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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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522 
in saturated porous formations t o  be obtained. The more specific subject of the 
determination of Green functions has already been studied by different authors (Burridge 
& Vargas 1979; Norris 1985; Bonnet 1987) but their solutions are either incomplete or 
unsatisfactory. 

The purpose of this paper is to apply the results of homogenization theory, to study 
Green functions, which are very useful in solving complex problems with boundary integral 
techniques, and to  present an example of numerical simulation of seismic tests in stratified 
soils. 

In the first part, the equations of the porous saturated media are recalled and the 
principal features of the waves are given. 

The second part is devoted to the determination of the sources and harmonic Green 
functions. We first present the theoretical method of resolution and give the analytical 
solution in the 2-D and 3-D cases. Then we exhibit a reciprocity theorem and introduce 
potentials corresponding to  the different kinds of sources. 

In the third part we focus on the construction of synthetic seismograms: we show 
examples of bi-dimensional computation in a semi-infinite stratified medium for a double 
dipole or a fluid injection. The important variation on the signal waveform with the perme- 
ability is shown to be attributed to the emission of the P2 wave at the source. This result 
suggests the possibility of obtaining a permeability measurement from a simple seismic 
exploration. 

C. Boutin, G. Bonnet and P. Y. Bard 

1 The constitutive equations 

1.1 B l O T  T H E O R Y  

The main theory used for the description of saturated porous media is from Biot’s study 
(1956). With the notations of Biot, the differential equations describing the motion of 
porous media are: 

where A ,  N ,  Q, R are elastic coefficients, b is a viscous coupling term, and pii are inertial 
coupling parameters. 

One essential problem in using Biot’s theory is knowing what values have to  be given to  
these coupling parameters. Important information is obtained on this subject by using the 
homogenization method. 

1.2 C O M P L E M E N T S  F R O M  H O M O G E N I Z A T I O N  M E T H O D  

The homogenization theory for periodic structures (Auriault 1980; Auriault et  al. 1985) 
leads to the following equations for the description of the harmonic behaviour of porous 
saturated media: 

c = cg(u,) - CYPL 

div (z) = -a2 [p,( 1 - n)U, + np,U,] 

niw(UI - U s )  = K(o)(w2plUs - grad P )  

n div ( U ,  - Us) = - cx div U s  - @P 
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Green &fictions and associated sources in poroelastic media 523 
These equations assume that the medium is mechanically and geometrically isotropic, on 

the microscopic and macroscopic scales. The fluid is supposed to be viscous and Newtonian. 
3 represents the total stress tensor; P represents the pressure (with the convention P >  0 in 
compression); Us is the solid displacement; g(U,) the strain tensor, U, is the fluid displace- 
ment; C is the elastic tensor of the skeleton; A, p the LamC’s coefficients; n is the porosity; 
a =  1 - K b / K , ,  with K b  bulk compressibility such that K b  = (3h+ 2p)/3 and K ,  solid 
compressibility; f l =  (a  - n) /Ks  + n / K f  with K f  fluid compressibility; and K(w), o-dependent 
with a complex value, is the generalized Darcy coefficient introduced by the homogenization 
theory. In the case of unidirectional cylindrical ducts it can be shown that: 

K(w) = (ik)/(vw*)JZ(d - 8io*)/J , (d  - 8iw’); 

with J,,, J ,  being the Bessel functions, a the radius of the ducts, and v the kinematic 
viscosity of the fluid. 

k = na2/8; w* = wk/nv 

This expression will be used for the calculation in the third part. 

Remarks 

Note that the inverse Fourier transform of the set of equations (1)-(4) leads to  transient 
constitutive equations with a memory effect [due t o  the explicit frequency-dependent 
character of the coefficient K(w)] . I t  is therefore more practicable to  search for harmonic 
Green functions than for transient Green functions. We give in Table 1 the relations between 
all of these coefficients and Biot’s coefficients. 

Table 1. Relations between Biot’s notations and homogenization notations. 

1.3 E Q U A T I O N S  O F  P R O P A G A T I O N  

By elimination of 3 and P in equations (1)-(4) the propagation equations are obtained as 
below: 

pAU, + (A + p) grad div (Us) = - oz (p Us + P 12 U,) + i q ( U ,  - U,) 

na/fl grad div [(a$ - l)Us + U,] = - o2@2 Us + ~ 2 2  U,) - iwv(U, - Ud,  (5) 

strain inertial viscous 
energy terms dissipation 

where 

H = H i  + iH, = l / K ( o )  
with 

P11 = (1 - n h  + 4nHz/w - P I >  

PZl = 4 P r  - n H , / w )  
P 2 2  = mHz/w. 

PlZ = - aH2/w) v = o n H 1  
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viscous dissipation, is similar to  Biot’s set of equations (Biot 1956, 1962). 

C. Boutin, G. Bonnet and P. Y. Bard 
This set of equations ( S ) ,  connecting the strain energy with the inertial terms and the 

The characteristic frequency F,, defined by: 
vn 

F,  = ~ 

k .  2n 

separates the low-frequency range (f< F,), where the viscous terms are greater than the 
intertial terms, and the high-frequency range (f* F,), where, conversely, the viscous terms 
are negligible with respect to the inertial terms. 

1.4 W A V E S  I N  P O R O U S  S A T U R A T E D  MEDIUM 

Using Helmholtz theorem, the fields of solid and fluid displacements can be written in the 
form: 

Us = grad ((a,) + curl (qs) 

U, = grad (a,) + curl (q,); 
1. (6) 

div (qS) = 0 

div (ql) = 0 

Substituting these expressions in equation (5) we get the following differential equations: 

the scalar potential satisfies: (A + 6;) (A + &;)(a = 0; 

the vector potential satisfies: (A + 6 2 ) q  = 0, 

which means that there are two compressional waves P ,  and P2 and one shear wave S, having 
6 , ti2 , 6  3 ,  respectively, as wavenumbers. 

It may also be shown that the potentials of the fluid displacements are related to the 
potentials of solid displacements by multiplicator coefficients pl, p z  , p 3 ,  respectively, for 
the P,, P, and S waves. That is: 

Us = grad (al) + grad ((a,) + curl (q) 

U, = P ,  grad (al ) + PZ grad 
1- (7) 

+ ~3 curl (W 
The expression of these wave numbers hi and coefficients pi involves the elastic 

coefficients and the complex permeability K(w). 
Therefore they are also a-dependent and complex valued. Consequently there is an 

attenuation and a dispersion for the three waves (Biot 1956). Lastly, the calculation shows 
that fluid and solid displacements are practically in phase opposition for the P2 wave. 

2 Harmonic Green functions in infinite porous saturated medium 

Green functions in porous saturated media have already been studied by different authors: 
Burridge & Vargas (1 979) give a transient solution in far field, only for point forces; Norris 
(1985) introduces point forces in the fluid, which is shown by Bonnet (1986) t o  be 
unsatisfactory; Bonnet (1 986) provides an harmonic solution by analogy with the thermo- 
elasticity, but this solution does not allow clear identification of the sources involved in the 
calculation. Our new formulation presents the following advantages: 

We give the physical meaning for each kind of source; 
The symmetry of the Green matrix leads to  a reciprocity theorem; 
The solution is valid at any frequency, for any distance. 
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Green finctions and associated sources in poroelastic media 525 

2.1 I N D E P E N D E N T  V A R I A B L E S  IN T H E  P O R O U S  MEDIUM 

The determination of Green functions is practicable only if we use independent variables. 
Taking into account the fact that Us and U, can always be written in the form of equation 
(7), it can be seen that the six components of the displacements are not independent. In 
fact, we deduce from this system that there are only four degrees of freedom [corresponding 
to 

Therefore, we choose the solid displacement Us and the pressure P as independent 
variables to describe the behaviour of the porous medium. 

) Q2 and two components of \k because of div (9) = 01. 

2.2 POINT EXCITATION A N D  D I F F E R E N T I A L  SYSTEM 

Green functions are the response of the medium to point excitations. To seek these 
fundamental solutions, we have to add to the set of local equations (1)-(4) four 
perturbations corresponding to the four degrees of freedom. Throughout this study we focus 
on monochromatic behaviour, and consequently the excitations are assumed to be harmonic. 

These perturbations will necessarily appear in the balance equations, that is, in the 
dynamic equation (2) we add a vectorial quantity F6 Ix I exp ( iw t )  which is the force density 
corresponding to an harmonic point-force located at the origin and applied to the skeleton 
(6 Ix I being the Dirac distribution), and in the continuity equation (4) we introduce a scalar 
term V6 tx I exp (iot) which is the volume density corresponding to an harmonic punctual 
volume injected ( V  > 0) at the origin. 

Thus, a porous medium undergoing the harmonic sources F and V located at the origin is 
described by the foregoing set of equations, where the time factor exp( io t )  has been 
omitted: 
c = cg(u,) - aP; 

div (z) = - w2 [ps(  1 - n )  Us + nplUl] - F6 Ix I 
niw(U, - Us) = K(w) (w2plU, - gradP) 

ndiv(U,-U,)=-adivU,  -pP- VGlxJ. 

the following system involving the independent variables Us and P 
In order to solve this differential system we eliminate the variables U, and C. We obtain 

(A -+ p) grad div (Us) + pAU, -+ w2iUs - c% grad P = - F6 Ix I 
0 AP - pP - c% div (Us) = - V 6 IX  I ,  
where 

= (1 - n)p, + pl [n + plw2K(w)/io] ; 0 = K(w)/iw 

& =  a -+ plo2K(w)/iw. 

Let S be the four-component solicitation vector: 

s I F  v )  
and R the four-component response vector: 
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526 C. Boutin, G. Bonnet and P. Y. Bard 

Equation (8) can thus be put in the form: 

@ R  + S6 1x1 = 0, 

where B is the differential operator defined by: 

~ ( 6 i 4 E j 4  - 1) + (eA -0) 6 i 4 6 j 4  9 

with 6ii being the Kronecker symbol; i, j = 1 , 4  in the 3-D case. In the 2-D case, i, j are 
running from 1 to 3. 

Note that the 4 matrix is symmetrical which is related to the reciprocity theorem shown 
in Section 2.5. 

2.3 D E T E R M I N A T I O N  O F  T H E  BASIS  S O L U T I O N S :  T H E  M E T H O D  

The problem is to find the matrix @4*4) solution of: 

@G + I 6  1x1 = 0 

&gk + S k 6  IX I = 0 k,  i = 1, 4;  Qki = G k i ;  s k i  = 6 k i ,  (9) 

/ being the unity matrix, or 

where g k  is the response vector to  the unit solicitation s k .  

To obtain the different elements of the matrix G we use the Kupradze method (Kupradze 
1979), which enables us to determine the sixteen - or nine in a 2-D case - functions G k j  from 
a single unknown function cp: 

Consider the differential operator 8 '  built from the cofactors of g. We have: 

Qg ' = DET (B ) !  

Let us now assume that cp is the scalar solution t o  the equation 

DET (@)q + 6 Ix I = 0 
and that cp satisfies also the condition: 

[DET(B)!lcp+6 I x  1 - 0  

which gives: 

@(8'cp) + !6 Ix I = 0. 

Consequently, in comparison with equation (9) we get: 

G = B Icp. 

In conclusion, G is obtained by applying the differential operator 4 '  to  the function cp. In 
ouf case, the computation of the cofactors leads to: 

g' = @"p(A + S',) and DET (@) = p ( A  + A",, (11) 
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Green functions and associated sources in poroelastic media 527 

where 

D = p(A 1- 2p)B(A + 6 ; )  (A + 6 ; )  (A + 6 ; ) .  (12) 

In the 2-D case we get @‘(3* 3) by substituting in 6;; the Kronecker symbols tii4, 6j4 by 
the symbols hi,, hj3, i, j being run from 1 to  3 and we have DET (@) = D. 

2.4 F U N D A M E N T A L  S O L U T I O N  

We have to find the solution cp of equation (10). However, because of relations (1 1) the 
problem reduces t o  the determination of x, solution of: 

@(g”x)  + 6 1 x I I = (Dx + 6 I x I) _I = 0. 

On the other hand, because of the expression (12) of D, if t satisfies the equation: 

( A +  6 ; )  ( A +  6 ; )  ( A +  6 2 , ) ~  + 6 1 x 1  = 0, 

it can be seen that: 

x = t/ep(A -1- w. 
By looking for t in the form 

3 

t = C aiti ,  
i= 1 

where 

( A + 6 t ) t i + 6 1 x I = 0  i =  1 , 3 ,  

we obtain, after computation, 

ai = (6;+, - 6;+2)/II; 

which implies that: 

x = C t i (h?+l - ~,’+Z)/(A + 2ct)cten. 

n = (6:  - 6 ; )  (6% - 6 ; )  (62 - 6 : ) ;  with 6;+, = 6 ;  

3 

i= 1 

The solutions ti of Helmholt’s equations corresponding to  the three waves P I ,  P2  and S 
are well-known functions: in the 3-D case: E j  = exp (-i6j  1 x 1 )  (1/4a I x I ) ;  in the 2-D case: 
t j  = H;(Sj I x I) ( 1  /4 i), H ;  being the Hankel’s function of zero order. 

By applying the operator B” to x, we get the Green matrix. Below we give this expression 
in 2-D and 3-D cases. . 
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3-0 case 
C. Boutin, G. Bonnet and P. Y. Bard 

2-D case 

with 

011 = ( 6 ;  - r-(S2,/@ + 2co/c162,(G - 6 : )  

a3 = -l/p6;. 

t = 1 / 4 4  - P2) 

cy2 = [6: -pS:/(X+ 2 ~ ) ] / ~ 6 ~ ( 6 :  - 6 : )  0 = K(o)/iw 

Note that the Green matrix is symmetric, as is the @ matrix. 

2.5 P H Y S I C A L  I N T E R P R E T A T I O N  

2.5.1 Reciprocity theorem 

The main characteristic of the Green matrix is its symmetry. This property corresponds to  
a reciprocity theorem. 

Let us consider the two loadings represented in Fig. 1. Here we have: 

R1 = G ~ X N - ~ , I S , ;  Rz = G / X M - X N I S ~ .  

Note that: 

C;i,jIxN-xMI=-Ei,jIxM - X N I  
and 

t i , j k  IXN - X M  I = + &,jk IXM - XN 1; 
which means that: 

Gij )XN - XM I = Gij (XM - XN I(- 1) 

i, j ,  k = 1, 3, 

6i4 f 6 j4 .  
2 i, j =  1 , 4 .  
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Green functions and associated sources in poroelastic media 529 

Figure 1. Reciprocity theorem: the two different loadings of the porous saturated medium. 

Compute now the coupled work: 

W =  u,1 Fz - P1 v,,  
W=Gjj IXN -XwI(Sl)j(Sz)j ( - i f i 4 ;  

using the symmetry of the matrix and relation (14), W can be changed to: 

W =  G ~ ~ I X ~  -xN1  ( - 1 ) 6 ' 4 + 6 j 4 ( ~ z ) j ( ~ l ) j ( - 1 ~ ' 4  

w = G ~ ~ I ~ ~  - x N ~ ( ~ z ) j ( ~ 1 ) j ( - 1 ) ' J 4 .  

Finally we obtain: 

W=Us1Fz -P1Vz  =Us2F1 - P , V 1 .  

This equality gives a direct demonstration in infinite porous saturated media of a reciprocity 
theorem which was already introduced by Predeleanu (1 984) using an integral formulation. 

2.5.2 Features of the potentials 

k t  us come back to the Green matrix. The expression of the displacements enables us to 
determine the potentials: 

Harmonic point force 

It appears from equations (1 3 and 14) that the solid displacements generated by a unit force 
in the kdirection are given by: 

which can also be written as: 

us, = gad [-(a1 El), k l  f @d <2 ),k1 f [el&mad (a3 E3)1, 

where ek is the unitary vector in the kdirection. In terms of potentials we get: 

@l  = - ( a 1 4 1 ) , k  P 1  -wave 

@2 = - (Or2t2) ,k  Pz -wave 

*==kAPad (OL3E3) S-wave. 
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in the 3-D case and only plane symmetrical around that direction in the 2-D case. 

C. Boutin, G. Bonnet and P. Y.  Bard 
Note that the displacements are cylindrically symmetric around the direction of the force 

Now consider the pressure Pk,  We have: 

p k  = - M 4 1  - t d , k .  (16) 

The contribution of S-waves in the pressure is obviously zero. Pk satisfies the same 

Another way to  get, the pressure Pk is to introduce the expression of the displacements 
symmetry condition as the displacements. 

Usk into equation (4). Thus we get: 

p k  = -(t l ) , k [n (p l  - l ) +  (Y]016?/P-( t2) ,k[n(p2  - 1 ! + ( y ] a 2 6 2 2 / P ,  

and by identification with ( 1  6) we deduce the following relations: 

Harmonic volume source 

Under this solicitation the solid displacements are: 

( U s , ) i =  -{(El - t 2 ) , i ,  

u s 4  = - [grad K 4 1 )  -grad ( t 4 2 ) I .  
which implies that: 

Thus the potentials are: 

a1 = - cE1 P ,  -wave 

a2 = + r 4 2  P2 -wave 

* = O  S-wave. 

Consequently there is no shear wave in the field radiated by a volume source. The 
displacements present a spheric symmetry - or radial in the 2-D case - centred on point 
source. 

The pressure is given by: 

p4 = - (a2t1 + . , t 2 ) / ( . s e ) .  

Using the same procedure as in the preceding section we obtain the relations: 

ts? [n(pl - 1 )  + / P  = %/("38); c6; in(l*2 - 1 )  f .I / P  = /(.3e) 

which leads, by combination with relation (17 ) ,  t o  the identity: 

[n(cc1 - 1 )  + .I[n(Ccz - 1 )  + .I = -P(X + 2P). (18) 

Harmonic doublet 

In elastic media, explosions are formally represented by double dipoles (for 2-D problems) 
or triple dipoles (for 3-D problems). For such a source, also called 'doublets' the distribution 
of forces is: 

grad6Ixl. 

point force. 
An expression can be found for the potentials by deriving the potentials obtained for a 
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Green functions and associated sources in poroelastic media 531 

Remarks: (i) In porous saturated media there are two different kinds of sources which 
radiate only compressional waves. (ii) By combinations of fluid injection and doublets, it is 
possible to generate either only one Pz -wave or only one PI -wave. 

2.6 D E C O M P O S I T I O N  O F  W A V E F I E L D  I N  ‘ E L E M E N T A R Y ’  W A V E S  

It is useful to  have a decomposition of the radiated field in ‘elementary’ waves which have 
well-known properties. 

In the 3-0 case 

We can use the Somnierfield integral t o  introduce a decomposition in cylindrical waves: 

exp ( p i 6  1 x 1 ) / 4 ~  1 x 1 = J,(kr) exp (-iyxl)k/iy dk (19) 

with 

lx 1’ = x f  + rZ; y = Js5_kz; Re (y) > 0 

In the 2-0 case 

The inverse Fourier transform of Hankel functions leads t o  a decomposition in plane-waves: 

with 

I x I 2 = x : t - x ~ ;  y = & q ;  Re(y)>O. 

Deriving this expression under the sign with respect to  the spatial variables and 
substituting them in Green matrix, we obtain the decomposition of the wavefield in 
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Receivers 
free surface -* 

level of the 

Porous dry medium 
( assumed to be elastic) 

water table _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -------- 

Porous saturated 
semi-infinite medium 

solicitation 
Figure 2. Geometrical configuration of the 2-D study. 

'elementary' waves. This formulation is very well adapted to calculations by using the 
discrete wavenumber method (Bouchon 1980). 

3 Application: calculation of synthetic seismograms (2-9 case) 

In this section we deal with the numerical simulation of harmonic pumpings or seismic in 
situ tests: we apply our results to the calculation of synthetic seismograms when the 
solicitation - a double dipole or a volume extraction - is located in the saturated medium. 
We treat the 2-D configuration described in Fig. 2 .  

The response of sandstone and sand have been studied. The mechanical characteristics of 
these materials are given in Table 2 ,  and we can find in Figs 3 and 4 the variation of the 
velocities of the waves against the dimensionless frequency f * = f /Fc .  We varied the perme- 
ability between lo-' and 5 x 1 0-9 m2. These values correspond to very permeable soils and 
would represent a very fissured rock in the case of sandstone. 

3.1 M E T H O D  O F  C O M P U T A T I O N :  D I S C R E T I Z A T I O N  O F  G R E E N  F U N C T I O N S  

Green functions are first computed in the frequency domain by using the discrete wave- 
number method (Bouchon 1980) from which we recall the basic principle. 

Let us consider on point M in an infinite medium, the response B,(OM) to an harmonic 

Figure 3. Effects of the contrasts of velocities on the rays of PP, and PP, waves. 
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Figure 4. Dispersion of the velocities for the sandstone. 

lwlll 
I om 

J 

solicitation S, located at the origin. R,(OM) can be expressed with its inverse spatial 
Fourier transform R,(k, x2) in the form: 

Rw(OM)= s_ exp(-ikx,)Rw(k,x2)dk 
m 

xf + x i  ~ 1 x 1 ~ .  

Assuming now a L-periodic array of such a solicitation in the Oxl direction, the response 
R,(M) will also be L-periodic in the Oxl direction and we have: 

R ~ ( w = . z  Rw(OjM)= c Lm exp [-ik(x, - jL) ]  Rw(k, x2) dk, 

i.e. 

R,(W = I, exp (--ih1) Rw(k, x2) c exp (-ikj~) dk 

but 

m m m 

,=-m j = - m  

m w 

I=- -  

m m 

C exp (-i/cjL) = 27r/~ 1 6(k  - 2 n j / ~ ) ;  
j = - m  j = - -  
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thus 

R,(M)= 1 exp(-ikix1)R,(ki,x2)Ak; Ak=2n/L;  ki=jAk 

C Boutin, G. Bonnet and P. Y. Bard 

m 

j=--  

This result shows that a periodic arrangement of sources identical to  each other radiates 
energy in only discrete directions (Bouchon 1980). This remark implies that, for a L-periodic 
source array in the Ox, direction, the continuous superposition of plane-waves given in 
equation (20) becomes an infinite discrete summation. In our case, the function R, (ki, x2)  
is deduced from equations (14) and (20). 

To return to  the temporal domain we use the time Fourier transform. 
The spatial periodization of the structure and the inverse-time Fourier transform 

introduce numerical perturbations which can be removed by using a complex frequency and 
adapting L with the studied time-window (for more details see Bouchon 1980). 

3.2 R A D I A T E D  F I E L D  I N  L A Y E R E D  M E D I U M  

When the source - a double dipole or a fluid injection - is located in the layered media, we 
first discretize the wavefield in P, and Pz plane-waves as in an infinite medium, and then 
propagate each of these plane-waves through the dry layer. Consequently, for P I  and P2 
plane-waves and for each propagation direction determined by the horizontal wavenumber 
ki = jAk, we have to find the amplitudes and phases of the transmitted and reflected plane- 
waves generated at the interfaces. 

We obtain these transmission coefficients by solving the system of interface conditions, 
i.e.: 

On the top of the water-table the continuity of the tractions and the displacements and 
the zero value of the pressure (for more details see Dutta & Ode 1983). 

On the free surface the zero value of the stress. 
On a point M(x,) on the free surface, the displacement generated by the P,, plane-wave 

Sandstone 

I 
10+ I O - ~  I O - ~  0.01 0.1 I 10 loo loo0 

Frequency I 

Figure 5. Dispersion of the velocities for the sand. 
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Green functions and associated sources in poroelastic media 535 

(n = 1 , 2 )  with a horizontal wavenumber ki = jAk is therefore given in the generic form: 

U n j ( X 1 )  = exp (ikjxl)g,(kj)  ~ X P  ( iaQjW [P ,$ex~  (i’YjL) 

(21) 
\ / \ + PniP exp (-iyiL) + PniS exp (ivjL) + PnjS exp ( - iv jL)] ,  

where gn(kj) is given by the Green functions and depends on: (i) the kind of source; (ii) the 
wave considered (P, or P2) ;  (iii) the direction of displacement. 
q, T ~ ,  vi are, respectively, the vertical wave numbers of the P,i wave (in the saturated 

medium), P and S waves (in the dry elastic medium) associated with the horizontal wave 
numb? ki = jAk. 

Pn,P, P,& P,$, P,& are the transmission coefficients (in potential) of the different 
waves in the dry layer, for an incident Pfli wave from the saturated medium with an 
horizontal wave number kj. 

Finally, by summation over the horizontal wave number, and again over the kind of wave 
radiated by the source (only PI  and P2 in our case), we get, for a given frequency, on the 
point M ( x ,  ) on the free surface: 

The value of M is determined, for each frequency, by a convergence criterion. 

3.3 R E S U L T S  A N D  I N T E R P R E T A T I O N  

We choose as time variation of the source, a Ricker wavelet whose central frequency is 

The synthetic seismograms are plotted in Figs 6-9 for the sand and in Figs 10-17 for 
fs,,,,, = 200 Hz. 

the sandstone. 

3.3.1 Response to a double dipole (Figs 6-13) 

We note that the form of the seismograms is strongly dependent on the permeability. In 
particular, when the frequency of the source is smaller than the characteristic frequency 
F, the seismograms consist of only early arrivals (Figs 6 and 10). Inversely for a source 
frequency such thatfs,,,,, > F, there appears a second pulse (Figs 7 ,9 ,  11 and 13). 

The first arrival obviously corresponds to the fastest wave, that is PIP. Because of the 
great contrast between the dry and saturated media, this wave is accompanied by a train of 
interreflected PP waves in the case of sand (Figs 6 and 7). The attenuation of these waves 
when the permeabiiity increases, i.e. when f * increases, is due to the fact that the intrinsic 
attenuation of the P, wave increases with the frequency. Consequently, for the medium and 
high frequency ranges (i.e. f * > 1) a homogeneous P, -wave will be converted to  a strongly 
attenuated inhomogeneous P, P-wave. 

The last arrival also corresponds to  a compressional wave (both the horizontal and vertical 
displacements are in phase). This pulse is identified as the P2P-wave, for the following 
reasons: 

(a) We have computed the hodochrone for the P2P-wave in the layered media 
corresponding to  Fig. 8. For this calculation we first determine the group and phase velocity 
of the P2 -wave at the central frequency of the source; then the time arrival is computed by 
using the group velocity in the saturated medium and the phase velocity for the deviation of 
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1001 

Hodochrone calculated from the group /*' 
and phase velocities of the Pz wave 

/* 
Time arrival glven by the 
discrete wave number method 

I- /* 
/* 

c, 4 8 12 I6 

Distance (m) 

Figtire 18. Hodochrone of the PP, -wave in the case of Fig. 8. 

the ray due to Descartes's law at the interface. Comparison with the hodochrone obtained 
by the discrete wave number method shows a very good agreement (Fig. 18). 

(b) The P2P-wave has a strong horizontal component which can be explained by the 
contrasts of the velocities (see Fig. 3). 

(c) The decrease in the P2P-amplitude with distance is much larger than for the amplitude 
of P, P. 

In all the cases the vanishing of the P2P-wave for the weak permeabilities, i.e. for small 
f * ,  is explained by the specific behaviour of the P,-wave at low frequencies: (i) the P2- 
velocity vanishes as frequency tends to zero; (ii) the P2 attenuation is very strong with 
respect to that of P, ; (iii) the P-wave transmitted from an incident P2 -wave is very inhomo- 
geneous in the low-frequency range. 

At last we can observe in Figs 9 and 13, for points far away from the source, the 
apparition of a third pulse between the PIP and P,P arrivals. Because there is a phase shf t  of 
n/2 between the horizontal and the vertical displacements, this wave probably corresponds 
to an interface mode. 

3.3.2 Response to fluid injection (Figs 14- 17) 

The study of the seismograms shows that, in this case, the previous analysis is still applicable. 
However, if we compare with the case of a doublets source, we note an amplitude difference 
and a phase shift of n between the PIP and the P2P waves. We can explain these observations 
by comparing the potentials generated by the two kinds of sources: 

We see in Section 2.5.2 that a volume source creates the following potentials: 

a1 =SEX > a2 = -SE2 ; 

by using the relations (17) we can also say that: 

a1 =alS:[n(Pl - 1)+4/PE1; a2 = a 2 6 m P z  - 1 ) + 4 / & .  

a1 =-  a161E1 + a16lxl; a, =-  a,6:E2 + a261x!. 

On the other hand, the potentials generated by a doublet source are: 
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Green functions and associated sources in poroelastic media 549 

That is, except for the solicitation point: 

Thus, in comparison with the case of doublets, the relative amplitude PzP/P,P for a 
volume source is multiplied by a complex coefficient C which is given by: 

C =  (p2 - 1 + a/n)/(pl - 1 i- a/n). 

It can be shown that C tends to the negative real value -(A + 2p)P/a2 when the frequency 
vanishes; and the calculation proves that the value of C stays almost constant over the whole 
range of frequencies. 

In the case of the sandstone we have C =  -0.443 which explains the phase shift of n and 
the differences in relative amplitudes. 

Lastly, when the compressibility of the fluid is smaller than the compressibility of the 
solid (Kf % Kb), it is interesting to  note that the absolute value of C satisfies the inequality 
I C I < 1, which means that the Pz-wave appears stronger with a doublet source than with 
a volume source. 

Conclusion 

Using the results of the homogenization theory for periodic structures, we have presented a 
new analytical formulation for the Green matrix in porous saturated media. These results 
allow us to make calculations in such media by using either the boundary integral-equation 
technique or the discrete wave-number method. 

The presentation of seismograms from a doublet or a volume source provides an 
illustration of the results obtained by these Green functions. 

This simple result does show that the signal waveform is strongly dependent on the 
permeability value (above a permeability level of about 10-'OmZ, i.e. 100 Darcy). An 
immediate consequence is the possibility of obtaining permeability measurements with 
simple seismic explorations. 
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