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General Introduction 
 

     For several decades, the goal of the semiconductor industry was to scale down the 

transistor size in order to increase integration density. But, the era of planar bulk-silicon 

CMOS is over. According to the International Technology Roadmap for Semiconductors 

(ITRS), there are two options for the next generations of CMOS circuits: fully depleted (FD) 

SOI (strongly supported in Grenoble by STMicroelectronics, Soitec, LETI and our 

laboratory) and FinFETs. These transistors will continue the miniaturization trends while also 

answering the requirement for low-power operation in portable electronic devices and 

embedded systems. The association of the legendary players (Si and SiO2) with alternative 

semiconductors and dielectrics is equally envisioned for enriching the device functionality. A 

transistor can do more than just switching on and off.  

In this context, the initial topic of this thesis was to explore innovative single-transistor 

memory devices fabricated with FDSOI and FinFET technologies. Our results on nonvolatile 

and volatile data retention are exposed in Chapters 4 and 5, respectively. We show how the 

transistor can store the charge and evolve into multi-bit flash memory and capacitorless 

DRAM. A novel concept of unified memory is demonstrated by advantageously combining 

these two memory modes. 

The key mechanism enabling memory functions is the inter-channel coupling, mitigated 

by floating-body, short-channel and transport effects. For achieving our objectives, the PhD 

work has started with a detailed investigation of coupling and associated effects in state-of-

the-art MOSFETs (Chapter 2). Our results in section 2.1 reveal the operation of FDSOI 

transistors by focusing on the impact of ultrathin SOI films (down to 5 nm thickness), back-

gate biasing and low temperature. A similar study was conducted for FinFETs. In Section 2.2, 

we describe the role of the fin width and channel length. It is demonstrated that the 3D 

coupling mechanisms are different in triple-gate and double-gate FinFETs, the latter devices 

being more amenable to back-gate biasing schemes.  

Since ZnO TFTs operate very much like SOI MOSFETs, we have attempted to apply 

the same methodology to these emerging devices as well. We have faced modeling and 

parameter extraction issues that were solved as described in Section 2.3. 

It is less notorious that the inter-channel coupling does affect the carrier mobility 

behavior. For obtaining an accurate picture, our approach aimed at using the most 



 

II 

indisputable technique for mobility evaluation which is the geometric magnetoresistance. As 

this topic revealed to be very interesting and intriguing, we have developed the method for 

the characterization of FinFETs. The experimental data shown in Chapter 3 points on the 

failure of the ‗universal mobility‘ law in both FDSOI and FinFETs. 

Our work combines systematic measurements, numerical simulations and physics based 

models extending from the transistor to the memory device. 
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1.1. Context of the Work 

 

     The number of circuit components on a microchip has sharply increased and the 

performance of a unit transistor has improved substantially thanks to the successful shrinking 

of bulk-Si MOSFETs (metal-oxide-semiconductor field effect transistors) since J. Kilby 

invented the concept of an integrated circuit (IC) in 1958. The scaling of the CMOS 

technology has followed ―Moore‘s Law‖: In 19θη, G. Moore anticipated that the IC device 

packing density will double every 18 months [1]. Moreover, C. G. Hwang suggested a new 

model for the memory industry: a two fold increase per year in memory density [2]. For the 

last forty years, silicon-based transistor has tracked these laws without any major change of 

the basic planar MOSFET structure. This architecture has been scaled down to gate length of 

LG ≈ 20 nm by involving more complicate and precise fabrication process.  

Recently, however, such scaling has been slowed down because the conventional 

CMOS process has researched critical limits. For example, the complex doping profiles cause 

reliability, yield and cost issues. The unavoidable randomness of dopant atoms produces 

variations in device properties. Indeed, in a conventional bulk-Si CMOS technology, there is 

no additional methodology to enhance performance beyond the 22 nm technology node. 

Therefore, many technical solutions have been proposed to optimize the existing structures or 

to introduce new architectures for further scaling the transistor. According to the ITRS 

transistor architecture roadmap shown in Fig. 1-1 [3], two main candidates are considered in 

order to enable continued CMOS scaling: (i) the planar fully depleted (FD) SOI MOSFET 

with a thin buried oxide (BOX), thin silicon film (Tsi) and heavily doped ground plane (GP) 

[4]; (ii) the (bulk-Si or SOI FD) FinFET with simplified 3D processing [5, 6]. Both structures 

provide high device performance and improved gate control. 

     Planar FD SOI MOSFET has evolved from the initial partially depleted SOI MOSFET 

technology. The fabrication process of the SOI device is rather similar to that of the 

conventional bulk-Si MOSFETs. Nevertheless, it offers excellent device performance. The 

device scalability and undesired parasitic effects are mainly governed by the thickness of 

silicon film and buried oxide. The GP (or substrate) bias VBG can be an additional option to 

modulate the front-channel properties. Recently, A. Khakifirooz et al. [7] reported 

outstanding results in ultra-thin film (Tsi = 3.5 nm) and short (down to 18 nm) device: good 

gate control, low off-state current (IOFF) with reasonable on-state current (ION) and threshold 

voltage VTH tuning by back-gate bias VBG. Also, C. Fenouillet-Beranger et al. [8] described 
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more viable characteristics of FD SOI device with thin BOX (TBOX = 20 nm). Obviously, 

these recently developed nanoscale SOI MOSFETs imply short-term feasibility of the SOI 

planar device in CMOS applications. 

 

 
Fig. 1-1: ITRS transistor architecture roadmap. ―Equivalent Scaling‖ process technologies Timing, MPU/High-
performance ASIC Half Pitch and Gate Length Trends, and Industry ―Nodes‖. 
 

     FinFET is more revolutionary and has more potential than planar FD SOI MOSFET 

from a long-term perspective. This novel structure was invented in 1991 by folding the planar 

MOSFET [5] and was further developed after 2000. This 3-D architecture requires etching 

process to define the fin but the overall fabrication sequence is not far from that of the planar 

MOSFETs. Basically, the FinFET has two lateral gates (i.e., double-gate (DG) device). A 

third gate can also be switched on at the top of the fin. By co-operation of the three gates, 

good electrostatic control is achieved. Actually, Intel Corporation announced that FinFETs, or 

so-called triple-gate transistor [9, 10], are already adopted for their 22 nm technology node. 

Despite Intel uses bulk-Si substrate, scaling FinFETs down to 10 nm will probably demand 

SOI substrate. Recent works on FD SOI FinFET architecture reported promising performance 

for next generation CMOS circuits.  

     This thesis is dedicated to theoretical and experimental researches of several advanced 



Chapter 1: General Introduction 

4 

SOI FD MOSFETs. Electrical characterization, modeling and simulation were carried out in 

order to investigate the device properties, physical mechanisms and appropriate applications. 

     The first chapter will briefly cover SOI technology, short-channel effects (SCEs) and 

the technologies to improve device performance. The advanced planar FD SOI and FinFET 

architectures will also be introduced. 

     In the second chapter, the properties of several advanced FD SOI devices will be 

investigated and discussed. In planar FD SOI device, the impact of temperature, back-gate 

bias and Si film thickness on device performance will be presented through systematic 

measurement results. Next, the characteristics of advanced SOI FinFETs will be shown via 

measurement and 3-dimensional simulation results. Especially, coupling effect will be 

reported for a various range of fin width in vertical DG and triple-gate FinFETs. Particular 

mobility behavior in ZnO thin film transistor (TFT), which operates similarly to an SOI 

MOSFET, will also be shown through low-temperature measurements. Simple mobility 

models and parameter extraction techniques will be introduced. 

     In the third chapter, mobility behavior will be addressed by way of low-temperature 

geometrical magnetoresistance measurement in advanced planar FD SOI and FinFET. 

Unusual mobility behavior is demonstrated to be induced by the inter-action between front- 

and back-gate based on the variation of the inversion charge centroid.  

In the forth chapter, flash memory application will be explored in FinFETs fabricated 

on alternative SOI wafers with ONO BOX. In the first part, the basic device characteristics 

will be introduced. Then, appropriate charge injection mechanisms will be reported for a 

various range of the fin width, gate length and temperature. The impact of bias condition on 

the charge injection efficiency will also be discussed. 

     In the final chapter, we will describe the capacitorless DRAM application with the 

same device used as in chapter 4. Therefore, we will see that two different memory functions, 

volatile and nonvolatile, can be performed in a single transistor. Above all things, multi-bit 

volatile memory is demonstrated by advantageously combining the nonvolatile and volatile 

memory modes. Experimental results reveal the impact of the geometrical parameter and bias 

condition on the volatile memory sensing margin. 

 

1.2. Silicon on Insulator Technology 

 

     In a conventional bulk wafer, the thickness of active area (~ 10-100 nm) used for 
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fabrication and operation of the transistors is very small compared to the total wafer thickness 

(~ 800 μm). Unfortunately, the unused part of wafer, which serves as mechanical support, 

causes parasitic effects, degrading device performance. On the other hands, silicon-on-

insulator (SOI) technology consists of a single crystalline Si film (active area) separated by 

SiO2 layer or buried oxide (BOX) from the bulk substrate, reducing parasitic capacitance and 

leading to faster transistor switching [11, 12]. Beyond these benefits, there are many other 

motivations for utilizing SOI technology.  

 

1.2.1. Motivations for SOI transistor 

 

     Historically, there have been several reasons for developing and using SOI technology. 

In the 1970s and 1980s, radiation hardness was the main motivation for choosing SOI 

substrate. The impact of ionizing radiation on device performance is minimized by the thin 

active Si film. For example, the majority of charges generated by an alpha particle 

encroaching on a Si substrate would be stopped by the buried oxide, hence reducing the 

current surge in the active film [11]. 

     Recently, ultra large scale integration circuits (ULSIC) contain hundreds of millions of 

single transistors. In SOI technology, a single transistor is isolated from each other and from 

the silicon substrate. On one hand, the thin silicon film used as active area is protected by the 

vertical isolation from parasitic effects induced by bulky substrate: leakage currents, latch-up 

effects and radiation-induced photocurrents. On the other hand, the lateral isolation enables 

the separation of transistors by completing simple trench or well formation. Therefore, the 

entire technology and circuit design are significantly simplified and more compact chips can 

be obtained.  

In addition, many semiconductor companies use SOI wafers in order to obtain high 

performance and low power consumption. Source and drain regions extend down to the 

buried oxide (BOX), achieving reduced junction capacitance and lower leakage current. As a 

result, SOI CMOS circuits offer improved speed and lower power dissipation in standby and 

operating modes.  

     The main advantage of SOI technology is the superior ability for the device scaling 

down. Unlike for the bulk technology, the SOI film and BOX thickness are tunable elements 

for device shrinking. Ultra-thin film SOI devices are less susceptible to SCEs originated from 

charge sharing between gate and junctions due to the limited extension of drain and source 
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regions. The drain-to-body field which causes drain-induced barrier lowering (DIBL) effect is 

also controlled by the thin silicon film. In parallel, SOI structure can be easily combined with 

innovative device, especially multi-gate transistor, to achieve better immunity against the 

SCEs. 

 

1.2.2. Classical classification of SOI devices 

 

According to the Si film thickness, the depletion region covers partially or completely 

the whole transistor body giving the names of partially-depleted (PD, Fig. 1-2a) and fully-

depleted (FD, Fig. 1-2b) SOI MOSFETs, respectively.  

 

(a) Partially-depleted (PD) SOI MOSFETs  

     In PD SOI MOSFETs, a neutral region exists in the transistor body as the film is not 

completely depleted. Therefore, coupling effects (modulation of the electrical properties of 

one channel by the applied bias at the opposite gate) disappear but floating-body effects arise. 

The kink effect is generated by collecting majority carriers in the neutral body. As a result, 

the body potential is increased, the threshold voltage is decreased and excess current is 

exhibited. The floating body also causes transient variations of body potential, threshold 

voltage and current. Current undershoot is generated when the gate is changed from strong to 

weak inversion: the drain current increases with time as the majority carriers are generated 

allowing the depletion depth to shrink when the gate voltage is raised. A reciprocal 

phenomenon can occur when the channel is activated. The majority carriers are expelled from 

the increasing depletion region and collected in the body. Thus, drain current overshoot 

occurs and then gradually decreases with time by electron-hole recombination [13].  

 

(b) Fully-depleted (FD) SOI MOSFETs 

     In FD SOI MOSFETs, the Si film thickness is thinner than the maximum depth of the 

depletion region defined as                                   This means that the 

depletion charge is constant and cannot enlarge with increasing gate bias. For this reason, FD 

SOI exhibits an excellent coupling between the gate bias and the inversion charge that 

improves the drain current and subthreshold swing. It is possible to obtain two inversion 

channels, one at the front interface and the other at the back interface.  

FD devices exhibit several unique characteristics: 

. /qN4)2(XX dFsiFsddmax  
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(i)  When the opposite gate bias increases, the threshold voltage decreases between two   

plateaus corresponding to accumulation and inversion of the opposite channel (Fig. 2-

14) [14]. 

(ii)   The contribution of both front- and back-interface traps is reflected in the 

subthreshold slope. In case of front-channel, when the back-channel lies in depletion 

regime, the threshold slope becomes a maximum (60 mV/decade of current) [15].  

(iii) The transconductance curve has a plateau when the opposite channel is inverted (Fig. 

2-22a) [16].  

(iv)  The mobility and series resistance depend on the opposite gate bias due to the 

modulation of the effective vertical electric field [16].  

 

 
Fig. 1-2: Cross-section of the conventional (a) partially-depleted (PD) and (b) fully-depleted (FD) planar SOI 
transistors. 

 
     Both PD and FD SOI MOSFETs have their own advantages for various applications. In 

this thesis, we will focus on the characterization of several different types of advanced FD 

SOI MOSFETs. Also, their applications to memory devices will be discussed. The unique 

properties described above will be documented with measurement and simulation results in 

the following chapters. 

 

1.3. Impact of Miniaturization on Transistor Performance 

 

     In an electronic circuit, there are two essential factors to be considered: one is the 

switching speed and the other is the power consumption. The switching time τ (or intrinsic 

delay) of a transistor is defined as: 

 

(1.1) 
ON

oxDD

I

CV
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where VDD is supply bias, Cox is oxide capacitance and ION is onset current corresponding to 

the applied VDD. 

     The static power is defined as: 

 

(1.2) 

 

where IOFF is current for VG = 0 V. 

     The IOFF current should be as low as possible in order to minimize the static power. On 

the other hand, it is essential to keep a high ION current to achieve a switching speed as short 

as possible. There are three methods to enhance ION current while short switching time is 

maintained: 

(i)  Increase supply bias VDD, 

(ii)   Reduce oxide thickness in order to increase oxide capacitance Cox, 

(iii)   Reduce channel length LG. 

     The first approach is not suitable because of power dissipation. The reduction of 

channel length will successfully improve τ and ION. Moreover, integration density increases 

as the size of transistor is reduced. However, channel length scaling yields several undesired 

effects and requires modification of transistor features according to the scaling rules. 

 

1.3.1. Series resistance effects 

 

In a transistor, the total resistance is expressed as a sum of channel resistance, reduced 

with gate length, and source and drain series resistance (RS and RD) as shown in Fig. 1-3. In 

long channel device, the potential drop due to series resistance is relatively small and 

negligible compared with the drain bias VD. However, the series resistance becomes no 

longer negligible in short device. In the ohmic regime, the effective voltage between source 

and drain (VRS) is lower than the applied VD. Therefore, the action of the series resistance 

should be considered when a short channel device is characterized. 

 

(1.3) 

 

DDOFFS VIP 

DDSDRS IRRVV )( 
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Fig. 1-3: Equivalent circuit showing the influence of series resistance on MOSFET. 
 

1.3.2. Velocity saturation 

 

In a transistor, electron transport is governed by electric field E and carrier scattering 

with the lattice, impurity atoms, surface and other carriers. At low electric field, the drift 

velocity is described as [17]: 

 

(1.4) 

 

where μ is carrier mobility. The drift velocity is proportional to the electric field. 

     However, at high field, this linear relationship does not hold due to the energy 

dependence of scattering relaxation time. The field dependent drift velocity is written as [18]: 

 

(1.5) 

 

(1.6) 

 

where the critical field EC is approximately 104 V/cm for Si. Carrier velocity is saturated to 

vsat when E is above EC. 

 

According to this consideration, the appropriate short-channel current model is: 

 

(1.7) 

 

 

(1.8) 

 

Therefore, the conventional drain current equation in nonlinear region: 

 

)/(    scmEvd 

C
C

d EEfor
EE

E
v           

/1



Csatd EEforvv           

CCsatd EEforEvv           

/satCDsat LvLEV 
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(1.9) 

 

is modified as: 

 

(1.10) 

 

 

1.3.3. Short-channel effects 

 

With the scaling down of transistors, parasitic effects which can be neglected for long 

channel become significant elements. These unintended effects which limit the 

miniaturization and performance of devices are commonly named as short-channel effects 

(SCEs). 

 

(a) Charge sharing 

 In a long channel device, the semiconductor channel is completely under the control 

of the gate. However, as the transistor is scaled down, source and drain junctions become 

closer to each other, causing a fraction of the depletion charge in the channel to lose control 

of gate electrode. In other words, the gate and source-drain biases share control of the charge 

density below the gate. Fig. 1-4 shows the shared depletion charge regions, with 

approximately triangular shape, near source and drain. This phenomenon is explained by the 

charge-sharing model [19]. 

  

 

Fig. 1-4: Cross-section of SOI MOSFET along the length showing depletion charge sharing between the gate, 
source and drain. 
 

This charge sharing effect has strong impact on subthreshold characteristics and 


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threshold voltage. Once, the width of S/D depletion regions becomes non negligible 

compared with the channel length, the depletion charge controlled by the gate is reduced. As 

a result, VTH becomes lower (threshold voltage roll-off) [19]. 

(b) Hot carrier effect 

     If carriers gain high kinetic energy due to the electric field, their energy is partially 

transferred to the lattice through collisions with acoustic and optic phonons. When a strong 

electric field is applied, the carriers can gain more energy than they can transfer to the lattice. 

This can be described by using a Maxwell distribution as TP > Tr, where TP and Tr are the 

carrier and lattice temperature. Therefore, the carriers become ―hot‖ thanks to the applied 

electric field [20]. In short device, when an electron travels from the source to the drain along 

the channel, it gains kinetic energy in the pinch-off region and becomes a hot carrier [17]. 

      

 

Fig. 1-5: Cross-section of SOI MOSFET along the length showing hot carrier generation (impact ionization) and 
its effects (floating body effects, gate oxide degradation and fixed oxide charge). 
 

Several undesired effects induced by hot-carrier are summarized in Fig. 1-5. One of the 

major results of hot carrier effect is the generation of electron-hole pairs by impact ionization. 

This phenomenon occurs when carriers obtain enough energy to ionize atoms. In SOI 

MOSFETs, generated hole are stored in the body while electrons move to the drain, inducing 

floating body effect. Some of the hot carriers can go through the gate oxide and be collected 

as gate current. More importantly, some of these electrons can be trapped in the gate oxide 

and become fixed oxide charge. Thereby, the flat-band voltage and threshold voltage are 

changed and quality of the gate oxide is degraded [17]. 

 

(c) Drain induced barrier lowering (DIBL) 

Fig. 1-6 shows a more detrimental SCE which is DIBL. When the drain bias is raised, 
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the conduction band edge (which reflects the electron energies in n-channel MOSFETs) in the 

drain is pulled down and the drain-channel depletion width expands. For a long channel 

device, the drain bias does not impact the source-to-channel potential barrier, which 

corresponds to the built-in potential of the source-channel p-n junction [21]. However, for a 

short device, as the drain bias is increased, the source-channel potential barrier is lowered due 

to DIBL [17]. DIBL is mainly caused by the lowering of the source-junction potential barrier 

below the built-in potential. This effect depends not only on the channel length and drain bias 

but also on the source/drain junction depth and channel doping. 

 

 

Fig. 1-6: Potential distribution along the channel for a long channel and short channel MOSFET showing drain-
induced barrier lowering. 
 

This phenomenon limits the maximum operation voltage of a device [22]. In order to 

avoid this problem, the source/drain junctions must be sufficiently shallow as the channel 

length is reduced. Therefore, a channel doping and/or a localized implant near source and 

drain known as halo (or pocket) implant [23] can be processed to reduce DIBL. It will 

decrease the source/drain depletion widths and prevent their interaction. 

 

(d) Punchthrough effect 

In short device, two depletion regions can be overlapped when the depletion region 

around the drain extends to the source (Fig. 1-7) [24]. This effect depends on the applied 

drain bias and junction depth [21]. Punchthrough occurs when drain bias impacts the 

formation of inversion layer, leading rapid increase of drain current and loss of gate control. 
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Fig. 1-7: Cross-section of SOI MOSFET along the length showing the punch-through effect. 

 

1.4. Advanced Device Architecture and Technology 

 

     To overcome SCEs and improve the device performance, advanced MOSFET 

techniques have been studied. Thinner gate oxide and heavily doped channel were required 

for good gate control with decreasing gate length. However, they cause the degradation of the 

device reliability and mobility. Therefore, high-k/metal gate stack has been proposed to 

replace conventional SiO2 gate dielectric. Strain techniques, new materials (Ge or III-V) and 

alternative substrate orientations offer enhanced carrier mobility and drain current without 

resulting in parasitic effects. Also, novel architectures have been introduced such as ultra-thin 

body and buried insulator (UTBB) SOI and multi-gate MOSFETs to obtain good gate control 

of SCEs.  

 

1.4.1. High-K/Metal gate stack 

 

When the SiO2 used as gate insulator reaches its physical limit thickness (~ 1 nm), gate 

leakage current due to the quantum mechanical tunneling causes serious problems, increasing 

power consumption and degrading device reliability [25]. Therefore, replacement of the gate 

insulator from conventional SiO2 to higher permittivity (high-k) dielectric material (Al2O3, 

La2O3, ZrO2 and HfO2) is essential and unavoidable [26-28]. By adopting high-k material, the 

physical thickness of gate insulator can be increased while electrical thickness is maintained. 

According to quantum mechanics, the tunneling probability exponentially decreases as the 

barrier thickness increases [29]. Thereby, gate leakage can be reduced without degradation of 

gate control.  
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However, dipoles in the high-k dielectric vibrate and generate vibration in the lattice of 

Si channel [29]. Thus, phonon scattering at its surface is large, becoming source of mobility 

degradation. To avoid this mobility reduction, an integrated combination of SiO2 and high-k 

material has been proposed. Very thin SiO2 layer located between Si body and high-k 

dielectric layer reduces carrier mobility deterioration [30]. 

In parallel, many researches have been performed to use metal gates. In metal gate 

electrode, the sheet resistance lowering problem is improved. The dipole vibration in high-k 

dielectric is also screened due to the significant increase of electrons. Metal electrode also 

allows an opportunity for modulating the threshold voltage of MOSFETs according to the 

work function engineering. 

For these reasons, Intel has been using hafnium based gate insulator from 45 nm 

technology node [31]. Comparing to 65 nm node SiO2/poly-Si stack, the gate leakage of 45 

nm node was reduced 25 times in NMOS and 1000 times in PMOS. 

 

1.4.2. Strain technology 

 

Strain engineering is a key method to increase the carrier mobility and driving current. 

There are two approaches to obtain strain in the conducting channel of a MOSFET: strained 

substrate and process-induced strain. 

 

(a) Strained substrate 

     The concept of this technology is to obtain a compressive/tensile strained substrate by 

growing a thin film with larger/smaller lattice constant, e.g. Si1-xGex/Si, on a substrate with 

smaller/larger lattice constant, e.g. Si/ Si1-xGex. 

(i)  Strained-SOI (SSOI) substrate: The strained-Si layer is obtained by epitaxial grown 

Si films on relaxed SiGe virtual substrates as shown in Fig. 1-8b. After smart-cut 

process, only the strained Si film subsists on the BOX. Enhanced electron and hole 

mobility are achieved [32].  

(ii)   SiGe-on-insulator (SGOI) substrate: Thin Si1-xGex film layer can be obtained by the 

condensation technique (Fig. 1-8a) [32, 33]. Improved hole mobility is obtained while 

electron mobility is degraded with increasing Ge concentration. A strained-Si/SiGe 

dual channel architectures has been proposed by Lee at al [34] for both electron and 

hole mobility enhancement. 
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Fig. 1-8: Typical substrate strain technology [32]. A schematic diagram of lattice arrangement of (a) strained Si1-

xGex grown on Si and (b) strained Si layer on the virtual Si1-xGex substrate. 
 

(b) Process-induced strain 

     Process-induced strain is simple and low cost as an existing process can be used, 

offering a similar carrier mobility enhancement, as the strained substrate technology [35]. 

(i)  Normally, silicon nitride film is deposited on a transistor for the contact-etch stop 

layer (CESL). This layer produces a high level of local stress. While tensile strain 

offers modest electron mobility enhancement, compressive strain provides 

outstanding hole mobility [36]. 

(ii)   Selective epitaxial SiGe layer deposited for raised source/drain structure compresses 

the Si channel and improves hole mobility. Higher strain and hole mobility are 

achieved with increasing Ge concentration [37]. SiC source and drain can be used for 

N-channels. 

 

1.4.3. Planar fully-depleted (FD) SOI transistor 

 

As mentioned earlier, the planar FD SOI MOSFET is a good candidate for future 

nanoscale CMOS. FD planar MOSFETs have been fabricated on SOI wafer using UNIBOND 

or Smart-CutTM technology. Unlike for the bulk technology, channel doping and pocket 

implantation are not essential in SOI transistor. Instead, thin Si film and thin BOX are 

required in order to reduce SCEs. SiO2/high-k (normally SiO2/HfO2) dielectric architecture 

processed by atomic layer chemical vapor deposition (ALCVD) or plasma enhanced 
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chemical vapor deposition (PECVD) is employed for good gate control and high mobility. 

Gate stack is completed by atomic layer deposition (ALD) for metal gate formation. A 

silicon-nitride spacer is then formed to protect the metal gate and isolate the gate stack from 

the subsequent formation of raised source/drain (S/D). A selective epitaxial growth is used for 

optimization of the S/D architecture and reduction of series resistance.  

 

 

Fig. 1-9: State-of-the-art planar FD SOI MOSFETs. (a) Cross-section and (b) TEM image of advanced FD SOI 
device [38]. 
 

To reduce SCEs, tilted LDD implantation can be carried out prior to spacer formation 

and S/D implantation. Stressed-SiN CESL can also be stacked by CVD on top of the device 

to boost the device performance. High doped layer (ground plane) under BOX offers an 

opportunity to regulate front-channel properties and control SCEs. Fig. 1-9 shows the cross-

section and TEM image of an advanced FD SOI transistor fabricated with state-of-the-art 

technology. 

 

1.4.4. 3-Dimensional fully-depleted (FD) SOI transistor 

 

     Novel transistor architectures, particularly multi-gate structure, have been proposed 

[39] in order to achieve simultaneously high-channel performance and integration density. 
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Among them, planar double-gate (DG) MOSFET shown in Fig. 1-10a offers superior 

performance in terms of subthreshold swing and SCEs [39]. Four-gate architecture (Fig. 1-

10b) exhibits enhanced functionality by independently biasing the four gates and immunity to 

radiations SCEs (Fig. 1-10b) [40]. However, the industrial development of these types of 

structures faces problems of misalignment between the gates and lower integration density 

than in vertical devices. Recently, junctionless transistor (JLT) has been attracting attention 

due to its simple fabrication process (Fig. 1-10c) [41, 42]. JLT requires high doping of the 

entire transistor. That causes carrier mobility degradation and requires to pay much attention 

to uniform doping of whole wafer, leading technological issues for industrial application [43].  

 

 

Fig. 1-10: 3-dimensional transistor architectures based on SOI technology. (a) Planar double-gate MOSFET [39], 
(b) four-gate MOSFET [40] and (c) junctionless transistor [41]. 
 

     To the end, FinFET architecture is the most promising candidate for the next generation 

transistor. In FinFETs, the three sides (one top and two lateral) of silicon body are surrounded 

by the front-gate. The two lateral-gates are perfectly self-aligned and their enhanced control 

of the channel allows further scale down the gate length. A third channel at the top of the fin 

accentuates the gate control. FinFET can be fabricated not only on bulk wafer (bulk FinFET) 

but also on SOI substrate (SOI FinFET).  

     Bulk FinFETs are divided as junction-isolated or material-isolated according to the 

transistor isolation technique [44]. In junction-isolated FinFETs (the bottom of Fig. 1-11b), 

the etching of the fin is followed by an oxide deposition which should fill high aspect ratio 

trench without defects. Careful polishing and recess etching are then fulfilled to determine fin 

height. The field oxide provides isolation among the sidewalls of each fin. However, the 

transistors are still connected underneath the oxide. Therefore, a high dose angled implant at 

the bottom of the fin should be performed to create dopant junction and complete the 

isolation. On the other hand, the material-isolated FinFET is accomplished by the local 

oxidation which substitutes the high dopant implantation of the junction-isolated FinFETs. 
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Material-isolated technique demands more complicated and precise process steps. 

     By contrast, the SOI FinFET can more easily be fabricated. The BOX acts as etch stop 

layer and provides perfect isolation. Therefore, no additional isolation steps are required. The 

fin height is definitely defined by the silicon film thickness. As for planar SOI devices, the 

bottom interface of the body is contacted with the buried insulator and the back-channel can 

be activated by the back-gate biasing.  

     Except for the fin formation, FinFETs can basically be fabricated according to the 

conventional CMOS fabrication process. As we can see in Fig. 1-11a, the state-of-the-art 

CMOS fabrication technology, described in the previous section (1.4.3), can be adopted for 

FinFET processing.  

 

 

Fig. 1-11: (a) SOI FinFET fabrication flow: (1) SOI wafer is used as starting material. (2) Fin definition by dry 
etching and post-annealing to smooth fin side wall and reduce defects. (3) Gate insulator (SiO2/high-k) 
deposition. (4) Gate metal deposition and source/drain formation. (b) TEM images of SOI and junction-isolated 
bulk FinFETs 
 

1.5. Conclusion 

 

     The aim of this chapter was to review recent trend and related issues of Si-based 

MOSFETs. The device scaling down, the most critical issue, causes undesired effects: short-

channel effects and performance limitation. In order to attenuate short-channel effects and 

acquire high-performance, several technical approaches have been proposed such as high-
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k/metal gate architecture and strained-Si technology. In parallel, SOI technology was also 

introduced. Compared with bulk-Si technology, fully-depleted SOI offers higher performance, 

better scaling capability and diverse architecture thanks to its unique features. Novel device 

architectures have been studied based on SOI technology. FD SOI Planar MOSFETs and 

FinFETs are very promising candidates for beyond 22 nm technology node due to their 

benefits: (i) thin body and BOX; strong immunity to SCEs, (ii) undoped body; high carrier 

mobility, (iii) back-gate biasing; front-channel property modulation and (iv) FinFETs with 

excellent gate control. These advantages will be further investigated, based on our detailed 

measurements, in the following chapters. 
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     In this chapter, we present characterization and modeling results for three families of 

devices: planar FD SOI, FinFETs with double and triple-gate, and ZnO TFTs. We will focus 

on the intergate couling, transport and short-channel mechanisms. 

 

2.1. Typical Properties in FD SOI MOSFETs 

 

2.1.1. Introduction 

 

     SOI technology and its advantages were briefly introduced in the previous chapter. 

Very good gate control and high performance are obtained with the thin Si film and BOX. 

The typical properties of state-of-the-art MOSFET will be reported in this section by 

comparing our experimental results with theoretical models.  

     The structure of the planar devices fabricated at LETI and STMicroelectronics is 

shown in Fig. 2-1. The thickness of the buried insulator is TBOX = 25 nm. Devices with 

different Si film thicknesses Tsi (5 nm, 7 nm and 10 nm) and gate lengths LG down to 30 nm 

were prepared to investigate the effect of the silicon film thickness on SCEs, mobility and 

coupling. SiO2 and HfO2 layers were deposited for front-gate insulators. The effective oxide 

thickness (EOT) was determined to be TEOT = 1.6 nm. A ground plane (GP) was formed 

below the BOX in order to modulate the front-channel properties by GP bias. All devices 

have metal gate, undoped body and operate in fully-depleted mode. There is a protection 

diode between GP and front-gate. The turn-on voltage of this diode is around 0.8 V which 

prevents the application of higher bias.  

 

 
Fig. 2-1: Cross-section of the ultra-thin film SOI MOSFETs studied in Chapter 2.1. 
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2.1.2. Parameter extraction techniques and typical properties 

 

     Most of our measurements were performed at wafer level using a cryostat prober, 

connected HP 4155A semiconductor analyzer. The extracted electrical parameters (threshold 

voltage, carrier mobility, subthreshold swing and so on) from the experimental results reveal 

device performance. However, due to the device scaling down, undesired effects are 

generated and involved in the parameter extraction. In order to eliminate parasitic effects and 

find out precise device properties, several parameter extraction techniques have been 

evaluated [45-48].  

 

(a) Linear extrapolation method 

     The first order approximation of the drain current in strong inversion and ohmic regime 

(at low drain bias) is expressed as: 

 

(2.1) 

 

where ID is drain current, W and L are gate width and length, Cox is gate capacitance, VD and 

VG are drain and gate bias and VTH is threshold voltage.  

The effective mobility μeff in strong inversion regime is defined as: 

 

(2.2) 

 

where μ0 is the low-field mobility and ș is the mobility degradation factor at high vertical 

field. At a constant VD, based on Eq. (2.1), the drain current variation with VG is sub-linear 

because the effective mobility is degraded at high electric field.  

The transconductance is defined as the derivative of Eq. (2.1) with respect to VG: 

 

(2.3) 

 

The linear extrapolation method is very simple for the extraction of the threshold 

voltage, using a straight line fit to the drain curve as shown in Fig. 2-2. The intercept point 

with X-axis indicates the threshold voltage. The slope of the line yields the mobility. 

However, this method is sensitive to the mobility degradation and series resistance.  
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Fig. 2-2: Experimental drain current and transconductance curves as a function of front-gate bias showing the 
linear extrapolation method for threshold voltage. N-channel SOI MOSFET with LG = 100 nm and Tsi = 10 nm. 
 

(b) Transconductance method 

     The field-effect mobility μFE, can be determined from the transconductance, defined by 

Eq. (2.3) [45]: 

 

(2.4) 

 

     The maximum field-effect mobility becomes: 

 

(2.5) 

 

     The field-effect mobility is strongly affected by ș factor and does not have physical 

meaning but is useful for circuit design. 

 

 
Fig. 2-3: Experimental transconductance and second derivative of drain current as a function of front-gate bias 
showing the extraction of field-effect mobility and threshold voltage. 
 

DoxFEm VC
L

W
g 

Dox

m
FE VWC

Lg max,
max, 



Chapter 2: Advanced Devices and Typical Effects 

24 

     Threshold voltage can be determined from the second derivative of current (d2ID/d2VG 

= dgm/dVG) at low drain voltage [45]. As we can see in Fig. 2-3, the gate voltage at the 

maximum value of the second derivative curve yields the threshold voltage. The maximum 

point is related to the threshold band-bending at Fs 2  . This method is not affected by 

series resistance and mobility degradation.  

 

(c) Y-function method 

     Y-function technique was proposed by Ghibaudo [46]. This method eliminates the 

mobility degradation factor ș by dividing the current ID with √gm, as defined by Eqs. (2.2) 

and (2.3): 

 

(2.6) 

 

Eq. (2.6) is linear as a function of VG. The low-field mobility is extracted from the slope of 

the Y-function, whereas the intercept point with X-axis represents the threshold voltage as 

shown in Fig. 2-4. 

  

 
Fig. 2-4: Experimental transconductance and Y-function curves versus front-gate bias showing Y-function 
parameter extraction method. 
 

The mobility degradation factor ș can be calculated from Eq. (2.1): 
 

(2.7) 

 

     This well known method efficiently removes the impact of series resistance. However, 

the effect of surface roughness at high field is emphasized in advanced MOSFETs. A second 
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attenuation factor ș2 needs to be included in the current equation. Therefore, Y(VG) curve 

may become super-linear like in Fig. 2-4.  

 

(d) McLarty method 

     In this parameter extraction method [47], drain current is expressed as [49, 50]: 

 

(2.8) 

 

where ș1 and ș2 are the mobility degradation factors related to series resistance and surface 

roughness scattering. 

     Inverting Eq. (2.8) and taking the first and second derivatives results in the following 

two equations: 

 

(2.9) 

 

and 

 

(2.10) 

 

where A=Coxμ0VDW/L. 

      

 
Fig. 2-5: Linear line from Eq. (2.11) and transconductance as a function of front-gate bias showing threshold 
voltage and carrier mobility extraction by McLarty method. 
 

Threshold voltage and mobility can be obtained by plotting the following function 

versus VG: 
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(2.11) 

 

     In Fig. 2-5, threshold voltage is the intercept point with X-axis and the linear line (Eq. 

(2.11)) and mobility is calculated from the slope of the linear line. According to the second 

derivation of 1/ID, this method allows erasing the effect of series resistance ș1 and surface 

roughness ș2. 

 

(e) Split C-V method 

     The mobile channel charge density measurement technique is named as the split C-V 

technique. The capacitance CGC is measured between the gate and source-drain. This method 

was introduced by Koomen et al. [51] for the interface trap charge density and the substrate 

doping measurement. It was adapted to carrier mobility measurement [48] and to SOI. 

     As illustrated in Fig. 2-6, CGC measurement is carried out using LCR meter. A small a.c. 

signal is applied at the gate electrode using the high cable. The source and drain are linked 

together and connected to the low-cable of the LCR meter. The substrate is grounded. 

 

 
Fig. 2-6: Split C-V measurement arrangement. 

 

     From the capacitor measurement, the inversion charge Qi is calculated by integration: 

 

(2.12) 

 

     In order to obtain the effective mobility, Eq. (2.12) should be combined with the drain 

current measurement: 

 

(2.13) 

 

     The effective mobility extracted by split C-V method depends on lattice scattering, 
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surface scattering and ionized impurity scattering. In our work, we mainly used the Y-

function and replaced the split-CV with the magnetoresistance method developed in chapter 3. 

     Electrical characteristics were investigated in ultra-thin body (TSi = 10 nm) SOI 

MOSFETs. In Fig. 2-7, ID(VFG) curves were measured for different gate lengths. In long 

channel device (LG = 1 μm), excellent subthreshold swing (SS = θ4 m↑/dec) and high 

ON/OFF ratio (> 108) were achieved, reflecting good gate control and interface quality. 

Reasonable threshold voltage (VTHF = 0.52 V) and high mobility (330 cm2/Vs) were also 

extracted by Y-function method [46]. Gate length dependence of extracted parameters is 

shown in Fig. 2-8.  

 

 
Fig. 2-7: Typical channel effects of ultra-thin body SOI MOSFETs. (a) Drain current and (b) transconductance 
curves as a function of front-gate bias for various gate lengths. 

 

 
Fig. 2-8: Gate length dependence in ultra-thin body SOI MOSFETs. (a) Low-field mobility (extracted by Y-
function), field-effect mobility (from gm peak value), (b) threshold voltage (extracted by Y-function) and 
subthreshold swing as a function of gate length. 

 

Ordinary short-channel effects were obtained. In short device, carrier mobility 
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decreases presumably due to the process-induced neutral defects [36]. The maximum field-

effect mobility extracted from gm peak value includes series resistance effect and is lower 

than the low-field mobility extracted by Y-function. However, their variation trend with 

channel length is identical. Threshold voltage (extracted by Y-function) roll-off and 

subthreshold swing (given by the Log ID(VFG) curves in subthreshold regime) were degraded 

by the charge sharing effect [19] in shorter devices. 

 

2.1.3. Si film and BOX thickness effects 

 

     As described in Chapter 1, SCEs are the main sources of device performance 

degradation. The SCEs directly depend on the S/D junction depth as well as the depletion 

region extending into the substrate. Unlike for bulk-technology, in SOI devices, the SCEs can 

be effectively controlled by the reduction of silicon film and BOX thickness. 

 

(a) Effect of buried oxide thickness 

In long channel device with thick BOX (TBOX = 100 nm ~ 200 nm), the transverse 

electric field in the BOX is overwhelmed by the fringing field from the source/drain (Fig. 2-

9a) [52]. This field induces an increase of the potential at the Si/BOX interface and, by 

coupling, a drop of threshold voltage [53]. This phenomenon, named drain-induced vertical 

substrate biasing (DIVSB), leads a loss of gate control and accentuates the DIBL effect in 

short devices. 

 

 
Fig. 2-9: (a) Numerical simulated equipotential contours and electric-field vectors showing the fringing field in 
the BOX of an LG = 0.2 μm FD SOI MOSFETs: Tsi = 100 nm, TBOX = 350 nm and VD = 50 mV. [52] (b) Vertical 
potential profile with conventional and GP configuration in thick (TBOX = 350 nm) and thin (TBOX = 50 nm) 
BOX; Tsi = 20 nm [54]. 
 

In 2002, Ernst et al. discovered, analyzed and modeled the DIVSB [54]. The direct way 

to inhibit the fringing field effect is to thin down the BOX and use a ground plane (GP): the 
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potential peak is attenuated by GP and this advantage is remarkably enhanced in a thinner 

BOX (Fig. 2-9b). For nanoscale CMOS beyond the 22 nm node, TBOX < 25 nm is required for 

good control of SCEs [55, 56]. Such BOX thinning has recently been realized in SOI wafer 

technology [57]. This BOX combined with GP more successfully restrains the depletion 

region extension down to the BOX. [8, 54] 

 

(b) Effect of silicon film thickness 

 

Thin film is the main condition to control SCEs in SOI device. There are very few 

publications so far on MOSFETs with 5 nm film thickness [8, 57]. In Fig. 2-10, the electric 

field in the body of the FD SOI device is governed by the silicon film thickness [58]. The 

potential lines are more flat in 5 nm thick body showing enhanced gate electrostatic control 

compared to the 25 nm thick body. An ultra-thin film physically confines the depletion region 

and S/D junctions depth. For excellent control of SCEs, the film thickness should be about 

25 % of the channel length.  

 

 
Fig. 2-10: Simulation of body potential for 25 nm and 5 nm thick SOI film at VG = VD = 1 V [58]. 

 

We have investigated the impact of silicon film thickness on the device performance. 

Fig. 2-11 shows good drain current behavior for various Si film thicknesses (5 nm, 7 nm and 

10 nm) in short-length (LG = 30 nm) FD SOI MOSFETs. Better subthreshold swing is 

obtained in thinner devices (Fig. 2-11a). On the other hand, the transconductance peak value 

is reduced in thinner film, suggesting mobility degradation (Fig. 2-11b) or series resistance 

increases.  
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Fig. 2-11: Silicon film thickness dependence. (a) Drain current and (b) transconductance curves versus front-
gate bias at different silicon film thickness device.   
 

In order to compare the effect of Si film thickness on device performance and 

immunity to SCEs, the carrier mobility, threshold voltage and subthreshold swing were 

extracted for a range of gate length and thickness (Fig. 2-12). In thinner device, carrier 

mobility is lower by about 15 %. Note that the field-effect mobility shows the same tendency. 

In ultra-thin films, the inversion layer expends on the whole thickness of the silicon film 

(volume inversion) and carrier mobility is limited by phonon confinement and scattering [59]. 

This can explain the carrier mobility lowering. However, other reports have shown that the 

carrier mobility in long MOSFETs with optimized source and drain is constant in the 

thickness range 4-10 nm [60]. In our short channel devices, the mobility may decrease due to 

the defects induced by the implantation of source and drain and also by the occurring of 

semiballistic transport. 

The threshold voltage dependence on film thickness (Fig. 2-12b) comes from quantum 

mechanical effects. In thinner film, quantum confinement leads to band splitting, raising the 

conduction band level. [61, 62]. Therefore, more energy for band-bending is necessary to get 

a desired inversion charge density. As a result, threshold voltage is increased with decreasing 

body thickness.  

The degradation of the subthreshold swing in short channel (Fig. 2-12c) is much less in 

5 nm film due to better gate control. When silicon film thickness reduces from 10 nm to 5 nm, 

the subthreshold swing is very close to the theoretical limit of 60 mV/dec that is achievable 

only in (perfect) FD transistors.  
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Fig. 2-12: Impact of silicon film thickness on device characteristics. (a) Carrier mobility, (b) threshold voltage 
and (c) subthreshold swing as a function of gate length for various thickness devices. Carrier mobility and 
threshold voltage were extracted by Y-function technique. 
 

2.1.4. Coupling effect 

 

     Compared with bulk technology, there is a very particular but typical phenomenon in 

FD SOI devices, named ―interface coupling‖. The back-gate bias can shift the front-gate 

threshold voltage and vice versa [4, 63]. Coupling effect reduces the sensitivity of threshold 

voltage to the thin silicon film [64] and is applicable to dynamic threshold voltage 

modulation [65, 66] to reduce power consumption: high VTH in off state (smaller leakage 

current) and low VTH in on state (increased drive current).  

In conventional n-channel MOSFETs on bulk Si, threshold voltage VTH is generally 

expressed as [67] : 

 

(2.14) 
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where VFB is the flat-band voltage governed by the gate-body work function M  difference, 

B  and Qb (dependent on the doping density NB) are the Fermi potential and the body 

depletion charge density at the threshold condition and Cox defined as εox/tox is the gate-oxide 

capacitance per unit area. 

     To examine the charge coupling, we first describe the depletion approximation for 

intrinsic-UTB device. Oxide and interface charges are neglected and, for the sake of clarity, 

symmetrical DG (SDG) nMOSFET is considered as shown in Fig. 2-13. According to the 

Gauss‘s law, in weak inversion regime, front-gate bias VFG of an SDG nMOSFET is 

expressed as: 

 

(2.15) 

 

where sf  is the front-surface potential, Coxf is front-gate oxide capacitance (=εox/Toxf), Qb is 

the depletion charge density (=-qtsiNB) defined by the film theickness, Qi is the inversion-

charge density and the factor 2 in the last term comes from the symmetry of the SDG device. 

When the body is intrinsic, |Qb| >> |Qi| is clearly invalid. However, |Qi|/Coxf << | sf | since 

typically |Qi| < q1011 C/cm2 for subthreshold conditions. Therefore, the influence of 

subthreshold (or weak-inversion) charge density on sf in Eq. (2.15) can be neglected 

irrespective of NB. Finally, the charge-sheet approximation is unnecessary for subthreshold 

analysis.  

 

 

Fig. 2-13: Schematic of the symmetrical double-gate (SDG). 

 

     In weakly inverted intrinsic UTB device (NB = 0), gate-to-gate coupling is well 

documented. The well known model of Lim and Fossum [14] was derived from depletion 

approximation and by solving the Poisson equation with Gauss‘s law.  
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(2.16) 

 

 

(2.17) 

 

where sb  is the back-surface potential and Cb is the capacitance of the body (=εsi/Tsi): the 

subscripts f and b refer to front and back gates. 

From Eqs. (2.16), (2.17) and sf  = B2  (for the nMOSFET), the front-channel 

threshold voltage (VTHF) when the back-surface lies in depletion regime is expressed as:  

 

(2.18) 

 

where  

 

(2.19) 

 

α is front-channel coupling coefficient. Therefore, VTH depends on the front- and back-gate 

biases (VFG, VBG), flat-band voltages (VFBF, VFBB), oxide thicknesses (Toxf, Toxb) and silicon 

film thickness (Tsi). Notice that when the back-surface is accumulated or inverted, free 

carriers efficiently block the vertical electric field induced by VBG, pinning sb  and VTHF is 

independent of VBG. In Fig. 2-14, VTHF(VBG) is qualitatively shown, where VBG
A and VBG

I are 

the back-surface accumulation and inversion onset voltages, derived from Eq. (2.17), with 

sf  = B2  and sb  = 0 or sb  = B2 . 

 

 

Fig. 2-14: Front-channel threshold voltage versus back-gate bias in SOI nMOSFET [67]. When the back-surface 
is depleted, VTHF(VBG) varies linearly with slope α (Eq. (2.19)). 
 

We have explored the coupling effect in our ultra-thin film MOSFETs. In Fig. 2-15, 
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drain current was measured at different back-gate bias (applied at the GP). The body potential 

is raised when the back-gate bias is increased. As a result, the front-channel threshold voltage 

linearly decreases with VBG (Fig. 2-15b) and the drain current is enlarged (Fig. 2-15a). 

Our results show that coupling effect depends on the Si film thickness. In thinner film, 

threshold voltage variation decreases, meaning less coupling effects. This will be further 

discussed with low-temperature measurement in Fig. 2-18 which provides additional insight. 

     

 
Fig. 2-15: The effect of back-gate bias on front-channel properties. (a) Drain current versus front-gate bias at 
different back-gate bias. (b) Front-channel threshold voltage versus back-gate bias for various Si film 
thicknesses. 
 

2.1.5. Temperature-dependent properties 

 

 
Fig. 2-16: Temperature dependence of typical device characteristics. (a) Drain current and (b) transconductance 
curves versus front-gate bias for a wide range of temperature. 

Typical device characteristics were studied (Fig. 2-16) for a wide range of temperature 

(from 77 K to 300 K). At low temperature, front-channel threshold voltage is increased due to 



Chapter 2: Advanced Devices and Typical Effects 

35 

the variation of the Fermi level. Higher drain current level and transconductance peak at low 

temperature mirror enhanced mobility. The overall trend of the device behavior is the same 

for different Si film devices.  

     The device properties were quantified by extracting the main parameters to evaluate the 

influence of temperature and physical mechanisms (Fig. 2-17). The effect of Si film thickness 

was already discussed and obeys the same trends as in Fig. 2-12. At higher temperature, 

carrier mobility is reduced due to increased phonon scattering [68, 69]. Front-channel 

threshold voltage decreases (Δ↑THF/ΔT ≈ 0.7 m↑/K) at higher temperature. This rate of 

change is much smaller than in bulk MOSFETs and promotes FD SOI for operation in a wide 

temperature range.  

The threshold voltage is expressed by the linear combination of the flat-band voltage 

VFB, the Fermi potential 2B  and the potential drop in the depletion region (Eq. (2.14)). In 

FD MOSFETs, the latter term is temperature independent, the main contribution arising from 

the Fermi level variation: )/1(2 oxitB CqD . While increasing the temperature, the Fermi 

surface potential approximated by )/ln()/(22 iaB NNqkT  , decreases rather linearly 

with temperature because the intrinsic carrier density Ni exponentially increases.  

At low temperature, subthreshold swing is decreases more or less linearly according to 

[17]: 

 

(2.20) 

 

where k is Boltzmann constant, T is absolute temperature, q is electron charge, Csi, CDit and 

Cox are capacitances of silicon body, interface traps and gate oxide. In Eq. (2.20), kT/q 

reduces with temperature while the bracket term is constant, except when Dit increases. In our 

devices, the variation of Dit is basically masked by the high oxide capacitance. Notice that 

subthreshold swing variation is almost similar in 50 nm and 100 nm length device. This 

means that short channel effects do not occur above 50 nm gate length device. 

 We can extract interface trap density from the SS(T) [70]. Subthreshold swing is 

proportional to the temperature (Eq. (2.20)). Therefore, the expected value at 77K is around 

25 mV/dec with LG = 100 nm and Tsi = 5 nm. However, extracted value from the 

measurement is 32 mV/dec which yields an interface trap density of 5.7·1012 cm2eV-1. 

Interface trap density can also be extracted with Eq. (2.20) by using extracted SS value (SS = 

68 mV/dec @ LG = 100 nm, Tsi = 5 nm and T = 300 K). The extracted value is 4.6·1012 
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cm2eV-1. The two extracted interface trap densities are almost the same. These values are 

reasonable but their interpretation requires caution. Eq. (2.20) is an approximation which 

does not account for the influence of traps at the film-BOX interface. The effective Dit values 

include the back traps, however, their discrimination is very difficult.  
 

 
Fig. 2-17: Device characteristics for a wide range of temperature. (a) Mobility, (b) threshold voltage and (c) 
subthreshold swing as a function of temperature for various thickness of Si film. WG = 2 μm, ↑D = 20 mV and 
VBG = 0 V. 
 

We observed an unexpected effect in ultra-thin film device. Coupling effect appears to 

depend on temperature (Fig. 2-18). Actually, the coupling is a result of the competition 

between front-gate, back-gate and SCEs. In Fig. 2-18a, the lateral variation of 

transconductance curve is reduced at low temperature. Fig. 2-18b shows lower 

transconductance peak in thinner film device at 77 K like for the results obtained at room 

temperature. However, the lateral shift of transconductance is slightly larger in thinner device, 

which apparently contradicts the result of Fig. 2-15b.  
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Fig. 2-18: Impact of temperature and film thickness on coupling effects in short device (LG = 30 nm). 
Transconductance versus front-gate bias at (a) different temperature (T = 77 K and 300 K @ Tsi = 10 nm) and 
(b) different film thickness (Tsi = 5 nm and 10 nm @ 77 K). (c) Coupling coefficient as a function of 
temperature for various Si film thicknesses. 

 

Fig. 2-18c shows the coupling coefficient defined as α = -Δ↑THF/Δ↑BG in order to 

quantify the coupling effect variation with temperature. First, at 77 K, coupling coefficient is 

a little larger in thinner device whereas it is much smaller at 300 K. The coupling effect 

normally increases with body capacitance (Eq. (2.19)). Therefore, the effective body 

capacitance and coupling effect increase in thinner device. At higher temperature, the SCEs 

become more noticeable on the device operation [71, 72] and enhance coupling effect [73]. 

Therefore, coupling effect increases in short MOSFETs with increasing temperature. On the 

other hand, the rate of change of coupling coefficient Δα/ΔCb is smaller in thinner device than 

in thicker one. Fig. 2-18c confirms that, in 5 nm film, coupling coefficient is almost constant 

for a wide range of temperature. The reason is that SCEs are clearly diminished in thinner 

film as shown in Fig. 2-12c. Thereby, the enlargement of coupling effect with increasing 



Chapter 2: Advanced Devices and Typical Effects 

38 

temperature is prevented by the thinner film. As a result, at higher temperature, coupling 

effect is larger in thicker film and short device (Fig. 2-15b and Fig. 2-18c). 

 

2.1.6. Conclusion 

 

     In this section, the properties of advanced ultra-thin FD SOI MOSFET were 

investigated for a wide range of temperature. Thanks to the state-of-the art MOSFET 

technology, high carrier mobility was achieved. Threshold voltage and SCEs are strongly 

dependent on Si film thickness: in thinner film, threshold voltage increases via quantum 

confinement, and SCEs are suppressed as the S/D junction depth and depletion region 

decrease. These results are very promising for beyond 22 nm technology node application. 

Unlike for the conventional SOI MOSFETs, the competition between SCEs and Si film 

thickness causes unusual coupling effect. Coupling effect in short MOSFETs increases at 

higher temperature, more or less according to the Si film thickness. But, in devices thinner 

than 5-6 nm, the coupling tends to become practically insensitive to temperature. This implies 

that the same back-biasing scheme can be maintained for operation in a wide range of 

temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Coupling Effects in Double-Gate FinFETs 
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2.2.1. Introduction 

 

Low power consumption and co-integration of various functionalities are the 

mainstream in today‘s ↑LSI circuit and system design due to the increasing demand for 

portable electronics and embedded system manufacturing. The size of the transistor has to be 

reduced as described in Chapter 1. However, as the channel length is reduced, the control of 

the current by the gate is jeopardized and increases the off-state leakage and power 

consumption. Dynamic threshold voltage modulation (i.e., high VTH in OFF state and low 

VTH in ON state) is attractive to reduce the consumption and integrate different functions on 

the same chip [4, 74, 75]. In FD SOI technology, the back-gate bias and/or the non-volatile 

charge stored in ONO buried insulator can be used for threshold voltage modulation [4, 76].  

Ultra-Thin Body and Buried Insulator (UTBB) and multiple-gate transistors are 

competing for CMOS downscaling [70, 77]. SOI FinFET is the most probable winnner 

thanks to its simple fabrication and enhanced electrostatic control [77-79].  

We have seen that, in fully-depleted SOI MOSFETs, the front- or back-channel 

threshold voltage can be modified by using the opposite gate. The question is whether this 

back-biasing scheme also works in FinFETs. In FD SOI FinFETs, especially with narrow fin 

width, we have to consider the influence of the ‗lateral‘ electric field between the two lateral 

gates on the ‗vertical‘ substrate-to-channel coupling effect. We compared two different types 

of SOI FinFETs. Using experimental and 3D simulation results:  

(i) Vertical DG FinFET: top-channel activation is suppressed by thick insulating layers 

at the top of the fin and only the two lateral-channels are activated by the front-

gate biasing.  

(ii)  Triple-gate FinFET: top and lateral-channels are equally activated by applying front-

gate bias.  

Since coupling in triple-gate FinFETs have been documented [80], we focus on the 

coupling effect between lateral-gates (also referred to as ‗front‘ gate) and back-gate in DG 

FinFETs. We highlight the enhanced front-channel threshold voltage variation by the back-

gate bias which can be applicable for dynamic threshold voltage modulation in vertical DG 

FinFET. Triple-gate FinFETs are used to benchmark the two device structures. The effect of 

the fin width on the coupling effects is further investigated. 
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2.2.2. Typical properties 

      

SOI wafers fabricated with the Smart-CutTM technology were used as starting material. 

The thickness of the buried SiO2 insulator (BOX) is TBOX = 140 nm. The silicon film thinned 

down to 40 nm defined the fin height HF. SiO2 (1 nm) and HfO2 (2.5 nm) layers were stacked 

for lateral-gate insulators. The effective oxide thickness (EOT) was determined to be Tox = 

1.4 nm. At the top of the fin, thicker SiO2 (5 nm) and nitride (10 nm) layers were deposited to 

prevent the top-channel conduction. The two lateral-gates are controlled by the same bias. 

Vertical DG FinFETs with different fin width WF (down to 25 nm) and gate length LG (down 

to 40 nm) were manufactured to investigate the geometrical issues. The width we will be 

referring to is the designed value. The real fin width after process completion is 20-25 nm 

narrower. The triple-gate FinFETs used for comparison have HF = 20 nm silicon body height. 

Even though the vertical DG FinFETs are taller than the triple-gate FinFETs, they show 

enhanced sensitivity to the back-gate biasing, as discussed in section 2.2.3. All devices have 

undoped body, TiN metal gate and operate in fully-depleted mode. Fig. 2-19 shows the cross-

section of the vertical DG FinFET fabricated at Sematech (USA). 

 

 

Fig. 2-19: TEM cross-section of vertical double-gate FinFET fabricated on SOI wafer. 
 

The electrical transport properties depend on the device geometry and fin size (LG, WF). 

The effect of the gate length on the drain current ID(VFG) and transconductance gm(VFG) 

characteristics is depicted in Fig. 2-20. The ID(VFG) curves prove that an excellent gate 

control is achieved: (i) high ON/OFF current ratio (> 108) and (ii) low subthreshold swing 

(SS = 70 mV/dec at LG = 0.η μm). The front-channel threshold voltage VTHF value (VTHF = 

0.17 V @ LG = 0.η μm) was extracted from the Y-function [46]. In shorter devices, the drain 
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current level and the transconductance peak value increase steadily which implies that the 

series resistance effects are not overwhelming and remain reasonable. The electron mobility, 

extracted from the transconductance peak [45], reaches relatively high value (~ 350 cm2/Vs). 

These results reveal promising electrical properties of vertical DG FinFETs.  

 

 
Fig. 2-20: Front-channel characteristics of vertical DG FinFETs. (a) Drain current and (b) transconductance as a 
function of the front-gate bias for different gate lengths. (c) Front-channel mobility and threshold voltage versus 
gate length. 

 

In Fig. 2-20, we also observe the regular effects of shorter channel lengths: (i) 

subthreshold swing increase, (ii) VTHF roll-off and (iii) carrier mobility degradation. The 

mobility behavior is explained by the process-induced neutral defects located near the source 

and drain terminals which overlap in very short channels [36]. Only below 50 nm gate length, 

the threshold voltage and the subthreshold swing are significantly degraded due to the charge 

sharing effect [19]. Notice that, with narrower fin width, lower subthreshold swing (SS = 65 

mV/dec @ WF = 50 nm, LG = 0.η μm) and reduced short-channel effects are obtained. Indeed, 

the transversal component of the electric field is enhanced, improving the overall control of 
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the lateral-gates on the body. Back-channel characteristics were also assessed. Thanks to the 

good body/BOX interface quality [81], even higher mobility (~ 420 cm2/Vs) than in the front 

channel was achieved. The extracted back-channel threshold voltage VTHB is around 1 V for 

LG = 0.η μm. 

 

2.2.3. Coupling effects 

 

(a) 3-Dimensional coupling model 

In 2007, Akarvardar at al. in our group reported a two-dimensional coupling model to 

consider the influence of the fin width and back-gate on coupling effects in triple-gate SOI 

FinFETs [82]. The cross-section of a triple-gate FinFET, showing the axes and symbol 

conventions, is given in Fig. 2-21.  

A parabolic potential variation between the two lateral gates was assumed: 

 

(2.21) 

 

where ),( yx is the 2-D body potential in undoped body. The 2-D Poisson‘s equation is 

solved for full depetion and negligible body doping: 

 

(2.22) 

 

A constant surface potential is considered on the three sides: 

 

(2.23) 

 

Corner effects, quantum-mechanical effects, substrate depletion (under the BOX) and 

drain bias effect are neglected. 2S  is the extremum of the back-surface potential at 

)T,x( si  at the fin-BOX interface.  

The solution of Eq. (2.22) using Eqs. (2.21) and (2.23) is given by 

 

(2.24) 

 

where )(yf  is defined as 
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Fig. 2-21: Cross-section of the triple-gate SOI FinFETs (perpendicular to current flow direction) showing the 
boundary conditions and axes used in modeling. 
 

The derivation of the threshold voltage from the potential model is straightforward. 

Like for the Lim and Fossum‘s model (Chapter 2.1.4) [14], 1S  and 2S  are first related to 

VFG and VBG as follows: 

 

(2.26) 

 

 

(2.27) 

 

where  

 

 

 

Eqs. (2.26) and (2.27) are basic relations to describe the coupling effects between the 

front gate and substrate in a triple-gate FinFETs. The front- and back-channel threshold 

voltage can be obtained by replacing VFG/VBG with VTHF/VTHB and TFS   (where T  

is band-bending at threshold voltage and (x,y)=(0,0)). 

     When the back-channel is depleted, 2S  varies with VBG in Eq. (2.27). Therefore, 

front-channel threshold voltage becomes: 

 

(2.28) 

 

where 

 

),(
C

C
AVV 2S1S

oxf

w
1SFBfFG  

)(
C

C
BVV 1S2S

oxb

w
2SFBbBG  

    
W

C  and  

W

T
22tanh

22
 B     ,

W

T
22sinh

22
A

F

Si
w

F

Si

F

Si











)(1)( TF
ox

w

oxf

w
FBBBGFBFTHF bC

C
B

C

C
AVVVV  



 

)/(1

)/(

oxbw

oxfw

BG

depb
THF

CCB

CCA

dV

dV





Chapter 2: Advanced Devices and Typical Effects 

44 

(2.29) 

 

is the front-channel coupling coefficient in triple-gate FinFET.  

     This model reproduces the coupling in triple-gate FinFETs but, according to our 

measurements, does not match the data in DG FinFETs. Using the same principles, we have 

developed a sister model. The coupling coefficient in DG FinFETs is expressed as [83]  

 

(2.30) 

 

with 

 

(2.31) 

 

where VFBf and VFBb are the flat-band voltages related to the front and back interfaces, 

respectively, F20 W8/12/W   , Ș1=εSi/(CtoxW0), Ș2=εSi/(CloxWF), and Ș3=εs/(CBOXW0). 

Ctox, Clox and CBOX are the capacitances per unit area of the top-gate oxide, lateral-gate oxide 

and back-gate oxide layers. εSi is the permittivity of silicon. Coupling coefficients αdep=[1-

(ȜF(-TSi/2))-1]-1 define the slope dVTHF/dVBG when the back interface is depleted. Ȝ can be 

formulated by Ȝ=[1+(4Ș2)
-1]-1. This model was validated by experiments and simulations. 

 

 
Fig. 2-22: Front coupling effect for various fin widths. Front-channel threshold voltage versus back-gate bias. 
The analytical model matches the TCAD simulations. 
 

To verify the proposed analytical model, comparison with the simulated front gate 

threshold voltage as a function of the back gate bias is performed in Fig. 2-22. Y-function 
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agreement between the analytical and simulated results can be observed. We see a smaller 

front-channel coupling coefficient α in narrower fin DG devices. 

 

(b) Experimental results 

The ‗vertical‘ coupling effect between the two lateral-channels and the back-gate bias 

was systematically investigated in our fully-depleted vertical DG FinFETs. These devices can 

be operated with one, two and/or three channels by applying appropriate bias at front- and/or 

back-gates. In Fig. 2-23, we compare the front-channel transconductance curves at different 

back-gate bias (from -15 V to 15 V) in wide (WF = 0.η μm) and narrow (→F = 80 nm) fins. As 

the fin width becomes sufficiently small (Fig. 2-23b), the influence of the two lateral-gates 

prevails attenuating the back-gate effect (smaller lateral shift of gm(VFG) curves with VBG). 

The activation of the back-channel is barely visible for VBG = +15 V where the 

transconductance plateau tends to disappear. When the back-channel is driven into 

accumulation [70], the transconductance peak is degraded due to the enlarged surface 

scattering induced by the increased vertical electric field.  

For wide fin device (WF = 0.η μm, Fig. 2-23a), when the back-gate interface moves 

from accumulation to inversion regime, the potential is increased in the whole body and the 

lateral-channel threshold voltage decreases. Therefore, a large shift of the transconductance 

curve towards lower front-gate voltage is observed. At positive back-gate bias (> +3 V), a 

hump appears in the transconductance curve reflecting the early activation of the back-

channel. This effect is similar to the case of planar FD MOSFETs. As the front-gate bias 

increases from -2 V to 0 V, the back-channel threshold voltage VTHB decreases and the back-

channel is turned on (for VFG ≈ – 1V, see curve at VBG = +9 V in Fig. 2-23a) before the front-

channel threshold voltage VTHF is eventually reached (VTHF ≈ -0.3 V).  

At sufficiently negative back-gate bias (< -12 V), the gate-induced floating body effect 

(GIFBE) is switched on. When the back-interface is biased close to accumulation and the 

front-channel lies in strong inversion, the floating body is charged by direct tunneling through 

the lateral oxides with an excess of majority carriers [84], and a distinct GIFBE peak 

becomes visible in the transconductance curve (for VFG ≈ +1 ↑, Fig. 2-23a). Notice that this 

specific transconductance peak, obtained when the back-channel is accumulated, is a pure 

floating-body effect and its higher value does not imply mobility improvement.  

In narrower fin device (designed value: WF = 80 nm, Fig. 2-23b), the transconductance 

hump shrinks and the GIFBE peak disappears. These trends again indicate the predominance 
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of the transversal field induced by the lateral-gates over the vertical field component 

generated by back-gate bias. For negative front-gate bias, the back-channel threshold voltage 

is increased, hence the back-channel inversion occurs for more positive VBG, and the gm 

hump is diluted. The transconductance peak reduction reflects an increase of the series 

resistance in narrower fins. On the other hand, the GIFBE vanishes simply because the back-

interface cannot be accumulated.  

 

  
Fig. 2-23: Front-channel coupling effects in vertical DG FinFETs. Transconductance as a function of the front-
gate bias at different back-gate bias in (a) wide (WF = 0.η μm) and (b) narrow (→F = 80 nm) fin devices. 
 

Fig. 2-24 highlights the reciprocal effect of the front-gate bias on the back-channel 

transconductance in wide (WF = 0.η μm) and narrow (→F = 80 nm) fins. In a narrow FinFET, 

higher back-gate bias is required to overcome the lateral-gate influence. When the front-gate 

bias changes from accumulation to inversion (VFG from -1V to 1 V), the body potential is 

increased and the back-channel threshold voltage is reduced. Unlike the front-channel 

transconductance characteristics shown in Fig. 2-23, the lateral shift is more pronounced in 

narrow fins where the sidewall gates dominate. Remark that for front-gate accumulation, the 

back transconductance peak is significantly degraded for two reasons. First, strong 

accumulation of the sidewalls depletes the edges of the back-channel so the effective width 

becomes inferior to the fin width. Second, the effective field is high and degrades the carrier 

mobility.  

One peak only, corresponding to the back-channel activation, is observed on the 

transconductance curve at VFG ≤ 0 ↑ (when the lateral-channels are depleted or accumulated). 

However, at positive front-gate bias (VFG ≥ +0.θ ↑, Fig. 2-24b), the transconductance curves 

show multiple features which suggest that the lateral-channel is not homogeneous along the 
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fin height. The upper region is activated before the lower region of the sidewalls which are in 

contact with the accumulated back-interface. The hump (at VBG ≈ -15 V) reflects the 

conduction in the lateral-channel regions located far from the back-interface. The next peak 

(at VBG ≈ -3 V) indicates the completion of the lateral-channels. The third peak (VBG > 0 V) is 

generated by the activation of the back-channel.  

 

  
Fig. 2-24: Back-channel coupling effects in vertical DG FinFETs. Transconductance versus back-gate bias at 
different front-gate bias in (a) wide (WF = 0.η μm) and (b) narrow (→F = 80 nm) fin device. LG = 0.η μm, ↑D = 
50 mV, two parallel fingers (NF = 2). 

 

These results demonstrate that the coupling effect is visible in vertical DG FinFET and 

the critical device parameter is the fin width. According to the formula proposed by [14] for 

FD planar MOSFET, front- and back-channel coupling effects can be approximated as: 

 

(2.31) 

and 

 

(2.32) 

 

where TBOX, Tox and TSi are the thicknesses of the buried insulator, front-gate oxide and Si 

film. This well-known 1D model has recently been updated to include the contributions of 

interface traps, quantum effects in ultrathin films and short-channel effects [73]. However, the 

model applies to planar MOSFETs exclusively and cannot be directly adopted to FinFETs, 

where the coupling is 3D and involves the fin width. The Akarvandar‘s model (Eq. (2.29), 

[82]), proposed for the triple-gate FinFETs, is not acceptable either.  

The effect of the fin width is investigated through the front- and back-threshold voltage 
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variations in Fig. 2-25. The threshold voltages were extracted with the Y-function method 

[46] and plotted versus the opposite gate bias and fin width. It is clear that, in wide fin 

devices, the front-channel coupling effect (VTHF vs. VBG) is enhanced. We obtain a front-

channel coupling coefficient, α = -Δ↑THF/Δ↑BG ≈ 34 m↑/↑, which is far from the value (α = 

200 mV/V) given by Eq. (2.31). The latter value was calculated by considering the top oxide 

thickness (Tox = 30 nm) which is reasonable in wide triple-gate FinFETs. The discrepancy is 

due to the fact that, in DG FinFETs, the top-channel just cannot be activated. Taking TOX = 

1.4 nm (lateral-gate oxide), the front-channel coupling coefficient is only α = 10 mV/V. The 

measured α is between the two extreme values.  

 

  
Fig. 2-25: Dependence of the coupling effect on the fin width. (a) Front-channel and (b) back-channel threshold 
voltage as a function of the opposite gate bias. 
 

The front-channel coupling coefficient strongly decreases for narrow fin width: for WF 

= 2η nm, we obtain α ≈ 7.η m↑/↑. This trend is explained by 3D coupling effects [80]. In 

narrow fin devices, the lateral electric field induced by the two side gates is able to control 

the potential at the body/BO↓ interface. Therefore, the ‗vertical‘ field from bottom to top, 

generated by the back-gate bias, is blocked by the enhanced ‗lateral‘ field. Consequently, the 

capability of the back-gate to modulate the front-channel properties is declining in narrower 

fins. This is why the lateral shift and hump of the transconductance curves are reduced (Fig. 

2-23 a and b) and the front-channel coupling effect is smaller (Fig. 2-25a) in the narrow 

device.  

The reciprocal characteristics ID(VBG) and gm(VBG) are also very informative about the 

coupling effects. Fig. 2-24 shows that the lateral shift is accentuated in narrow fins. This 

behavior looks as contradicting the front-channel trends (Fig. 2-23) but it actually originates 
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from the same competition between ‗lateral‘ and ‗vertical‘ coupling. In a narrow fin, when the 

front-gate bias is more negative, the body/BOX interface tends to be accumulated too. This 

makes it more difficult for the back-gate to invert the back interface, hence the back-channel 

threshold voltage increases significantly. Therefore, the back-channel coupling coefficient 

(Fig. 2-25b) is increased, reaching β = Δ↑THB/Δ↑FG ≈ 73 ↑/↑ in narrower FinFET. This 

coupling rate is in line with Eq. (2.32). 

As the coupling effect depends on the device architecture, triple-gate FinFETs were 

compared with vertical DG devices in Fig. 2-26. In a triple-gate FinFET, the top section of 

the channel (under the horizontal gate) is directly influenced by VBG, as in a FD SOI 

MOSFFET. It is known that in planar transistors, the 1D vertical coupling increases as the Si 

film thickness is reduced. Since our FinFETs feature smaller fin height (20 nm), we would 

expect a stronger coupling effect than in DG MOSFETs (40 nm). However, as we can see in 

Fig. 2-26a, when the back-gate bias changes from -15 V to 15 V, the lateral shift of the front-

channel drain current is larger in the vertical DG FinFET, despite the fin height is lower in the 

triple-gate FinFET. Fig. 2-26b shows that the front-channel coupling coefficient α is clearly 

superior in the vertical DG FinFET. Why? We propose the following scenario. In triple-gate 

FinFETs, the control of the body potential is stronger due to the combined contributions of 

the lateral and top sections of the gate. Indeed, the vertical field induced by the back-gate is 

facing the antagonist vertical field originating from the top-gate. Another way of seeing this 

mechanism is that the front-gate opposes the straight penetration of the vertical field from the 

back-gate. In DG MOSFETs, the absence of the top section of the gate makes the vertical 

field from bottom to top more efficient.  

The key conclusion is that front-channel coupling effect is enhanced in vertical DG 

FinFET, where the impact of the back-gate is more intense. In other words, the front-channel 

threshold voltage is more easily tuned by the back-gate bias in vertical DG FinFET. It follows 

that vertical DG FinFETs are more suitable candidates for dynamic threshold voltage 

adjustments than triple-gate FinFETs.  

By contrast, the back-channel coupling coefficient β is larger in triple-gate than in 

vertical DG FinFET. Since three gates govern more efficiently the body potential than two 

gates, it is clear that the back-channel threshold voltage is more hardly achieved for VFG < 0. 

However, at this stage, we cannot confirm that the larger back-channel coupling effect in 

triple-gate FinFET comes from the enhanced control of the front-gate, the thinner silicon film 

thickness or both. We will further discuss the origin of coupling by comparing the two 
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devices with 3D numerical simulations [85] in the following section. 

 

 

 
Fig. 2-26: Comparison of the coupling effects in vertical DG and triple-gate FinFETs. (a) Drain current versus 
front-gate bias at different back-gate bias. (b) Front-channel and (c) back-channel coupling coefficient as a 
function of fin width. 

 

(c) 3-Dimensional simulation results 

Front- and back-channel coupling effects were simulated to validate the effect of the fin 

width and to compare double-gate and triple-gate FinFETs with same fin height. In these 

simulations, only the Poisson and electron continuity equations were considered as the 

conduction mechanisms are essentially based on the electron drift-diffusion current. The 

structures have two different oxide thicknesses on top of the fin, 30 nm for the DG FinFET 

(top-channel deactivated) and 1.4 nm for the triple-gate FinFET. The lateral-gate oxide 

thickness (1.4 nm) and the Si fin height (40 nm) are the same for both structures. 
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Fig. 2-27: Simulation of coupling effects in vertical DG FinFETs. (a) Drain current versus front-gate bias at 
various back-gate bias in wide (WF = 0.η μm) and narrow (→F = 80 nm) devices. (b) Front-channel and (c) 
back-channel threshold voltage as a function of the opposite gate bias for different fin widths. (d) Potential 
profile in wide and narrow fins at VFG = +1 V and VBG = -10 V. 
 

Fig. 2-27a shows ID(VFG) curves for DG FinFETs, simulated at different back-gate bias. 

In the narrow fin device (WF = 80 nm), the lateral shift of the front-channel characteristics is 

much less than in wide device (WF = 0.η μm), confirming the measurement data of Fig. 2-23. 

Fig. 2-27 b and c show the decrease in front- and back-channel threshold voltage as the 

opposite-channel moves from accumulation towards inversion regime. Like in our 

experimental results, the front-channel coupling effect is reduced while the back-channel 

coupling is amplified in narrow FinFET. The origin of this asymmetry is confirmed in Fig. 2-

27d by comparing the potential profiles in wide (WF = 0.η μm) and narrow (→F = 80 nm) 

devices operated with positive front-gate bias (VFG = +1 V) and negative back-gate bias (VBG 

= -10 V). In the wide device, the body potential is much lower than in the narrower fin where 

the influence of the positively biased lateral-gates is prevailing and tends to mask the effect of 

the negative back-gate bias. In wide devices, the back-gate bias can more easily change the 
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front-channel threshold voltage due to enhanced penetration of the vertical electric field and 

less contribution of the lateral field. The simulated front-channel coupling effect (Fig. 2-27b) 

increases in wider fin device and matches the values of Fig. 2-25a. The back-channel 

coupling effect is always higher in narrow fins as illustrated in Figs. 2-27c. 

A very good agreement between experimental and simulation results for vertical DG 

FinFET was obtained in a wide range of fin width. Small differences in very narrow fins may 

originate from the real size and shape of the fin. The etching process makes the fin smaller 

and less rectangular than the mask-defined values. As a result, the front-channel coupling 

effect is slightly smaller and the back-channel coupling coefficient is slightly larger in the 

experiment than in the simulation data. 

The coupling effects in triple-gate FinFET were simulated for 40 nm fin height in order 

to simplify the comparison with vertical DG FinFETs. Typical transfer characteristics 

showing the effect of back-gate bias are reproduced in Fig. 2-28a. As expected from the 

experimental data, the horizontal shift of the drain current is smaller than in vertical DG 

FinFET. The experimental and simulated coupling coefficients in vertical DG and triple-gate 

FinFETs are compared for front-channel in Fig. 2-28b and for back-channel in Fig. 2-28c. 

Again the agreement is convincing, revealing the same trends. Electric potential (Fig. 2-28d) 

and field (Fig. 2-28e) profiles are shown for wide devices (WF = 0.η μm) with positive front-

gate (VFG = +1 V) and negative back-gate (VBG = -10 V) biases. The body potential is higher, 

due to the stronger action of the top gate, in triple-gate than in vertical DG FinFET. In triple-

gate FinFET, the vertical electric field from the top-gate to bottom blocks the penetration of 

the vertical electric field generated by the back-gate. Therefore, the effect of the back-gate on 

the front-channel characteristics is smaller in triple-gate FinFET. Since the front-channel 

coupling coefficient is reduced (Fig. 2-28b), a larger back-gate bias is needed to tune the 

front-channel threshold voltage. For exactly the same reason (i.e., activation of the top 

section of the gate), the back-channel coupling shows the opposite behavior (Fig. 2-28c), 

being larger in triple-gate FinFET. 

The impact of the fin height can be inferred by comparing measurements and 

simulations in triple-gate FinFET. The coupling rate for both the front- and back-channels is 

larger in experimental results (HF = 20 nm) than in simulation results (HF = 40 nm). This 

confirms that the special coupling effect in triple-gate FinFET (Fig. 2-26c) comes from 

combined actions of the top section of the gate and of thinner silicon film. 
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Fig. 2-28: Comparison of the simulated coupling effects in vertical DG and triple-gate FinFETs. (a) Drain 
current as a function of front-gate bias at different back-gate bias. (b) Front-channel and (c) back-channel 
coupling coefficient versus fin width comparing measurements and simulations. (d) Potential profile and (e) 
electric field profile in the body of DG and triple-gate FinFETs (VFG = +1 V, VBG = -10 V, WF = 0.ημm). 
 

In Fig. 2-29, we investigate the effect of the top-gate oxide thickness on the front-

channel coupling in DG devices. The simulation conditions are the same as in Fig. 2-27, 

except the top-gate oxide layer thickness which varies from 30 nm (vertical DG FinFET) 
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down to 1.4 nm (triple-gate FinFET). In a wide fin, the front-channel coupling coefficient α 

decreases by a factor of 3. The coupling is stronger in devices with thicker top-gate oxide due 

to the reduction of the vertical electric field from top to bottom. The change in coupling 

efficiency from double-gate to triple-gate operation is less marked in narrower fins. The 

dotted line shows the coupling coefficient in FD planar device with 140 nm buried oxide, 

calculated with Eq. (2.31). Obviously, coupling effect is larger in planar device than in 

FinFETs. However, by using thicker top-gate insulator, we can enlarge the coupling effect 

which is an attractive solution for tuning the device performance via back-gate biasing. 

 

 

Fig. 2-29: Effect of the oxide thickness on the top of the body of DG transistors. Front-channel coupling 
coefficient as a function of the top oxide thickness for various fin widths. 
 

2.2.4. Conclusion 

 

The electrical properties of vertical DG FinFET were investigated. Good gate control 

by the two lateral-gates and high mobility were obtained. The 3D coupling effect between the 

lateral-gates and the back-gate was measured and simulated as a function of the fin width 

and device structure (double-gate or triple-gate FinFETs). A very good agreement was 

obtained between experimental, simulation and modeling results. In wider fin devices, the 

coupling of the front-channel to back-gate bias is increased whereas the opposite coupling 

effect (back-channel to front-gate bias) is decreased due to the gradual suppression of the 

lateral electric field. Thanks to the thick insulating layer at the top of the fin in vertical DG 

FinFET, the action of the vertical electric field from top to bottom is relaxed and the back-

gate effect is enhanced. Therefore, vertical DG FinFETs are more sensitive to back-gate 

biasing than triple-gate FinFETs. The difference between these two transistor structures tends 
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to vanish in ultra-narrow fins. DG FinFETs with moderate fin width are suitable devices for 

dynamic threshold voltage control using thin BOX, ground plane and back-biasing schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Mobility Behavior and Models for Nanocrystalline ZnO TFTs 
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     We have studied ZnO TFTs because they attract high interest and operate like back-

channel SOI MOSFETs. We applied our experimental methodology to investigate the carrier 

transport and reformulate the mobility models. 

 

2.3.1. Introduction 

 

Thin film transistors (TFT) are used in several applications such as the control circuits 

for large area display, flexible electronics and non-planar devices. The performance of TFTs 

based on amorphous Si or organic semiconductors is mostly limited by the poor electron 

mobility (0.1-1 cm2/Vs) and insufficient control of threshold voltage. Nanocrystalline ZnO 

thin films are attractive for improving TFT performance to levels comparable to single crystal 

semiconductors. In the last decade, ZnO has generated interest due to its wide band-gap (Eg = 

3.37 eV, supporting high electric fields and low leakage current) and its transparency to 

infrared and visible light, which makes it suitable for TFTs [80]. The recent improvement of 

deposition techniques led to good quality ZnO thin films as semiconducting material [87-90]. 

     To improve the carrier mobility, several thin film deposition techniques have been used 

including Pulsed Laser Deposition (PLD), Atomic Layer Deposition (ALD), Chemical Vapor 

Deposition (CVD) and spin coating [89, 91-97]. Nevertheless, the carrier mobility was still 

not sufficient for high performance applications due to the large number of crystalline defects 

in the thin ZnO film [98]. To achieve high performance ZnO TFTs, not only must the quality 

of the ZnO layer be improved, but also attention should be paid to the properties of the gate 

insulator and interface [86, 99]. In this work, nanocrystalline ZnO thin films were formed by 

PLD on Plasma Chemical Vapor Deposited (PECVD) SiO2 gate insulator to improve the 

carrier mobility [96, 99]. 

     The carrier transport in a MOSFET channel is determined basically by drift/diffusion 

mechanisms. However, in nanocrystalline ZnO TFT, the grain boundary potential barrier, the 

grain size and the trap density at the boundaries affect the carrier transport. Several mobility 

models have been proposed in the past to account for the grain boundary effect in poly-Si 

TFT and ZnO TFT [100-105]. Although tested with numerical calculations, these models 

cannot reproduce the experimental results of the nanocrystalline ZnO TFT. Most of the 

proposed models for Si TFTs use curve fitting of experimental data to extract the device 

parameters. In shorter devices, hot electrons and enhanced effect of the contact resistance 

may impact the device performance [106]. Therefore, curve fitting method may lead to 
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unphysical parameter values and a possible lack of scalability of the model. 

     In this section, the carrier transport properties of nanocrystalline ZnO TFT are under 

investigations using low-temperature measurements. Based on the measurement data, simple 

mobility models are proposed to explain the carrier transport mechanism considering the 

effect of grain boundary and the mobility degradation due to surface carrier scattering at high 

field. The particular carrier transport mechanisms related to the grain boundary properties are 

explored with temperature-dependent measurements. 

     The proposed models are validated and benchmarked by comparison with experimental 

results and numerical calculations. We prioritized the models that enable simple parameter 

extraction methods from the experimental data. Key device characteristics such as threshold 

voltage, mobility and subthreshold slope were extracted and their variation at low 

temperature is reported.  

 

2.3.2. ZnO TFT overview 

 

In Si CMOS technology, performance improvement, low power consumption and cost 

reduction are driving forces. By contrast, thin film transistor (TFT) technology is appropriate 

for applications where low density circuitry is integrated across a large area [107]. Currently, 

hydrogenated amorphous silicon (a-Si:H) TFTs are dominatingly used for pixel drivers. 

However, threshold voltage instability and low mobility issues have generated interest in 

alternative such as metal oxide semiconductors. 

 

(a) Properties of zinc oxide 

ZnO is one of the best known II-VI compound semiconductors. For the last ten years, 

ZnO has gained sufficient attention as an attractive material for various applications due to its 

possibility to grow high-quality ZnO single-crystals and ZnO nanostructures. The recent 

interest in ZnO is motivated by various applications:  

(i)  Transparent electronics: The most desirable characteristic of ZnO is its wide band-

gap (~3.4 eV). This corresponds to a wavelength of 365 nm which is in the near UV 

region. Therefore, ZnO is transparent to visible wavelengths and can be applied for 

the fabrication of transparent devices [108].  

(ii)   Optical application: ZnO is direct band-gap material with band-gap modulation 

(3~4 eV) available by alloying with magnesium and cadmium [109]. ZnO is 
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investigated for light-emitting diodes (LEDs) or laser diodes covering the blue and 

UV spectral range. 

(iii) Biosensing: ZnO is non-toxic, environmentally friendly material, employed for 

biosensing applications or hybrid biological-semiconductor device concepts. 

(iv)  Ferromagnets: Doped ZnO is used to obtain a transparent room-temperature 

ferromagnet due to partial ionic bonding with magnetic impurities such as manganese, 

cobalt or nickel [110].  

     However, the relatively low mobility of ZnO is arguably its critical weakness. The 

typical maximum electron mobility (around 200 cm2/Vs at room temperature) is much lower 

than that of conventional compound semiconductors [111]. 

 

(b) Thin film transistors 

Hydrogenated amorphous silicon (a-Si:H) serves for inexpensive integration on a large-

area substrate [112]. In 1972, amorphous silicon film prepared by the glow discharge 

decomposition of silane gas (SiH4) was demonstrated by Spar and LeComber [112]. This 

amorphous silicon material is an amorphous silicon-hydrogen alloy including fairly large 

hydrogen concentration. The hydrogen atoms tie up a large amount of dangling bonds that are 

located in the amorphous silicon. Thus, the density of localized states is decreased in the 

energy gap. In the transport mechanism of amorphous Si:H, the localized states play a 

dominant role. Currently, a-Si:H TFTs are widely used for low cost, large area (several meters 

on a side) electronics and active matrix liquid crystal displays (AMLCD) [107]. They can be 

processed at low temperature (~ 250 °C), making them integrable on inexpensive substrate 

such as glass.  

Fig. 2-30 shows a cross-sectional view of the basic TFT structure. The channel layer is 

a semiconductor such as a-Si, poly-Si, or ZnO. Source and drain contacts are formed at the 

top of the active layer. The gate electrode located at the bottom controls the transistor that is 

isolated from the active area by a thin dielectric film.  

The device operation mechanism is basically same as conventional MOSFET. When 

the gate bias exceeds the threshold voltage VTH, an inversion channel is induced in the active 

layer.  
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Fig. 2-30: Cross-section of a bottom gate TFT. 
 

(c) ZnO thin film transistors 

Combination of TFT structure and transparent material has a great interest in 

transparent electronics. The main reason is that the performance of transparent thin film 

transistors (TTFTs) will not be degraded with exposure to visible light unlike for amorphous 

or poly-Si TFTs [113]. High quality crystalline ZnO films (with good stability and mobility) 

can be grown at relatively low deposition temperature on amorphous glass substrate and are 

very suitable for TTFTs.  

    One of the earliest ZnO TFTs was demonstrated by Hoffman et al. [114]. Highly 

transparent ZnO TFT (around 75 % for visible light) was fabricated on glass (Fig. 2-31a). In 

order to form the bottom gate, a 200 nm thick layer of indium thin oxide (ITO) was sputtered. 

ITO was also used for source and drain electrode. A 220 nm thick layer of aluminum titanium 

oxide (ATO) was deposited by atomic layer deposition (ALD) as the gate insulator. ZnO 

active layer and ITO source/drain electrode were stacked by ion beam sputtering. The 

effective mobility and threshold voltage were modest: 0.45 cm2/Vs and 10-15 V, respectively. 

For low operating voltage and high mobility, ZnO TFTs fabricated on diverse gate 

dielectrics were reported by Carcia et al. (Fig. 2-31b) [115]. Heavily doped n-type wafer was 

employed as the bottom gate. HfO2, HfSiOx and Al2O3 were deposited by ALD for the gate 

insulator (HfO2 at 300 °C, HfSiOx at 400 °C, Al2O3 at 125, 200, 400 °C). All dielectrics were 

25 nm thick except Al2O3 grown at 200 °C, for which the thickness was 100 nm. The 50 nm 

thick ZnO channel layer was grown by magnetron sputtering. To develop source and drain 

electrodes, Ti-Au (100 nm Au followed by 10 nm Ti) were patterned on the gate insulator by 

photolithography and evaporation. 

     Devices on HfO2 scored a mobility of 12.2 cm2/Vs, a threshold voltage of 2.6 V and a 

subthreshold swing of 0.5 V/decade. For 100 nm thick Al2O3 processed at 200 °C, ZnO TFT 

featured 17.6 cm2/Vs mobility, 6 V threshold voltage and less than 0.1 nA gate leakage at 20 

V. For the HfO2 devices, the universal tendency is a lower threshold voltage, but a higher gate 
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leakage current.  

 

 
Fig. 2-31: Cross-section of ZnO TFT structures reported by (a) Hoffman et al. [114] and (b) Carcia et al. [115]. 
 

(d) ZnO deposition technology 

     As described above, low mobility was the main weakness of ZnO TFT for high 

performance applications. In order to improve mobility, high quality ZnO layer and interface 

between the ZnO and gate insulator are the critical factors. In this perspective, many ZnO 

deposition techniques have been studied.  

(i)  RF magnetron sputtering: DC, RF and reactive sputtering is one of the most popular 

ZnO growth technique. Especially, magnetron sputtering is frequently used due to its 

low temperature, low cost and simple processing [116]. Normally, ZnO film is grown 

by using a high-purity ZnO target in the ambient with Ar+O2 at a pressure of 10-3~10-

2 Torr [109]. The RF power applied to the plasma is tuned to regulate the sputtering 

speed. Ar is the sputtering enhancing gas and O2 acts as the reactive gas. Post-

deposition annealing is commonly performed to reduce the stress and improve optical 

properties of the sputtered ZnO film [117]. 

(ii)   Molecular Beam Epitaxy (MBE): The advantages of MBE are the capability of 

precise control over the deposition parameters and in situ diagnostics [118]. Typically, 

Zn metal and O2 are used as source materials. The processing temperature determines 

the growth rate and material properties. 

(iii) Chemical Vapor Deposition (CVD): CVD is an interesting method for uniform large-

area films. ZnO deposition occurs as a result of chemical reactions of vapor-phase 

precursors on the substrate which are delivered to the growth zone by the carrier gas. 

In general, dimethyl zinc [(CH3)2Zn] (DMZ) or diethyl zinc [(C2H5)2Zn] (DEZ) is 

combined with oxygen as a source material [119]. However, DEZ and DMZ easily 

react with oxygen, degrading the ZnO film quality. Improved ZnO film can be 
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formed by using special reactor design and mixing less-reactive precursors (zinc 

acetylacetonate) with oxygen [120]. 

Plasma enhanced CVD (PECVD) technique can also be utilized [121]. A film 

densification process induced by plasma bombardment and UV ray irradiation allows 

enhancing the quality of ZnO layers. Indeed, the reactants are decomposed by the 

plasma (not by thermal energy). Thereby, PECVD does not require a high 

temperature environment and make it possible to prepare ZnO film on organic 

material for flexible substrate [122]. 

(iv)  Atomic layer deposition (ALD): At relatively low temperature, ALD technique 

enables the growth of ZnO on large area flexible substrate [123] despite deposition 

rate is relatively low. A typical ALD process is composed of three steps: a metal 

precursor adsorption step, a purge step and finally exposure step to an oxidant to 

complete a single deposition cycle. 

(v)  Pulsed Laser Deposition (PLD): PLD is a relatively simple deposition technique 

[124]. Thin film is obtained by vaporizing a material using high-energy laser pulses. 

This technique is suitable for high quality film and fabrication of discrete devices. 

Sintered ceramic targets, most commonly used for ZnO thin film deposition, are 

transferred instantaneously leading to a stoichiometic and non stoichiometic 

deposition.  

 

2.3.3. Typical properties of our ZnO TFTs 

 

Pulsed laser deposition (PLD) at low temperature (200 °C) [86] was used to grow our 

50 nm thick nanocrystalline ZnO films. The 30 nm thick back gate oxide, separating the ZnO 

layer from Si substrate, was deposited by PECVD at 250 °C. The bottom gate is used to drive 

the drain current. The device operation is similar to back-channel SOI MOSFETs or pseudo-

MOSFETs [125]. Ti/Au metal was stacked on top of the ZnO layer to form the source and 

drain. Each transistor design contains several fingers (NF = 4-20) and features different gate 

widths and lengths to assess the effect of the geometrical parameters. Fig. 2-32 shows a 

schematic drawing of a typical nanocrystalline ZnO thin film transistor and a Transmission 

Electron Microscope (TEM) cross-sectional image of the transistor channel region. As seen in 

Fig. 2-32b, thin films consist of closely packed nanocolumns of ZnO with 30-50 nm 

diameters. ZnO nanocolumns were oriented in (002) direction as determined by X-ray 
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diffraction method [99]. 

 

 

Fig. 2-32: (a) Device structure and (b) TEM cross-section image of nanocrystalline ZnO thin film transistor. 
 

Fig. 2-33 shows the basic electrical characteristics of a nanocrystalline ZnO TFT 

measured at room temperature. These results indicate very promising properties: relatively 

low (and positive) threshold voltage (Fig. 2-33a), reasonable subthreshold swing and high 

ON/OFF current ratio (Fig. 2-33b). In amorphous or nanocrystalline materials, the definition 

of threshold voltage is different than in standard MOSFETs. In non-crystalline devices, such 

as amorphous-Si TFTs, the threshold voltage is estimated by extrapolating the linear plot of 

ID vs. VG curve measured at low drain bias (Fig. 2-33a) [126]. This is different from the 

threshold voltage determination using extrapolation of the √ID vs. VG curves for MOSFETs 

operated in saturation (high VD). 

The peak value of the transconductance curve in Fig. 2-33c indicates a high mobility in 

these devices. A hump in the transconductance curve is observed for gate voltage of about 1 

V due to the effect of the grain boundaries. The origin of the transconductance hump will be 

discussed in relation with Fig. 2-34. 

The effective mobility μeff in amorphous TFTs is a function of the band mobility and of 

the number of trap states which are actually fil led in the conduction band: 

μeff = μn·nfree/(nfree+ntrapped), where μn is the band mobility (or the mobility in the extended 

states), nfree is the free electron concentration at SiO2-ZnO interface and ntrapped is the 

concentration of trapped electrons in the grain boundary. The effective mobility μeff is a weak 

function of the gate voltage in the subthreshold regime [100]. Indeed, both nfree and ntrapped 

increase with increasing gate voltage, hence the factor  free free trappedn n n  is almost bias-

independent.  
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Fig. 2-33: Basic characteristics at room temperature. (a) Linear and (b) log scale drain current versus gate bias 
and gate length. (c) Transconductance as a function of gate bias and gate length. (d) Drain current as a function 
of drain bias. 
 

For nanocrystalline TFTs, the mobility is significantly dependent on gate voltage 

because the ntrapped states become filled at a much lower VG and the number of filled nfree 

states increases roughly linearly with VG. Thus, the TFT behaves similarly to a crystalline-Si 

MOSFET and [nfree = (εOX/q·TOX) ·(VG-VTR)], where q is the electron charge; εox and Tox are 

the permittivity and thickness of the gate dielectric. VTR is called the transitional threshold 

voltage and is approximately the point where all ntrapped become filled. Hence, the mobility is 

quasi linearly dependent on the gate voltage, μeff = μn·M·(VG-VTR), where M is a constant 

coefficient [127]. This relationship holds until nfree >> ntrapped when μeff reduces essentially to 

μn. Dosev reported a mobility of about μn ~ 1 cm2/Vs for nanocrystalline Si TFTs, dominated 

by the grain boundaries [128]. However, our devices behave more like a conventional 

MOSFET, in particular at low temperature where the traps are filled; the hump disappears and 
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the mobility is far higher than in amorphous or polycrystalline ZnO TFTs [129, 130]. 

For shorter devices, the drain current level and the transconductance peak value 

increase and show channel length modulation with the drain bias. Fig. 2-33d shows the 

measured ID(VD) characteristics where no kink effect [131] is observed. In other words, the 

device is fully depleted (FD) at room and lower temperature. It can be expected from these 

experimental results (high transconductance, low threshold voltage) that a good quality 

interface exists between ZnO film and gate insulator. 

As we mentioned above, the device operation properties look very similar with those in 

FD SOI MOSFETs. Threshold voltage roll-off is observed for shorter gate lengths. However, 

the temperature influence on the device properties is different. The origin of the difference in 

device performance between FD MOSFETs and our ZnO TFTs comes from the effect of the 

grain boundaries. This effect strongly depends on temperature and should be considered for 

the modeling of nanocrystalline ZnO TFT. 

The temperature dependence of the drain current is shown in Fig. 2-34, which indicates 

that the current level increases slightly at higher temperatures. On the other hand, the 

comparison of Fig. 2-33c (300 K) and Fig. 2-34b (77 K and 300 K) shows that the field-effect 

mobility, deduced from the transconductance curve (μFE ~ gm), also increases at higher 

temperature. This behavior is opposite of the usual mobility behavior found in SOI devices, 

where the threshold voltage and mobility increase as the temperature is lowered (see Chapter 

2.1).  

 

  
Fig. 2-34: Temperature-dependent characteristics of ZnO TFT. (a) Drain current versus gate bias and 
temperature. (b) Drain current and transconductance versus gate bias at 77 K and 300 K. 
 

Similarly to the activation of the back-channel in SOI MOSFETs [132], a parasitic 
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channel hump can be observed in transconductance (see Fig. 2-33c). However, in 

nanocrystalline ZnO TFTs, this hump is due to the grain boundaries. This ―parasitic‖ channel 

(or hump) is easily activated by increasing the thermal energy and therefore can be observed 

at room temperature (Fig. 2-34b, 300 K). As the temperature decreases, the hump in the 

transconductance decreases and totally vanishes below 100 K (Fig. 2-34b). 

     In section 2.3.5., the temperature dependence of the mobility, threshold voltage and 

subthreshold slope will be discussed in details (Fig. 2-40, 2-41, 2-42) with respect to the 

extraction methods described in the next section. 

 

2.3.4. Parameter extraction methods 

 

Many techniques for parameter extraction in bulk Si, amorphous Si, poly-Si and SOI 

FETs have been documented in the literature. After examining their capability to match the 

experimental data in our ZnO TFTs, four mobility models were retained and further 

developed. Other techniques were found to be either unfit to reproduce the measurements or 

contained too many adjustable parameters for a meaningful interpretation of mobility 

behavior. 

 

(a) Y-function method 

Y-function parameter extraction technique [46] addressed in Chapter 2.1.2 has been 

tested for ZnO TFTs. Fig. 2-35 shows the Y-function and the transconductance at 77 K. The 

tangent in strong inversion regime, where the effective mobility Eq. (2.2) holds, provides a 

threshold voltage of about 6 V, higher than expected from the turn-on ID(VG) characteristics 

of Figs. 2-33 and 2-34. The MOSFET threshold voltage can also be evaluated from the linear 

extrapolation of ID(VG) or, more accurately, from the peak of the second derivative of the 

current [45, 133]. Figs. 2-33 and 2-34 show that the positions of gm inflection point and 

extrapolated VTH tend to coincide.  

Normally, the difference between transconductance peak voltage and threshold voltage 

is less than 1 V in Si MOSFETs and even in back-channel SOI MOSFETs. However, in ZnO 

TFT, there is a much larger gap (~ 6-8 V at 77 K and 300 K, Figs. 2-34b and 2-33c) between 

these voltages, which cannot be reproduced with Eqs. (2.1) and (2.2). 
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Fig. 2-35: Classic Y-function, ID/√gm, and transconductance versus gate bias at 77 K. 

 

In other words, the Y-function technique cannot be used to extract accurate parameters 

despite the device operation mechanisms look similar in ZnO TFT and SOI MOSFET. This 

technique is unable to reproduce the large gap between the transconductance peak position 

and threshold voltage at either low temperature or at room temperature. Therefore, conclusion 

is that a different mobility model is required for the nanocrystalline ZnO TFTs.  

 

(b) Modified Y-function method 

A variant of the Y-function technique has been proposed for SOI MOSFETs operated in 

strong inversion regime and at low-temperature.  

The effective mobility model was modified as [134]: 

 

(2.33) 

 

where Qinv = Cox(VG-VTH) is the inversion charge, Q0 is a critical charge and θm = Cox/Q0. 

The drain current Eq. (2.1) in ohmic regime becomes [70]: 

 

(2.34) 

 

The resulting transconductance equation is  

 

(2.35) 

 

The derivative of the transconductance Eq. (2.35) yields the transconductance 

maximum gm,max value: 
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(2.36) 

 

This model is able to match our experimental results. Fig. 2-36a shows a convincing 

numerical fit, using Eq. (2.34), of the measured ID(VG) characteristics. The calculated and 

measured gm,max values are almost the same and, more importantly, the difference between 

VTH and gm peak voltage is accurately reproduced. 

The Y-function [46, 70], Y, becomes:  

 

(2.37) 

 

The idea of this alternative extraction method consists in constructing a simple linear 

function by the proper combination of Eqs. (2.34) and (2.35). This is achieved by dividing the 

current squared by the transconductance and then by taking the cubic root.  

To extract the parameters, we use the modified Y-function, Ym, defined as: 

 

(2.38) 

 

Fig. 2-36b shows the Ym(VG) curve composed with the experimental results. It features 

a wide linear region, corresponding to Eq. (2.38) and useful for extracting the parameters. 

Similarly with the Y-function method, threshold voltage is the intercept point with X-axis and 

the mobility is extracted from the slope of the Ym(VG) curve. Coefficient θm is determined 

from the gate voltage corresponding to the transconductance peak (Eq. (2.36)). Table 2.1 

confirms that the parameters extracted with Ym(VG) from the experimental data are essentially 

identical to those resulting from the numerical fit of the measured ID(VG) curve (Fig. 2-36a). 

 

Table 2.1. Comparison between the parameters extracted from the experiment with the modified Y-function and 
those resulting from the numerical fit of ID(VG) curves in Fig. 2-36a (LG = 20 μm, →G = 100 μm, NF = 4).  
 

 șm VTH (V) μ0 (cm2/Vs) 

Extracted @ 77 K 0.072 3 79 

Calculated @ 77 K 0.075 2.8 75 
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Fig. 2-36: (a) Measured and calculated drain current versus gate bias at 77 K. Modified Y-function model is used 
for the calculated drain curve. (b) Ym curve calculated from measured data versus gate bias at 77 K. 
 

This comparison validates the modified Y-function extraction technique. Nevertheless, 

this model does not consider the grain boundary effect, hence its application to 

nanocrystalline ZnO TFTs cannot be justified. Physics-based mobility models, which account 

for the grain boundaries, are presented in the following. 

 

(a) Revised Shur’s model 

When several distinct conduction mechanisms govern the carrier transport, they can be 

combined according to Matthiessen‘s mobility law. Shur et al. [100] have originally proposed 

the following expression for the effective mobility in poly-Si TFTs: 

 

(2.39) 

 

where k = 3.4 cm2V-3.7s-1 and m = 2.7 are respectively the low-field constant and exponent of 

the power-law mobility, and μ0 is the drift mobility. This equation predicts the saturation of 

the effective mobility at high VG, which is not the case in ZnO TFTs. We propose a revised 

model which includes the mobility degradation at high vertical field: 

 

(2.40) 

 

Coefficient θ summarizes the contributions of surface scattering and series resistance.  

In this model, we take into account the regular carrier transport mechanism (via μ0) as 

well as the variable effect of grain boundaries thanks to k and m coefficients, which have to 

be determined for each TFT. As shown in Fig. 2-37a, this revised mobility model was 

validated by fitting the experimental curve with Eq. (2.40) and the parameters listed in Table 
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2.2. 

The device parameters can actually be determined without curve fitting. The proposed 

extraction method proceeds in two steps separating the dominant carrier transport 

mechanisms according to the gate bias regions. 

 

Step 1. In the low-field region, the conduction mechanism is governed by the grain 

boundary activation. The power-law mobility was considered and the second term in the 

square brackets of Eq. (2.40) was neglected. The mobility degradation factor can also be 

ignored at this stage.  

Eq. (2.40) simplifies to the following approximation: 

 

(2.41) 

 

The drain current and transconductance equations are given by: 

 

(2.42) 

 

and 

 

(2.43) 

 

Eqs. (2.42) and (2.43) yield: 

 

(2.44) 

 

From the Eq. (2.44), the tangent was plotted at low VG as shown in Fig. 2-37b. From 

the slope of the linear ID/gm curve, the coefficient m was extracted. The intercept point with 

X-axis yields the threshold voltage. The coefficient k is calculated with the drain current 

value at VG-VTH = 1 V, as suggested in Eq. (3.42). 

 

Step 2. In the high-field region, the dominant effect on the carrier transport is regular 

drift-diffusion. Therefore, the first term in the square brackets in Eq. (2.40) is neglected, 

whereas the mobility attenuation factor has to be considered. 

Eq. (2.40) takes the form: 
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The drain current equation is calculated with the Eq. (2.45): 

 

(2.46) 

 

The differentiation of Eq. (2.46) leads to the high-field Y-function: 

 

(2.47) 

 

As shown in Fig. 2-37c, the experimental Y(VG) curve is indeed linear for VG > 8 V. 

The mobility μ0 is extracted from the slope.  

 

  

 
Fig. 2-37: (a) Measured and calculated drain current versus gate bias at 77 K. The revised Shur‘s model of Eq. 
(2.40) and the parameters listed in Table 2.2 were used for the calculated drain current. (b) ID/gm (VG) and (c) 
ID/√gm(VG) curves composed with the experimental data. The lines show the linear extrapolations corresponding 
to Eqs. (2.44) and (2.47), respectively. 

 

The mobility attenuation factor θ is determined by plotting 1/√gm  

 

00 )(

11




 AVVAI THGD



)(
1

0

5.0'

THG

m

D

D

VVAY
g

I

I














 )(1
11

0

THG

m

VV
Ag

 



Chapter 2: Advanced Devices and Typical Effects 

71 

(2.48) 

 

which also depends linearly on VG at high field. 

In order to confirm the validity of this method, the parameters extracted analytically 

with those resulting from numerical curve fitting are compared in Table 2.2. The agreement is 

good for coefficient k and very good for all other parameters. 

 

Table 2.2. Comparison between the parameters extracted from the experiment with our revised Shur‘s model 
and those resulting from the numerical fit of ID(VG) curves in Fig. 2-37a (LG = 20 μm, →G = 100 μm, NF = 4). 
 

 M k ș VTH μ0 

Calculated @ 77 K 2.1 1.5 0.0025 1.5 V 95 cm2/Vs 

Extracted @ 77 K 2.2 2 0.0022 1.4 V 92 cm2/Vs 

Extracted @ 300 K 2.15 3.4 0.03 0.8 V 125 cm2/Vs 

 

(d) Revised Babis’ model 

Extending Levingson‘s work [135], Farmakis et al. [136] have proposed an exponential 

mobility (Babis‘ model) which accounts for the effect of grain boundaries at low field: 
 

(2.49) 

 

where μg is the grain-related mobility, NGB is the number of grains, kT/q is the thermal energy, 

tZnO is the ZnO layer thickness and εZnO is its permittivity.  

Our approach is to simplify this model by reducing the number of parameters and 

adding the mobility degradation factor θ. The final expression for the effective mobility we 

propose is: 

 

(2.50) 

 

where μg and S summarize the impact of grain boundaries and μ0 is the inter-grain mobility.  

As demonstrated in Fig. 2-38 by the comparison of measured and calculated ID(VG) 

curves, this model is capable of correctly reproducing the experimental results. We attempted 

to develop a two-step extraction procedure similar to that exposed for the revised Shur‘s 

model. Unfortunately, at low VG, the exponential dependence of the mobility makes the 

parameter extraction more complicated. No convincing analytical treatment, comparable with 
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Eqs. (2.41-2.44), could be devised for the low-field region. However, using numerical curve 

fitting (more or less accurate according to the VG region used for extraction), we obtain 

parameter values comparable with those extracted with the previous models. 

 

 

Fig. 2-38: Measured data and calculated ID(VG) curve using the revised Babis‘ model of Eq. (2.50). 

 

At high VG, the exponential mobility term becomes negligible and we recover the case 

described by Eqs. (2.45-2.48). 

 

2.3.5. Temperature-dependent characteristics 

 

The proposed models and extraction methods have been applied to experimental data 

collected in a wide range of temperatures. We discuss the temperature dependent behavior of 

the main TFT parameters (subthreshold swing, threshold voltage and mobility) in the 

following. 

 

(a) Subtreshold swing 

Fig. 2-39 shows the subthreshold swing (SS) determined from the Log ID(VG) curves 

between hump and threshold voltage. The swing decreases slowly with temperature, from 

700 mV/decade at room temperature to less than 600 mV/decade at 77 K. The sub-linear 

SS(T) variation can be explained by the usual increase of the density of interface traps at low 

temperature and especially by the grain boundary action. The swing is large in TFTs 

compared to advanced MOSFETs mainly because the buried oxide is very thick (30 nm). 

Similar SS values are actually obtained by operating the back channel of fully depleted SOI 
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MOSFETs with thick BOX [137]. 

The subthreshold voltage swing values indicate a reasonable interface trap density (Dit 

< 1012 cm-2eV-1), calculated from: SS ≈ 2.3(kT/q)·(1+qDit/Cox). In this simplified relation, the 

coupling between the buried channel and the top surface ZnO defects is neglected which 

means that Dit is actually overestimated. Pseudo-MOSFET results in thin-film SOI wafers 

show that the defects at unpassivated surface (case of our ZnO TFTs) can dominate the swing 

value [138]. Nevertheless, the relatively low density of traps gives evidence of the good 

quality of the ZnO film and ZnO-SiO2 interface. 

 

 

Fig. 2-39: Subthreshold swing versus temperature and gate width. 

 

As shown in Fig. 2-33, an additional conduction mechanism is evident below the 

threshold voltage leading to humps in drain current and transconductance. Such humps reveal 

a parasitic channel behaving like the activation of the opposite channel in fully depleted SOI 

MOSFETs. However, in nanocrystalline ZnO TFT, the parasitic channels are formed along 

and across the grain boundaries [139]. Indeed, the grain boundaries have strong impact on the 

device operation in the subthreshold regime. The parasitic current paths are easily activated 

by increasing the thermal energy of free carriers. This is why the hump is notorious at room 

temperature and disappears at 77 K. 

 

(b) Threshold voltage 

Fig. 2-40 shows the threshold voltage obtained with two proposed parameter extraction 

methods. VTH decreases at high-temperature same as in a bulk-Si and FDSOI devices (Fig. 2-

17b). Indeed, the effect of the grain boundary potential barrier is also decreased when the 
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supply of the thermal energy increases at high temperature. The threshold voltage rate-of-

change with temperature (ΔVTH/ΔT ≈ 2.η m↑/K) is small compared to back-channel SOI 

MOSFETs and can be further reduced by using thinner oxides and/or high-k dielectrics. This 

limited shift in VTH indicates that the characteristics of nanocrystalline ZnO TFTs are 

relatively stable against variations in temperature, which is attractive for applications. 

 

  
Fig. 2-40: Threshold voltage versus temperature and gate length. (a) Modified Y-function and (b) revised Shur‘s 
model were used for the extraction. 
 

(c) Mobility 

The mobility variation with temperature is informative about the carrier transport and 

scattering mechanisms. At low temperature, the dominant scattering process in MOSFETs is 

the Coulomb scattering due to ionized bulk impurities and surface defects [140]. As the 

temperature increases, the dominant scattering mechanism changes from Coulomb to phonon 

scattering. Therefore, the mobility is normally expected to decrease as the temperature rises 

from 100 K to room temperature as a result of phonon scattering with higher thermal energy. 

However, an opposite behavior is observed in nanocrystalline ZnO TFT.  

Fig. 2-41 shows the mobility variation with temperature as obtained with our extraction 

techniques. The mobility is improved at room temperature despite the enhancement of 

phonon scattering. It follows that the transition from Coulomb-dominated to phonon-

dominated scattering cannot be observed in nanocrystalline ZnO TFT. This difference 

between ZnO TFTs and SOI MOSFETs originates from the nanocrystal grain boundaries. In 

TFTs, the carriers have to cross the grain boundary potential barrier in order to contribute to 

the drain current. A higher thermal energy makes it easier for electrons to overcome the grain 

boundary potential barrier. As a result, the mobility increases at high-temperature. 
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Fig. 2-41: Mobility versus temperature and gate width. (a) Modified Y-function and (b) revised Shur‘s model 
were used for mobility extraction. 
 

2.3.6. Conclusion 

 

 We have investigated the electrical properties of the ZnO TFT in a wide temperature 

range in order to clarify the transport mechanisms. Fully depleted nanocrystalline ZnO TFT 

with bottom-gate structure shows very promising properties: high ON/OFF current ratio and 

carrier mobility (~ 100 cm2/Vs which can be further improved by proper surface cleaning and 

passivation [86]), reasonable subthreshold slope (0.6 V/decade, to be minimized with thinner 

high-K dielectrics), and relatively small variations with temperature. These results all point 

on the good quality of the interface between ZnO and SiO2 layers.  

From the low-temperature measurements, appropriate mobility models and simple 

parameter extraction methods have been proposed for ZnO TFTs. These models and methods 

have been tested from 77 K to 300 K. Convincing curve fitting and reasonable parameters 

have been obtained with our models. The revised Shur‘s model (Eq. (3.40)), which considers 

the grain boundary effect, is reliable and easy to implement. 
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     In this chapter, we show how the coupling effects can impact the carrier mobility 

behavior. In order to avoid any debate on the accuracy of mobility evaluation, we have 

selected the magnetoresistance technique. 

 

3.1. Introduction 

 

Advanced planar MOSFET and FinFET transistors fabricated on SOI wafers, which will 

sustain CMOS scaling, have been characterized under high magnetic field. In transistors with 

very thin and short body, the carrier mobility is a complex parameter because several channels, 

gates and interfaces coexist and interact. It has been shown that the effective mobility (i) can 

be enhanced by appropriate back-gate biasing [141], (ii) is different at front, back and 

sidewalls interfaces [142], and (iii) basically departs from the ‗universal mobility‘ law [143].  

In parallel, an interesting debate develops on the accuracy of mobility characterization. 

In short MOSFETs, series resistances impede the transconductance whereas parasitic 

capacitors affect the split-CV method. All techniques but one rely on critical assumptions like 

effective channel length and width, equivalent oxide thickness and dielectric constant, film 

and BOX thickness, etc. The exception is the geometrical magnetoresistance (MR) which 

stands as the most accurate and indisputable technique for mobility measurements.  

Our results show that this method is also effective in both planar (FD-SOI) and vertical 

(FinFET) transistors with ultrathin body. For the first time, we apply the magnetoresistance for 

evaluating not only the properties of separate channels, but also their interaction mechanisms. 

Unconventional mobility curves with multi-branch aspect are recorded when two or more 

channels coexist. They are explained by the variations in effective field and centroid of the 

inversion charge [144]. A marked difference is observed between front and back channels as 

well as between planar and FinFET devices. The impact of temperature, gate length and fin 

width on the carrier mobility is also reported in this chapter. 

The novelty of this work is to apply the geometrical MR technique for resolving the 

mobility behavior in state-of-the-art planar FD-SOI MOSFETs and vertical FinFETs with 

ultrathin body and multiple channels. We focus on the detailed study of mobility variations 

induced by the interplay of the various channels. 

In this chapter, three different types of the advanced devices have been probed. Planar 

FD SOI MOSFETs, fabricated at LETI, feature 10 nm thick film and 145 nm BOX. HfO2 

(EOT = 1.75 nm) and TiN were deposited as gate oxide and gate metal. All devices have 
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undoped body and operate in fully-depleted mode. Also, the triple-gate and double-gate 

FinFETs, studied in Chapter 2.2, were tested for magnetoresistance mobility.  

High magnetic field (1 ‒ 11 T), supplied by a super-conducting magnet, was applied 

perpendicularly to the wafer surface. The ID (VFG) transfer characteristics were recorded with a 

semiconductor parameter analyzer (Agilent HP 4155). The drain bias was kept in the ohmic 

region of operation (VD = 10 mV). The measurements were performed at low temperature to 

minimize the impact of phonon scattering. Small samples have been cut from the wafer and 

bonded on special home-made holder compatible with the cryostat dimentions. 

 

3.2. Theory of Magnetoresistance Mobility 

 

     Hall and MR are dual effects. Under magnetic fields, carriers are submitted to the 

Lorentz force which is compensated by the Hall field. If the carriers are not deflected, a Hall 

voltage can be measured and the magnetoresistance is negligible. However, when the Hall 

field is inhibited, there is no Hall voltage and the magnetoresistance is maximum. Typical 

Hall effect structures require four or more contacts and long Hall bar (L >> W) shown 

schematically in Fig. 3-1a. As shown in Fig. 3-1b, when MOSFETs are short (L << W), the 

Hall electric field induced by an applied magnetic field is nearly shorted by the long end 

contacts. The Corbino disk shown in Fig. 3-1c is equivalent to an infinitely wide sample. It 

has one contact in the center of a circular sample and the other contact is at the periphery, 

eliminating the Hall field and voltage [145]. The geometries of Fig. 3-1 b and c make 

themselves well suited to magnetoresistance measurements. 

 

 
Fig. 3-1: Schematically illustration of the sample structures for Hall and magnetoresistance measurement: (a) 
Long sample (L >> W) for Hall measurement; (b) short sample (L << W) and (c) Corbino disk for 
magnetoresistance measurement. 
 

(a) Basic magnetoresistance mobility 

     If the conduction is anisotropic, involving multiple-energy carriers and if carrier 
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scattering is energy dependent, the resistivity of a semiconductor generally increases when 

the sample is located in a magnetic field. This is the physical magnetoresistance effect (PMR). 

In a short and wide sample submitted to magnetic field, the carriers run off a medium straight 

line, raising the resistance of the sample. This phenomenon depends on the sample geometry 

and is known as the geometrical magnetoresistance (GMR). The magnetic field induced 

resistance change is due to resistivity changes of the semiconductor as well as to geometrical 

effects and is larger the higher the sample mobility is (Eq. (3.1)). Geometric effects are 

usually stronger. For example, in GaAs at room temperature and in a magnetic field of 1 T, 

the PMR is about 2 %, whereas the GMR is about 50 %. [45]. In long sample, the Hall field 

opposes the Lorentz force and MR is weak, simply reflecting the carrier energy distribution. 

In short MOSFETs or in Corbino disk, the Hall field is suppressed by the end contacts which 

enables the Lorentz force to deviate the carrier trajectory.  

Such ‗geometrical‘ MR is maximum, given by [146-150]: 

 

(3.1) 

 

where R0 is the channel resistance at zero magnetic field, RB at high magnetic field and μMR 

is the magnetoresistance mobility.  

The MR mobility is higher than the drift mobility, depending on the type of scattering 

mechanism. The basic Eq. (3.1) is valid for any combination of gate biases and free from 

considerations regarding the device architecture, oxide and film thickness, gate stack, doping, 

strain, etc. Plotting RB/R0 against the squared magnetic field results in a straight line (Fig. 3-

2c), the slope of which yields µMR. The MR mobility is a pristine and robust parameter, most 

valuable for examining the transport mechanisms in MOSFETs [147-150]. The lone 

requirement is to utilize high magnetic field (B ~1/µ) such as to obtain a measurable MR 

effect. 

 

(b) Advanced magnetoresistance mobility 

This method was developed in our group [150] in order to consider the effect of series 

resistance. When the series resistance RS value is relatively larger (ș > 0.1 ↑-1), it is needed to 

be considered in the device behavior. The coefficient ș can be extracted according to the Eq. 

(2.8) and expressed as:  
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where și depends on oxide properties and is normally small [70]. The total resistance R0 = 

V0/I0, includes the gate modulated channel resistance RC and the constant series resistance 

RS: R0 = RS + RC. There is no physical reason that RS depends on magnetic field because the 

mobility in the heavily doped source and drain is modest. However, the channel resistance 

changes with B as shown in Eq. (3.1). Thereby, the total MR becomes: 

 

(3.3) 

 

     The MR ratio given by  

 

(3.4) 

 

is certainly impacted by any significant series resistance. The basic MR mobility would be 

underestimated by the prefactor )/( SCC RRR  . The series resistance can be determined 

from the ș value at zero magnetic field, using Eq. (3.2). The method involves neglecting și 

and using μ0 extracted from the Y-function. Knowing the series resistance RS and the total 

resistance R0, the channel resistance RC can be determined.  

 

(c) Magnetotransconductance mobility 

     This method has been proposed for mobility extraction in GaAs MESFETs [151]. It 

uses the magnetotransconductance ratio which, from Eq. (2.3) and (3.1), gives as: 

 

(3.5) 

 

     This technique offers an accurate value of the MR mobility only when coefficient ș is 

independent of magnetic field. Otherwise, the transconductance ratio is more severely 

affected by șB than the drain current ratio. 

 

3.3. Magnetoresistance Mobility in Planar FD SOI MOSFETs 

 

3.3.1. Front-channel mobility 

 

     Fig. 3-2 shows typical characteristics for planar SOI MOSFET in a range of magnetic 
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field. The threshold voltage VTHF (Fig. 3-2a) and subthreshold slope (inset of Fig. 3-2a) are 

hardly affected by the magnetic field whereas the drain current level (Fig. 3-2a) and 

transconductance (Fig. 3-2b) reduction reveal a clear MR effect, reflecting mobility 

degradation. The MR-induced reduction in mobility comes with a decrease of mobility 

degradation factor ș, deduced with Eg. (2.8), under high magnetic field (inset of Fig. 3-2b). 

The MR ratio RB/R0 is plotted versus B2 which, as shown in Fig. 3-2c, results in straight lines 

being achieved for a range of front-gate bias VFG. This confirms the GMR effect and Eq. (3.1). 

The carrier mobility is simply obtained from the slope and a typical curves of μMR(VFG) are 

reproduced in Fig. 3-2d. 

     The basic MR mobility curve, measured with grounded substrate (VBG = 0 V), is shown 

in Fig. 3-2d. At low front-gate bias (VFG < 1.5 V), the electron mobility is dominated by 

Coulomb scattering on ionized centers which are gradually screened by the formation of the 

strong inversion layer at front-channel. A maximum is reached (400 cm2/Vs @ VFG = 1.5 V) 

and then the mobility decreases due to higher vertical field. 

     Mobility curves extracted by other methods were also plotted in Fig. 3-2d. The 

variation of the effective mobility μeff and field-effect mobility μFE has been included for the 

sake of comparison. These curves have been calculated by taking 

FE0THG0eff )]VV(1/[   and Doxm
2

THG0FE VWC/Lg)]VV(1/[    

with zero magnetic field. The parameters, μ0, VTH and ș are delivered by the Y-function and 

Eq. (2.8). As usual, the field-effect mobility is lower than the effective mobility measured 

under identical bias conditions. This discrepancy comes from the neglect of the electric field 

dependence of the mobility in the transconductance derivation [152, 153]. The field-effect 

mobility is lower because of the overestimated action of the vertical electric field (square 

bracket with ș factor). 

     Fig. 3-2d also presents an excellent correlation between μMR and μeff under strong 

inversion regime. In weak inversion, their behavior is quite different. The reason is that the 

effective mobility extraction is inaccurate in this range, where Y-function is no longer suitable. 

The MR mobility is always higher than the effective mobility because the drift mobility 

is proportional to the mean relaxation time  ~ . Under high magnetic field, the carrier 

scattering and transport mechanisms are very complicated. The MR mobility changes as 

5.03 )/(~ MR , whereas the Hall mobility changes as  /~ 2
H . The ratio between drift 

mobility and MR mobility ,))/((r 5.033
MR   can be determined for single-band 
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conduction and each type of scattering. For instance, under relatively weak magnetic field, 

122
0 B , we get 6.1rMR   for acoustic phonon scattering, 7.1MRr  for Coulomb 

scattering and 1MRr  for isoenergetic carriers [147, 154]. In ultra-thin film, several 

mechanisms (subband splitting, mixing of various scattering processes, band nonparabolicity, 

anisotropy of effective mass, relaxation time and so on) make more complex the physical 

scenario that is beyond the scope of this work. Nevertheless, our results in Fig. 3-2d indicate 

a scattering factor of 7.16.1rMR   in agreement with the theory. 

  

 

 
Fig. 3-2: Typical device behavior under high magnetic field and carrier mobility. (a) Drain current (linear scale) 
and (b) transconductance as a function of front-gate bias for a range of magnetic fields. Inset in Fig. 3-2a shows 
subthreshold Log ID(VFG) curves. Inset in Fig. 3-2b shows the mobility degradation factor versus magnetic field. 
(c) RB/R0 as a function of square of magnetic field at different front-gate bias. Inset of Fig. 3-2c shows cross-
section of the FD SOI MOSFET and direction of applied magnetic field and current flowing. (d) Mobility 
curves extracted with various methods versus front-gate bias. Planar MOSFET with LG = 1 μm, →G = 10 μm, 
VD = 10 mV, VBG = 0 V, T = 100 K. 
 

In our case, the relatively large series resistance (ș ≈ 0.4 ↑-1 @ B = 0 T) has an effect 

on carrier mobility. Therefore, when we compared basic MR and advanced MR, the latter 
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exhibits higher mobility peak and lower mobility degradation at high field due to the 

consideration of the channel resistance. As for the magnetotransconductance method, carrier 

mobility is dramatically overestimated in particular at high gate bias where the coefficient ș 

dominates. As mentioned above, this technique is acceptable only when coefficient ș is 

constant at different magnetic field. This is not our case (inset of Fig. 3-2b). Since ș decreases 

with B, the bracketed term including ș in Eq. (3.η) is smaller than 1 and becomes a source of 

errors. Therefore, the magnetotransconductance method is not accurate. For this reason, we 

will consider the basic MR and advanced MR methods in the rest of this chapter. 

 

(a) Effect of the back-gate biasing on front-channel mobility 

 

 

 
Fig. 3-3: Effect of back-gate bias (VBG = +20 V). (a) Drain current and (b) transconductance as a function of 
front-gate bias for a range of magnetic fields. Inset in Fig. 3-3a shows RB/R0 versus the square of magnetic field 
at different front-gate bias. Electron mobility versus (c) front-gate bias and (d) effective field.  
 

In chapter 2.1 and 2.2, the coupling effect was introduced based on the variation of the 
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threshold voltage with VBG. Carrier mobility behavior also depends on the opposite-gate bias. 

A non-conventional mobility behavior is observed in Fig. 3-3 where the back-gate is based 

near inversion (VBG = +20 V < VTHB). Drain current level (Fig. 3-3a) and transconductance 

peak (Fig. 3-3b) decrease with magnetic field. In the transconductance curve (Fig. 3-3b), 

there are two peaks. First peak reflects back-channel activation. When the VFG increases, the 

back-channel threshold voltage VTHB is reduced by coupling effect [14] and back-channel is 

opened for VFG ≈ 0.4 ↑. Further increase of ↑FG eventually turns on the front-channel, giving 

to the second transconductance peak. The resistance ratio RB/R0 linearly increases versus B2 

even if we have two channels (front- and back-channel) activated at the same time (inset Fig. 

3-3a).  

The mobility curve in Fig. 3-3c is explained as follows. The back-channel is first 

switched on and the mobility in the back-channel increases with VFG because Coulomb 

scattering is screened by the forming inversion layer. Once the back-channel mobility reaches 

a peak (550 cm2/Vs @ VFG = 0.7 V), it starts decreasing. However, at VFG ≈ 1 ↑, the front-

channel is being activated and then tends to dominate the total current. The combination of 

front- and back-channel mobilities results in a mild second peak (at VFG = +1.5 V) before 

resuming a normal decrease at higher vertical field.  

     Fig. 3-3d shows the same mobility data as a function of the absolute value of the 

effective field |Eeff|, calculated as [143]: 

 

(3.6) 

 

where Qinv = Cox (VFG – VTHF), Ș = 0.η; εSi and CBOX are silicon permittivity and capacitance 

of the buried oxide; F  is the Fermi potential. A more accurate value of Eeff can be computed 

from numerical simulations as demonstrated in [143]. Even if Eq. (3.6) is rather crude, it 

points out a striking mobility behavior.  

The plot in Fig. 3-3d is very informative, showing that two mobility values can 

correspond to the same field. This multi-branch mobility behavior confirms recent data 

obtained by split-CV method [144]. For |Eeff| ≈ 0.3 MV/cm, the two mobility values are very 

different because they are associated with distinct carrier profiles within the body. The 

increasing and decreasing mobility regions reflect the electron transport at the back and front 

channels, respectively. The mobility peaks at minimum field (Eeff ≈ 0). Note that the 

‗universal‘ mobility curve is totally different and fails to explain these features.  
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     In Fig. 3-4, the mobility was measured at higher VBG (VBG = +40 V and 60 V). The 

impact of the magnetic field still leads to drain current (Fig. 3-4a) and transconductance peak 

(Fig. 3-4b) decrease. The carrier concentration in the back-channel (which now opens at 

lower VFG ≈ 0↑) is increased and screens more efficiently the Coulomb scattering. As a result, 

the mobility peak is very large (750 cm2/Vs). Again, the mobility reduction for VFG > 1 V is 

slowed down by the activation of the front-channel. Further increase in VBG (VBG = +60 V, 

Fig. 3-4d) causes the mobility peak to decrease simply because the vertical field at the back-

channel becomes stronger. However, the overall mobility behavior is similar with the 

previous case VBG (VBG = +20 V). In particular, two different mobility values can again be 

obtained at same field. 

 

 

 
Fig. 3-4: Impact of high back-gate bias. (a) Drain current, (b) transconductance and (c) electron mobility versus 
front-gate bias at VBG = +40 V. (d) Electron mobility as a function of effective field for VBG = +60 V. 
  

(b) Effect of gate length and temperature on front-channel mobility 

     Geometrical magnetoresistance mobility was measured in shorter (LG = 350 nm) 
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device. Typical impact of magnetic field and mobility curves are reproduced in Fig. 3-5. 

Drain current level and mobility degradation factor were reduced with magnetic field. 

Compared with long device (Fig. 3-2d), lower mobility and threshold voltage were obtained 

in short device due to the process-induced neutral defects [155] and charge sharing effect 

[156], respectively. However, the general mobility tendency is similar to that obtained in 

long-channel device. 

 

 
Fig. 3-5: Typical magnetoresistance effect in shorter length device (VBG = 0 V). (a) Drain current and (b) 
electron mobility versus front-gate bias for a range of magnetic fields. Inset in Fig. 3-5a shows mobility 
degradation factor as a function of magnetic field. 
 

The unusual mobility curve was also demonstrated in short device. Like for the long 

device, the influence of the applied magnetic field is obviously involved in current behavior 

(Fig. 3-6a) even when the two channels are simultaneously stimulated. Therefore, plotting the 

carrier mobility versus effective field, two different values can be produced at the same 

effective field according to the variation of carrier distribution centroid within the transistor 

body (Fig. 3-6b). 

Carrier mobility curves obtained in short device were summarized in Fig. 3-7. Global 

trend of the mobility behavior is exactly as in long device. By the interrelation of the front- 

and back-channel, uncommon mobility curve shape was achieved. The maximum mobility 

value is determined by the strength of the vertical field (applied back-gate bias). When the 

front-channel prevails (VFG > 1 V), all mobility curves tend to merge. But, in the region 

where the back-channel dominates (VFG < 0.4 V), the carriers are very different according to 

the vertical field induced by the bottom gate. 
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Fig. 3-6: Impact of back-gate bias in short device. (a) Drain current as a function of front-gate bias for a range of 
magnetic fields at VBG = +40 V. Inset of Fig. 3-6a shows transconductance versus front-gate bias (b) Electron 
mobility versus effective field for VBG = +40 V. 
 

 
Fig. 3-7: Electron mobility as a function of front-gate bias at different back-gate bias in short (LG = 350 nm) 
device. The left regions of the curves are very different as they depend on the vertical field induced by the back-
gate voltage. 
 

Carrier mobility also depends on temperature. In Fig. 3-8, the mobility curves were 

measured with various back-gate biases at higher temperature (T = 200 K). Carrier mobility 

is less than at lower temperature (T = 100 K, Fig. 3.2-3.4) due to enhanced phonon scattering 

[69]. The ‗universal mobility‘ behavior is negated whatever the temperature when the back-

channel is concurrently opened with the front-channel. 
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Fig. 3-8: Impact of temperature on magnetoresistance mobility. Electron mobility versus front-gate bias for 
various back-gate biases at T = 200 K. 
 

3.3.2. Back-channel mobility 

 

  
Fig. 3-9: Back-channel behavior under high magnetic field. (a) Drain current as a function of back-gate bias in a 
wide range of magnetic field at VFG = 0 V. Inset of Fig. 3-9a shows the corresponding transconductance. (b) 
Back-channel mobility curves deduced with various methods as a function of back-gate bias at VFG = 0 V. 
 

Reciprocal experiments were conducted by probing the back-channel. Fig. 3-9a and 

inset of Fig. 3-9a show the impact of the magnetic field on the back-channel current and 

transconductance for VFG = 0 V. In Fig. 3-9b, the correlation between several different 

methods of mobility measurement is presented. While the GMR trends are the same, the 

quantitative results may differ from the front-channel ones. The electron mobility is slightly 

larger at the back-channel than at front-channel (Fig. 2-3b) thanks to the better interface 

quality of the back Si-SiO2 interface. Measurement at room-temperature, where phonon 

scattering is intense, showed a larger difference between front and back mobilities [142]. This 
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point will be verified by comparing front and back mobility values measured at higher 

temperature (T = 200 K, see Fig. 3-12b). Compared with front-channel, in back-channel, the 

mobility decreases more slowly for high VBG. The reason is that mobility degradation factor ș 

of the back-channel (0.015 V-1 at B = 0 T) is smaller than in front-channel (inset Fig. 3-2b) 

due to the difference in oxide thickness. 

 

(a) Coupling of back-channel mobility on front-gate bias 

 

 
Fig. 3-10: The impact of front-gate bias (VFG = +0.5 V) on back-channel behavior. (a) Drain current and (b) 
transconductance versus back-gate bias in a range of magnetic field for VFG = 0.5 V. Electron mobility as a 
function of (c) back-gate bias and (d) effective field extracted from Fig. 3-10a. 
 

Back-channel mobility depends on the applied bias at front-gate. Front-channel did not 

turned on for VFG = +0.5 V: a single transconductance peak was observed at B = 0 T (Fig. 3-

10b). A relatively strong effect of the magnetic field is shown in Figs. 3-10 a and b where the 

drain current and transconductance decrease more notably because the back-channel mobility 

is larger. However, by applying VFG = +0.5 V, the vertical electric field is decreased and the 
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centroid of the inversion charges is moved to the middle of the silicon body. Therefore, the 

scattering at the back interface is less. This is why, the carrier mobility is improved compared 

with VFG = 0 V (Fig. 3-9b). When carrier mobility is plotted versus effective field (Fig. 3-

10d), the mobility behavior follows the ‗universal mobility‘ plot because front-channel did 

not switch on. 

 

 
Fig. 3-11: Influence of high front-gate bias (VFG = +1 V). (a) Drain current and (b) transconductance versus 
back-gate bias and magnetic field. Electron mobility as a function of (c) back-gate bias and (d) effective field. 
 

An interesting case of coupling effect is observed for VFG = 1 V (Fig. 3-11). Here, 

front-channel was slightly opened at the beginning of the measurement, providing small 

current and non-zero transconductance value at VBG = -50 V (Fig. 3-11c and d). The front-

channel inversion is gradually enriched as VBG increases from -40 V to 0 V, reducing linearly 

VTHF but the mobility is still modest because the vertical field is very high. For VBG > +20 V, 

the effects of field reduction and formation of back-channel cumulate, causing a clear 

mobility improvement by a factor of 3. Fig. 3-11d shows the mobility as a function of |Eeff| 
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calculated with the reciprocal of Eq. (3.6). We again observe a dual-branch plot, albeit its 

signature is different from that in Fig. 3-3d and Fig. 3-4d. The lower and upper branches 

respectively correspond to the front and back mobilities. 

 

(b) Effect of gate length and temperature on back-channel mobility 

 

The expected mobility variation with gate length and/or temperature was also measured 

for the back-channel. Compared with the nominal case (LG = 1 μm at T = 100 K), mobility is 

degraded in short device (LG = 350 nm at T = 100 K, Fig. 3-12a) or at high temperature (LG = 

1 μm at T = 200 K, Fig. 3-12b) with/without front-gate biasing. At 200 K, back interface 

mobility is quite higher than the front interface one (Fig. 3-8). This is evidence of better back-

channel interface quality than at the front Si-high K interface. 

 

 
Fig. 3-12: Impact of gate length and temperature on back-channel mobility. (a) Electron mobility versus back-
gate bias at different front-gate bias in short (LG = 350 nm) and long (LG = 1 μm) device. (b) Electron mobility 
as a function of back-gate bias for various front-gate biases in long device at different temperature (T = 100 K 
and 200 K). 
 

3.4. Magnetoresistance Mobility in FD SOI Triple-Gate FinFETs 

 

     We now discuss, for the first time, the interesting case of FinFET operation under 

magnetic field. 

 

3.4.1. Front-channel mobility 
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FinFETs are more complicated devices, where two lateral channels, a top channel, and 

even a back-channel (activated with VBG > VTHB) coexist. The geometric MR is effective in 

the horizontal channels (if WF/L >> 1) which behave as planar MOSFETs. Interestingly, the 

MR also develops in the vertical channels despite the aspect ratio (HF/L < 1) is apparently 

unfavorable.  

  

 

 
Fig. 3-13: Typical magnetoresistance effect on triple-gate SOI FinFET. (a) Drain current and (b) 
transconductance as a function of front-gate bias for a range of magnetic fields. Inset of Fig. 3-13a shows cross-
section of the tir-gate SOI FinFET and direction of applied magnetic field and current flowing. (c) RB/B0 versus 
square of magnetic field at different front-gate bias. (d) Mobility curves extracted with different techniques 
versus front-gate bias. 
 

As shown in Fig. 3-13, drain current and transconductance were reduced with magnetic 

field in SOI triple-gate FinFET. The resistance ratio (RB/R0) also linearly increases versus B2 

(Fig. 3-13c). These phenomena mirror typical effect of magnetic field and make possible to 

extract the MR mobility in our FinFET. As a result, a typical bell -shaped mobility curve is 

reproduced in Fig. 3-13d. The relationship between MR mobility, effective mobility and 

field-effect mobility curves at high electric field follows the explanation given for Fig. 3-2d. 
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The MR mobility is decent (500 cm2/Vs) but smaller than in planar MOSFETs (Fig. 3-2). The 

dependence on gate voltage is accentuated suggesting a stronger effective field. Due to the 

3D structure, it is difficult to compute Eeff and to discriminate the mobility values in the 

lateral and horizontal channels. 

 

(a) Effect of back-gate bias on front-channel mobility 

      

 

 
Fig. 3-14: Impact of back-gate bias (VBG = +10 V). (a) Drain current and (b) transconductance versus front-gate 
bias and magnetic field. Electron mobility as a function of (c) front-gate bias and (d) effective field. 
 

The shape of the curve changes qualitatively when the measurement is performed with 

positive VBG (Fig. 3-14 and Fig. 3-15). In Fig. 3-14, a back-gate bias (VBG = +10 V) slightly 

larger than the back-channel threshold voltage (VTHB = 7 V) was applied. The sequential 

opening of the back and front channels leads to a hump in ID(VFG) curves (Fig. 3-14a) and a 

double peak in transconductance (Fig. 3-14b). During the early activation of the back-channel, 

the mobility increases with bias up to VFG = 0 V. Then, the opening of the front-channel 
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prevents the mobility to drop as rapidly as in Fig. 3-13d. Only for VFG = 0.4 V does the 

effective field increases enough to degrade the mobility. An attempt to plot mobility versus 

effective field (still calculated with Eq. (3.6) given the large fin width) is shown in Fig. 3-14d. 

A multi-branch mobility basically similar to that in planar MOSFETs was observed. 

The same measurement as in Fig. 3-14 was carried out with higher VBG (VBG = +20 V, 

Fig. 3-15). In this case, back-channel was switched on earlier than in the previous case (VBG 

= +10 V, Fig. 3-14 c and d). Therefore, mobility starts to increase as the effective field drops 

for higher VFG. A maximum is reached and then a wide, nearly flat area of mobility curve is 

visible before the front channel turns on. Finally the mobility, dominated by the top channel, 

decreases with field. Interestingly, we now observe a multi-branch mobility but the curve is 

anti-clock wise. 

 

  
Fig. 3-15: Effect of high back-gate bias (VBG = +20 V). (a) Drain current as a function of front-gate bias and (b) 
electron mobility versus effective field. 
 

(b) Effect of gate length and temperature 

     In general, carrier mobility is improved in longer device and lower temperature as 

described several times. The same tendency was demonstrated in triple-gate SOI FinFETs in 

Fig. 3-16. As discussed in Fig. 3-14 and Fig. 3-15, the influence of the back-gate on front-

channel mobility results in merging curves at high field and very different behavior when the 

back-channel dominates. 
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Fig. 3-16: Effect of gate length and temperature on carrier mobility in triple-gate SOI FinFET. Electron mobility 
as a function of front-gate bias for various back-gate biases at (a) different gate length (LG = 50 nm and 70 nm) 
and (b) different temperature (T = 100 K and 200 K). 
 

3.4.2. Back-channel mobility 

 

    Back-channel mobility in triple-gate SOI FinFETs shows typical shape curves for VFG = 

0 V (Fig. 3-17a). On the other hand, unusual coupling-induced mobility behavior is noted by 

applying front-gate bias. In Fig. 3-17b, front-channel was activated from the beginning of the 

measurement (for VBG = 0 at VFG = +0.5 V), resulting in a flat carrier mobility (275 cm2/Vs). 

With increasing back-gate bias, vertical electric field decreases and mobility increases. At 0.4 

MV/cm, back-channel is turned on and mobility records a maximum value of 450 cm2/Vs. 

Then, according to the increase of vertical field by VBG, mobility reduces again.  

 

 
Fig. 3-17: Back-channel mobility in triple-gate SOI FinFET. (a) Mobility curves as a function of back-gate bias 
for VBG = 0 V. (b) Mobility versus effective field for VFG = 0.5 V. LG = 50 nm, WF = 500 nm, VD = 10 mV, T = 
100K. 
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     The general trends of mobility variation with gate length and temperature are compiled 

in Fig. 3-18. They are consistent with our previous observations.  

 

 
Fig. 3-18: Effect of gate length and temperature on back-channel mobility in triple-gate FinFET. Carrier 
mobility as a function of back-gate bias for various front-gate biases (a) at different gate length (LG = 50 nm and 
70 nm) and (b) temperature (T = 100 K and 200 K). 
 

     An intriguing question subsists: how can the lateral channels contribute to the 

geometrical MR for vertical magnetic field? In order to document the answer, we have simply 

removed the top gate and repeated the measurements in double-gate configuration. The 

details are presented in the next section. 

 

3.5. Magnetoresistance Mobility in FD SOI Double-Gate FinFETs 

 

     The magnetic field is still applied perpendicular to the wafer surface. The field is in the 

plane of the inversion charge, perpendicular to the current flow (inset Fig. 3-13a). Vertical 

DG FinFET, introduced in Chapter 2.2, has only two lateral gates and they are laid in parallel 

with the magnetic field. Basically, when a channel is placed in parallel with magnetic field, 

there is no geometric magnetoresistance and the physical magnetoresistance in bulk 

MOSFETs is negligible. The transverse Lorentz force is indeed compensated by the Hall field. 

Nevertheless, the influence of the magnetic field is substantial and large enough for 

extracting MR mobility (Fig. 3-19). This in-plane MR is a unique effect in MOSFETs and 

looks as contradicting the Hall theory. Our interpretation is that geometric MR effect is here 

induced by the double-gate configuration.   
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     In vertical DG FinFETs, the potential is equal at the two lateral gates as controlled by 

the same gate bias VFG. Therefore, Hall effect is inhibited and the Lorentz force is free to 

deflect electrons. This DG effect is similar to a geometrical MR without constraints on the 

aspect ratio (HF/L). The geometric MR is visible even when the channel length exceeds the 

fin width and height (see Fig. 3-20). An additional effect in DG MOSFETs is the location of 

the centroid of inversion charge at the middle of the body, which reduces carrier bumping on 

the Si/SiO2 interface.  

 

 
Fig. 3-19: Impact of magnetic field in vertical DG SOI FinFET. (a) Drain current and (b) transconductance 
versus front-gate bias and magnetic field. Inset of Fig. 3-19a shows cross-section of the vertical DG FinFET and 
direction of applied magnetic field, current flowing, Lorentz force and Hall field. (c) RB/B0 versus B2. (d) 
Mobility curves extracted with different methods. 
 

     The MR mobility of the vertical DG FinFET, together with effective and field-effect 

mobilities, is shown in Fig. 3-19d. Their aspect and correlation are similar to other device 

architectures. The peak mobility is 20 % smaller than in triple-gate FinFETs as a consequence 

of an inferior quality of the high-k/Si interface on the sidewalls than on the top flat surface.  
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     Additional measurements were performed in narrower devices and lower mobility was 

recorded (Fig. 3-20). This result suggests that in narrower FinFETs surface scattering is 

increased, causing mobility degradation.  

 

 
Fig. 3-20: Effect of fin width on MR mobility. Basic MR mobility as a function of front-gate bias for different 
fin width in vertical DG SOI FinFET. 
 

3.6. Conclusion 

 

     Low-temperature magnetoresistance measurements, performed in advanced SOI 

MOSFETs, provide direct information on the carrier mobility behavior. The mobility curves 

have different signatures according to the channel under inspection: front, back, planar FD-

SOI MOSFET, or FinFET. When more than one channel is activated, we observed dual-

branch mobility curves which infirm the applicability of the ‗universal mobility‘ model to 

ultrathin FD transistors. The electron mobility is in general large with variations related to the 

peculiar architecture, thickness and process flow of each transistor. We have demonstrated the 

feasibility of geometrical magnetoresistance even in advanced devices with ultrathin body 

and planar or vertical configuration. These results open the door to detailed study of 

scattering mechanisms in nano-size films.  

The geometrical MR measured in FinFETs with triple-gate or double-gate is a striking 

result which deserves a theoretical investigation. Numerical simulations presented in [157] 

need to be enriched in order to confirm and fully understand the suppression of the Hall field. 

Another avenue to explore is the discrimination of front- and back-channel mobilities from 

our multi-branch curves. The ―mobility spectrum‖ technique looks in this respect very 

attractive [158-159]. 
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     The goal of this thesis is to explore memory application in advanced SOI transistors by 

taking advantage of the coupling effects discussed in the previous chapters. We first 

investigate, in this chapter, non-volatile memory device that can be achived by modifying the 

SOI material such as the BOX can store permanent charges. We propose innovative 

mechanisms for memory programming and reading and demonstrate the performance and 

advantages of FinFET flash cells. 

 

4.1. Introduction 

 

Advanced SOI devices with alternative buried insulator (BOX) are investigated for 

several applications: self-heating reduction [160], strain transfer [161], fin etch definition 

avoiding undercut [162] and non-volatile charge storage [163, 164]. In this chapter, we study 

advanced FinFETs fabricated on SOI with a multi-stack SiO2-Si3N4-SiO2 (ONO) buried 

insulator, for innovating flash memory application with remote charge trapping. 

Until now, various architectures of flash memory cell have been proposed [165-168]. 

Cells with a top floating gate for charge trapping are the most widely used structure [168]. 

The storage medium and the conduction interfaces are usually located within the same gate. 

For this reason, the trapped charges in the floating gate are disturbed during reading operation 

[169]. After many programming/erasing cycles, the stored information can gradually be lost 

by reading operation due to degraded tunneling oxide layer.  

     For the further evolution of flash memory cell, one of the most important issues is the 

cell downscaling. Beyond the 22 nm technology node, the channel length and the tunneling 

oxide thickness reduction will cause several critical problems. Shorter gate length, which 

requires thinner tunneling oxide to control the device, could compromise the cell reliability 

and the flash memory function. Thinner tunneling oxide improves the device controllability 

and allows faster programming/erasing time and operating bias lowering. But, the reduction 

of the tunneling oxide induces a degradation of the retention time. 

A silicon-oxide-nitride-oxide-silicon (SONOS) structure, where the nitride film is used 

for charge storing, was proposed [163, 167. 170-173]. Usually, the SONOS device is made by 

stacked layers on Si substrate. The SONOS flash memory cell is attractive because the device 

fabrication process is simple and the nitride charge trapping layer provides good retention 

time. For these reasons, the SONOS devices are very promising candidates for flash memory 

cells.  
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In our work, the devices under test have thick ONO BOX and are not especially 

optimized for charge trapping and flash memory application. Indeed, a FinFET memory with 

ONO buried storage layer may need more complex control circuit and slightly larger silicon 

area if the back-gate is used as the second gate for programming/erasing operation. 

Nevertheless, this device has definite merits. The key advantage of FinFETs with buried 

ONO layer is that analog/logic and memory operations can be carried out within the same 

cell due to the decoupling of the storage and read operations. Another benefit of this 

technology is the separation of the programming interface from the reading interface. The 

charges are trapped in the buried nitride layer and remotely sensed at the front interface by 

gate coupling. As the device scales down, the degradation of the nonvolatile retention time is 

lessened. Indeed, the back tunneling oxide thickness can remain unchanged while the front-

gate oxide can still be made thinner following the state-of-the-art MOS technology. Therefore, 

the separation of the two interfaces improves the reliability of the memory device and reduces 

the charge disturbance problems.  

This work focuses on the principles and physical mechanisms as revealed by 

experimental data. We demonstrate that memory effects are induced by trapped/detrapped 

charges in the Si3N4 buried insulator. Two possible programming/erasing mechanisms are 

proposed. One is the carrier tunneling by applying a high back-gate bias and the other is the 

carrier injection obtained with a moderately high drain voltage. In the latter case, according to 

the polarity of the trapped charges and their location along the channel, four different current 

levels can be achieved leading to double-bit nonvolatile memory states. The drain current 

hysteresis induced by charge trapping/detrapping will be studied by scanning the back-gate 

bias. In order to clarify the charge trapping and coupling mechanisms, the temperature of 

operation was used as additional experimental parameter. Systematic measurements reveal 

that the memory effect depends on the bias condition, geometrical parameters and 

temperature. 

 

4.2. Nonvolatile Memory 

 

     Nonvolatile memories (NVMs), like EPROM, EEPROM and Flash, retain stored 

information even when they are disconnected from power supply. In this section, the main 

different types of NVM and their programming mechanisms will be introduced. A special 

focus will be given on flash memories especially using nitride as storage medium. The last 
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part will briefly present the resistive memories which are considered as the best alternative to 

flash devices. 

 

4.2.1. Classification of nonvolatile memory 

 

     Before describing each type of nonvolatile memory, it is essential to know the 

difference between Random-Access Memory (RAM) and Read-Only Memory (ROM). 

Basically, the read process of RAM and ROM are identical by having x-y address for each 

cell to distinguish it from other cells. As we describe below, some ROM devices have also 

rewriting capability despite they require a special procedure for programming/erasing. The 

main difference between RAM and ROM is the frequency of reading and writing. RAM has 

equal opportunity of reading and writing while a ROM has more frequent reading than 

rewriting.  

     Base on this background, several types of NVM are explained in brief. 

- ROM: Once the memory content is fixed by the manufacturer, it cannot be changed 

permanently. 

- Programmable ROM (PROM): It is also called fusible-link ROM. The setting of each 

bit is locked by fuse or antifuse. Rewriting is prevented and stored information is 

maintained permanently. The difference from ROM is that writing is performed after 

the device is fabricated.  

- Erasable Programmable Read-Only Memory (EPROM): In order to program and 

erase, EPROM must be removed from circuit. EPROM is programmed electrically 

and erased by exposure to ultraviolet radiation. 

- Electrically Erasable Programmable Read-Only Memory (EEPROM): Unlike for 

EPROM, information is stored and erased electrically in system. Not only can it be 

programmed/erased electrically, but also selectively by byte address. 

- Flash Memory: Flash memory is a nonvolatile storage device that can be erased and 

programmed by electrical pulse. Flash memory was developed as combined features 

of EPROM and EEPROM. A block, sector or page consisting of a large number of 

memory cells can be programmed or erased at the same time. 
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Fig. 4-1: Classification of nonvolatile memories. 

 

4.2.2. Flash memory cell 

 

     Flash memory was invented by Masuoka at Toshiba in 1980. The name of ―Flash‖ was 

suggested because the erasing operation takes place in a large block. Several types of flash 

architectures have been proposed [165-168]. They can be divided in terms of access type 

(parallel or serial) and programming/erasing mechanisms (Fowler-Nordheim tunneling, hot 

carrier injection, etc.). Among all of the flash architectures, nowadays two are considered as 

industry standards: (i) NAND flash which, provides only serial access but higher density and 

low cost [168, 174], therefore, it becomes the dominant technology for data storage and 

memory cards, and (ii) common ground NOR flash is a mainstream technology for embedded 

memories which require random memory access of the stored data [175, 176]. The ―NOR‖ 

and ―NAND‖ flash names are related to the way the cells are arranged in an array, through 

rows and columns in NOR/NAND like structure. Notice that NOR flash cell is usually 

programmed by hot carrier injection and erased by Fowler-Nordheim tunneling whereas 

NAND flash only utilizes Fowler-Nordheim tunneling for both programming and erasing. 

 

(a) Conventional flash cell structure 

Fig. 4.2 shows a conventional flash cell structure. This cell is composed by a floating 

gate (FG) surrounded by insulator and a transistor which is electrically governed by the 

coupled control gate (CG). The FG, electrically isolated, acts as the additional electrode for 

the flash cell: the charges injected and maintained in the FG lead to the modulation of the 

threshold voltage VTH (seen from the CG) of the transistor. Once the charges are injected in 

the FG, the tunneling and blocking dielectrics become efficient potential barriers. Obviously, 

the reliability of the device is guaranteed by the quality of the dielectrics, especially the 
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tunneling oxide located between the FG and the transistor channel. In order to allow carrier 

tunneling through it with reasonable bias level while preserving the retention of the cell, its 

thickness is usually in the range of 6-7 nm.  

 The most successful device in flash memory category is the SONOS (Semiconductor-

Oxide-Nitride-Oxide-Semiconductor) type architecture, in which the insulator consists of a 

silicon nitride layer enveloped by silicon oxide (SiO2) layer. The main advantages of SONOS 

architecture are scalability and simple fabrication process [177]. The replacement of the 

floating gate with a trapping medium like nitride allows an easier integration (compared to 

the former poly-Si FG approach), preserving the storage medium from subsequent process. 

Moreover, the entire thickness of the gate stack is decreased, reducing voltage and time for 

the programming/erasing operation. 

 

 

Fig. 4-2: Cross-section of a conventional floating gate flash cell. 

 

(b) Reading operation 

The stored information in a flash cell can be determined by measuring the threshold 

voltage of the transistor. The most common method is the reading of the current at a fixed 

control gate bias. As shown in Fig. 4-3, logic ―1‘ and ―0‖ are determined according to the 

threshold voltage variation (Δ↑TH) that is proportional to the charges stored in the FG: ―0‖ 

and ‗1‘-states refer to erased and programmed states. Hence, once an appropriate amount of 

charges is stored and the corresponding Δ↑TH defined, the choice of the reading voltage can 

be performed. The current of the ‗1‘-state is defined as the high level while the ‗0‘-state or 

low level current is almost zero. Therefore, in flash cell, the logical state ‗1‘ is achieved with 

positive stored charges (or no electron charge) in the FG providing a large reading current. By 

contrast, the logical ‗0‘-state is completed with electron charge leading to zero reading 

current. 
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Fig. 4-3: Floating gate flash cell reading principal. 

 

(c) Programming/Erasing operation 

Today, two programming/erasing mechanisms are used for commercial standard: hot-

carrier injection and Fowler-Nordheim tunneling.  

 

 

Fig. 4-4: Scheme of the hot carrier injection for NOR flash programming operation. 

 

 

Fig.4-5: Scheme of the Fowler-Nordheim tunneling for NAND flash (a) programming and (b) erasing operation. 
NOR flash also use FN tunneling for erasing. 
 

(i)  Hot-Carrier Injection (Fig. 4-4): a bias is applied at the CG to activate the channel of 

the transistor while a high drain voltage allows to achieve the saturation mode (VD >> 

VCG – VTH). When the electrons move from source to drain, if the drain voltage is 
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sufficiently high, they obtain enough energy to turn into hot carriers due to the 

longitudinal electric field induced in the drain pinch-off region. If their energy level 

exceeds the oxide-silicon energy barrier, they can be injected into the floating gate. 

Note that the injected electrons are mostly located near the drain terminal. 

(ii)   Fowler-Nordheim tunneling (Fig. 4-5): the quantum-mechanical tunneling through 

the insulator is induced by a strong vertical electric field. Charges can move from/into 

the body into/from FG across an oxide, the thickness of which is sufficiently thin to 

allow turning on tunneling transport without destroying its dielectical properties. 

Positive charges are injected by applying negative CG bias. Vice versa, positive CG 

bias leads negative charge injection into the FG. 

 

(c) Reliability 

Flash cell has to satisfy two main properties: one is endurance and the other is 

retention. Commercial specifications require that the cell still operates properly after 105 

program/erase cycles and data retention longer than ten years. 

(i)  Programming/Erasing endurance. Cycling is known to cause a degradation of the 

cell properties, mainly due to the deterioration of the tunneling oxide, which limits 

the endurance characteristics [178]. Actually, endurance problems are mostly given 

by single-cell failure after program/erase cycles. The evolution of the 

programmed/erased threshold voltage mirrors the variation of the net fixed charge in 

the tunneling oxide. In particular, in NOR flash cells, the variation of the threshold 

voltage with cycling comes from the generated traps in the tunnel oxide and at the 

interface near the drain side of the channel [179]. This phenomenon is known as hot 

electron degradation. The damage generated by charge injection during F-N tunneling 

programming concerns the degradation of the NAND cells. Cycling wear-out should 

be reduced by appropriate device fabrication and by optimization of the tunneling 

oxide processing. 

(ii)   Data retention. The loss of stored charges in the FG should be as low as possible to 

obtain sufficient retention time. The main reason of charge loss is the defects in 

dielectrics (especially tunneling oxide) [179]. Primarily, the defects in the tunneling 

oxide are generated by the cell programming/erasing. The parasitic leakage current, 

caused by oxide defects, degrades the retention time. Therefore, the optimized 

processing of the tunneling oxide is an essential factor to achieve a reliable flash cell. 
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4.2.3. Future evolution of flash memory cell 

 

The scaling of the flash cell has been straightforward in the last twenty years. However, 

both NOR and NAND flash cells face technological challenges for further scaling down to 

sub 22 nm technology node. Since many generations, a NOR cell is larger than a NAND one. 

The different cell size results from the array organization and the cell layout. In a NOR cell, 

every two cells share a contact for random access capability. Therefore, it needs more 

lithography to define the cell. Moreover, the hot-carrier injection programming does not 

permit an aggressive scaling of the cell gate length. On the other hand, the main physical 

limits that frustrate further scaling of the NAND cells are: (i) the cell to cell interference due 

to the parasitic capacitive coupling between two neighboring floating gates and (ii) the 

degradation of the cell driven by the control gate [180].  

The channel shrinking will also be restricted by the tunneling oxide scaling and the 

inter gates oxide-nitride-oxide stack. Tunneling oxide thickness reduction is limited by cell 

reliability, primarily after many programming/erasing cycles. The thinning of the tunneling 

oxide layer improves the memory window and programming speed, but results in retention 

time degradation. A high field stress on thin oxide increases the leakage current density at low 

electric field that is known as stress-induced leakage current (SILC) [181, 182]. SILC is 

accentuated in thinner oxide (tunneling oxide in flash cell) and can give rise to bit failure and 

retention time degradation. Cell programming is also limited by erase saturation due to 

parasitic charge injection from the control gate through blocking oxide, balancing the hole 

injection from the substrate [183]. SONOS architecture is not free from these issues for sub 

22 nm technology nodes.  

 

 
Fig. 4-6: Evolved architectures of floating gate flash cell: (a) the nanocrystal cell [184] and (b) the TANOS cell 
[187]. 
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In order to overcome scaling limitations, while maintaining the high integration density, 

silicon nanocrystal floating gate architecture has been proposed (Fig. 4-6a) [184]. It exhibits 

deeper electron storage trap (~ 3 eV) than nitride (1~2 eV), longer charge retention time, less 

temperature sensitivity and fast programming/erasing speed. However, nanocrystal floating 

gate has several weaknesses like: (i) small threshold voltage shift, (ii) existence of percolation 

paths between source and drain, (iii) not enough nanocrystal dots when the channel length is 

shortened leading to retention degradation. This technology requires very complex 

fabrication procedure and careful control of the nano-dot size, dimension, shape and density 

because these are critical elements for the performance and reliability of the memory cell 

[185, 186]. 

In 2003, an evolved structure was reported based on SONOS concept [187]. The 

control gate and block oxide of SONOS device were replaced with tantalum metal gate and 

Al 2O3 high-k materials. This structure prevents the gate electron injection during erasing 

operation, improving the erase saturation problems. According to the inventors, it allows a 

relatively thicker tunneling oxide and avoids the retention issue. However, the proposed 

structure is far from being straightforward since it includes the adoption of several new 

materials (high-k blocking oxide and metal gate). Careful optimization of the charge trapping 

cell is required for the success of next flash generation. 

 

 
Fig. 4-7: 3D flash memory architecture [188]. (a) Birds-eye view of BiCS flash memory, (b) concept of 
‗Macaroni‘ body vertical FET and (c) birds-eye view SEM image of BiCS memory. 
 

In 2007, in order to achieve ultra-high density, Bit-Cost Scalable (BiCS) flash memory 

was proposed by Toshiba [188]. Stacked electrode plates are connected all together by poly-

silicon. Single-bit, selected by a bit line and select gate SG, is accessed at the cross point of a 

memory string and control gate plate. A series of vertical FETs is formed and NAND 

operation is possible with SONOS-type memories. Macaroni-shaped body is completed by 



Chapter 4: Carrier Trapping in ONO FinFETs  

 

109 

the deposition of very thin poly-silicon on the gate dielectric. At the center of the body, 

dielectric filler is employed for an easier integration process. Thinner body thickness 

provides better controllability of the subthreshold characteristics of depletion-mode 

polysilicon transistors. This architecture opens the path for three-dimensional integration for 

dense NAND arrays, but requires very complicate integration processing. 

 

4.2.4. Alternative nonvolatile memory 

 

     In addition to charge trap flash memories, new physical mechanisms and new materials 

are under investigation today for nanoscale memories. In order to overcome the performance 

and scalability issues of the floating gate device, several innovative architectures have been 

proposed as alternative nonvolatile memories. They are briefly described to complete a wide-

angle view of the NVM landscape.   

 

(a) Ferroelectric RAM (FeRAM) 

FeRAM has been commercialized despite the technology is more relaxed than for flash 

memory. Ferroelectric materials (PZT: PbZrxTi1-xO3, SBT: Sr1-yBi2+xTa2O9, BLT: Bi4-

xLaxTi3O12) are spontaneously polarized by an electric field via lattice deformation. In PZT 

FeRAM, the polarization of Ti atoms can be changed by an electric field between two stable 

positions.  

 

 
Fig. 4-8: FeRAM cell. (a) 2D FeCAP and (b) improved 3D FeCAP [189]. TE, FD and BE are the top electrode, 
the ferroelectric layer and the bottom electrode, respectively. 
 

The cell architecture (Fig. 4-8) is similar with DRAM (1 Transistor / 1 Capacitor). 

FeRAM programming is accomplished by the voltage applied to the capacitor plates. 

According to the polarity, ‗1‘- or ‗0‘-state is set. The main benefits of FeRAM are fast read (< 
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100 nm) and programming (< 100 ps), good endurance (> 1012 cycles) and low-power 

consumption [189]. 

FeRAM faces scaling issues. Shrinking the cell size and capacitor surface degrades the 

read signal, leading to complicated 3D capacitor structure (Fig. 4-8b). In addition, the 

materials tend to stop being ferroelectric when they are too small [190]. Another challenge is 

the integration of ferroelectric layers into a standard CMOS process.  

 

(b) Magnetoresistance RAM (MRAM) 

MRAM use the permanent magnetization of a ferromagnetic material to store the data. 

MRAM is composed of a thin oxide pass transistor, a single magnetic tunnel junction (MTJ), 

top and bottom sense electrodes and tow orthogonal program (bit and digit) lines. The MTJ 

are formed by two ferromagnetic (pinned and free) layers, separated by a thin tunnel barrier. 

One plate (pinned layer) is a permanent magnet set to a particular polarity, the other (free 

layer) has the polarity changeable by external magnetic field generated by the current flowing 

in the bit and digit lines. Reading is performed by measuring the MJT electrical resistance. If 

the polarity of the two magnetic layers enters in parallel alignment, the resistance is low (‗1‘-

state). By contrast, an anti-parallel alignment of the two layers results in a high resistance 

(‗0‘-state). Fig. 4-9 shows the MRAM architecture [191]. 

  

 

Fig. 4-9: MRAM cell, schematically showing the programming operation mode [191]. 

 

MRAM offers non-destructive read with a very fast access time, radiation hardness and 

excellent read/write endurance (> 1014 cycles for write-intensive storage). Main 

disadvantages are: high write current [185], power consumption and scaling. Data retention 

ability depends on the total volume of magnetic material in the free layer [185]. Additionally 
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in high density MRAM arrays, the induced field can overlap the adjacent cells, leading to 

potential false writes. 

 

(c) Resistive RAM (RRAM) 

     RRAMs utilize various kinds of dielectric layers as an insulating or semiconducting 

component sandwiched between metal electrodes to make a capacitor-like structure [192]. 

The concept is that the current though the dielectric can be changed in a reversible fashion by 

applying short voltage (or current) pulse (< 100 ns). The mechanism is not completely 

clarified yet. According to the resistance of the storage layer, ‗1‘- or ‗0‘-state is distinguished. 

There are two types of RRAM, based on the unipolar/bipolar resistive switching in a binary 

oxide layer (Fig. 4-10a) [193] or on the bipolar dissolution of a conductive path into a solid 

electrolyte (Fig. 4-10b) [194]. 

     RRAM exhibits a good read signal window and scalability [195]. The critical issues is 

the statistical variation of programming voltage/current and programmed resistance. 

Retention ability (for 10 years at 85 °C) has still to be demonstrated [185].  

 

 

Fig. 4-10: TEM cross-sections of (a) a MRAM cell based on Cu2O binary oxide [193] and (b) 20 nm conductive 
bridging RAM (CBRAM) with the corresponding I/V curve [194]. 
 

(d) Phase change memory (PCM) 

 

PCM uses the unique ability of alloys based on chalocogenides (especially, GeSbTe) 

[196, 197] to be stable in both the crystalline (low resistance) and amorphous (high 

resistance) phases. The most fascinating property of this material is the reversible switch 

between two stable phases. Local temperature increase by Joule effect is employed to change 

the two states. Above the critical temperature, the crystal nucleation and growth occur and 

lead to the crystalline phase. The amorphous state is restored by increasing the temperature 
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over the melting point and subsequent quick cooling down. Therefore, programming requires 

a relatively high current to heat up and change the local phase. Basically, the PCM cell has 1 

Transistor and 1 Resistor (1 T/1 R). Fig. 4-11 shows two different types of PCM cell 

architectures [198, 199]. 

     PCM offers fast writing, good endurance (>1012) [185], low-voltage reading and 

superior data retention (300 years at 85 °C) [200]. The integration of chalocogenide alloys 

into a standard CMOS process is still a challenge.  

 

 

Fig. 4-11: PCM cell architecture proposed by (a) Horii et al. [198] and (b) Lankhorst et al. [199]. 

 

4.3. Charge Trapping in Si3N4 Buried Layer 

 

In this section, we introduce the device structure under test: FinFETs fabricated on 

ONO buried layer. We also describe the action of the injected charges in the nitride buried 

layer on the drain current behavior.  

SOI wafers with SiO2/Si3N4/SiO2 multi-layer buried insulator were used as starting 

material. Wafers with ONO BOX were fabricated with the Smart-CutTM technology. The 

multi-layer BOX was composed of SiO2 (2.5 nm), Si3N4 (20 nm) and SiO2 (70 nm), from top 

to bottom. Si3N4 is an appropriate material for flash memory due to the large density of traps, 

but Si–Si3N4 interface degrades the transistor performance [162]. This is why the Si3N4 

buried layer was sandwiched within two SiO2 layers. The upper SiO2 layer is very thin (2.5 

nm) and enables carrier tunneling. The Si film thickness was 65 nm which defined the fin 

height. Hydrogen annealing was performed to smooth the fin sidewalls. The front-gate oxide 

thickness is 1.8 nm. TiSiN grown by LPCVD was used as gate material. The fabrication was 

completed with conventional CMOS process modules. To investigate the effects of 

geometrical parameters, FinFETs with variable gate lengths LG and fin widths WF were 
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processed at Texas Instruments (USA). The finished devices have fin widths narrower by 

about 45 nm than the masked-defined widths. The number of fingers NF connected in parallel 

varies from 1 to 100. For direct comparison, reference FinFETs with standard SiO2 BOX 

were processed in the same lot. All fabricated devices have undoped body and operate in 

fully-depleted mode. Fig. 4-12 shows the structure and TEM cross-section of the SOI 

FinFETs fabricated on the ONO buried layer. 

 

  
Fig. 4-12: (a) Device structure and (b) TEM cross-section of the SOI FinFET fabricated on the ONO buried 
layer. The ONO stack features SiO2 (2.5 nm), Si3N4 (20 nm) and SiO2 (70 nm) layers, from top to bottom. 
 

The Si3N4 buried layer can trap charges according to the bias condition and fabrication 

process. These trapped charges in the nitride buried layer change the device characteristics 

such as threshold voltage, mobility and subthreshold swing [201]. In Fig. 4-13, we compare 

the characteristics of standard SiO2 BOX and ONO buried insulator. In Fig. 4-13a, the front-

channel threshold voltage observed in the ONO FinFET is lower than in standard SiO2 BOX 

devices. Indeed, during the fabrication process, positive charges were trapped in the Si3N4 

buried layer [162] making the body potential to increase and the front-channel threshold 

voltage to decrease. 

In Fig. 4-13b, we can see a hump in the transconductance curve around VFG = 0 V. This 

hump arises from the activation of the back-channel which can be easily turned on by the 

positive trapped charges in the Si3N4 buried insulator. This explains why the parasitic back-

channel and the hump in the transconductance curve are observed only for ONO FinFET. The 

parasitic back-channel leads to a lateral shift (about 450 mV) of the subthreshold 

characteristics (Fig. 4-13a), larger than the actual shift of the front-channel threshold voltage 

(~ 150 mV) as we can deduce from Fig. 4-13b. The charges trapped in the Si3N4 layer during 

processing can be reset by using proper bias condition. 
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Fig. 4-13: Comparison of (a) drain current and (b) transconductance characteristics between FinFETs with 
standard (SiO2) buried insulator and ONO buried insulator. 

 

History effects can be generated by back-gate bias VBG higher than ±15 V. In Fig. 4-14a, 

ID(VFG) curves are measured for different back-gate biases. The back-gate voltage is 

consecutively changed in the following sequence: 0 V, +15 V, 0 V, -15 V and 0 V. The front-

channel threshold voltage VTHF is lower at positive back-gate bias (+15 V) due to the 

electrostatic coupling between the gates. Therefore, the drain current curve shifts to the left. 

By contrast, VTHF increases for a negative back-gate bias and the drain curve moves to the 

right. This behavior reflects the standard coupling effects in triple-gate FinFETs (Chapter 2.2) 

[82, 202]. 

The key point is that the ID(VFG) curves are not superposed when measured again at 

VBG = 0 V. This demonstrates that nonvolatile charges are effectively trapped in the buried 

nitride layer. The charges, trapped in the ONO BOX during back-gate biasing, modify VTHF 

by electrostatic gate coupling. Negative charges are trapped in the Si3N4 buried insulator by 

applying a positive back-gate bias. The body potential drops and the front-channel threshold 

voltage VTHF is increased. Hence, the drain current curve is shifted to the right compared to 

the initial condition. When positive charges are trapped in the nitride layer with a negative 

back-gate bias, the body potential is raised and VTHF decreases. This is why the drain curves 

are not overlapped when repeating measurement at VBG = 0 V after previous positive or 

negative back-gate biasing. 

Fig. 4-14b shows the transient effect induced by a back-gate bias pulse sequence. We 

changed VBG level as a function of time (positive, zero, negative and zero values). During a 

negative back-gate pulsing, the current is zero but positive charges are being trapped in the 
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nitride buried layer. Therefore, the drain current level is increased when subsequently 

measured, at VBG = 0 V. During a positive back-gate pulsing, not only is the current high but 

also negative charges are trapped in the buried nitride. Due to the extra negative charges, the 

drain current level becomes negligible during the next reading at VBG = 0 V. Consequently, 

when the back-gate bias is switched to zero from a positive value (body potential drop), the 

drain current level is much lower than for switching to zero from a negative bias (body 

potential increase). This is a typical history effect: the drain current level measured at VBG = 0 

V is affected by the previous back-gate condition. Another important feature is the 

dependence of drain current level at VBG = 0 V on the magnitude of the previous back-gate 

pulse. This indicates that the amount of trapped charges is modulated by the value of back-

gate voltage. 

 

  
Fig. 4-14: History effects by charge trapping in nitride layer. (a) Drain current versus front-gate bias, measured 
five times as the back-gate bias was changed in order of 0 V, +15 V, 0 V, -15 V and 0 V. (b) Transient current 
after applying a sequence of pulses to the back-gate. VFG = 0 V, VD = 50 mV, WF = 90 nm, LG = 1 μm, NF = 100. 
 

In Fig. 4-14b, drain current overshoots occur when the back-gate bias is changed from 

0 V to positive voltage or from negative voltage to 0 V. The front-gate is maintained at 0 V 

and the back-gate is driven into (strong) inversion. This overshoot is a well known floating-

body effect (FBE) in SOI [43]. Actually, majority carriers, accumulated during the switch in 

the floating body and at the front-interface, cannot be removed instantly from the body. The 

body potential is increased and the back-channel threshold voltage is lowered due to the 

excess of majority carriers stored in the FinFET body. Thereby, a drain current excess flows 

temporarily. The drain current overshoot reflects not only the recombination process of 

excess holes [43] but also a reverse current at the body/drain (and body/source) junctions 
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when the device returns to steady-state. 

 

4.4. Nonvolatile Memory Effects 

 

4.4.1. Nonvolatile memory effects induced by back-gate bias stress 

 

We have seen that the nitride layer can trap charges by high back-gate biasing. In that 

case, the charge trapping mechanism is Fowler-Nordheim (F-N) tunneling [203]. Tunneling 

occurs from/into the fin body into/from the nitride layer through the 2.5 nm thin SiO2 buried 

layer. Applying a strong vertical electric field (by high back-gate bias) enables carrier 

tunneling through the 2.5 nm oxide layer without damaging its dielectric properties. The 

trapped charges primarily change the back-channel properties, in particular the back-channel 

threshold voltage [204-206]. As our devices are fully-depleted (FD SOI), the front-channel 

characteristics such as threshold voltage, mobility, subthreshold slope, etc can be modified 

via gate coupling effects [14], following the amount of trapped charges in the nitride layer. 

Especially, the shift of ID(VG) curve, resulting from charge trapping/detrapping, will be 

applied for flash memory purpose. 

Fig. 4-15 shows the memory effect induced by charge trapping in the ONO BOX. 

ID(VFG) curves were measured at VBG = 0 V after charge trapping/detrapping into/from the 

Si3N4 layer (Fig. 2-15a). During the 30 s stress at VBG = +50 V and -50 V, the charges 

(electrons) are respectively trapped and detrapped. The front-channel threshold voltage 

variation Δ↑THF after programming depends on the polarity and magnitude of the back-gate 

bias. After 30 s stress at VBG = -50 V, the net positive charge in the nitride (i.e., the detrapped 

electrons or trapped holes) makes the body potential increase. Therefore, the front-channel 

threshold voltage decreases. By contrast, stress at VBG = +50 V results in a net negative 

charge (trapped electrons or detrapped holes) in the nitride which decreases the body 

potential, the front-channel threshold voltage increases.  

Fig. 4-15b depicts the effect of trapped/detrapped charges on the ID(VD) characteristics. 

Applying VBG = -η0 ↑, a high drain current (‗1‘-state) is programmed by positive charge 

trapping. The ‗1‘-state is erased by applying VBG = +50 V. The difference of the drain current 

between ‗1‘-state and ‗0‘-state is large enough for flash memory operation (> 0.4 V, [207]). 

Note that the amount of positive charges trapped in the nitride dielectric for VBG = -50 V is 
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sufficient to activate the back-channel. 

 

 
Fig. 4-15: Typical memory effects induced by back-gate biasing. (a) Drain current as a function of front-gate 
bias and (b) drain bias, measured at VFG = VBG = 0 V after programming with VBG = ±50 V. Front-gate, drain 
and source were grounded during stress. 

 

As a general remark, it is noted that the substrate voltage required to charge the nitride 

layer is very large simply because the BOX (not especially conceived for memory 

application) is too thick. We used high VBG and long stress in order to maximize the trapped 

charge and clearly reveal the main mechanisms. Thinning down the BOX, which is the 

universal trend in advanced SOI technology, will naturally lower the substrate bias below 10-

15 V. For example, the block-oxide thickness can be reduced by a factor of ten down (to 7-10 

nm) and the nitride layer can be only 5-10 nm thick [208-210], bringing the total BOX 

thickness below 20 nm. The thickness optimization for the tunneling oxide (2-3 nm) is matter 

of trade-off between programming speed and long retention.  

An important feature of our FinFlash is the impact of trapped charges which depends 

on the geometrical parameters. Fig. 4-16 shows the influence of the gate length LG on the 

memory effect induced by high back-gate bias. After 30 s stress with VBG = ±50 V, the drain 

current variation is much larger in 100 nm device than in 1 μm devices in Fig. 4-16a. The 

drain current sensing margin (ΔID), required for flash memory application, is defined as the 

difference between the two current levels measured at VFG = 0 V after stress with VBG = -50 

V and VBG = + 50 V. As shown in Fig. 4-1θb, ΔID increases rapidly under 500 nm gate length. 

These size effects can be explained by 3D coupling mechanisms [80, 211]. The 

‗longitudinal‘ coupling component is induced by drain bias. This mechanism, named drain-

induced virtual substrate biasing (DIVSB) is due to the penetration of the longitudinal field 
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from drain/source into the BOX. DIVSB reduces the ability of the lateral gates to control the 

potential at the back interface (fin-BOX), especially near the drain terminal. Longitudinal 

coupling opposes the ‗lateral‘ coupling (between the side gates) and therefore favors the 

‗vertical‘ coupling between back gate (or ONO charges) and front channel. This phenomenon 

is obviously increased in short device (see inset in Fig. 4-16b). Indeed, in short device, drain 

current level is larger than in long one, boosting the effect of injected charges. As a result, for 

shorter devices, the sensitivity of the back-surface potential to trapped charges is enhanced. 

The memory effect amplification observed for shorter device is an outstanding result for the 

memory scaling. 

 

  
Fig. 4-16: Effect of gate length on sensing margin. (a) After charge trapping with VBG = ±50 V, drain current 
versus front-gate bias and gate length. (b) Sensing margin versus gate length. The sensing margin is defined as 
the difference of post-stress drain current levels at VFG = VBG = 0 V. Inset in Fig. 4-16 is cross-section of ONO 
FinFET showing the effect of DIVSB in long and short channel. 
 

The memory effect also depends on fin width as shown in Fig. 4-17. For wider fin 

device, ΔID is larger (Fig. 4-17a). The variation of the current sensing margin with width is 

illustrated in Fig. 4-17b. →hen the fin width increases, the origin of ΔID increase is twofold: 

(i) the area in the nitride buried layer which can trap the charges increases, improving the 

capture section and (ii) the lateral coupling is attenuated [80, 211]. In particular, the role of 

the two lateral gates is to control back-surface potential and block the effect of substrate 

biasing or trapped charges. For wider fin device, the lateral coupling component is reduced 

and the impact of trapped charges in the buried nitride is increased (see inset in Fig. 4-17b). 

Thereby, the memory effect increases for wider fins. 
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Fig. 4-17: Effect of fin width on sensing margin. (a) Drain current versus front-gate bias and fin width, 
measured at VBG = 0 V after charge trapping with VBG = ±50 V. (b) Sensing margin defined as in Fig. 4-16, 
versus fin width. Inset in Fig. 4-17 is cross-section of ONO FinFET showing the effect of injected charges in 
wide and narrow fin. 

 

Fig. 4-18 shows the effect of trapped charges on the drain current vs. front-gate ID(VG) 

characteristics at various temperatures when a high constant back-gate stress is applied. Like 

for the Fig. 4-15a, the drain current becomes ‗high‘ after applying a negative back-gate bias 

due to the positive trapped charges in the nitride (Fig. 4-18a) and vice versa.  

 

 
Fig. 4-18: Effect of back-gate biasing at different temperature. Drain current and transconductance (inset) versus 
front-gate bias measured at VBG = 0 V after 30 sec stress with (a) VBG = -50 V and (b) VBG = +50 V. LG = 80 nm, 
WF = 90 nm, VD = 50 mV, NF = 100. 
 

The shift of ID(VG) curve depends on temperature. The drain current level is lower at 

400 K than at 300 K, despite a decrease in threshold voltage. This phenomenon is clarified by 

the transconductance curve (inset Fig. 4-18a). At higher temperature, the transconductance 

maximum value is decreased. This indicates that phonon scattering is increased, reducing the 
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electron mobility and drain current level [212]. 

Fig. 4-19 shows the effect of the gate length and temperature on ΔID (measured at VFG 

= 0 V). As for Fig. 4-1θ, ΔID increases in shorter length device due to enlarged DIVSB. 

However, ΔID decreases by about 20% between 300 K and 400 K. The variation of ΔID 

induced by high back-gate biasing depends essentially on the ‗high‘ state current. The reason 

is that the ‗high‘ state current is much above the ‗low‘ state current which is almost zero as 

we can see in Fig. 4-18. As the temperature increases, the ‗high‘ state current level is lessened 

due to enhanced carrier scattering. Consequently, the global sensing margin ΔID is also 

reduced at higher temperature. However, the ΔID value is still large enough, confirming that 

the difference between charge trapping and detrapping remains detectable at 400 K. 

 

 

Fig. 4-19: Effect of temperature on the sensing margin induced by back-gate stressing. Sensing margin defined 
as in Fig. 4-16, versus temperature and gate lengths. 
 

By measuring the transient drain current at VFG = 0 V and VBG = 0 V, the relaxation of 

trapped charge is monitored. As shown in Fig. 4-20, trapped charges in the buried nitride 

insulator are maintained for a long time (years), even if the devices were not optimized for 

flash memory. At higher temperature, the data retention characteristic is degraded by the 

Poole-Frenkel emission [213].  

Such a long retention time is actually a benefit of using remote trapping in the BOX. 

The operation of our FinFlash with buried nitride differs from that of conventional flash cell 

where the charges trapped in the floating gate are sensed by the front-channel. In the case of 

FinFlash cell, the charges are trapped in the buried insulator while the sensing interface is 

located at front channel. This physical separation of the programming interface from the 
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reading interface can reduce the disturbance problem during reading of the memory, 

especially after many programming/erasing cycles. 

 

 
Fig. 4-20: Retention characteristics related to the release of trapped charges from the nitride layer. Drain current 
versus time, measured at T = 300 K and T = 350 K after charge trapping with VBG = ±50 V. 
 

4.4.2. Nonvolatile memory effects induced by drain bias stress 

 

We discuss here another possible programming/erasing mechanism which avoids using 

high voltage substrate biasing. When an appropriate drain bias is applied (|VD| > 2 V), the 

charges are injected/removed into/from the ONO BOX near the drain terminal. Carrier 

injection and trapping into the front-gate oxide is negligible as demonstrated by identical 

experiments performed on reference FinFETs with standard SiO2 BOX. No variation in drain 

current was observed after identical stress, meaning that the memory effect is entirely 

attributable to the nitride layer. 

This injection mechanism is somehow different from hot-carrier injection where 

positive drain and front-gate biases are needed to inject the electrons (i.e., negative charges) 

into the floating gate. In our devices, the charges are efficiently injected into the buried 

nitride layer even when the front and back gates are grounded (VFG = VBG = 0 V, Fig. 4-21 ~ 

4-28). Moreover, the polarity of the drain bias can define the type of trapped carriers. For 

positive drain bias (+2 V < VD ≤ +3 ↑), positive charges are injected in the nitride insulator. 

In the opposite case, negative charges are injected by applying a negative drain bias (-3 ↑ ≤ 

VD < -2 V). 

Fig. 4-21 shows ID(VFG) curves with two different injected charge polarities combined 

with two reading configurations. Positive and negative charges are injected by applying 
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respectively +2.5 V and -2.5 V at the drain terminal. Negative (resp. positive) injected 

charges lead to an increase (resp. decrease) in the front-channel threshold voltage VTHF 

locally, close to the drain. According to the polarity of the applied drain bias and the 

corresponding type (positive or negative) of injected charges, the front-channel drain current 

level turns into ‗high‘ or ‗low‘ state. 

This carrier injection mechanism has two different origins following the drain bias 

polarity. When a positive VD is applied (15 sec stress with VD = +2.5 V), the FinFET operates 

next to the avalanche region and electron-hole pairs are generated by impact ionization. 

Hence, electrons are removed from the nitride by F-N tunneling and, simultaneously, hot 

holes can be injected into the nitride close to the drain region. The hot holes are injected into 

the Si3N4 buried insulator through the thin SiO2 tunneling layer thanks to the local vertical 

electric field induced by the drain biasing.  

 

 

Fig. 4-21: Memory effect by drain bias. Drain current, measured in direct and reverse modes, as a function of 
front-gate bias at VBG = 0 V, before and after 15 sec stress with VD = ±2.5 V. During stress, front/back gates and 
source were grounded. (b) Reverse (drain-source) mode was measured after (a) direct (source-drain) mode. LG = 
100 nm, WF = 90 nm, NF = 16, VBG = 0 V, VD = 50 mV. 
 

In the opposite case (VD = -2.5 V), the drain-to-body junction is forward biased and the 

source-to-body junction is reverse biased (as in the parasitic bipolar transistor BJT used for 

the programming of capacitorless 1T-DRAM [214]). Impact ionization occurs near the 

source/body (collector/base) junction and in principle can also lead to carrier injection into 

the BOX. However, the vertical field near the grounded source is much lower than at the 

drain and insufficient to inject carriers into the nitride. In this respect, note that localized 

carrier trapping into the ONO is not visible, even near the drain terminal, for drain bias below 

+2 V. It is concluded that the dominant injection mechanism in our devices is electron 
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tunneling from N+ drain into the nitride. We will see that there is no experimental evidence 

from measured ID(VFG) (Fig. 4-21) and ID(VD) (Fig. 4-22) curves for BJT-induced carrier 

injection near the source. Carrier trapping and threshold variation occur locally near the 

biased terminal (i.e., drain or source or both).  

These results differ from those obtained with carrier injection by high back-gate 

biasing, where the trapped charges were uniformly distributed under the channel region in the 

nitride layer. The charges trapped from source to drain could modify the back-surface 

potential by a constant amount in the whole device area. When drain-bias injection method is 

used, the injected charges are only located near the drain terminal. Hence, the surface 

potential near the source is barely disturbed. 

If the source and drain terminals are interchanged during reading, double-bit 

nonvolatile operation can be carried out. The terms ―direct‖ or ―reverse‖ are used when a 

positive read biasing (50 mV) is applied to drain or source contacts respectively. Note that 

the nonvolatile charge is injected at the same terminal whatever read (reverse or direct) is 

performed. When positive (or negative) charges are injected in the nitride (with VD = +2.5 V 

or VD = -2.5 V) and the measurement is performed in direct mode (Fig. 4-21a), the post-stress 

drain current variation is larger than in reverse mode (Fig. 4-21b). This is because the 

injected charges are located near the drain terminal. In direct mode, the positive charges tend 

to prevent the channel pinch-off. Hence, the current saturation is delayed and the current 

continues to increase with VD. In reverse mode, the charges are located near the virtual source 

and their impact on the pinch-off region is much lower. Consequently, in direct mode, the 

drain current is higher than in reverse mode (after 15 sec stress with VD = +2.5 V). The 

opposite effect is observed after 15 sec stress at VD = -2.5 V. The negative charges trapped 

near the drain accentuate the channel pinch-off and current saturation occurs at lower VD. The 

current is clearly reduced in direct mode and lower than in reverse mode. This is the evidence 

of the non-uniform trapped charge distribution induced by drain biasing.  

The advantage of this charge injection mechanism is two-fold: (i) double-bit operation 

is feasible according to the four configurations of the injected charges by changing reading 

terminal and the polarities of the stress bias and (ii) analog, logic and memory operations can 

be carried out within the same ONO FinFlash cell. 

The localized charge injection is also obtained in Fig. 4-22, where ID(VD) curves were 

measured at VFG = 0 V and VBG = 0 V. By applying stress with VD = +3 V, the previous 

information is erased and ‗1‘-state is programmed. The positive injected charges can activate 
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the back-channel. The ‗0‘-state is programmed with a stress at VD = -3 V: the negative 

charges tend to suppress the current. The variation of the drain current by changing the drain 

bias polarity is large enough for flash memory application. Comparable amounts of trapped 

charge are obtained with moderate drain bias or with high back-gate bias. 

The comparison of ID(VD) curves in direct mode and reverse modes indicates that the 

distribution of trapped charges is not symmetrical along the channel direction. Like for Fig. 

4-21, the drain current difference between VD = +3 V and VD = -3 V stress is larger in direct 

mode than in reverse mode due to the enlarged role of the injected charges located near the 

drain terminal on the channel pinch-off. 

 

 

Fig. 4-22: Evidence of the localized charge injection. Drain current versus drain bias measured after 10 sec 
stress with VD = ±3V. After measurement in direct mode, the channel direction was changed in reverse mode. 
WF = 90 nm, LG = 80 nm, NF = 100m VD = 50 mV, VFG= 0 V, VBG = 0 V. 
 

Fig. 4-23 shows how the memory effect induced by drain biasing depends on 

geometrical parameters. Like in the case of programming with high back-gate bias, the 

memory effect increases for shorter and wider devices. This phenomenon is again related to 

3D coupling effects in triple-gate FinFETs [80, 211]. The increase of the memory effect 

observed in shorter device is promising for the device scaling. Since the VD-based 

programming results in a localized charge near the drain, the memory effect will remain 

efficient even for very short fin with reasonable width (> 10 ~ 15 nm). 
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Fig. 4-23: Impact of device geometry on the sensing margin. Sensing margin, defined as in Fig. 4-16, versus (a) 
gate length and (b) fin width. After 10 sec stress with VD = ±3 V, we extracted the sensing margin defined as in 
Fig. 4-16b. 
 

 
Fig. 4-24: Effect of carrier injection by drain biasing at various temperatures. Drain current versus front-gate 
bias measured after 10 sec stress with (a) VD = +3 V and (b) VD = -3 V. Insets in Fig. 4-24a and b shows the 
polarity of the injected charges according to the applied drain bias. LG = 80 nm, WF = 90 nm, VD = 50 mV, NF = 
100, VBG = 0 V. 
 

Fig. 4-24 shows the effect of trapped charges achieved with drain biasing for different 

temperatures. During 10 seconds stress at VD = +3 V (Fig. 4-24a), positive charges are 

injected into the Si3N4 buried layer, leading to enhanced drain current. The difference 

between pre-stress and post-stress currents is accentuated at high temperature for two 

reasons: (i) the pre-stress current is lower (mobility effect) whereas (ii) the carrier trapping 

efficiency is improved as the temperature increases [215]. Therefore, more positive charges 

are captured near the drain terminal in the nitride layer, being able to increase the post-stress 

current. By contrast, when negative charges are injected into the nitride (10 sec stress with VD 

= -3 V, Fig. 4-24b), the body potential decreases and the drain current drops. The comparison 
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of injection efficiency between electrons and holes is complex. Not only are the trapping 

cross-sections different but also the drain-to-body diode is oppositely biased. For VD < 0 V, 

the diode is forward biased and the potential drop extends into the body. We expect the 

electron trapping to be less localized than for holes. 

Fig. 4-25 shows the dependence of the sensing margin ΔID on the gate length and 

temperature. For shorter devices, the drain current variation is amplified due to the 3D 

coupling effects [80, 211] like for back-gate induced trapping (Fig. 4-16 and Fig. 4-19). Note 

that the current variation is large (ΔID = 0.2 mA) in short FinFET (80 nm), if the fin width is 

reasonable (Weff  ~ 30 nm). The temperature rise has a modest effect on ΔID because of the 

trade-off between decreased mobility and improved injection/trapping efficiency. 

 

 

Fig. 4-25: Effect of temperature on the sensing margin induced by drain stressing. Sensing margin, defined as in 
Fig. 4-16, versus temperature for different gate lengths. 
 

As we see in Fig. 4-24 and Fig. 4-25, drain current variation depends on temperature. 

The enlargement of Δ↑THB and ΔID at higher temperature is illustrated in Fig. 4-25 and 

explained as follows. When the electrons are removed from the nitride, the variation of the 

threshold voltage with temperature is usually associated with the increase of the Poole-

Frenkel hoping in the nitride and thermal excitation [215]. If temperature increases, the 

thermal excitation is enhanced and more trapped electrons can move towards the nitride 

conduction band. The tunneling rate is weakly dependent of temperature but the increase of 

the free electron amount in the nitride and of the Poole-Frenkel conduction produces more 

tunneling of electrons from the nitride into the silicon body. When the electrons are injected 

into the nitride, the threshold voltage variation depends mainly on the efficiency of the 

electron tunneling from the silicon body into the nitride (the electrons are available 
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instantaneously from the inverted silicon interface). 

In Fig. 4-26, the effect of the injected charges and temperature on the ID(VD) curve is 

investigated. As for room temperature (Fig. 4-22), double-bit nonvolatile operation was 

demonstrated at 400 K (Fig. 4-26a) by changing the reading terminal and the polarity of the 

injected charges. A proper ‗high‘ - ‗low‘ state sensing margin is achieved. The sensing margin 

is defined here as the difference of the current level between direct and reverse modes at VD = 

1 V (VFG = VBG = 0V) after positive or negative charge injection. 

Fig. 4-2θb shows the ‗high‘ and ‗low‘ state sensing margin as a function of the 

temperature up to 400 K for different channel lengths. ΔID for both hole injection (‗high‘ 

state) and electron injection (‗low‘ state) increases as the channel length shrinks even at high 

temperature. 

 

 
Fig. 4-26: Effect of temperature on ID(VD) curves. (a) Drain current versus drain bias measured in direct and 
reverse mode after 10 sec stress with VD = ±3 V (T = 400 K). LG = 80 nm, WF = 90 nm, NF = 100, VBG = 0 V, 
VFG = 0 V, T = 400 K. (b) Drain current difference between the direct and reverse modes as a function of 
temperature for different gate lengths. ΔID was measured at VD = 1 ↑ after hole trapping (‗high‘ state) or 
electron trapping (‗low‘ state). 
 

In Fig. 4-27, we considered a more complex case of carrier injection at both terminals. 

A 10 seconds stress was applied to the source terminal, followed by 10 seconds stress on the 

drain. In this double-stress mode, the current variation is larger than for single-stress: the 

current increases more for positive charge and decreases more for negative charge trapping. 

This double-side (at source and drain) injection is more efficient than back-gate bias 

programming. An asymmetry in reverse and direct curves subsists. It is explained by the 

redistribution of the charge, initially localized near the source, during the subsequent drain-

side stress. The injected charge concentration located near the source could be modulated by 
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the drain-side stress. Therefore, the impact of charges near source on the memory effect 

might be reduced.  

 

 

Fig. 4-27: ID(VD) curves measured in direct and reverse mode after two-step stress: 10 sec stress with VS = ±3 V 
followed by 10 sec stress with VD = ±3 V (T=300 K). 

 

 

Fig. 4-28: Retention characteristics related to the release of trapped charges from the nitride layer. Drain current 
versus time, measured at T = 300 K and T = 350 K after charge trapping with VD = ±3 V. 
 

Fig. 4-28 shows the retention time achieved by using drain bias programming. The 

return towards equilibrium occurs as the injected charges are released from the nitride. In the 

same way as for programming with high back-gate biasing, the charges injected by applying 

a moderate drain bias are conserved sufficiently long and the difference between ‗1‘- and ‗0‘- 

states is suitable for flash memory application. The retention time is longer in the case of 

drain bias programming due to the strong effect of the injected charges located near the drain 

on the channel pinch-off. This result denotes the efficiency of the VD programming method. 

Notice that drain bias used during the reading operation is sufficiently low and does not 



Chapter 4: Carrier Trapping in ONO FinFETs  

 

129 

deteriorate the retention capability of the cell.  

 

4.4.3. Drain current hysteresis in dynamic mode 

 

We have discussed above the memory effect resulting from permanent charge trapping. 

We now introduce another memory effect: the drain current hysteresis due to the ‗dynamic‘ 

trapping of charges. 

By scanning back-and-forth the back-gate bias from positive to negative value, a strong 

drain current hysteresis occurs (Fig. 4-29). This hysteresis, in other words the memory 

window, is due to the dynamic charge trapping/detrapping into/from the nitride buried 

insulator during the scanning of the back-gate voltage. The memory window is defined as the 

maximum shift of back-channel threshold voltage Δ↑THB (see horizontal arrow in Fig. 4-29). 

Starting at VBG = +50 V and decreasing the back-gate bias, the trapped electrons are gradually 

removed from the nitride buried insulator and the back-channel threshold voltage decreases. 

This is why when coming back to positive VBG values, a hysteresis and higher drain current 

are achieved. A similar hysteresis is obtained in the reciprocal case: starting at VBG = -50 V 

and increasing the back-gate bias to less negative values, electrons are injected in the Si3N4 

buried insulator and the back-channel threshold voltage increases. 

 

 

Fig. 4-29: Drain current hysteresis versus back-gate bias. The measurement started at VBG = +50 V and the 
turning voltage was varied. 
 

The memory window depends on the direction and amplitude of the back-gate scan. In 

Fig. 4-29, we measured the drain current as a function of the back-gate bias for different 

turning points. The measurement started at VBG = +50 V. The initial stress time was 30 s. 
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When the back-gate bias turning point becomes more negative, the memory window is 

enlarged because of the amount of detrapped electrons increases.  

When the measurement starts at VBG = -50 V, we obtained a symmetrical result shown 

in Fig. 4-30. Positive charges are injected in the nitride layer during 30 seconds stress with 

VBG = -50 V. While increasing back-gate bias, positive charges are removed from the Si3N4 

layer, hence the back-channel threshold voltage increases. During the subsequent decreasing 

VBG scan, the current is therefore lower. The memory window is larger for clockwise scan 

(Fig. 4-30b), and is also affected by the measurement starting point. The reason is the 

difference in charge injection efficiency of holes and electrons. Nevertheless, the overall 

tendency is qualitatively the same. 

The memory window also depends on the magnitude of front-gate bias as shown in Fig. 

4-30. For higher VFG, the hysteresis and memory window decrease. This result is more 

prominent in narrow fins and results from the competition between the vertical coupling 

component, induced by trapped charges in the nitride layer, and the lateral coupling 

component between the two side gates [80, 211]. The lateral gates tend to pin the back-

surface potential and remove the effect of trapped charges. For higher front-gate bias and 

narrow fins, the lateral gates prevail and the memory window (i.e., Δ↑THB) decreases. 

 

 
Fig. 4-30: Dependence of memory window on front-gate bias. (a) Drain current hysteresis versus back-gate and 
front-gate bias. (b) Back-channel threshold voltage variation (memory window) versus front-gate voltage and 
measurement starting bias (30 sec stress time). VD = 0.1 V, WF = 90 nm, LG = 1 μm, NF = 100. 
 

Fig. 4-31 shows the memory window dependence on fin size. As already observed and 

explained in Fig. 4-16 and Fig. 4-17, the memory window increases for shorter and wider fin 

devices. 
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Fig. 4-31: Impact of device geometry on the memory window, defined as the variation of the back-channel 
threshold voltage. Memory window as a function of (a) gate length, (b) fin width and measurement starting bias. 
 

Fig. 4-32a shows the drain current hysteresis measured at various temperatures. For 

higher temperature, the drain current level in strong inversion is smaller due to the mobility 

reduction. The variation of back-channel threshold voltage Δ↑THB (i.e., the lateral shift of 

forward and reverse characteristics in Fig. 4-32a) is improved because the carrier trapping 

efficiency increases at higher temperature [215]. Note that a positive starting point (VBG = 

+50 V) is illustrated in Fig. 4-32. However, when the starting point becomes negative (VBG = 

-50 V), the trend is the same. 

 

 
Fig. 4-32: Effect of temperature on the memory window. (a) Drain current hysteresis versus back-gate bias and 
temperature. (b) Memory window, defined as in Fig. Fig. 4-31, versus temperature for variable drain bias. 
 

In Fig. 4-32b, the drain bias effect is highlighted: for higher VD, Δ↑THB increases. 
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Again, this is due to the longitudinal coupling component, induced by the drain biasing, 

which reduces the capability of the lateral gates to control the back-surface potential and, 

therefore, enhances the influence of the trapped charge. The effect of longitudinal coupling 

component increases at higher drain bias and, consequently, Δ↑THB is enlarged. 

 

4.5. Conclusions 

 

The operation and performance of advanced FinFETs with buried ONO storage layer 

have been investigated for flash memory application. The Si3N4 buried layer can trap charges, 

by either Fowler-Nordheim tunneling using back-gate biasing or localized carrier injection 

induced by drain biasing, and efficiently hold them for a long time even at high temperature. 

The carrier injection efficiency is improved at high temperature due to Poole-Frenkel 

emission. A suitable memory effect results from the coupling effect between injected charges 

and back- and front-channels. From the experimental results, we found that the memory 

effect depends on the bias condition and dimensional parameters. We highlighted that the 

reduction of the channel length enhances charge trapping thanks to the DIVSB. Carrier 

injection via drain biasing enables charge storage localization near the drain or source or both. 

This phenomenon allows different configurations by choosing the charge injection region or 

sensing terminal and enables multi-bit nonvolatile memory operation. By the separation of 

the programming interface from the sensing interface, ONO FinFET provides improved 

reliability as the cell scales down.  
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     After having demonstrated the non-volatile memory operation of ONO FinFETs, we 

now explore their capability as volatile memory cell. The ultimate objective of this work is to 

study the feasibility of an unified memory where the volatile and non-volatile modes can be 

achived separately or combined in a single transistor. 

 

5.1 Introduction 

 

Co-integration of various functionalities in a single chip is suitable for advanced 

portable electronic devices and embedded systems. From this perspective, nonvolatile and 

volatile memory devices need to be integrated in the same block. But, these two different 

memory architectures bring additional process and high cost. Several solutions have been 

proposed to merge the two different functions in a single cell [216-218].  

Most of these structures use the same interface/gate for the nonvolatile and volatile 

operations. Due to the cycling stress caused by the volatile memory programming, a 

deterioration of the nonvolatile charge retention time occurs as the gate oxide is damaged. 

This phenomenon is amplified when the device scales down because the tunneling oxide is 

thinner in order to maintain good control of the channel. Our FinFETs fabricated on ONO 

buried insulator (Chapter 4) are attractive due to (i) excellent scaling capability and (ii) 

separation of the programming and reading interfaces. 

In this chapter, the ONO FinFETs are assessed as volatile capacitor-less single-

transistor DRAM (1T-DRAM) [219-221] programmed by impact ionization. We highlight 

that nonvolatile charges stored in the nitride can remarkably modify the 1T-DRAM logic 

states without being disturbed by the volatile operation. Therefore, the two different memory 

operations can be performed without disturbing each other to achieve the unified memory 

concept (URAM) [216, 218]. Our experimental results intend to demonstrate a preliminary 

‗proof-of-concept‘ of a multi-bit volatile memory. The ―multi‖ 1T-DRAM current levels can 

be achieved by performing nonvolatile programming/erasing before volatile operation. The 

impact of the location of the trapped nonvolatile charge on the 1T-DRAM sensing margin is 

also investigated. Especially, this study is performed by inter-changing the source and drain 

terminals during memory programming and/or reading. 

 

5.2. Volatile Memory 
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5.2.1. Conventional volatile memories 

 

Volatile memories are not able to keep information when the power supply is turned 

off. Their features are very fast writing and reading operations. The two main volatile 

memory families available on the market are the Static Random Access Memory (SRAM) 

and the Dynamic Random Access Memory (DRAM). In this introduction, special attention 

will be given to DRAM and 1T-DRAM. 

      

(a) Static random access memory (SRAM) 

SRAM cell does not need to be refreshed to renew the stored information and retains 

information when the memory is powered. As we can see in Fig. 5-1, a storage cell is made 

up with two cross-coupled inverters formed by four transistors (M1, M2, M3 and M4). 

During read and write operations, two additional access transistors (M5 and M6) allow to 

control the access of the storage cell.  

 

 
Fig. 5-1: Schematic representation of conventional 6T-SRAM. 

 

A SRAM cell has three different states (standby, write and read). During standby (i.e., 

the circuit is in idle mode), the word line is offset (WL = 0). Thus, the access transistors 

decouple the storage cell from the bit lines. The cross-coupled inverters feedback each other 

and hold the stored information. Writing operation is performed by applying the value to be 

written to the bit line. For example, for the ‗1‘-state writing, ‗1‘ should be applied to the bit 

line (i.e., BL  = 1 and BL  = 0). The data is then stored by the WL (WL=1). Conversely, 

the ‗0‘-state writing is carried out by applying BL  = 0 and BL  = 1. The stored information 
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is read at Q . For reading operation, ‗1‘ is applied at BL , BL  and WL. Assume that the 

stored information is ‗1‘. ‗1‘-state at Q  is transferred to the bit line and Q  is in ‗0‘-state by 

discharging through M1. On the other hand, when the stored information is ‗0‘ at Q , ‗0‘-

state is transferred to the bit line (M3 is turned on and Q  keeps ‗0‘-state) and Q  is in ‗1‘-

state. Conventional 6T-SRAM cells require relatively large real-estate on the silicon chip 

leading to low integration density, while they provide very high access speed [222]. 

 

(b) Dynamic random access memory (DRAM) 

In conventional 1T-1C DRAM (Fig. 5-2), the information is stored in a separated 

capacitor. The two values, called ‗1‘- and ‗0‘-state, are obtained by charging or discharging 

the capacitor. The stored charges should be refreshed periodically to replenish the stored data 

due to the leakage through the selection transistor. The reading of the DRAM is destructive. 

Indeed, the word line is onset and the stored information is transferred to the bit line through 

the transistor discharges the capacitance. 

 

 

Fig. 5-2: Schematic representation of conventional 1T-1C DRAM. 

 

     Conventional 1T-1C DRAM exhibits much higher integration density and better 

reliability than 6T-SRAM. However, in DRAM, access speed is lower because it requires 

time to charge the capacitor. Moreover, capacitance must be above a certain level to 

distinguish the two different memory states while the transistor size continuously decreases. 

Therefore, the miniaturization of the capacitor is becoming a critical issue for further device 

scaling and integration density. Several solutions are being utilized such as 3D trench or 

stacked capacitors using high-k material [223, 225]. However, they are still subject to 

miniaturization problems, performance degradation and cost rising.  
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5.2.2. Capacitorless 1T-DRAM 

 

Several years ago, capacitorless 1T-DRAMs were proposed as an alternative to 

conventional 1T-1C DRAM [220, 221, 226, 227]. These architectures use the floating body of 

SOI or SOI-like single transistors as medium to store the information. The isolated body 

provides an ideal storage environment to achieve competitive performances [219-221] (Fig. 

5-3). In 1T-DRAM, a temporary generation of majority carriers stored in the body increases 

the body potential and drain current which corresponds to ‗1‘-state. By contrast, for ‗0‘-state, 

a lower current level reflects the purge of the majority carriers out from the body. As we can 

see in Fig. 5-3, the variation of the amount of majority carriers in the body is easily detected 

by measuring the drain current. By adopting the 1T-DRAM concept, one can save silicon area 

thanks to the isolated body used instead of the storage capacitor. Higher integration density, 

reduced process steps and lower cost are expected compared with conventional 1T-1C 

DRAM. 

 

 
Fig. 5-3: Capacitorless 1T-DRAM concept. Schematic cross-section of a partially depleted (PD) SOI nMOSFET 
used as a 1T-DRAM. (a) Lack (‗0‘-state) and (b) excess (‗1‘-state) of majority carriers in the body. (c) 
Undershoot (‗0‘-state) and overshoot (‗1‘-state) of drain current resulting from the variation of majority carrier 
concentration with time. 
 

(a) ‘1’-State Programming 

During the ‗1‘-state programming, excess holes (majority carriers) are stored in the 

body, leading to a dynamic threshold voltage reduction (VTH ĺ ↑TH – Δ↑TH1) and an increase 

in the drain current (I1): The threshold voltage shift Δ↑TH1 comes from the body potential 

variation due to the stored holes. Several programming methods can be performed to inject 

the majority carriers into the body. They will be introduced in the next section as well as their 

advantages and drawbacks. 

(i)  Impact ionization is a frequently used method for the ‗1‘-state programming [226-
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231]. During the programming operation, the drain bias VD is changed from a low 

value (~ mV) to a relatively high one (~ V) while the front-channel is in inversion 

regime (VFG > VTHF), same as in holding and reading operation. Therefore, near the 

drain contact, electron-hole pairs are generated at the pinch-off region by impact 

ionization. The generated holes can be stored in the body as the body/drain junction is 

reverse biased. After programming, the floating body potential is higher than in 

steady-state (Fig. 5-4a). For the ‗1‘-state reading, VD is pushed back to a lower level 

(~ m↑). The resulting threshold voltage is ‗low‘ and the current level is ‗high‘ due to 

excess holes remaining in the body. The body potential returns gradually (~ ms) 

downward to steady-state because the stored holes are slowly evacuated through the 

body/drain (or source) junctions. This causes a drain current overshoot and back to 

equilibrium with time.  

Impact ionization method provides fast ‗1‘-state programming and relatively large 

sensing margin. However, impact ionization induces hot-electron injection into the 

gate oxide, causing degradation of the oxide quality and retention time. Due to the 

charge trapped in the oxide, an unintended threshold voltage variation can also occur.  

(ii)   Bipolar Junction Transistor (BJT) effect in the floating body of SOI MOSFETs can 

be employed for the ‗1‘-state programming. In this method, the source (N+), body (P) 

and (N+) correspond to the emitter (or collector), base and collector (or emitter) of 

the BJT. A hole current should be generated in the body (base) to switch on the BJT 

effect. Due to the floating base, the body potential increases by programming, 

providing a threshold voltage lowering and current rise. The BJT can be turned on 

with different bias schemes: 

 The first introduced BJT method is generated by applying a high negative VD pulse 

embedded into a negative front-gate VFG pulse (Fig. 5-4b) [226, 227]. At the initial 

programming stage, the front interface becomes accumulated by using a negative VFG. 

Then, VD is driven to a high negative value. As a result, the body/source and 

body/drain junctions are reverse and forward biased respectively. If VD is sufficiently 

large, impact ionization is turned on at source side. For better hole storage, the drain 

pulse returns to the reading value (~ 50-100 mV) while the gate bias is kept negative. 

In this method, the power consumption is reduced thanks to the low current flowing 

between the drain and source during programming at VBG < 0 V. 

 BJT effect can also be activated in a different way [214, 232]. A VFG pulse is 
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embedded into a high positive drain VD pulse (Fig. 5-4c). Electron-hole pairs are 

generated by impact ionization at the reverse biased body/drain junction if a 

sufficiently large VD pulse is applied (close to the breakdown voltage of the parasitic 

BJT). However, BJT effect is not fully triggered if VFG < VFBF. In order to push the 

potential up to a value sufficient to turn on the bipolar current, the front gate is 

switched to a higher value (VFG > VFBF). Hence, the body potential is increased due 

to the dynamic gate coupling and the source/body junction becomes forward biased. 

As a result, impact ionization and hole base current are sharply increased. Therefore, 

electrons are moved into the body (base) from the source (emitter) and collected by 

the drain (collector). At the end of the programming sequence, the gate pulse VFG is 

pushed back to negative value (prior to drain pulse VD return to reading stage). The 

body potential maintains a high level due to the large base current and a sufficient 

amount of holes are stored in the body. During reading, VFG remains at a negative 

value (VFG < VFBF) to slow down the evacuation of the stored holes from the body 

while a high pulse is applied at drain. The BJT is activated and a high current is 

obtained. Note that the high VD pulse required to activate the BJT current allows to 

auto refresh the ‗1‘-state during reading. 

The BJT programming methods allow fast read and write operations (~ 2 ns) [214]. 

Moreover, holes can also be generated by band-to-band tunneling at the gate-to-drain 

(or source) overlap region as the net potential drop reaches up to 4 V at the gate 

edges [232]. Therefore, the programming speed and stabilization of the ‗1‘-state 

current level are improved but retention time and device reliability can be degraded.  

(iii) The hole generation by Band-to-Band Tunneling (BTBT) at the gate-to-drain overlap 

region can be applied for the ‗1‘-state programming (inset of Fig. 5-4d) [233, 234]. In 

order to generate holes, the local electric field and the band-bending should be 

sufficiently large to make holes tunneling from conduction band into the valence 

band at the N+-drain/oxide interface. A relatively high negative front-gate (VFG << 

VFBf) and positive drain biases are applied (Fig. 5-4d). The body potential decreases 

by dynamic gate coupling and enters in a deep depletion regime. As a result, the holes 

are stored and efficiently kept in the body. Indeed, as the body potential is more 

negative than at equilibrium (i.e., accumulated front-interface), the barriers at the 

source(drain)-body junction are higher and the resulting body potential well deeper. 

Note that the deep depletion regime can be achieved because the front-interface 
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accumulation is a relatively long process.  

During reading, VFG is increased above VTHf and the stored holes are moved from the 

front-interface to the bottom interface (negatively biased in FD SOI). Compared with 

other techniques, the total signal swing (|VFG| + |VD|) should be increased by about 

20% in order to obtain competitive programming speed [234]. However, the 

programming current taking place with the BTBT method is much lower than the one 

imposed by impact ionization. Consequently, the reliability and power consumption 

of the memory cell are significantly improved. 

 

 
Fig. 5-4: External pulse sequence and schematics for ‗1‘-state programming and reading by (a) impact 
ionization, (b) 1st BJT method, (c) 2nd BJT method and (d) band-to-band tunneling (BTB) method. Gate pulse 
VFG, drain pulse VD, body potential VB and drain current ID as a function of time. 
 

(b) 0’-State Programming 

The ‗0‘-state programming (erasing operation) consists in removing holes from the 

body. The temporary lack of holes leads to a body potential drop and consequently the 
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threshold voltage is increased (VTH ĺ ↑TH + Δ↑TH0) reducing the drain current. The two 

methods currently used for the ‗0‘-state programming are introduced hereafter. 

(i)  Forward biased junction using a negative drain bias is applied to evacuate the stored 

holes (Fig. 5-5a) [226, 227, 229]. When the drain terminal voltage is negative, the 

body/source junction is reversed biased. Hence, the hole current flowing from the 

body to drain is much larger than the one originating from the source. This 

unbalanced current induces a dynamic lack of holes. On the other hand, as the 

body/drain junction is forward and negatively biased the whole body potential 

becomes negative. For the subsequent reading (or holding), VD returns to a small 

positive value and the body/drain junction is again reversed biased. Thanks to the 

lack of holes, the body potential can remain temporarily in a non equilibrium state 

(i.e., negative). The threshold voltage is increased and a low current level is obtained. 

In this technique, body potential variation is not very effective and the ‗0‘-state 

current level is relatively high (despite fast erasing is achieved) due to the instant time 

response of the forward body/drain junction to the bias switch.  

 

 
Fig. 5-η: External pulse sequence for ‗0‘-state programming and reading by (a) forward-biased junction and (b) 
capacitive coupling method. 
 

(ii)   The capacitive coupling allows to remove the holes from the body by taking 

advantage of the deep depletion mechanism. At the first stage, the front-gate is pulsed 

from accumulation (VFG < VFBF) into inversion regime (VFG ~ VTHF). The 

accumulated holes are instantaneously evacuated through the body/source(drain) 
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junctions. Next, the front-gate voltage is pulled down again to a negative value (VFG 

< VFBF). As the holes are not generated instantly, the accumulation layer is not built 

readily and the body potential becomes negative by dynamic gate capacitive coupling.  

The subsequent reading is performed with a negative front-gate voltage (usually 

slightly higher (less negative) than the programming voltage). Since the body 

potential is negative, the back threshold voltage is virtually increased (Fig. 5-5b) [214, 

232]. Notice in Fig. 5-ηb, during the ‗0‘-state programming, the drain VD pulse is 

relatively high for compatibility with the 2nd BJT method. It may cause the activation 

of BJT effect and the body charging. To avoid this, a small positive source voltage is 

applied.  

 

(c) Scaling issue 

The retention time and sensing margin |I1-I0| or Δ↑TH are the critical issues for the 1T-

DRAM down scaling. As the channel length decreases, the body volume where the holes can 

be stored is reduced, but the longitudinal electric field between source and drain is enhanced. 

Therefore, when impact ionization method is employed, ‗1‘-state programming voltage 

and/or time can be reduced. However, the ‗0‘-state retention time will be deteriorated due to 

parasitic hole generation. Moreover, short-channel effects (SCEs) also diminish the 1T-

DRAM device performance. The drain-induced barrier lowering DIBL is another weakness, 

degrading the ‗1‘-state programming. In shorter device, the body/source barrier is lowered. 

As a result, especially for the impact ionization method, the generated holes easily move 

through the source and the storage efficiency of state ‗0‘ is deteriorated. Note that, in BTBT 

technique, the DIBL is less significant because the body potential is negative during 

programming.  

In PD SOI devices, the body doping increase can be used to improve the sensing 

margin [229, 230] by suppressing the SCEs as the effective potential barrier at the 

source/body junction is higher. Therefore, the hole leakage current to the source is reduced 

and the hole storage efficiency is enhanced. However, if the channel doping is too high, the 

junction leakage current ILEAK is increased during reading and deteriorates the retention time. 

Also, a high body doping causes random dopant fluctuation (RDF) effect, leading to 

fluctuations in read current and random change in Δ↑TH [229]. 

     In PD device, the threshold voltage variation Δ↑TH can be estimated by Δ↑B x 

(CD/COX) [229], where Δ↑B corresponds to the body potential difference induced by the 



Chapter 5: FinFETs with ONO BOX for Multi-Bit Unified Memory 

143 

stored hole. The depletion layer capacitance CD and hence Δ↑TH can be increased by reducing 

depletion layer thickness. In this perspective, FD SOI MOSFET with accumulated back-

channel induced by a proper negative back-gate bias VBG is a more reasonable approach: the 

depletion layer thickness is limited by the small silicon film thickness.  

In FD SOI MOSFET, SCEs are usually controlled by reducing the silicon film 

thickness. Therefore, channel-doping is not necessary preventing the random dopant 

fluctuation. Moreover, ILEAK is reduced due to the thinner junction area. Thereby, the 

reliability and retention time can be improved in FD devices. Δ↑TH can be further enhanced 

by field plate engineering [230, 231] and thicker front-gate oxide (Cox Ļ ĺ Δ↑TH Ĺ). 

However, the use of a common back-gate bias VBG causes compatibility problems with 

peripheral circuits. On the other hand, feasible combination of the different ‗0‘- and ‗1‘-state 

programming is limited by the use of a common back-gate bias VBG. If the back-gate bias is 

not sufficiently negative, the holes cannot be stored in the body efficiently. Conversely, when 

the back-gate bias is too negative, the stored holes cannot completely be removed during the 

‗0‘-state programming and the current sensing margin reduces.  

For these reasons, double-gate (DG) SOI MOSFETs can be an interesting alternative 

[214, 228]. In order to take full advantage of the different programming techniques, the 

individual back-gates should control their own transistor.  

In this perspective, different 1T-DRAMs variants using specific architectures or 

additional process steps were introduced. In the next section, a non exhaustive list of 

enhanced 1T-DRAM will be presented. 

(i)  Toshiba approach: A 128 Mb memory array with 90 nm technology node was 

experimentally demonstrated [230, 231]. Channel doping (3 x 1017 cm-3), LDD and p-

doped field plate were processed in order to improve the sensing margin and the 

retention time. For the ‗1‘- and ‗0‘-state programming, the impact ionization (VFG = 

+1.5 V and VD = +2.2 V) and forward biased junction method (VFG = -2.3 V and VD = 

-1.5 V) were used with a fixed field plate bias (VBG = -2.5 V). Good memory 

performance was achieved (70 ms retention time, Δ↑TH = 420 mV @ 85 °C). 

(ii)   Intel approach: A FD SOI 1T-DRAM cell was fabricated at 45 nm technology node 

[235]. Programming methods and bias conditions were not presented in detail. 

However, the disturbance mechanisms were reported. Shockley-Read-Hall (SRH) 

recombination at the source edge disturbs the ‗1‘-state level by causing hole loss. ‗0‘-

state is disturbed by band-to-band tunneling parasitic generation at the drain edge. 



Chapter 5: FinFETs with ONO BOX for Multi-Bit Unified Memory 

144 

Thin undoped thin body (Tsi = 22 nm) significantly reduces the RDF effects and the 

junction leakage current. A Δ↑TH of 400 mV was observed with a back-gate bias (VBG 

= -2 V) and thin BOX (TBOX = 10 nm). At the worst disturb condition, 25 ms 

retention time was achieved at 85 °C (LG = 55 nm and WG = 65 nm). 

(iii) Meta-Stable DRAM (MSDRAM) (Fig. 5-6a): This memory cell concept is based on 

meta-stable deep (MSD) hysteresis effect [236, 237]. Very wide memory window and 

large current ratio (I1/I0 > 106) were measured. The advantages of MSDRAM are the 

low power consumption and excellent reliability thanks to the BTB tunneling and 

dynamic gate coupling used for the ‗1‘- and ‗0‘-state programming, respectively. 2D 

simulations with a 30 nm gate length and thin BOX were performed to investigate the 

cell scalability. Superior retention time (14 s at I1/I0 = 10) was obtained with short 

programming time (η ns). In small device (0.3η μm x 0.3η μm), the MSD effect is 

maintained but the sensing margin needs to be improved [238] by an appropriate 

fabrication process (recessed gate, thinner junctions, etc). Comparision with 1T-

DRAM programmed by impact ionization showed the superiority of the MSDRAM 

concept [239].  

(iv)  Vertical Channel 1T-DRAM (Fig. 5-6b): A vertical double-gate 1T-DRAM with two 

independent gates was proposed to obtain ultimate integration density (4F2) [240, 

241]. A gate-all-around MOSFET architecture, called surrounding-gate vertical 

channel (SGVC) cell, was employed. The SGVC 1T-DRAM was demonstrated on 

bulk Si substrates with a common source structure, which allows achieving excellent 

scalability. Impact ionization or BTB tunneling technique can be used for the ‗1‘-state 

programming. However, the retention time (4 ms at room temperature) needs to be 

improved even if a suitable sensing margin was obtained (40 μA/μm). 

(v)  Body engineered 1T-DRAM: To enhance the cell performances, various body 

engineering techniques, innovative architectures and material combinations, were 

proposed to improve the hole storage efficiency [242-245]. In parallel, source/drain 

engineering methods were also investigated to increase the retention time [246, 247].  

 The ARAM is attractive for low power consumption and embedded memory 

applications [242]. The supercoupling effect [248] occurring when the silicon body is 

thinner than 10 nm is bypassed. This body engineered architecture enables indeed the 

coexistence of electrons and holes by physically separating the silicon body with a 

thin oxide layer extended from source to drain. Two ultra-thin semi-bodies are 
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formed to isolate the electrons and holes via intermediate oxide (Fig. 5-6c). During 

‗1‘-state onset, excess holes generated by impact ionization or band-to-band 

tunneling are stored in the upper semi-body. These excess holes increase the upper 

semi-body potential and by electrostatic coupling, reduce the threshold voltage of the 

bottom semi-body. This concept was experimentally validated via device processing 

and measurements [243]. 

 The single transistor quantum well (QW) 1T-DRAM [244] was demonstrated by 

inserting a thin SiGe layer with narrow band-gap layer into the Si film (Fig. 5-6d). 

This layer or quantum well operates as storage well for the excess holes. For ‗1‘-state 

programming, the holes generated by impact ionization are stored in this quantum 

well. In order to enhance the storage capability, a negative back-gate bias can be 

applied. This concept allows to modulate the spatial hole distribution within the 

device. It was demonstrated that higher VTH shift and retention time are achieved by 

moving the storage pocket closer to the front gate. 

 A convex channel 1T-DRAM architecture was proposed by simulations (Fig. 5-6e) 

[245]. The holes generated by BJT programming are stored efficiently in a physical 

well located beneath a raised gate. The charge storage ability could be improved by 

using smaller band-gap material such as silicon-germanium in the convex channel 

region, providing deeper potential well. 

 Band-gap engineered source and drain 1T-DRAM was investigated via simulations to 

improve the retention time. By using wide band-gap silicon-carbon as source and 

drain (Fig. 5-6f) [246], a deeper potential well in the fully-depleted body is achieved. 

The silicon-carbon source/drain induces a valence band offset and more holes can be 

stored in the body. For the ‗1‘ and ‗0‘-state programming, impact ionization and 

forward biased junction techniques were used, respectively. Less hole leakage (two 

or three orders) through the source-body junction than in traditional 1T-DRAM 

allows longer retention time (100 ms at 300 K) and good sensing margin (100 

μA/μm). 

 Another technique known as dopant segregated Schottky barrier (DSSB) including 

partially silicided layer at source and drain edges was proposed [247]. The body of 

the device provides an improved volatile storage medium for 1T-DRAM operation: 

because the partially silicided regions at the source/drain-body interface prevents the 

leak out of the accumulated holes from the body, leading to an improved retention 
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time (70 ms). 

 

 
Fig. 5-6: Proposed 1T-DRAM architectures. (a) MSDRAM showing measured drain current and carrier 
distributions [237], (b) vertical 1T-DRAM [240], (c) ARAM [242], (d) quantum well 1T-DRAM [244], convex 
channel 1T-DRAM [245] and (f) band-gap engineered source and drain 1T-DRAM [246] 
 

5.2.3. Unified RAM (URAM) 

 

     As we described in the introduction (Chapter 5.1.), co-integration of NVM and DRAM 

in a single chip requires additional process steps and high cost due to their distinct 

architectures. However, the users continuously demand more integration density and lower 

cost. The aim of URAM is to merge the two different memory functionalities in a single 

transistor. This fusion will lead to cost reduction, simpler fabrication procedure and higher 

yield and integration density.  

     Preliminary results of unified memories were published several years ago [216-218]. 

The flash memory operation is usually performed by using stacked oxide/nitride/oxide 

(ONO) layers at the top gate of the fin as a nonvolatile charge storage medium (Fig. 5-7a): 

Charges can be stored by Fowler-Nordheim tunneling or by hot-carrier injection mechanism. 

The volatile charges are stored in the isolated body of SOI FinFETs. By pushing the bottom 

of the fin body into the buried oxide (see Fig. 5-7a), volatile charge storage efficiency is 

improved. 
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 Recently, other 1T-DRAM architectures with buried ONO layers have been proposed 

in our laboratory (Fig. 5-7b) [249, 250]. Buried nitride layer stores the nonvolatile charges by 

applying bias at the control gate (bottom gate) via Fowler-Nordheim tunneling. In this device, 

impact ionization technique and MSD effect have been successfully tested to store holes in 

the floating body for volatile operation.  

 

 
Fig. 5-7: Cross-section of already proposed unified memory cells. To store nonvolatile charges, ONO layers are 
located (a) at the top of the FinFETs [216] and (b) beneath the floating body [249]. The isolated body of the SOI 
MOSFET is used as the volatile storage medium. 
 

While the unified memory is a promising concept in terms of density increase and cost 

per bit, it is difficult to avoid disturbance [249-252] between the two memory functions 

(NVM and 1T-DRAM), especially during programming and erasing. Moreover, the threshold 

voltage variation coming from each memory function must be de-correlated. For these 

reasons, unified memory needs to be further investigated.  

 

5.3. Volatile Operation as a Capacitorless 1T-DRAM 

 

In this section, a novel concept will be introduced demonstrating a unified and multi-bit 

volatile memory with FinFET architecture and buried ONO layer (Fig. 5-8). The originality 

of our URAM lies in the buried storage ONO layer combined with ―standard‖ FinFET 

devices. Moreover, by combining wisely nonvolatile and volatile operations, several 

separated current levels, functional for a multi-bit DRAM application, will be demonstrated.  

Nonvolatile charges will be stored by Fowler-Nordheim tunneling (back-gate biasing) 

or by localized carrier injection (drain biasing) and remotely sensed at the front-channel for 

flash memory operation (Fig. 5-8a). The holes generated by impact ionization for the volatile 
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memory operation are stored in the body (especially at front-interface) and sensed at the 

back-channel (Fig. 5-8b).  

 

 
Fig. 5-8: A novel concept for unified memory with FinFETs fabricated on ONO buried insulator. (a) Nonvolatile 
charges are stored in the nitride layer and sensed at the front-channel. (b) Volatile charges are stored at the front 
interface and sensed at the back-channel. 

 

In Fig. 5-9, we consider pure 1T-DRAM operation (programming and reading): the 

nitride is not charged and the back-channel is inverted (VBG = +8 V > VTHB = +3.5 V) while 

the front interface is accumulated (VFG = -1 ↑). The ‗1‘-state (high current level) and the ‗0‘-

state (low current level) are programmed respectively by impact ionization [226-231] and 

forward biasing of the body-drain junction [226, 227, 229]. During the ‗1‘-state programming 

(i.e., generation of an excess of majority carriers (holes) inside the Si body), impact 

ionization is achieved by applying a positive drain pulse (VD = +1.5 V). Notice that due to the 

negative front-gate bias, band-to-band tunneling at the gate-to-drain overlap region (VD = 

+1.5 V, VFG = -1 V) may also generate holes [233, 234]. The hot electrons move towards the 

drain contact whereas excess holes are kept inside the Si body thanks to the negative front-

gate bias. As a result, during the reading operation, the current level is ‗high‘ as the Si body 

potential was increased by the stored positive charges. For the ‗0‘-state, negative drain (VD = 

-0.5 V) and positive front-gate (VFG = +0.8 V) voltages are applied. The body-drain junction 

is forward biased. The stored holes are expelled out of the body towards the drain contact and 

the current level switches to its ‗low‘ state. Therefore, two distinct current levels are obtained 

(see Fig. 5-9b). A comfortable current level difference between the ‗0‘- and ‗1‘-state (i.e., 

sensing margin) is achieved (ΔIS = 32 μA/μm).  
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Fig. 5-9: (a) Applied pulses at drain and front-gate and (b) transient current for 1T-DRAM operation. LG = 100 
nm, WF = 90 nm. Sensing margin ΔIS is defined as the source current difference between the ‗0‘- and ‗1‘-states 
after 0.5 ms reading. 
 

5.3.1. Multi-bit volatile operation combined with back-gate biasing 

 

The device structure is the same as the ONO FinFET discussed in Chapter 4. Transient 

drain currents are measured Keithley 4200 analyzer connected to a wafer probe station. 

Voltage pulses on drain and gate are applied with the analyzer so they are limited to the μsec 

range. Two different pulse patterns at drain and front-gate are applied simultaneously with a 

constant back-gate bias. A current to voltage converter (DHPCA-100, FEMTO) and 

oscilloscope (LeCroy 424, Iwatsu test instrument crop.) are connected in series at source for 

the source current sensing.  

According to the polarity and amount of the charges stored in the buried nitride layer, 

the transient current shown in Fig. 5-9 is changed via remote coupling effect. In this section, 

we will demonstrate the multi-bit DRAM induced by the variation of the nonvolatile charge. 

According to the ‗unified memory‘ concept, a single device (like our ONO FinFETs) can be 

operated either in volatile or in nonvolatile mode. On the other hand, the nonvolatile BOX 

charging promotes the 1T-DRAMs from single-bit to multi-bit volatile capability. The several 

‗0‘- and ‗1‘-states of the 1T-DRAM result from the combination with the nonvolatile 

memory storage. 

Fig. 5-10 compares transient current measurements in 1T-DRAM mode for positive, 

negative and zero trapped charge. The charge storage in the nitride is here performed by 

back-gate bias stress (charge injection mechanism is Fowler-Nordheim tunneling [203], see 

Chapter 4). When the back-channel threshold voltage is lowered with positive trapped 
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charges, the current level in both ‗0‘ and ‗1‘-states increases due to the coupling effects [14]. 

By contrast, if negative charges are trapped, the current decreases significantly because the 

effective VBG is reduced. The current levels in Fig. 5-10 are separated enough for an easy 

identification of the ONO charge (positive or negative) and 1T-DRAM states (‗0‘ or ‗1‘). Fig. 

5-10 ~ 5-14 show in more details how the trapped charges in the nitride layer modify 

quantitatively the dependence of the 1T-DRAM sensing margin on biasing and dimensional 

parameters. 

According to the type of ONO trapped charges and their amount (modulated by back-

gate stress), more than two current levels can be achieved with a sufficient sensing margin for 

multi-bit memory application (30 μA/μm ~ 4η μA/μm, Fig. η-10). We verified that ID(VFG) 

curves, before and after many 1T-DRAM memory cycles (>105), remain unchanged. This 

clearly indicated that the multi-bit unified memory operation can be achieved without 

disturbance of the charges trapped in the nitride layer. 

 

 

Fig. 5-10: Transient current for 1T-DRAM with prior nonvolatile ONO charging. Distinct current levels are 
obtained confirming multi-bit capability. Bias condition and device dimension as in Fig. 5-9. VFG = -1V, VD = 
+0.3 V, VBG = +8 V. 
 

Systematic measurements were performed with special attention paid to the sensing 

margin and its dependence on the biasing conditions. Fig. 5-11 shows the impact of the back-

gate bias. At higher back-gate bias during reading operation, both ‗0‘- and ‗1‘-state current 

levels are increased due to stronger inversion of back-channel (Fig. 5-11a). Fig. 5-11b shows 

that, forVBG > VTHB, the sensing margin sharply increases. 
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Fig. 5-11: Effect of back-gate bias on 1T-DRAM operation. (a) Transient current as a function of time for initial 
device (no charge stored in ONO BOX). (b) Impact of trapped charges and back-gate bias on volatile sensing 
margin. Definition of sensing margin, bias conditions and device dimension as in Fig. 5-9. VFG = -1V, VD = +0.3 
V. 

 

At higher VD during ‗1‘-state programming (Fig. 5-12a), more electron-hole pairs are 

generated by impact ionization and band-to-band tunneling at the top gate-to-drain overlap 

region. Therefore, the amount of stored holes is enlarged and ‗1‘-state current level is 

increased as well as the sensing margin. For memory erasing, positive VFG and negative VD 

pulses are combined. When VD is more negative, the cell erase is more efficient due to the 

stronger forward biased body-drain junction: ‗0‘-state current level is reduced, further 

increasing the sensing margin (Fig. 5-12b). 

 

 

Fig. 5-12: Effect of trapped charges and drain pulses used for (a) programming and (b) erasing operation on the 
1T-DRAM sensing margin. Definition of sensing margin and bias conditions as in Fig. 5-9. 
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For more negative VFG during programming, more holes are stored in the body and the 

sensing margin is increased (Fig. 5-13a). For ‗erase‘, the holes purge is accentuated by 

applying a less negative VFG: the ‗0‘-state current level is reduced and again the sensing 

margin is enlarged (Fig. 5-13b). 

 

 
Fig. 5-13: Effect of trapped charges and front-gate pulses used for (a) programming and (b) erasing operation on 
the 1T-DRAM sensing margin. Definition of sensing margin and bias conditions as in Fig. 5-9. 
 

 
Fig. 5-14: Impact of trapped charges, (a) gate length and (b) fin width on the 1T-DRAM sensing margin.  
 

The impact of FinFET geometrical parameters on the sensing margin is summarized in 

Fig. 5-14: 

(i)  In short devices, since the impact ionization rate and current level are higher, the 

sensing margin is improved (Fig. 5-14a). This result is promising for device scaling 

albeit it has to be mitigated with a degraded retention time.  

(ii)   In very narrow fins, the body volume is reduced and less holes can be stored; 
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moreover, the lateral field between the two sidewalls gates tends to control the 

potential at the body-BOX interface inhibiting the VBG action [80, 211]. The effect of 

stored holes is also partially masked so the memory effect is reduced. (Fig. 5-14b). 

Wider fins exhibit better memory margin. 

The trapped charges in the nitride, induced by the back-gate biasing, can ―substitute‖ 

the back-gate bias during reading. Fig. 5-15a shows ID(VBG) curves before and after 15 sec 

stress at VBG = ±25 V. The back-channel threshold voltage variation Δ↑THB between initial 

condition and after 15 sec stress with VBG = -25 V is 2.5 V at VFG = -1 V, VD = 0.3 V. As seen 

in Fig. 5-15b, the two transient current levels measured in initial state (at VBG = +8 V) and 

after 15 sec stress with VBG = -25 V (measurement at VBG = +5.5 V) are equal. The applied 

back-gate bias difference (i.e., 2.5 V) for the volatile operation exactly corresponds to the 

Δ↑THB.  

The transient currents after stress with VBG = -25 V are identical in direct and reverse 

modes. This result gives evidence for the laterally uniform charge trapping induced by the 

back-gate stress. In the next section, where the non volatile charges will be injected with 

drain biasing, the non uniformity of the charge distribution will be highlighted. 

 

 
Fig. 5-15: Impact of uniformly stored charges in the nitride layer. (a) Drain current as a function of back-gate 
bias before and after 15 sec stress with VBG = ±25 V. (b) Initial transient current at VBG = +8 V (before stress) 
and after 15 sec stress with VBG = -25 V (measured for several back-gate biases). Bias conditions as in Fig. 5-9. 
LG = 100 nm, WF = 90 nm, NF = 16, VBG = 0 V, VD = 50 mV. 
 

5.3.2. Multi-bit volatile operation combined with drain biasing 

 

The multi-bit unified memory can also be operated by taking advantage of localized 

carrier injection via drain bias stress (see section 4.4.2). In Fig. 5-16a, the volatile transient 
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current after drain-induced carrier injection is evaluated. Like for the charge trapping with 

back-gate stress (Fig. 5-10), various volatile stages were achieved according to the injected 

charges. By comparing transient current in direct and reverse modes, we confirm again that 

the injected carriers are located near the drain contact (Fig. 5-16b). After 15 sec stress with 

VD = +2.η ↑, the ‗high‘ and ‗low‘ state current levels measured in direct mode are both higher 

than in reverse mode (due to the enhanced role of the positive injected charges located near 

the drain terminal). The sensing margin is slightly superior in direct mode. 

 

 
Fig. 5-16: Impact of charges injected into ONO BOX by drain biasing on 1T-DRAM behavior. (a) Distinct 
transient current levels with and without prior nonvolatile charges stored in the nitride buried layer (by 15 sec 
stress with VD = ±2.5 V). (b) 1T-DRTAM transient current in direct and reverse modes after 15 sec stress with 
VD = +2.5 V. Bias conditions and device dimension as in Fig. 5-15. 
 

 
Fig. 5-17: Effect of locally injected charges in the Si3N4 layer on 1T-DRAM operation. (a) Drain current as a 
function of back-gate bias before and after 15 sec stress with VD = ±2.5 V in direct and reverse mode. (b) Initial 
transient current measured in direct mode (at VBG = +8 V) before stress and measured in direct and reverse mode 
(at VBG = +5 V) after 15 sec stress with VD = +2.5 V.  

 

Unlike the case of uniform charge trapping, localized injected carriers cannot 
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compensate the effect of back-gate bias during read operation. In Fig. 5-17a, ID(VBG) curves 

in direct and reverse modes were measured before and after carrier injection by drain biasing. 

Double-bit nonvolatile memory is obtained, like for the front-channel (Fig. 4-21). In direct 

mode, we measured Δ↑THB = 7 V between virgin device and after stressing at VD = +2.5 V at 

VFG = -1 V. After stress, the ‗low‘ state current level at ↑BG = +5 V corresponds to that in the 

initial ‗low‘ state at ↑BG = +8 V (Fig. 5-17b). The back-gate bias difference is only 3 V, far 

smaller than Δ↑THB = 7 ↑. In addition, no match can be achieved for the ‗high‘ state current 

level. It follows that the effect of the localized nonvolatile charge cannot be entirely 

compensated by adjusting VBG. 

Fig. 5-18 shows the extracted sensing margin of the volatile memory (1T-DRAM) after 

15 sec stress at VD = +2.5 V as a function of the back-gate bias in direct and reverse modes. 

When a higher back-gate bias is used for the readout of the volatile states, impact ionization 

is enhanced because the back-channel is more strongly inverted. Therefore, the current level 

in ‗high‘ state and the sensing margin increase. In direct mode, both ‗0‘- and ‗1‘-state current 

levels are higher than in reverse mode due to the stronger effect of positive charges injected 

near drain side pinch-off region. As a result, in direct mode, the sensing margin is only 10 % 

larger at VBG = +8 V than in reverse mode, despite these levels are quite different (see Fig. 5-

16b). The charges located near the drain contact have a marginally larger influence on the 

sensing margin. 

 

 
Fig. 5-18: ‗High‘ state sensing margin of the volatile 1T-DRAM as a function of back-gate bias during readout 
in direct and reverse modes. Although the curves are rather identical, the current levels are very different.  
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5.4. Conclusion 

 

The 1T-DRAM operation was investigated to evaluate the viability of the combination 

of volatile and nonvolatile memory modes in FinFETs fabricated on ONO multi-layer BOX. 

Our results not only confirm the reliability of our unified memory concept but also show the 

optimization trends. An improvement of the sensing margin in shorter devices with 

moderately wide fins was observed. Multi-bit unified memory operation was carried out as a 

preliminary ‗proof-of-concept‘ without disturbance of the trapped charges. The sensing 

margin of the 1T-DRAM depends on the distribution of the trapped charges and is improved 

for nonvolatile charges located near the drain terminal. Another advantage of FinFETs with 

ONO BOX is the reconfigurability: analog, logic, nonvolatile and volatile memory operations 

can be combined within the same cell.  
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Conclusion 
 

The evolution of electronic systems and portable devices requires innovation in both 

circuit design and transistor architecture. During last fifty years, the main issue in MOS 

transistor has been the gate length scaling down. The reduction of power consumption 

together with the co-integration of different functions is a more recent avenue. In bulk-Si 

planar technology, device shrinking seems to arrive at the end due to the multiplication of 

parasitic effects. The relay has been taken by novel SOI-like device architectures.  

In this perspective, this manuscript presents the main achievements of our work 

obtained with a variety of advanced fully depleted SOI MOSFETs, which are very promising 

candidates for next generation MOSFETs. Their electrical properties have been analyzed by 

systematic measurements and clarified by analytical models and/or simulations. Ultimately, 

appropriate applications have been proposed based on their beneficial features. 

In the first chapter, we briefly addressed the short-channel effects and the diverse 

technologies to improve device performance.  

The second chapter was dedicated to the detailed characterization and interesting 

properties of SOI devices. We have demonstrated excellent gate control and high 

performance in ultra-thin FD SOI MOSFET. The SCEs are efficiently suppressed by 

decreasing the body thickness below 7 nm. We have investigated the transport and 

electrostatic properties as well as the coupling mechanisms. The strong impact of body 

thickness and temperature range has been outlined. A similar approach was used to 

investigate and compare vertical double-gate and triple-gate FinFETs. DG FinFETs show 

enhanced coupling to back-gate bias which is applicable and suitable for dynamic threshold 

voltage tuning. We have proposed original models explaining the 3D coupling effect in 

FinFETs and the mobility behavior in ZnO TFTs. Our results pointed on the similarities and 

differences in SOI and ZnO transistors. According to our low-temperature measurements and 

new promoted extraction methods, the mobility in ZnO and the quality of ZnO/SiO2 interface 

are respectable, enabling innovating applications in flexible, transparent and power 

electronics.  

In the third chapter, we focused on the mobility behavior in planar SOI and FinFET 

devices by performing low-temperature magnetoresistance measurements. Unusual mobility 

curve with multi-branch aspect were obtained when two or more channels coexist and 
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interplay. Another original result in the existence of the geometrical magnetoresistance in 

triple-gate and even double-gate FinFETs. 

The operation of a flash memory in FinFETs with ONO buried layer was explored in 

the forth chapter. Two charge injection mechanisms were proposed and systematically 

investigated. We have discussed the role of device geometry and temperature. Our novel 

ONO FinFlash concept has several distinct advantages: double-bit operation, separation of 

storage medium and reading interface, reliability and scalability.  

In the final chapter, we explored the avenue of unified memory, by combining 

nonvolatile and 1T-DRAM operations in a single transistor. The key result is that the transient 

current, relevant for 1T-DRAM operation, depends on the nonvolatile charges stored in the 

nitride buried layer. On the other hand, the trapped charges are not disturbed by the 1T-

DRAM operation. Our experimental data offers the proof-of-concept for such advanced 

memory. The performance of the unified/multi-bit memory is already decent but will greatly 

improve in the coming years by processing dedicated devices. 
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Chapitre 1: Introduction générale 

 

La miniaturisation des transistors conventionnels sur Si massif a atteint ses limites ce 

qui ouvre la voie aux technologies alternatives. Les deux principales technologies CMOS en 

compétition sont le FinFET et le FDSOI planaire (privilégié à Grenoble). Ces deux types de 

transistors partagent des effets similaires : désertion totale (FD), canaux multiples, couplage 

des interfaces, substrat flottant, etc. Leur miniaturisation est basée sur l‘amincissement du 

corps du transistor.   

Notre sujet de thèse était initialement orienté vers les dispositifs mémoires sur SOI 

(chapitres 4 et η). L‘étude des effets ―mémoire‖ sur FDSOI et FinFET nous a naturellement 

menés vers les mécanismes de couplage, de transport et de canal court. Nous avons noté des 

aspects inédits qui méritaient une analyse détaillée faisant appel à des mesures en basse 

température et à fort champ magnétique. Ces résultats font l‘objet des deux chapitres suivants. 

Notre travail est fondé sur la combinaison de mesures systématiques, de modélisations 

physiques et de simulations numériques pour la validation des résultats et des concepts.   

 

Chapitre 2: Dispositifs avancés et effets typiques 

 

2.1. Propriétés typiques des transistors FD SOI 

 

La structure des transistors planaires FD SOI est illustrée en Fig. 1. L‘oxyde enterré est 

mince (TBOX = 25 nm) et le film de Si est ultra-mince (tsi = 5 nm, 7 nm and 10 nm) au 

meilleur état de l‘art. La longueur de grille descend jusqu‘à LG = 30 nm, afin d‘étudier 

l‘influence de l‘épaisseur sur les effets de canal court (SCE), de transport et de couplage des 

canaux. Le diélectrique de grille (SiO2 et HfO2) a une épaisseur effective EOT de 1.6 nm. Un 

plan de masse (ground plane ou GP) a été implanté sous le BOX afin de pouvoir moduler la 

tension de seuil (stratégie de back-biasing). Tous les dispositifs ont une grille métal au-dessus 

du film non-implanté. Ces transistors présentent d‘excellentes performances. 
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Fig. 1: Schéma d‘un transistor ultra-mince FD SOI. 

 

 
Fig. 2: Impact de l‘épaisseur du film et de la longueur de grille sur les caractéristiques des transistors FD SOI. 
(a) Mobilité des électrons, (b) tension de seuil et (c) ‗swing‘. La mobilité et la tension de seuil ont été extraites 
par la méthode de la fonction Y. 
 

La Figure 2 montre les effets conventionnels de canal court en fonction de l‘épaisseur 

du film. La mobilité électronique décroit avec LG en raison des défauts localisés induits lors 

de l‘implantation de source et drain (Fig. 2a). Dans les transistors plus minces, la mobilité est 
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légèrement réduite par le confinement des phonons et les collisions sur les surfaces.  

La tension de seuil et la pente en inversion faible (ou le ‗swing‘) sont normalement 

dégradées dans les transistors courts en raison du partage de charge (Fig. 2b and 2c). En 

réduisant l‘épaisseur, le confinement quantique se traduit par une plus forte énergie 

nécessaire pour atteindre la même charge d‘inversion ; en d‘autres termes, la tension de seuil 

augmente (Fig. 2b). Néanmoins, l‘effet de canal court est atténué par la réduction de 

l‘épaisseur des jonctions et de la région de désertion. Cette amélioration est clairement visible 

sur le ‗swing‘ en Fig. 2c. 

 

 
Fig. 3: Mobilité en fonction de la température pour différentes épaisseurs du transistor. WG = 2 μm, ↑D = 20 mV 
et VBG = 0 V. 
 

La Figure 3 montre la mobilité mesurée dans une large gamme de température (77 - 

300 K). On note l‘augmentation de la mobilité en basse température due à la réduction des 

collisions avec les phonons. 

Un effet inédit est la variation du coefficient de couplage entre les deux canaux, défini 

comme α = -Δ↑THF/Δ↑BG, avec la température (Fig. 4). A 77 K, le couplage est un peu plus 

fort dans les transistors plus minces où la capacité du film est plus élevée. En augmentant la 

température on observe une augmentation du couplage qui reflète sa dépendance aux effets de 

canal court. Les SCE sont plus fort à haute température et dans les dispositifs plus épais ce 

qui conduit à une amplification du couplage. Pour cette raison, l‘effet de couplage dans les 

films très minces est relativement insensible à la température ce qui est intéressant pour la 

conception de circuits SOI à tension de seuil modulable par effet de grille arrière. 
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Fig. 4: Coefficient de couplage en fonction de la température pour différentes épaisseurs de transistors très 
courts. 
 

2.2. Effets de couplage dans les FinFET à double-grille 

 

Afin de réduire la consommation tout en améliorant la vitesse des circuits, il est 

important d‘examiner la possibilité de moduler la tension de seuil également dans les FinFET. 

Les effets de couplage 3D ayant été déjà analysés dans les FinFET triple-grille, nous nous 

sommes penchés sur les transistors à double grille. Nos dispositifs, fabriqués à Sematech, ont 

TBOX = 140 nm, EOT = 1.4 nm et un fin de hauteur HF = 40 nm (Fig. 5). Au-dessus du fin, 

des couches épaisses de SiO2 (5 nm) et de nitrure (10 nm) ont été déposées pour empêcher 

l‘activation du canal supérieur. Les deux canaux latéraux sont contrôlés par la même tension 

de grille.  

 

 
Fig. η: Image TEM d‘un FinFET double-grille (DG) sur SOI. 
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Fig. 6: Effets de couplage mesurés sur DG FinFETs. (a) Transconductance et (b) tension de seuil en fonction de 
la tension arrière pour différentes largeurs du fin (WF). 
 

Le couplage ‗vertical‘ entre les canaux latéraux et la tension arrière (↑BG) a été étudié 

systématiquement. Lorsque l‘interface fin-BO↓ change de l‘accumulation vers l‘inversion, le 

potentiel électrique dans le film augmente et la tension de seuil diminue (Fig. 6a). Le pic de 

la transconductance est déplacé vers la gauche. A forte tension arrière (VBG > +3 V), un 

plateau devient visible sur la transconductance, indiquant l‘activation prématurée du canal 

arrière. Par contre, à tension suffisamment négative (VBG < -12 ↑), l‘effet GIFBE (gate-

induced floating body effect) se manifeste par une augmentation du pic.  

La Figure θb montre que la largeur du fin a une importance capitale sur l‘effet du 

couplage. Le coefficient de couplage α = -Δ↑THF/Δ↑BG diminue considérablement dans les 

FinFETs étroits, où le couplage ‗vertical‘ se trouve en compétition avec le couplage ‗latéral‘. 

En effet, les grilles latérales tentent également de contrôler le potentiel à l‘interface fin-BOX, 

réduisant ainsi l‘impact de la tension substrat jusqu‘à l‘éliminer. Dans ce cas extrême de fin 

très étroit (< 20 nm), la grille arrière ne peut plus moduler convenablement la tension de seuil 

du transistor. Un autre résultat intéressant, que nous avons expliqué par la même compétition 

‗latéral-vertical‘, est l‘augmentation du couplage inversé (Δ↑THB/Δ↑FG) dans les fins étroits. 

La comparaison entre FinFETs double et triple grille est montrée en Fig. 7. La grille 

supplémentaire au-dessus du fin s‘oppose à la pénétration du champ vertical issu du substrat 

et renforce ainsi l‘effet des grilles latérales. Le coefficient de couplage est nettement réduit, 

raison pour laquelle nous préconisons l‘utilisation des FinFET double-grille dans les circuits 

à modulation par la tension de substrat. 
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Fig. 7: Comparaison du couplage entre le courant de drain et la grille arrière dans des FinFET à double-grille et 
à triple-grille.  
 

2.3. Etude de la mobilité dans les transistors TFT sur ZnO 

 

Puisque les TFT fonctionnent comme le canal arrière des MOSFETs sur SOI, nous les 

avons étudiés, par notre méthodologie SOI, dans le cadre d‘une coopération avec Air Force 

Laboratory (USA). Les TFT en ZnO présentent un grand intérêt, en particulier pour les écrans 

plats et les composants déformables. Notre mission était double : (i) trouver une méthode 

fiable pour la détermination de la mobilité et (ii) analyser les performances en basse 

température.  

Les dispositifs ont été fabriqués sur des couches de ZnO nanocrystallin déposées par 

PLD (pulsed laser deposition) à 200°C [2.49]. La grille, située en face arrière, est séparée du 

film par 30 nm de SiO2. La Figure 8 montre une image TEM du canal du transistor.  

 

 
Fig. 8: Image TEM d‘un TFT sur ZnO nanocrystallin. 
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Après une campagne de mesures, nous avons examiné et testé les modèles de mobilité 

proposés dans la littérature. Les méthodes basées sur l‘ajustement des courbes via de 

multiples paramètres ajustables ont été déclassées au profit de modèles plus physiques. La 

méthode classique de la fonction Y s‘avère inapplicable aux TFT car elle ne peut pas 

reproduire le fort écart entre les tensions de seuil et du pic de transconductance (~ 6-8 V à 77 

K, voir Fig. 9c). 

 Deux modèles ont été retenus, le préféré étant celui de Shur pour des raisons de 

simplicité. Nous l‘avons revisité en introduisant le facteur de dégradation de mobilité θ et en 

laissant libres les paramètres m et k : 

 

 

 

Notre modèle prend en compte le transport conventionnel dans les couches d‘inversion 

ainsi que l‘effet variable (selon ↑G) des joints de grains, résumé par m et k. La Figure 9a 

montre la parfaite superposition du modèle aux courbes mesurées pour m = 2.1, k = 1.η, ș = 

0.0025, VTH = 1.η ↑ and μ0 = 95 cm2/Vs. 

Afin de déterminer expérimentalement ces paramètres, nous avons mis au point une 

méthode d‘extraction originale. Les deux mécanismes principaux de transport sont séparés 

suivant la tension de grille. Dans une première étape, à faible VG, la conduction est gouvernée 

par l‘activation progressive des joints de grains (μ0 et θ sont négligeables). La courbe 

mesurée ID/gm (VG) étant linéaire, on extrait le coefficient m de la pente et la tension de seuil 

de l‘intersection avec l‘axe horizontal. Le coefficient k est donné par le courant de drain 

mesuré à VG - VTH = 1 V (Fig. 9b).  

Dans la seconde étape, à fort VG, le transport est dominé par drift-diffusion. On peut 

alors utiliser la fonction Y pour déduire la mobilité μ0 et le facteur θ : 

 

 

 

Cette méthode est détaillée en section 2.3. Notre modèle est dorénavant utilisé pour 

l‘optimisation des TFT. 
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Fig. 9: (a) Courant de drain en fonction de la tension de grille (mesures et modèle). (b,c) Courbes ID/gm(VG) et  
ID/√gm(VG). Les lignes montrent l‘extrapolation linéaire des paramètres. 
 

Les mesures en basse température indiquent les variation de la tension de seuil, de la 

pente en inversion faible et de la mobilité μ0 qui est fortement dépendante du taux de 

collisions avec les phonons.  

 

Chapitre 3: Magnétorésistance géométrique et courbes inhabituelles 

de mobilité 

 

Dans les transistors FD, la mobilité des porteurs est un paramètre complexe car 

plusieurs canaux, grilles et interfaces coexistent et interagissent. Afin de l‘étudier en détail, 

nous avons choisi la plus précise et irréfutable méthode qui existe : la magnétorésistance 

géométrique. Rappelons que l‘effet Hall et la magnétorésistance sont des mécanismes 

jumeaux. Lorsque le champ de Hall empêche la déflection Lorentzienne des porteurs, la 
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magnétorésistance est pratiquement négligeable. Par contre, si le champ de Hall est court-

circuité, comme dans les MOSFETs courts et larges, la magnétorésistance (appelée 

géométrique) est maximale : 

 

 

Cette relation est indépendante de toute approximation ou paramètre technologique 

(longueur et largeur effectives, épaisseurs du film et des diélectriques, etc) ce qui la rend 

inopposable. Il suffit de tracer la variation de la résistance en fonction du carré du champ 

magnétique B pour obtenir, de la pente, la mobilité μMR à différentes tensions de grille (Fig. 

10b). Nous avons mesuré une variété de transistors FD-SOI planaires et des FinFET en 

utilisant les équipements du laboratoire LCMI du CNRS à Grenoble. 

La Figure 10 montre les caractéristiques typiques d‘un transistor FD SOI dans la 

gamme 0‒11 T.  La tension de seuil VTHF et la pente en inversion faible sont peu affectées 

par le champ magnétique B, alors que la transconductance et le courant diminuent 

notablement. Le coefficient de dégradation de mobilité θ décroit également avec B (insertion 

Fig. 10a).  

 

 
Fig. 10: Caractéristiques typiques d‘un MOSFET SOI sous champ magnétique intense. (a) Transconductance en 
fonction de la tension de grille (l‘insertion montre la variation du facteur θ). (b) RB/R0 en fonction du carré du 
champ. Transistor FD SOI (image) avec LG = 1 μm, →G = 10 μm, ↑D = 10 mV, VBG = 0 V, T = 100 K. 
 

Nous avons ainsi démontré que les mobilités des canaux avant et arrière étaient élevées 

malgré la faible épaisseur du film SOI. Nous nous sommes concentrés sur l‘impact du 

couplage de ces deux canaux. Pour cela, nous avons tracé la mobilité en fonction du champ 

électrique effectif, calculé à partir des tensions appliquées sur les deux grilles. La Figure 11 est 

)1( 22
0 BRR MRB 
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remarquable dans le sens qu‘elle infirme le concept de mobilité universelle. On observe une 

double branche qui s‘explique par le déplacement du profil des porteurs de l‘interface arrière 

vers l‘interface avant. Par exemple, pour |Eeff| ≈ 0.3 M↑/cm, deux valeurs distinctes de 

mobilité sont mesurées. Au début de la courbe, la mobilité dans le canal arrière augmente avec 

VG car le champ électrique vertical diminue (moins de collisions sur la surface). Dès qu‘une 

valeur maximum est atteinte, le canal avant s‘ouvre et prend le contrôle du transistor. La 

mobilité retrouve une décroissance plus conventionnelle avec le champ électrique. Des 

mesures supplémentaires et des explications détaillées sont fournies en section 3.3. 

 

 
Fig. 11: Mobilité en fonction du champ électrique effectif. La grille arrière est polarisée en inversion (VBG = 
+20↑) et le canal avant s‘ouvre graduellement.  
 

Pour la première fois, nous avons mesuré la mobilité, via la magnétorésistance 

géométrique, dans les FinFET. L‘influence du champ magnétique sur les canaux verticaux et 

horizontaux est différente, néanmoins la mobilité a pu être déterminée. Nous avons comparé 

la mobilité dans les divers canaux et montré des multiples courbes non-universelles. 

 Le cas le plus intriguant est celui des FinFET double-grille. Comme la largeur du 

canal (épaisseur du film) est inférieure à la longueur de grille, on s‘atteindrait à une 

magnétorésistance géométrique négligeable car le champ magnétique est toujours 

perpendiculaire à la plaquette, donc parallèle au plan du courant. Cette hypothèse, très 

raisonnable et confirmée sur des transistors planaires, a été niée par les mesures. On obtient 

en effet une mobilité respectable dans les canaux latéraux (Fig. 12). Pour confirmer la validité 

de ces résultats, nous les avons comparés aux courbes de mobilité effective (μeff) et de 

mobilité effet de champ (μFE) déduites des caractéristiques mesurées en l‘absence du champ 
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magnétique. Nous avons également corrigé la méthode de la magnétorésistance en incluant 

l‘effet de la résistance série dans les canaux courts. Les diverses courbes sont présentées en 

Fig. 12a. Les variations sont parallèles ce qui confirme chacune des méthodes. La différence 

entre les mobilités μMR et μeff est parfaitement normale et représente la signature des 

mécanismes de collisions dominants (dans notre cas, collisions de type Coulombien). 

L‘évaluation de la mobilité dans des FinFETs à largeur variable a conduit aux résultats 

présentés en Fig. 12b. On note une certaine dégradation de la mobilité dans les fins étroits, 

liée à l‘augmentation des collisions sur les défauts des flancs latéraux. 

Mais pourquoi peut-on mesurer une magnétorésistance géométrique alors que les 

conditions ‗géométriques‘ (L << → = HF) ne sont apparemment pas remplies ? Nous pensons 

qu‘il s‘agit d‘un pur effet double grille. La force de Lorentz tend à dévier les porteurs 

perpendiculairement aux flancs, d‘une grille vers la grille opposée. Le champ de Hall, qui 

devrait s‘opposer à cette déflection et annuler la magnétorésistance, ne peut pas s‘établir entre 

les deux flancs ; leurs potentiels sont en effet identiques car la même tension est appliquée sur 

les deux grilles latérales. Le court-circuit de l‘effet Hall, à l‘origine de la magnétorésistance 

géométrique, n‘est plus assuré par la géométrie du transistor mais par sa configuration DG 

FinFET. 

 

 
Fig. 12: Mobilité résultant des mesures de magnétorésistance dans des FinFET à double grille. (a) Mobilité en 
fonction de la tension de grille, extraite par différentes méthodes. (b) Courbes de mobilité MR montrant l‘impact 
de la largeur du fin. 
 

En conclusion, nous avons démontré la faisabilité et l‘intérêt des mesures de 

magnétorésistance géométrique sur des films nanométriques et surtout sur des transistors 3D 

tels que les FinFET.  Nos résultats ouvrent la porte vers d‘études plus approfondies sur 
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l‘identification des mécanismes de collision et sur la discrimination de la mobilité dans les 

différents canaux qui coopèrent au transport de charge. 

 

Chapitre 4: Nouvelle mémoire non-volatile sur ONO FinFETs 

 

Dans ce chapitre, nous étudions des dispositifs FinFETs fabriqués sur couche ONO 

enterrée pour une application mémoire flash innovante où les charges sont piégées dans la 

couche de nitrure enterré et détectées/lues à l'interface opposée par effet de couplage. Grâce à 

cette configuration spécifique, l'épaisseur d'oxyde tunnel arrière peut rester suffisamment 

épaisse pour conserver de bonnes performances en terme de rétention, alors que celle de 

l'oxyde avant (où l'état de la mémoire est lu) peut suivre les critères de miniaturisation des 

dispositifs à l'état de l'art. De plus, la séparation des deux interfaces améliore la fiabilité de la 

mémoire et réduit les problèmes de perturbation de charge survenant lors du cyclage en 

programmation. 

Des plaques SOI avec un empilement SiO2/Si3N4/SiO2 ont été utilisées comme 

matériau de départ. Cet isolant multicouche est composé de SiO2 (2,5 nm), Si3N4 (20 nm) et 

SiO2 (70 nm). La couche mince supérieure de SiO2 (2,5 nm) permet le transport par effet 

tunnel. L'épaisseur du film de silicium est de 65 nm et le TiSiN déposé par LPCVD a été 

utilisé comme matériau pour la grille. 

 

 
Fig. 13: Effets typiques mémoire induits par polarisation de grille arrière. (a) Courant de drain en fonction de la 
tension de grille avant, mesuré à VFG = VBG = 0 V après programmation à VBG = ± 50 V. La grille avant, le drain 
et la source sont mis à la masse pendant le stress. 
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Les charges peuvent être injectées et piégées dans le nitrure notamment en appliquant 

une tension sur la grille arrière VGB (Fig. 13) ou sur le drain (Fig. 14). Lorsque la méthode de 

programmation par tension de grille arrière est utilisée, le mécanisme d'injection est de type 

Fowler-Nordheim (FN). Les charges piégées peuvent modifier les caractéristiques du canal 

face avant par couplage. Le changement d'état (haut et bas) résultant du piégeage/dépiégeage 

de charge est mesuré à VBG = 0 V. 

Lorsque la mémoire est programmée à l'aide d'un tension appliquée sur le drain (|VD| > 

2 V), les charges sont injectées/extraites dans/de l'ONO enterré à proximité de ce même 

terminal grâce à l'efficacité du champ électrique vertical. La Figure 14 illustre les courbes 

ID(VFG) résultant de polarités opposées appliquées au drain combinées avec deux 

configurations de lecture. Des charges positives et négatives sont injectées en appliquant 

respectivement 2.5 V et -2.5 V au drain. Si les terminaux source et drain sont échangés au 

cours de la lecture, une opération non volatile "multi-bit" peut être réalisée. Les termes 

"direct" ou "inverse" sont utilisés quand une polarisation de lecture positive (50 mV) est 

appliquée aux contacts de source ou drain respectivement. Notons que la charge non volatile 

reste injectée à la même borne (au drain) quelque soit le mode de lecture. En mode direct, 

l'effet des charges injectées situées près du drain a un plus fort impact sur le pincement de 

canal qu'en mode inverse. Par conséquent, l'exploitation de ce phénomène permet de rendre 

réalisable une opération sur quatre configurations des charges injectées en inversant les 

polarités aux bornes de lecture et en utilisant la source et/ou le drain pour injecter les charges. 

 

 
Fig. 14: Effet mémoire par polarisation de drain. Le courant de drain est mesuré en mode direct et inverse, en 
fonction de la tension de grille à VBG = 0 V, avant et après 15 secondes de stress à VD = ± 2,5 V. Lors du stress, 
grille avant, source et drain ont été mis à la masse. (b) Le mode inversé (drain-source) a été mesuré après (a) le 
mode direct (source-drain). LG = 100 nm, WF = 90 nm, NF = 16, VBG = 0 V, VD = 50 mV. 
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La Figure 15a met en évidence l'effet de la longueur de grille sur la marge de courant 

non volatile après programmation. Nous avons montré que l'effet mémoire pour des 

dispositifs plus courts (avec une largeur de fin raisonnable, > 10‒15 nm) est amplifié grâce au 

champ électrique longitudinal généré par la polarisation de drain. Cette amplification est 

attribuée à un effet plus connu sous le nom de "fringing fields". Ce résultat apporte un 

éclairage nouveau pour une voie future de l'amélioration des performances mémoire 

lorsqu‘une miniaturisation encore plus poussée sera envisagée. La Figure 1ηb illustre le 

temps de rétention obtenu en utilisant la programmation par polarisation de drain. Alors que 

les dispositifs de test n'ont pas été spécifiquement optimisés, la rétention obtenue est 

compétitive et appropriée pour une application mémoire flash. 

 

 
Fig. 15: (a) Marge de détection, définie comme étant la différence des niveaux de courant à VFG = VBG = 0 V 
avant et après stress, en fonction de la longueur de grille. (b) Caractéristique de rétention liée à la décharge des 
pièges de la couche de nitrure. Courant de drain en fonction du temps à T = 300 K et T = 350 K, montrant la 
marge de détection et le temps de rétention après 10 sec de stress à VD = +3 V. 
 

En plus de la démonstration de la faisabilité d'opérations double-bit effectuée grâce à 

l'injection localisée de porteurs, cette mémoire fournit une fiabilité améliorée par le biais de 

la séparation de l'interface de programmation et de l'interface de détection/lecture. 

 

Chapitre 5: Mémoire Multi-Bit Unifiée à ONO FinFETs 

 

Les dispositifs FinFETs sur ONO ont été évalués en tant que mémoire DRAM à seul 

transistor (1T-DRAM). L'étude de la coexistence des opérations volatile et non volatile au 

sein de la même cellule a démontré que le concept de mémoire unifiée (URAM) pouvait être 
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également une option à forte potentialité. Nos résultats expérimentaux ont révélé aussi la 

faisabilité d'une mémoire volatile multi-bit. 

Un concept original de mémoire unifiée volatile et multi-bit avec une architecture 

FinFET sur couche ONO enterré est présenté (Fig. 16). Les charges non volatiles sont 

stockées de façon uniforme par injection Fowler-Nordheim (par polarisation de grille arrière), 

ou par injection de porteurs localisée (polarisation de drain). La variation de charge non 

volatile est détectée à l'interface avant par couplage capacitif (Fig. 16a). Pour le 

fonctionnement de la mémoire volatile 1T-DRAM, les charges (trous générés par ionisation 

par impact) sont stockées dans le corps du FinFET (en particulier à l‘interface avant) et 

détectées par le canal d'inversion en face arrière (Fig. 16b). 

 

 
Fig. 16: Nouveau concept de mémoire unifiée avec FinFET fabriqués sur isolant ONO enterré. (a) Les charges 
non volatiles sont stockées dans la couche de nitrure et détectées au canal avant ; (b) les charges volatiles sont 
stockées à l'interface avant et détectées au canal arrière. 
 

La Figure 17 résume la séquence de programmation/lecture de la 1T- DRAM multi-bit. 

L'état '1' (niveau de courant haut) et l'état '0' (faible niveau de courant) sont programmés 

respectivement par ionisation par impact (VBG = +8 V et VD = 1.5 V) et en polarisant la 

jonction body-drain en direct (VD = -0.5 V et VFG =+0.8 V) (Fig. 17a). Les niveaux de 

courant transitoire en mode 1T‒DRAM pour différentes polarités de charge non-volatile ― 

positive, négative et native (ONO non chargé) ― sont comparés à la Figure 17b. Les niveaux 

obtenus sont suffisamment distincts pour une identification aisée de la charge ONO (positive 

ou négative) et des niveaux '0' ou '1‘ de la 1T-DRAM. Selon le type de charges piégées et leur 

quantité (modulée par le stress de grille arrière), plus de deux niveaux de courant peuvent être 

atteints avec une marge de détection suffisante pour une application mémoire multi-bits 

(30‒45 µA/µm). 



Résumé du Travail de la Thèse en Français 

189 

 
Fig. 17: (a) Impulsions appliquées au drain et à la grille avant. (b) Courant transitoire de la 1T-DRAM avant et 
après charge du ONO. Les niveaux de courant distincts obtenus confirment la capacité de l'application multi-bits. 
La marge de détection ΔIS est définie comme la différence de courant entre les états '0' et '1' après 0.η ms de 
lecture. LG = 100 nm, WF = 90 nm. 
 

L'impact des paramètres géométriques du FinFET sur la marge de détection est résumé 

à la Figure 18. Dans les dispositifs à canaux courts, puisque le taux d'ionisation par impact et 

le niveau de courant sont plus élevés, la marge de détection est améliorée (Fig. 18a). Dans les 

dispositifs très étroits, le volume de stockage est réduit. De plus, l'effet de la variation 

dynamique du potentiel (liée à l'excès en trous) est partiellement masqué par le champ 

électrique latéral accru. Par conséquent, l'effet mémoire est détérioré (Fig. 18b).  

 

 

Fig. 18: Impact de (a) la longueur et (b) largeur de grille sur la marge de détection 1T-DRAM définie comme en 
Figure 17. 
 

L'opération en mode 1T-DRAM a été étudiée afin d'évaluer la viabilité de la 

combinaison des modes mémoire volatile et non volatile dans les dispositifs FinFETs 
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fabriqués sur ONO enterré. Une amélioration de la marge de détection des dispositifs à 

canaux courts a été mise en évidence. Finalement, le fonctionnement en mémoire unifiée 

multi-bits a pu être réalisé sans perturbation des charges piégées dans le ONO. 

 

Conclusion 

 

Ce travail présente les principaux résultats obtenus avec une large gamme de dispositifs 

SOI avancés, candidats très prometteurs pour les futurs générations de transistors MOSFETs. 

Leurs propriétés électriques ont été analysées par des mesures systématiques, agrémentées 

par des modèles analytiques et/ou des simulations numériques. Nous avons également 

proposé une utilisation originale de dispositifs FinFETs fabriqués sur ONO enterré en 

fonctionnalisant le ONO à des fins d'application mémoire non volatile, volatile et unifiées.  

Après une introduction sur l'état de l'art des dispositifs avancés en technologie SOI, le 

deuxième chapitre a été consacré à la caractérisation détaillée des propriétés de dispositifs 

SOI planaires ultra- mince (épaisseur en dessous de 7 nm) et multi-grille. Nous avons montré 

l‘excellent contrôle électrostatique par la grille dans les transistors très courts ainsi que des 

effets intéressants de transport et de couplage.  

Une approche similaire a été utilisée pour étudier et comparer des dispositifs FinFETs à 

double grille et triple grille. Nous avons démontré que la configuration FinFET double grille 

améliore le couplage avec la grille arrière, phénomène important pour des applications à 

tension de seuil multiple. Nous avons proposé des modèles originaux expliquant l'effet de 

couplage 3D et le comportement de la mobilité dans des TFTs nanocristallin ZnO. Nos 

résultats ont souligné les similitudes et les différences entre les transistors SOI et à base de 

ZnO. Des mesures à basse température et de nouvelles méthodes d'extraction ont permis 

d'établir que la mobilité dans le ZnO et la qualité de l'interface ZnO/SiO2 sont remarquables. 

Cet état de fait ouvre des perspectives intéressantes pour l'utilisation de ce type de matériaux 

aux applications innovantes de l'électronique flexible. 

 Dans le troisième chapitre, nous nous sommes concentrés sur le comportement de la 

mobilité dans les dispositifs SOI planaires et FinFET en effectuant des mesures de 

magnétorésistance à basse température. Nous avons mis en évidence expérimentalement un 

comportement de mobilité inhabituel (multi-branche) obtenu lorsque deux ou plusieurs 

canaux coexistent et interagissent. Un autre résultat original concerne l‘existence et 
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l‘interprétation de la magnétorésistance géométrique dans les FinFETs. 

L'utilisation de FinFETs fabriqués sur ONO enterré en tant que mémoire non volatile 

flash a été proposée dans le quatrième chapitre. Deux mécanismes d'injection de charge ont 

été étudiés systématiquement. En plus de la démonstration de la pertinence de ce type 

mémoire en termes de performances (rétention, marge de détection), nous avons mis en 

évidence un comportement inattendu : l‘amélioration de la marge de détection pour des 

dispositifs à canaux courts. Notre concept innovant de FinFlash sur ONO enterré présente 

plusieurs avantages: (i) opération double-bit et (ii) séparation de la grille de stockage et de 

l'interface de lecture augmentant la fiabilité et autorisant une miniaturisation plus poussée que 

des Finflash conventionnels avec grille ONO. 

Dans le dernier chapitre, nous avons exploré le concept de mémoire unifiée, en 

combinant les opérations non volatiles et 1T-DRAM par le biais des FinFETs sur ONO 

enterré. Comme escompté pour les mémoires dites unifiées, le courant transitoire en mode 

1T-DRAM dépend des charges non volatiles stockées dans le ONO. D'autre part, nous avons 

montré que les charges piégées dans le nitrure ne sont pas perturbées par les opérations de 

programmation et lecture de la 1T-DRAM. Les performances de cette mémoire unifiée multi-

bits sont prometteuses et pourront être considérablement améliorées par optimisation 

technologique de ce dispositif. 
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