symmetry. This property corresponds to
a reciprocity theorem.
Let us consider the two loadings represented in Fig. 1. Here we have:

R, =Gixy —xap|8;; R2=Glxpr —xp182.

Note that:

i jleny —xpl=—& jlxpy — xpl

and

El jk XN — xpyl= +£l ]klxM xnl; L, k=13,

which means that:

8iat 5j4 ;

G,-jlmexM|=G,-,-{xM~xN|(~1) i,f=1,4. (15)
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U
P @ N

- (& —
51{F‘ /’?2 Usy
vy M { Py

Figure 1. Reciprocity theorem: the two different loadings of the porous saturated medium.

Compute now the coupled work:

w=Ug F; —P,V,,
8 .

W=Glxy —xp(81)j(52); (1) "*;

using the symmetry of the matrix and relation (14), W can be changed to:

5; 6 5;

W=Glxpy —xn | (—1)" 75(82)i(S1) (1) "
6.

W=Gjjlxp —xn 1 (S2)i(S1); (=1)7%.

Finally we obtain:

W=Ug F, —P V, =UgpFy ~ P V.

This equality gives a direct demonstration in infinite porous saturated media of a reciprocity
theorem which was already introduced by Predeleanu (1984) using an integral formulation.

2.5.2 Features of the potentials

Let us come back to the Green matrix. The expression of the displacements enables us to
determine the potentials:

Harmonic point force

It appears from equations (13 and 14) that the solid displacements generated by a unit force
in the k-direction are given by:

3

(Usr)i = — ( ) ajE/)+ (53/m)8x
j=1

which can also be written as:

Ui = grad [—(o§;) ] + grad (a2 2) &) + curl [epagrad (a3835)],

where ey is the unitary vector in the k-direction. In terms of potentials we get:
&, =~ (8« P, -wave

@, = — (&) P, -wave

V¥ =e, Agrad (a3f3) S-wave.
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Note that the displacements are cylindrically symmetric around the direction of the force
in the 3-D case and only plane symmetrical around that direction in the 2-D case.
Now consider the pressure P, . We have:

P =—C&: — &) k- (16)

The contribution of S-waves in the pressure is obviously zero, Py satisfies the same
symmetry condition as the displacements.

Another way to get the pressure Py is to introduce the expression of the displacements
Uy into equation (4). Thus we get:

Py = —(§), i [n(uy — 1)+ ]y 81/8 — (&), [z — 1) + &0z 83 /B,

and by identification with (16) we deduce the following relations:

[n(uy — 1) + aJo; 83 /8= — [n(uy — 1) + @]z 82/8= 1/(pty —pa)n =¢. (17)

Harmonic volume source

Under this solicitation the solid displacements are:
(Uga)i = —C&1 — £2)1,

which implies that:

U4 = — [grad (§§,) — grad ($£2)].

Thus the potentials are:

D, =& P, -wave

o, =+¢8, P, -wave

¥=0 S-wave,

Consequently there is no shear wave in the field radiated by a volume source. The
displacements present a spheric symmetry — or radial in the 2-D case — centred on point
source.

The pressure is given by:

Py = — (0% +a§,)/(030).

Using the same procedure as in the preceding section we obtain the relations:

(61 [n(uy — 1) + o} /B = oz /(a30); §63[n(uy — 1)+ ] /= —a [(30)

which leads, by combination with relation (17), to the identity:

[n(u: — D+ aln(uy — 1) + o} = —FA+ 2u). (18)

Harmonic doublet

In elastic media, explosions are formally represented by double dipoles (for 2-D problems)
or triple dipoles (for 3-D problems). For such a source, also called ‘doublets’ the distribution
of forces is: ,

grad 8ix|.

An expression can be found for the potentials by deriving the potentials obtained for a
point force.
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Thus:

3

3
== Y @)= Y, () xx=coyAl=—es(87E—81x1) j=1,2
k=1 k=1

3 3 3
Y=—73 (5 4=— Y [curl [egagrad (as£3)]] x=—curl ﬂz [exAgrad (a3§3)],kH
k=1 k=1 k=1

¥ = — curl curl grad (a3£3) = 0.

Thus:

&, =—0;8%8, +ta,8!x| P -wave
B, =— 828, t 0,6 | x| P, -wave
¥ =0 S-wave.

As in the elastic case there are no shear waves and the spherical (3-D) or radial symmetry
(2-Dj) is still satisfied.

Remarks: (i) In porous saturated media there are two different kinds of sources which
radiate only compressional waves. (ii) By combinations of fluid injection and doublets, it is
possible to generate either only one P, -wave or only one P, -wave.

2.6 DECOMPOSITION OF WAVEFIELD IN ‘ELEMENTARY’ WAVES

It is useful to have a decomposition of the radiated field in ‘elementary’” waves which have
well-known properties.

In the 3-D case

We can use the Sommerfield integral to introduce a decomposition in cylindrical waves:

exp(—idix)/Anixy= f Jo(kr) exp (—iyx)k/iv dk (19)
)

with

(x2=x2 +r% v =4/6% — k% Re(7)>0

In the 2-D case

The inverse Fourier transform of Hankel functions leads to a decomposition in plane-waves:

H3@ReD/ai= [ exp (—ike,) exp (—ives iy dk (20)
with
|2 =x% +x3; v=/8% — k% Re (7)> 0.

Deriving this expression under the sign [ with respect to the spatial variables and
substituting them in Green matrix, we obtain the decomposition of the wavefield in
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Receivers

free surface ___ - . . .

L Porous dry medium
level of the ( assumed to be elastic)
water table --------z----=-

Porous saturated
H semi-infinite medium

* solicitation
Figure 2. Geometrical configuration of the 2-D study.

‘elementary’ waves. This formulation is very well adapted to calculations by using the
discrete wavenumber method (Bouchon 1980).

3 Application: calculation of synthetic seismograms (2-D case)

In this section we deal with the numerical simulation of harmonic pumpings or seismic in
situ tests: we apply our results to the calculation of synthetic seismograms when the
solicitation — a double dipole or a volume extraction — is located in the saturated medium.
We treat the 2-D configuration described in Fig. 2.

The response of sandstone and sand have been studied. The mechanical characteristics of
these materials are given in Table 2, and we can find in Figs 3 and 4 the variation of the
velocities of the waves against the dimensionless frequency f* = f/F,. We varied the perme-
ability between 107° and 5 x 107 m?. These values correspond to very permeable soils and
would represent a very fissured rock in the case of sandstone.

3.1 METHOD OF COMPUTATION: DISCRETIZATION OF GREEN FUNCTIONS

Green functions are first computed in the frequency domain by using the discrete wave-
number method (Bouchon 1980) from which we recall the basic principle.
Let us consider on point M in an infinite medium, the response 8,(OM) to an harmonic

Figure 3. Effects of the contrasts of velocities on the rays of PP, and PP, waves.
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| Phase velocity of the P, wave
1000
g
> % Phase velocity of the S wove T ————
é 100 E //j/
= - v
[ ) ////
- Group velocity .
of the 7, 7
‘OE wave // Sand
- 7/
B /// Phase velocity of the A, wave
7
[
10~ (o 07 00 [o]] 1 ie] 100 1000

Freguency |
Figure 4. Dispersion of the velocities for the sandstone.

Table 2. Mechanical characteristics of the sandstone and the sand.

Loefficients (US1) | E v | pg Kg n pr] M Ks
Sand 108 | 0.3 2700 { 3.6 1071 0.3 | 1000 | 103 | 2109
Sandstone 310%| 02| 2700] 3.610"! 02| 1000| 10| 210°

solicitation S, located at the origin. R,(OM) can be expressed with its inverse spatial
Fourier transform R ,(k, x, ) in the form:

R, (OM) = f exp (—ikxy) R, (k, x,) dk x? +x} = |x}2

Assuming now a L-periodic array of such a solicitation in the Ox, direction, the response
R (M) will also be L-periodic in the Ox, direction and we have:

R,(M) =. Z Rw(OjM) = . Z f exp [—ik(xy —jL)] Ry, (k, x3) dk,

j=—o j=—oo

ie.

Ao () = f exp (—ikx,) Au(k,x3) L exp (—ikiL)dk

jz_eo

but

oo

Y exp(—ikjL)=2n/L ):: 8(k — 2mj/L);

j:._.an j::_oo
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thus

Ro(M)= X exp (—ikjx,) R (k) x5 ) Ok; Ak=2m/L; k= jAk.
j=—oo

This result shows that a periodic arrangement of sources identical to each other radiates
energy in only discrete directions (Bouchon 1980). This remark implies that, for a L-periodic
source array in the Ox, direction, the continuous superposition of plane-waves given in
equation (20) becomes an infinite discrete summation. In our case, the function R, (k;, x2)
is deduced from equations (14) and (20).

To return to the temporal domain we use the time Fourier transform.

The spatial periodization of the structure and the inverse-time Fourier transform
introduce numerical perturbations which can be removed by using a complex frequency and
adapting L with the studied time-window (for more details see Bouchon 1980).

3.2 RADIATED FIELD IN LAYERED MEDIUM

When the source — a double dipole or a fluid injection — is located in the layered media, we
first discretize the wavefield in P, and P, plane-waves as in an infinite medium, and then
propagate each of these plane-waves through the dry layer. Consequently, for P, and P,
plane-waves and for each propagation direction determined by the horizontal wavenumber
k;=jdk, we have to find the amplitudes and phases of the transmitted and reflected plane-
waves generated at the interfaces,

We obtain these transmission coefficients by solving the system of interface conditions,
ie.:

On the top of the water-table the continuity of the tractions and the displacements and
the zero value of the pressure (for more details see Dutta & Ode 1983).

On the free surface the zero value of the stress.

On a point M(x,) on the free surface, the displacement generated by the P, plane-wave

Phase velocity of the A wave
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Figure 5. Dispersion of the velocities for the sand.
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(n =1, 2) with a horizontal wavenumber &; = jAk is therefore given in the generic form:

/ .
Upj(xy) = exp (ik]'xl )gn(kj) exXp (iwnjH) [PniP exp (’7]'[4)
+ P,,jP\exp (—i‘y,-L) + P,,]fS‘ exp (iv;L) + P,,]-S\exp (_iva)] , 2n

where g,(k;) is given by the Green functions and depends on: (i) the kind of source; (ii) the
wave considered (£, or P,); (iii) the direction of displacement.

n;, ), Vj are, respectively, the vertical wave numbers of the P,; wave (in the saturated
medium), P and S waves (in the dry elastic medium) associated with the horizontal wave
numbe/r k; =]'\Ak. p -

PP, Py P, P,iS, P,;S, are the transmission coefficients (in potential) of the different
waves in the dry layer, for an incident P,; wave from the saturated medium with an
horizontal wave number ;.

Finally, by summation over the horizontal wave number, and again over the kind of wave
radiated by the source (only P, and P, in our case), we get, for a given frequency, on the
point M(x; ) on the free surface:

o 2
u( )= 2 X un(xg).

j=_oa n=1

The value of M is determined, for each frequency, by a convergence criterion.

3.3 RESULTS AND INTERPRETATION

We choose as time variation of the source, a Ricker wavelet whose central frequency is
fsource =200 Hz.

The synthetic seismograms are plotted in Figs 6—9 for the sand and in Figs 10—17 for
the sandstone,

3.3.1 Response to a double dipole (Figs 6—13)

We note that the form of the seismograms is strongly dependent on the permeability. In
particular, when the frequency of the source is smaller than the characteristic frequency
F_ the seismograms consist of only early arrivals (Figs 6 and 10). Inversely for a source
frequency such that f,,;ce > F. there appears a second pulse (Figs 7,9, 11 and 13).

The first arrival obviously corresponds to the fastest wave, that is P, P. Because of the
great contrast between the dry and saturated media, this wave is accompanied by a train of
interreflected PP waves in the case of sand (Figs 6 and 7). The attenuation of these waves
when the permeability increases, i.e. when f* increases, is due to the fact that the intrinsic
attenuation of the P, wave increases with the frequency. Consequently, for the medium and
high frequency ranges (i.. f* > 1) a homogeneous P, -wave will be converted to a strongly
attenuated inhomogeneous P, P-wave,

The last arrival also corresponds to a compressional wave (both the horizontal and vertical
displacements are in phase). This pulse is identified as the P,P-wave, for the following
reasons:

(a) We have computed the hodochrone for the P,P-wave in the layered media
corresponding to Fig. 8. For this calculation we first determine the group and phase velocity
of the P,-wave at the central frequency of the source; then the time arrival is computed by
using the group velocity in the saturated medium and the phase velocity for the deviation of
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Figure 18. Hodochrone of the PP, -wave in the case of Fig. 8.

the ray due to Descartes’s law at the interface. Comparison with the hodochrone obtained
by the discrete wave number method shows a very good agreement (Fig. 18).

(b) The P,P-wave has a strong horizontal component which can be explained by the
contrasts of the velocities (see Fig. 3).

(c) The decrease in the P, P-amplitude with distance is much larger than for the amplitude
of P, P.

In all the cases the vanishing of the P,P-wave for the weak permeabilities, i.e. for small
f*, is explained by the specific behaviour of the P,-wave at low frequencies: (i) the P,-
velocity vanishes as frequency tends to zero; (ii) the P, attenuation is very strong with
respect to that of Py; (iii) the P-wave transmitted from an incident P, -wave is very inhomo-
geneous in the low-frequency range.

At last we can observe in Figs 9 and 13, for points far away from the source, the
apparition of a third pulse between the P; P and P, P arrivals. Because there is a phase shift of
7/2 between the horizontal and the vertical displacements, this wave probably corresponds
to an interface mode.

3.3.2 Response to fluid injection (Figs 14--17)

The study of the seismograms shows that, in this case, the previous analysis is still applicable.
However, if we compare with the case of a doublets source, we note an amplitude difference
and a phase shift of 7 between the P, P and the P, P waves. We can explain these observations
by comparing the potentials generated by the two kinds of sources:

We see in Section 2.5.2 that a volume source creates the following potentials:

&y =8k, &=t

by using the relations (17) we can also say that:

D, =83 [n(k; — 1) + a/BEr; Py = 83 [n(uy, — 1) + o] /BE,.
On the other hand, the potentials generated by a doublet source are:

¢1=‘a18%§l+a15|x|; ®2=*026%E2+a251x‘l.
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That is, except for the solicitation point:
D, =—a;83%; P2=— y83,.

Thus, in comparison with the case of doublets, the relative amplitude P,P/P,P for a
volume source is multiplied by a complex coefficient C which is given by:

C=(uy — 1 +ao/m)f(y; — 1+ a/n).

It can be shown that C tends to the negative real value —(A + 2u)B/a® when the frequency
vanishes; and the calculation proves that the value of C stays almost constant over the whole
range of frequencies.

In the case of the sandstone we have C' = —0.443 which explains the phase shift of 7 and
the differences in relative amplitudes.

Lastly, when the compressibility of the fluid is smaller than the compressibility of the
solid (K¢ » Ky ), it is interesting to note that the absolute value of C satisfies the inequality
|C | <1, which means that the P,-wave appears stronger with a doublet source than with
a volume source.

Conclusion

Using the results of the homogenization theory for periodic structures, we have presented a
new analytical formulation for the Green matrix in porous saturated media. These results
allow us to make calculations in such media by using either the boundary integral-equation
technique or the discrete wave-number method.

The presentation of seismograms from a doublet or a volume source provides an
illustration of the results obtained by these Green functions.

This simple result does show that the signal waveform is strongly dependent on the
permeability value (above a permeability level of about 107'°m?, i.e. 100 Darcy). An
immediate consequence is the possibility of obtaining permeability measurements with
simple seismic explorations.
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