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Abstract

We describe a quasi-Monte Carlo method for the simulation of discrete time
Markov chains with continuous multi-dimensional state space. The method
simulates copies of the chain in parallel. At each step the copies are reordered
according to their successive coordinates. We prove the convergence of the
method when the number of copies increases. We illustrate the method
with numerical examples where the simulation accuracy is improved by large
factors compared with Monte Carlo simulation.

Keywords: Markov chain, discrepancy, quasi-Monte Carlo method,
simulation.

1. Introduction

Many real-life systems can be modeled using Markov chains. Fields of
application are queueing theory, telecommunications, option pricing, etc. In
most interesting situations, analytic formulas are not available and the state
space of the chain is so large that classical numerical methods would require
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a considerable computational time and huge memory capacity. So Monte
Carlo (MC) simulation becomes the standard way of estimating performance
measures for these systems. A drawback of MC methods is their slow con-
vergence. One approach to improve the accuracy of the method is to change
the random numbers used. Quasi-Monte Carlo (QMC) methods use quasi-
random numbers instead of pseudo-random numbers. Pseudo-random num-
bers aim to simulate a sequence of independent and identically distributed
(i.i.d.) random variables with a given distribution (we only consider the
uniform distribution). In the example of MC integration, it is not so much
the randomness of the samples that is relevant, but rather that the samples
should be spread in a uniform manner over the integration domain. Quasi-
random numbers are sample points for which the empirical distribution is
close to the uniform distribution; unlike for random sampling, quasi-random
points are not required to be independent and may be completely determin-
istic.

The efficiency of a QMC method depends on the quality of the quasi-
random points that are used. Broadly speaking, these points should form a
low-discrepancy point set. We recall from [12] some basic notations and con-
cepts. We first denote I := [0, 1). Let s ≥ 1 be a fixed dimension and denote
by λs the s-dimensional Lebesgue measure. For a set U = {u0, . . . ,uN−1}
of points in the s-dimensional unit cube Is and for a Borel set B ⊂ Is we
define the local discrepancy by

D(B, U) :=
1

N

∑
0≤k<N

1B(uk)− λs(B), (1)

where 1B denotes the indicator function of B. The discrepancy of U is defined
by D(U) := supQ |D(Q,U)|, the supremum being taken over all subintervals
Q ⊂ Is. The star discrepancy of U is D?(U) := supQ? |D(Q?, U)|, where Q?

runs through all subintervals of Is of the form
∏s

i=1[0, ai). A low-discrepancy
point set in Is is a set of N points for which the discrepancy is of size
O((log N)s−1/N), which is the minimum size possible. The most powerful
current methods of constructing low-discrepancy point sets are based on the
theory of (t,m, s)-nets. For an integer b ≥ 2, an elementary interval in base
b is an interval of the form

∏s
i=1[aib

−di , (ai +1)b−di), with integers di ≥ 0 and
0 ≤ ai < bdi for 1 ≤ i ≤ s. If 0 ≤ t ≤ m are integers, a (t,m, s)-net in base
b is a point set U consisting of bm points in Is such that D(Q, U) = 0 for
every elementary interval Q in base b with measure bt−m. If b ≥ 2 and t ≥ 0
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are integers, a sequence u0,u1, . . . of points in Is is a (t, s)-sequence in base
b if, for all integers j ≥ 0 and m > t, the points u` with jbm ≤ ` < (j + 1)bm

form a (t,m, s)-net in base b.
In the example of numerical integration, the QMC method achieves a

significantly higher accuracy than the MC method, with the same compu-
tational effort. It may be hoped that the improvement obtained by using
quasi-random points in place of random samples can also be attained in
problems of numerical analysis that can be reduced to numerical integration.
QMC simulations can outperform MC simulations in some applications: we
refer to the IMACS Seminars on Monte Carlo Methods [1, 2, 4, 13].

In previous communications, we first proposed QMC schemes to simu-
late Markov chains with a discrete state space, either one-dimensional [7, 8]
or multi-dimensional [3]. We next applied the method to one-dimensional
continuous state spaces [10, 11]. In the present work, we extend the QMC
algorithm to Markov chains with continuous multi-dimensional state spaces.

2. The method

Our setting is an homogeneous Markov chain {Xj, j ∈ N} whose state
space E is a subspace of Rs for some s ∈ N∗. The distribution P0 of X0

is known, and we assume that the chain evolves according to the stochastic
recurrence:

Xj+1 = ϕj+1(Xj, Uj+1), j ≥ 0, (2)

where {Uj, j ≥ 1} is a sequence of i.i.d. uniform random variables over Id

for some d ∈ N∗, and ϕj+1 : E × Id → E is a measurable map for each j.
To approximate the Markov chain by ordinary MC, we proceed as follows.

Given a large integer N , we draw N samples x0
k, 0 ≤ k < N from the initial

distribution P0. Then for each k, we generate a sample path of the chain via

xj+1
k = ϕj+1(x

j
k,u

j+1
k ), j ≥ 0, (3)

where u1
k,u

2
k, . . . are pseudo-random numbers which simulate independent

and uniformly distributed random variables over Id. In order to construct a
QMC algorithm for the approximation of the Markov chain, we reduce the
simulation to numerical integration.

We denote by M+ the set of all nonnegative measurable functions on E.
If Pj denotes the distribution of Xj, then

∀f ∈M+

∫
E

fdPj+1 =

∫
Id

∫
E

f ◦ ϕj+1(x,u)dPj(x)du. (4)
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For x ∈ E, let us write δx for the unit mass at x. We are looking for an
approximation of Pj of the form

P̂j :=
1

N

∑
0≤k<N

δxj
k
, (5)

for some integer N and a judiciously chosen set Xj := {xj
0, . . . ,x

j
N−1} ⊂ E.

Let b ≥ 2, d1, . . . , ds be integers and put N := bm where m =
∑s

i=1 di.
We shall use a low-discrepancy sequence Y = {y0,y1, . . .} ⊂ Is+d for QMC
approximation. If Y j is the point set {y` : jN ≤ ` < (j + 1)N} and if π′

and π′′ are the projections defined by π′(u1, . . . , us+d) := (u1, . . . , us) and
π′′(u1, . . . , us+d) := (us+1, . . . , us+d), we assume that

∀j ∈ N π′Y j is a (0, m, s)-net in base b and π′′(Y j) ⊂ I̊d, (6)

where I̊ := (0, 1). For u ∈ Is+d, we denote u′ := π′(u) and u′′ := π′′(u).
We now explain our algorithm in which N copies of the chain are simulated
simultaneously.

2.1. Generating the initial states

A sample X0 is chosen such that P̂0 ≈ P0.This means that X0 has a small
star P0-discrepancy (see section 3).

2.2. Transition

Supposing that we have calculated a set Xj of N states such that P̂j ≈ Pj,

we compute Xj+1 and P̂j+1 in two steps.

2.2.1. Relabeling the states

The states are labeled xj
a using a multi-dimensional index in A := {a =

(a1, . . . , as), 0 ≤ ai < bdi , 1 ≤ i ≤ s}, such that:

if a1 < a′1 then xj
a,1 ≤ xj

a′,1,

if a1 = a′1, a2 < a′2 then xj
a,2 ≤ xj

a′,2,

· · ·

if a1 = a′1, ..., as−1 = a′s−1, as < a′s then xj
a,s ≤ xj

a′,s.
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Figure 1: Relabeling the states (b = 2, s = 2, d1 = 2, d2 = 3)

Practically, we first sort the N states in bd1 groups of size Nb−d1 accord-
ing to their first coordinates; then each group is sorted in bd2 subgroups of
size Nb−d1−d2 by order of the second coordinates, and so on. The sorting
is illustrated in Figure 1, with b = 2, s = 2, d1 = 2 and d2 = 3. Each
circle represents a state and the numbers represent the pairs (a1, a2). This
type of sorting was first introduced in [6]. It provides a good description
of the distribution of the states in the state space and will guarantee theo-
retical convergence: since each transition can be described by a numerical
integration (see Section 2.2.2 below), the sorting reverts to minimizing the
amplitude of the jumps of the function to be integrated.

2.2.2. QMC integration

If we replace Pj by P̂j in the right-hand-side of (4), we define a probability

measure P̃j+1 on E:∫
E

fdP̃j+1 :=

∫
Id

∫
E

f ◦ ϕj+1(x,u)dP̂j(x)du, f ∈M+. (7)

This measure certainly approximates Pj+1, but it is not a sum of unit masses,

like P̂j. We recover this kind of approximation if we use a QMC quadrature
rule. For a = (a1, . . . , as) ∈ A, let Ia :=

∏s
i=1[aib

−di , (ai + 1)b−di) and 1a be
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the indicator function of Ia. For f ∈M+, define

Cjf(u) :=
∑
a∈A

1a(u
′)f ◦ ϕj+1(x

j
a,u

′′), u = (u′,u′′) ∈ Is+d. (8)

Then we have

∀f ∈M+

∫
E

fdP̃j+1 =

∫
Is+d

Cjf(u)du. (9)

We retrieve P̂j+1 if we perform a QMC approximation:∫
E

fdP̂j+1 :=
1

N

∑
jN≤`<(j+1)N

Cjf(y`), f ∈M+. (10)

The last step of the algorithm may be summarized as follows. For each
u′ ∈ Is, we associate the index a(u′) := (bbd1u1c, . . . , bbdsusc). From (6), the
mapping k ∈ {jN, jN + 1, . . . , (j + 1)N − 1} → a(y′

k) ∈ A is one-to-one.
The N states xj+1

0 , . . . ,xj+1
N−1 are computed according to:

xj+1
a(y′`)

= ϕj+1(x
j
a(y′`)

,y′′
` ), for jN ≤ ` < (j + 1)N, (11)

which must be compared with (3). This means that the projection π′(y`)
of each point y` of the low discrepancy sequence is used to select the state
of the chain which will advance, while the remaining components π′′(y`) are
used to determine the next state.

3. Convergence

First we adapt the basic concepts of QMC methods to the present study.
If U = {u0, . . . ,uN−1} ⊂ Is and if c : Is → R is a non-negative measurable
and bounded function, we put

D(c, U) :=
1

N

∑
0≤k<N

c(uk)−
∫
Is

c(u)du. (12)

Let now P be a probability measure on E and X := {x0, . . . ,xN−1} ⊂ E.
For a measurable subset A of E we define the local P -discrepancy by

D(A, X; P ) :=
1

N

∑
0≤k<N

χA(xk)− P (A), (13)

6



where χA denotes the characteristic function of A. The star P -discrepancy
of the point set X is defined by D?(X; P ) := supz∈E |D(Az, X; P )|, where
Az := {x ∈ E : x < z} and x < z means ∀i xi < zi. We shall also use the
following notation: if f ∈M+, then

D(f, X; P ) :=
1

N

∑
0≤k<N

f(xk)−
∫

E

fdP. (14)

The next Lemma is a version of the classical Koksma inequality [12].

Lemma 1. Let P be a probability measure on E, with a Riemann-integrable
density function ρ. Let f : E → R be a function such that f and |f | are of
bounded variation in the sense of Hardy and Krause. If f or ρ is continuous
and if X is a point set consisting of N points in E, then

|D(f, X; P )| ≤ V (f)D?(X; P ). (15)

We now go back to the convergence analysis of the QMC algorithm. We
restrict ourselves to the case s = d and we assume that E =

∏s
i=1 Ei and ev-

ery ϕj has the form: ϕj(x,u′′) = (ϕj,1(x1, u
′′
1), . . . , ϕj,s(xs, u

′′
s)). In addition,

we assume that every Pj has a continuous density function ρj.

Proposition 1. Suppose that

(i) ∀j ≥ 1 ∀z ∈ E ∀u′′ ∈ Is V (χAz ◦ ϕj(·,u′′)) ≤ 1,

and for every j ≥ 1 and 1 ≤ i ≤ s:

(ii) for any xi ∈ Ei, the map ϕj,i(xi, ·) : I̊ → Ei is strictly increasing,

(iii) for any zi ∈ Ei, the map xi → (ϕj,i(xi, ·))−1(zi) is monotone.

Then

D?(XJ ; PJ) ≤ D?(X0; P0) + bd1+···+ds−1+bds/2c
J−1∑
j=0

D(Y j)

+

(
1

bd1
+ · · ·+ 1

bds−1
+

1

bbds/2c

)
J. (16)
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Proof. For j ≥ 1, f ∈ M+ and x ∈ E, denote Ψjf(x) :=
∫
Is f ◦

ϕj(x,u′′)du′′. For z ∈ E we have:

D(Az, X
j+1; Pj+1) = D(Ψj+1χAz , X

j; Pj) + D(CjχAz , Y
j). (17)

By Lemma 1 and assumption (i), we get |D(Ψj+1χAz , X
j; Pj)| ≤ D?(Xj; Pj).

The function CjχAz is the indicator function of

Rj
z :=

⋃
a∈A

Ia × {u′′ ∈ Is : ϕj+1(x
j
a,u

′′) < z}, (18)

hence D(CjχAz , Y
j) = D(Rj

z, Y
j). From (6) and (ii) we have D(Rj

z, Y
j) =

D(R̃j
z, Y

j), where

R̃j
z :=

⋃
a∈A

Ia ×
s∏

i=1

[
0, (ϕj+1,i(x

j
a,i, ·))

−1(zi)
)
. (19)

Let δs ≤ ds be an integer. Denote for z ∈ E:

Φj+1
a (z) =

(
(ϕj+1,1(x

j
a,1, ·))

−1(z1), . . . , (ϕj+1,s(x
j
a,s, ·))

−1(zs)
)
. (20)

Because the states are sorted and by (iii), there exist s partitions of [0, 1]:

0 = wj
0,1(z) ≤ wj

1,1(z) ≤ · · · ≤ wj

bd1 ,1
(z) = 1,

· · ·
0 = wj

α1,...,αs−1,0,s(z) ≤ wj
α1,...,αs−1,1,s(z) ≤ · · · ≤ wj

α1,...,αs−1,bδs ,s
(z) = 1,

for 0 ≤ α1 < bd1 , . . . , 0 ≤ αs−1 < bds−1 ,

such that, for 0 ≤ α1 < bd1 , . . . , 0 ≤ αs−1 < bds−1 , 0 ≤ αs < bδs and
αsb

ds−δs ≤ as < (αs + 1)bds−δs , we have

Φj+1
α1,...,αs−1,as

(z) ∈ [wj
α1,1(z), w

j
α1+1,1(z)]× · · ·

×[wj
α1,...,αs,s(z), w

j
α1,...,αs+1,s(z)]. (21)

If we put Jα :=
∏s−1

i=1 [αib
−di , (αi + 1)b−di)× [αsb

−δs , (αs + 1)b−δs) and

Qj

z
:=

⋃
α

Jα × [0, wj
α1,1(z))× · · · × [0, wj

α1,...,αs,s(z)), (22)

Q
j

z :=
⋃
α

Jα × [0, wj
α1+1,1(z))× · · · × [0, wj

α1,...,αs+1,s(z)), (23)

∂Qj
z :=

⋃
α

Jα ×
(
[wj

α1,1(z), w
j
α1+1,1(z))× Is−1 ∪ · · ·

∪[0, wj
α1,1(z))× · · · × [wj

α1,...,αs,s(z), w
j
α1,...,αs+1,s(z))

)
, (24)
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then D(Qj

z
, Y j) − λ2s(∂Qj

z) ≤ D(R̃j
z, Y

j) ≤ D(Q
j

z, Y
j) + λ2s(∂Qj

z). The

subsets Qj

z
and Q

j

z are disjoint unions of bd1+···+ds−1+δs subintervals of I2s,

hence max
(
|D(Qj

z
, Y j)|, |D(Q

j

z, Y
j)|

)
≤ bd1+···+ds−1+δsD(Y j). On the other

hand, λ2s(∂Qj
z) ≤ b−d1 + · · ·+ b−ds−1 + b−δs . By choosing δs = bds/2c, we get

|D(R̃j
z, Y

j)| ≤ bd1+···+ds−1+bds/2cD(Y j) +
1

bd1
+ · · ·+ 1

bds−1
+

1

bbds/2c . (25)

The desired result follows by taking the supremum over z ∈ E and by induc-
tion on j.

4. Numerical examples

In this section, we present the results of numerical experiments which
show the kind of improvement that our method can bring with respect to MC,
even when the restrictive assumptions of Proposition 1 are not fulfilled. The
examples we choose are artificial since the exact solutions are known and can
be analytically calculated, but we use them as a benchmark to evaluate the
viability of our method. The MC computations are done using the pseudo-
random points generated by MRG32k3a of [9]. The QMC computations use
Niederreiter’s sequences in base b = 2 [12].

4.1. Asian option

We consider the pricing of an Asian option on a single asset whose value
S(t) obeys: dS(t) = rS(t)dt + σS(t)dB(t), where r is the risk-free interest
rate, σ the volatility parameter and B is a standard Brownian motion (BM).
Consider discrete observation times 0 = t0 < t1 < · · · < tJ = T and write:

S(tj) = S(tj−1) exp
(
(r − σ2/2)δtj + σ

√
δtjZj

)
, (26)

where δtj := tj−tj−1 and {Zj : j ≥ 1} is a sequence of i.i.d. standard normal
variables. The value of the call option at maturity can be written as CA =
e−rT E[max((

∏J
j=1 S(tj))

1/J −K, 0)] where the constant K is the strike price.
We want to estimate CA by our QMC algorithm and compare the results
with those given by a classical MC scheme. Thus, we define a bi-dimensional
Markov chain by: X0 := (S(t0), 1) and Xj := (S(tj), (

∏j
h=1 S(th))

1/j), for
j ≥ 1. Here s = 2, d = 1 and we consider the following parameters: S(0) =
100, r = 0.037, σ = 0.2, T = 240/365, K = 90. We estimate the error for

9
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Figure 2: Asian option : the error as a function of N for MC (thin line) and QMC (thick
line)

J = 120 as a function of N , say ErrMC(N) for MC and ErrQMC(N) for the
QMC method. The value of N varies from 27 to 220. Figure 2 shows the
errors, in log-log scale. A linear regression analysis estimates the empirical
convergence rate of the QMC method to be of the order ofO(N−0.84). Clearly,
the QMC algorithm enjoys a much faster convergence than the MC scheme,
whose convergence rate is known to be O(N−0.50).

4.2. European option on the maximum of two risky assets

For our second example, we consider the pricing of an European call
option on the maximum of two risky assets. The model is a bivariate ge-
ometric Brownian motion S(t) = (S1(t), S2(t)) with interest rate r and
volatility parameters σ1 and σ2. Thus, for i = 1, 2: dSi(t) = rSi(t)dt +
σiSi(t)dBi(t), where B1 and B2 are two standard BM with correlation pa-
rameter ρ. For a strike price K > 0, the option has discounted payoff
e−rT max(max(S1(T ), S2(T ))−K, 0) at maturity date T > 0. The expected
value CM of this payoff can be computed by formulas given in [5]. To
estimate CM , we discretize the problem using a set of observation times
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Figure 3: European option on the maximum of two risky assets : the error as a function
of N for MC (thin line) and QMC (thick line)

0 = t0 < t1 < · · · < tJ and we simulate the assets as follows:

S1(tj) = S1(tj−1) exp
(
(r − σ2

1/2)δtj +
√

δtj(σ1Zj,1)
)

(27)

S2(tj) = S2(tj−1)

· exp
(
(r − σ2

2/2)δtj +
√

δtj(σ2ρZj,1 + σ2

√
1− ρ2Zj,2)

)
, (28)

where {Zj : j ≥ 1} are i.i.d. random variables such that Zj ∼ N (0, I2)
(here I2 is the identity matrix). We define the Markov chain by Xj =
(S1(tj), S2(tj)). Here s = d = 2; for numerical illustration, let S1(0) =
S2(0) = 40, r = 0.048, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, T = 7/12, K = 35 and
J = 100. The number N of paths varies from 27 to 220. The values of the
errors are shown on Figure 3. Here again, regression analysis estimates the
convergence speed to be ErrQMC = O(N−0.84) for QMC, showing a strong
improvement over MC.
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5. Conclusion

We have presented a QMC algorithm for the simulation of Markov chains
with continuous and multi-dimensional state space. The method simulates
several copies of the chain in parallel and reduces the error by sorting the
states used in the simulation according to their successive coordinates at
each step. Under certain assumptions, we have proved a convergence result
as the number of simulated paths increases. The results of some numerical
examples have shown that our QMC method is clearly superior to standard
MC simulation in magnitude of error and in convergence rate. In the future,
we shall analyze the convergence in more general settings and we shall provide
some experiments with larger and more complicated models.
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