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SUMMARY 

 Uranium contamination of soils and groundwater at Department of Energy 

facilities across the United States is a primary environmental concern and the 

development of effective remediation strategies is a major challenge.  Bioremediation, or 

the use of microbial enzymatic activity to facilitate the remediation of a contaminant, 

offers a promising in situ approach that may be less invasive than traditional methods, 

such as pump and treat or excavation.   

 Environmental conditions at uranium contaminated waste sites impose unique 

biogeochemical obstacles that must be addressed to successfully remediate uranium 

contamination.  Low pH and high nitrate concentrations in soils and groundwater affect 

microbial activity and the speciation and mobility of uranium.  Microorganisms that are 

able to survive in such conditions may possess unique abilities that can be exploited in 

developing new bioremediation strategies.  The overall objective of this research is to 

explore new ways to promote indigenous bacterial processes in contaminated soils and 

groundwater that immobilize uranium at low pH and high nitrate concentrations. 

 This study demonstrates for the first time the successful biomineralization of 

uranium phosphate minerals as a result of microbial phosphatase activity at low pH in 

both aerobic and anaerobic conditions using pure cultures and soils from a contaminated 

waste site.  Pure cultures of microorganisms isolated from soils of a low pH, high 

uranium- and nitrate-contaminated waste site, expressed constitutive phosphatase activity 

in response to an organophosphate addition in aerobic (Rahnella sp. and Bacillus sp.) and 

anaerobic (Rahnella sp.) incubations.  Sufficient phosphate was hydrolyzed to precipitate 

73 to 95% total uranium as chernikovite, an autunite-type uranium phosphate mineral, 



 xx

identified by synchrotron X-ray absorption spectroscopy and X-ray diffraction. Highest 

rates of uranium precipitation and phosphatase activity were observed between pH 5.0 

and 7.0.   

 Indigenous microorganisms were also stimulated by organophosphate amendment 

in soils from a contaminated waste site using flow-through reactors.  A continuous supply 

of organophosphate, nitrate, and uranium in synthetic groundwater of the same 

composition as that at the site was pumped through both high and low pH soils for 30 and 

75 days.  High phosphate concentrations (0.5 to 3 mmol L-1) in pore water effluents were 

observed within days of organophosphate addition and throughout the course of the 

experiment.  Highest rates of phosphatase activity occurred at pH 5.5 in naturally low pH 

soils in the presence of high uranium and nitrate concentrations.  Uranyl phosphate 

precipitation occurred in organophosphate-amended soils at pH 5.5 and 7 as a result of 

the favorable reaction between negatively-charged phosphate and positively-charged 

uranyl. The precipitation of uranium phosphate in both soils was identified by a 

combination of pore water measurements, solid phase extractions, synchrotron-based X-

ray spectroscopy, and a reactive transport model.  

 The results of this study demonstrate that uranium is biomineralized to a highly 

insoluble uranyl phosphate mineral as a result of enzymatic hydrolysis of an 

organophosphate compound as sole carbon and phosphorus source over a wide range of 

pH, in both aerobic and anaerobic conditions, and in the presence of high uranium and 

nitrate concentrations.  The nonreductive biomineralization of U(VI) provides a 

promising new approach for in situ uranium bioremediation in low pH, high nitrate, and 



 xxi

aerobic conditions that could be complementary to U(VI) bioreduction in high pH, low 

nitrate, and reducing environments. 
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CHAPTER 1  

OVERVIEW 

1.1  Motivation 

 Between 1942 and the early 1990’s, the production of nuclear materials and 

weapons in the United States generated large volumes of radioactive waste that has left a 

legacy of contaminated groundwater and soils at over 120 Department of Energy (DOE) 

sites in 36 states across the United States (NABIR, 2003).  Since the shutdown of nuclear 

weapons production in the 1990’s, the mission of the DOE has shifted to environmental 

restoration and decontamination of over 1.9 million cubic meters of contaminated 

groundwater and 79 million cubic meters of contaminated solid media (including soils) 

(DOE, 1997).  Groundwater and soil contamination at these sites resulted from direct 

injection of mixed waste into the subsurface, leakage from storage tanks, and infiltration 

into the surrounding media from unlined storage ponds that resulted in plumes of mixed 

waste migrating according to hydrological and geological conditions (DOE, 1997).  

Heavy metals and radionuclides represent 50 to 60% of the contamination at the majority 

of these sites including uranium, reported in soils and groundwater at more than 50% of 

the DOE facilities (NABIR, 2003). 

 At the Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee 

uranium contamination resulted from the migration of groundwater plumes originating 

from the former S-3 Waste Disposal Ponds located near the Y-12 Plant and the Y-12 

Bone Yard/Burn Yard (Figure 1.1) (Brooks, 2001).  The unlined ponds received highly 

acidic uranium nitrate liquid wastes generated at the Y-12 Plant and liquid and sludge 
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waste from other DOE facilities from 1951 to 1983.  The liquid wastes were treated and 

removed in 1984 and the area capped by asphalt (Figure 1.1).   Subsurface groundwater 

adjacent to the ponds is acidic and contains high concentrations of U (up to 252 µM) and 

nitrate (up to 645 mM) while solid-phase U can exceed 4 mmol kg-1 (Jardine et al., 2006).   

 

Figure 1.1 The former S-3 Waste Disposal Ponds located near the Oak Ridge Y-12 Plant 
in Bear Creek Valley (left). The unlined ponds received highly acidic uranium nitrate 
liquid wastes from 1951 to 1983 (Brooks, 2001).  The ponds were capped in 1984 after 
treatment and removal of liquid wastes (right). Picture from 
http://public.ornl.gov/orifc/orfrc3_site.cfm#Anchor1.   

  

  The commitment of the DOE to the restoration of the ORFRC and other 

contaminated sites has led to a dramatic increase in research over the past 15 years in all 

areas of remediation (NABIR, 2003).  Traditional clean-up methods, such as pump-and-

treat (Mackay and Cherry, 1989) and excavation (Dawson and Gilman, 2001) can be 

cost-prohibitive and infeasible over such large spatial scales and, therefore, the 

development of in situ remediation methods has received great attention.  

Bioremediation, or the microbial conversion of a contaminant to a less reactive form, is 

an area of particular interest.    
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 Organic contaminants in natural systems can be converted to less toxic inorganic 

products by microbial enzymatic activities.  Microorganisms metabolize the carbon 

substrate to produce energy and the contaminant is simultaneously biodegraded 

(Alexander, 1981).  As many metal contaminants can not be degraded to benign products, 

microorganisms enzymatically decrease their solubility through detoxification 

mechanisms (e.g. Lovley et al., 1991; Macaskie and Basnakova, 1998; Macaskie et al., 

1992).  In turn, the solubility of metal contaminants is also regulated by geochemical 

processes, including sorption, complexation, precipitation, and redox processes, which 

have to be considered to effectively study their bioremediation (e.g. Barnett et al., 2000; 

Bruno et al., 1995; Haas and Northup, 2004; Merroun et al., 2005) 

1.2  Uranium occurrence in nature 

 Uranium is the most abundant of the naturally-occurring actinides with 

concentrations of 1 to 4 ppm in crustal rocks and sediments (Ewing, 1999), found mainly 

in enriched deposits in Canada, South Africa, Australia, Namibia, and the United States 

(Cotton et al., 1999).  Natural concentrations of uranium are similar to molybdate and 

arsenic and exceed mercury, antimony, silver, and cadmium (CRC, 1997).  

Concentrations in continental surface waters range from ca. 0.001 to 5 µM, while 

seawater concentrations are constant around 0.03 µM (Langmuir, 1997; Murphy and 

Shock, 1999).  The three main isotopes of uranium are 238U, 235U, and 234U with natural 

abundances of 99.2745%, 0.720%, and 0.0055% (CRC, 1997).  All 23 isotopes of 

uranium are radioactive with half lives ranging from 105 to 109 years (CRC, 1997).  
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1.3  Aqueous Chemistry of Uranium 

 The chemistry of uranium is complex and, though heavily studied for over a 

century, remains poorly understood.  Uranium complexity is a direct result of its 

chemical structure.  Uranium has an atomic weight of 92 and exists in four different 

oxidation states +3, +4, +5, and +6.  The electronic configuration of these oxidation states 

is listed below. 

   U0:   [Xe] 4f14 5d10 6s2 6p6 5f 3 6d1 7s2 

   U3+:  [Xe] 4f14 5d10 6s2 6p6 5f 3 

U4+:  [Xe] 4f14 5d10 6s2 6p6 5f 2 

U5+:  [Xe] 4f14 5d10 6s2 6p6 5f 1 

U6+:  [Xe] 4f14 5d10 6s2 6p6 5f 0 

 

The most common valence states of uranium in nature are U(IV) and U(VI).  Uranium 

(IV) is highly insoluble, found in reducing environments primarily as the mineral 

uraninite, UO2(s) (Finch and Murakami, 1999; Langmuir, 1997).  In oxygenated aqueous 

systems, uraninite rapidly oxidizes to the U(VI) species as the uranyl ion, UO2
2+, 

(Rabinowitch and Belford, 1964) which is highly soluble and stable over a wide pH range 

(Murphy and Shock, 1999).  The uranyl ion is linear   [O = U = O]2+ with strong covalent 

bonds between the oxygen and uranium atoms which remain intact during complexation 

reactions (Chernyaev, 1966; Cotton et al., 1999).   Ab initio molecular orbital calculations 

indicate the strength of the O—U bonds is probably due to donations of p-orbital 

electrons from the oxygen atoms into the empty 6d- and 6f- orbitals of the U6+ ion 

(Burns, 1999).  The stereochemistry of UO2
2+ is varied with the most common 
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coordination of 4, 5, or 6 ligands in the equatorial plane (Figure 1.2).  These equatorial 

O—U bonds are longer and weaker than the axial O—U bonds (Chernyaev, 1966; Cotton 

et al., 1999). 
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Figure 1.2  The uranyl ion [O = U = O]2+ is linear in the axial position with 4, 5 and 6 
ligand (L) coordination in the equatorial plane. 

 

 The aqueous chemistry of U(VI) is complex due to coordination and hydrolytic 

reactions.  The uranyl ion is a hard acid and preferentially reacts with hard anions, 

particularly oxygen-containing ligands, and strongly hydrolyzes water (Equation 1-1) 

(Chernyaev, 1966; Cotton et al., 1999; Finch and Murakami, 1999; Suzuki and Banfield, 

1999). 

  +−+ +→+ yHOHUOOyHxUO yx
yx

2
22

2
2 )()(    (1-1) 
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Water or hydroxyl groups act as ligands filling the inner sphere of the uranyl ion, as well 

as displacing certain other ligands (Chernyaev, 1966; Cotton et al., 1999).  The primary 

hydrolyzed species of UO2
2+ at typical groundwater concentrations of ca. 10-8 M and 

circumneutral pH are UO2OH+, (UO2)2(OH)2
2+, (UO2)3(OH)5

+, UO2(OH)2
0, and 

UO2(OH)3
- (Figure 1.3) (Cotton et al., 1999; Langmuir, 1997). 
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Figure 1.3 Distribution of U(VI) aqueous species for ΣU(VI) = 10-8 M at 25°C, I = 0.1 M,      
and PCO2 = 0 bar as predicted using the equilibrium modeling program MINEQL  
(Schecher and McAvoy, 2001) updated with the thermodynamic stability constants listed 
in Table 1.1. 
 
 

Uranyl preferentially forms complexes with functional groups such as, 

carboxylates, carbonyls, alcohols, and ammonia (Suzuki and Banfield, 1999).  

Complexes with multidentate ligands, such as CO3
2-,  tend to have greater stability than 

those with monodentate ligands (Stumm and Morgan, 1996). 



 7

Table 1.1 Most updated (2006) uranium complexation reactions and thermodynamic 
stability constants (T = 25°C, I = 0, P = 1 bar)  

a (Langmuir, 1997) 
b (Grenthe et al., 1992) 
c (Guillaumont et al., 2003) 
d (Dong and Brooks, 2006) 
e (Van Haverbeke et al., 1996) mineral described as chernikovite 

Reaction log K ref. 
Hydrolysis Reactions   
UO2

2+ + H2O = UO2OH+ + H+ -5.2 a,b,c 
UO2

2+ + 2H2O = UO2(OH)2 + 2H+ -12.15 c 
UO2

2+ + 3H2O = UO2(OH)3
- + 3H+ -20.25 c 

UO2
2+ + 4H2O = UO2(OH)4

2- + 4H+ -32.4 c 
2UO2

2+ + H2O = (UO2)2OH3+ + H+ -2.7 b,c 
2UO2

2+ + 2H2O = (UO2)2(OH)2
2+ + 2H+ -5.62 a,b,c 

3UO2
2+ + 4H2O = (UO2)3(OH)4

2+ + 4H+ -11.9 b,c 
3UO2

2+ + 5H2O = (UO2)3(OH)5
+ + 5H+ -15.55 a,b,c 

3UO2
2+ + 7H2O = (UO2)3(OH)7

- + 7H+ -32.2 c 
4UO2

2+ + 7H2O = (UO2)4(OH)7
+ + 7H+ -21.9 a,b,c 

   
Uranium and Carbonate Complexes   
UO2

2+ + CO3
2- = UO2CO3 9.94 c 

UO2
2+ + 2CO3

2- = UO2(CO3)2
2- 16.61 c 

UO2
2+ + 3CO3

2- = UO2(CO3)3
4- 21.84 c 

Ca2+ + UO2
2+ + 3CO3

2- = CaUO2(CO3)3
2- 27.18 d 

2Ca2+ + UO2
2+ + 3CO3

2- = Ca2UO2(CO3)3
0 30.7 d 

   
Uranium and Phosphate Aqueous Complexes   
UO2

2+ + PO4
3- = UO2PO4

- 13.23 b,c 
UO2

2+ + HPO4
2- = UO2HPO4 7.24 b,c 

UO2
2+ + H3PO4

0 = UO2H2PO4
+ + H+ 1.12 a,b,c 

   
Uranium Solids   
UO2

2+ + 3H2O = UO3 ·2H2O + 2H+(s) schoepite -5.2 a 
UO2

2+ + PO4
3- + 3H2O + H3O+ = (H3O)(UO2)(PO4)·3H2O(s)  22.73 e 

UO2
2+ + H3PO4

0 + 4H2O = 2H+ + UO2HPO4 · 4H2O(s) H-autunite 2.5 a,b 
Ca2+ + 2UO2

2+ + 2PO4
3- = Ca(UO2)2(PO4)2 (s) autunite 44.7 a 
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 Uranyl carbonates are highly soluble and play a dominate role in the migration of 

uranium in neutral to alkaline groundwater (Finch and Murakami, 1999).  Carbonate is 

strongly bound to uranium. It occupies two coordinate positions in the major species 

[UO2(CO3)2]2- and [UO2(CO3)3]4- (Cotton et al., 1999), forms a highly stable four-

member ring with UO2
2+ (Chernyaev, 1966), and displaces other ligands, including 

hydroxyls at pH > 7.  Thermodynamic modeling of aqueous U(VI) at atmospheric CO2 

pressure (10-3.5 bar) illustrates the importance of carbonate uranyl species near 

circumneutral pH (Figure 1.4).  These uranyl carbonate complexes are highly stable and 

affect the speciation of U(VI) by displacing other ligands bound to uranyl.  

Simultaneously, these complexes prevent adsorption to some mineral surfaces (Fox et al., 

2006; Langmuir, 1978) and promote dissolution of U(IV) and U(VI) minerals (De Pablo 

et al., 1999; Sowder et al., 2001).  Calcium is common in groundwater and complexes 

with U(VI) and carbonate to form ternary calcium-uranyl-carbonate species (Bernhard et 

al., 1996; Dong and Brooks, 2006) that increase the rate of uranyl mineral dissolution 

(Liu et al., 2007) and decrease the rate and extent of bacterial U(VI) reduction (Brooks et 

al., 2003; Liu et al., 2007).  Brooks et al. (2003) demonstrated that Ca2UO2(CO3)3 is a 

weaker electron acceptor than UO2(CO3)3
4-, thereby slowing or inhibiting the bacterial 

reduction of U(VI) to U(IV).  Carbonate exerts a strong influence on U(VI) speciation at 

circumneutral pH but plays a much less significant role in the speciation of uranium at 

lower pH because carbonate is primarily protonated below pH 6. 
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Figure 1.4 Distribution of U(VI) aqueous species for ΣU(VI) = 10-8 M at 25°C, I = 0.1 M,      
and PCO2 = -3.5 bar as predicted using the equilibrium modeling program MINEQL 
(Schecher and McAvoy, 2001) updated with the thermodynamic stability constants listed 
in Table 1.1. 
 

1.4  Solid-phase Controls on Uranium in Natural System 

 Adsorption reactions at the mineral-water interface of Fe oxides control the 

transport of U(VI) through soils and sediments.  Fe oxides are ubiquitous in natural 

systems and provide hydroxyl groups with high surface areas for the adsorption of metal 

cations (Tessier et al., 1996).  The reactivity of these hydroxyl groups is dependent on pH 

and their charge is determined by the mineral’s zero point charge (ZPC).  The pHZPC is 

the pH at which the surface charge of a mineral changes sign (Langmuir, 1997; Stumm 

and Morgan, 1996).  The pHZPC for goethite ranges between 5.9 and 6.7 (Langmuir, 

1997), and adsorption of U(VI) is most favorable between pH 5 and 7 when uranyl 
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complexes are positively charged (Hsi and Langmuir, 1985; Langmuir, 1997).  The 

pHZPC of other important minerals in naturals systems include, silicates (1 to 3), 

montmorillonite (≤ 2 to 3), kaolinite (≤ 2 to 4.6), hematite (4.2 to 6.9), amorphous 

Fe(OH)3 (8.5 to 8.8), manganese oxides (1.5 to 7.3), calcite (8.5, 10.8), and 

hydroxyapatite (≤ 8.5) (Langmuir, 1997; Stumm and Morgan, 1996).    

 Below circumneutral pH, U(VI) also forms highly stable and insoluble complexes 

with phosphate.  Thermodynamic modeling predicts the formation of solid-phase autunite 

[Ca(UO2)2(PO4)2] in the presence of 200 µM U(VI), 200 µM PO4
3-, and 200 µM Ca2+ at 

atmospheric CO2 pressure (10-3.5 bar) (Figure 1.5a) and at  0 bar (Figure 1.5b).  

Equilibrium calculations demonstrate that the presence of carbonate does not affect the 

solubility of uranyl phosphate minerals such as autunites which are stable between pH 4 

and 8.  In turn, mineralization of schoepite, an uranyl hydroxide mineral, is inhibited 

above pH 8 by the formation of UO2(CO3)3
4-.  In reducing conditions, the formation of 

uraninite is favored above circumneutral pH (Figure 1.6) and does not 

thermodynamically affect the formation of uranyl phosphate at high pε and low pH.  
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Figure 1.5  Speciation of 200 µM UO2
2+, 200 µM PO4

3-, and 200 µM Ca2+ as a function 
of pH at (a) PCO2 = 10-3.5 and (b) PCO2 = 0 as predicted using the equilibrium modeling 
program MINEQL (Schecher and McAvoy, 2001) updated with the thermodynamic 
stability constants listed in Table 1.1. 
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Figure 1.6  Speciation of 50 µM uranium as a function of pH and pε.  The formation of 
uraninite is favored at low pε and high pH. 
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 Phosphate in natural systems can control the mobility of U(VI) in groundwater 

and soils.  Uranyl phosphates are widely distributed in nature with over 70 minerals 

identified with U:P stoichiometric ratios of 1:1 (autunite and meta-autunite groups), 3:2 

(phosphuranylite group), and 1:2 (walpurgite group) (Finch and Murakami, 1999).  In 

fact, uranyl phosphate minerals have been identified in contaminated soils at the ORFRC 

(Kelly et al., 2005; Roh et al., 2000; Stubbs et al., 2006), at the former uranium 

production facility at Fernald, Ohio (Bertsch et al., 1994; Morris et al., 1996), and at the 

Hanford (Washington) DOE facility (Arai et al., 2007; Catalano et al., 2006).  Uranyl 

phosphate minerals are stable over long periods of time as evidenced by assemblages 

found in bedrock deposits stable for up to 150 ka (Jerden Jr. and Sinha, 2003).  

Dissolution studies have also demonstrated chernikovite [(UO2)H(PO4)·4H2O] and 

metaautunite [Ca(UO2)2(PO4)2·xH2O] are resistant to dissolution in 1 mM bicarbonate on 

yearly time scales (Sowder et al., 2001), and rates of autunite dissolution are minimum at 

pH 5-6 (Wellman et al., 2007).  Thus, the insolubility of uranyl phosphates may provide a 

long-term sink for U(VI) in natural systems particularly below circumneutral pH.   

 In addition to forming precipitates with U(VI), phosphate can also control the 

solubility of U(VI) by adsorption reactions.  Phosphate adsorbs strongly to iron oxides 

across a wide pH range in a monodentate coordination with hydroxyl groups on the 

Fe(III) surface (Dideriksen and Stipp, 2003) and enhances adsorption of U(VI) through 

the formation of ternary surface complexes between uranium and phosphate (Cheng et 

al., 2004).  The adsorption of phosphate to ferrihydrite surfaces changes the average 

surface charge of the iron oxide and moves its sorption edge to a lower pH, thereby 

promoting the adsorption of U(VI) at lower pH  (Payne et al., 1996).  Adsorption of 
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phosphate to iron oxyhydroxides may also inhibit microbial iron reduction by blocking 

iron surfaces (Borch et al., 2007) that in turn, may also inhibit U bioreduction.  Sorption 

of U(VI) to alumina surfaces is also increased by the presence of phosphate in the pH 

range 3 to 6 (Zhijun et al., 2006).  These findings surmise the possibility that adsorption 

of U(VI) to mineral surfaces in the presence of phosphate may be a precursor to the 

precipitation of  uranyl phosphate minerals (Sato et al., 1997). 

 Thus, the adsorption of U(VI) to mineral surfaces in soils and sediments is 

favorable over a wide pH range and will play an important role in the transport of U(VI) 

in these systems.   

 

1.5  Remediation of Uranium in Contaminated Subsurfaces 

 
 The remediation of uranium from subsurface environments has been extensively 

studied and includes both abiotic and biotic strategies.  Adsorption at mineral-water 

interfaces (Cheng et al., 2004; Lack et al., 2002; Sato et al., 1997), mineral 

precipitation/coprecipitation (Bruno et al., 1995; Gu et al., 2003), complexation with 

organic compounds (Francis et al., 2000; Nash et al., 1998; Robinson et al., 1998), 

adsorption to zero-valent iron (Noubactep, 2006; Noubactep et al., 2006), and adsorption 

to hydroxyapatite in permeable reaction barriers (Fuller et al., 2003; Fuller et al., 2002) 

are chemical methods that can effectively remove uranium from solution.  

Bioremediation, in which microorganisms actively transform and degrade contaminants, 

offers an alternative strategy.  Bioreduction, the enzymatic reduction of soluble U(VI) to 

insoluble U(IV), as uraninite (UO2(s)), in anaerobic conditions, is one of the most studied 

biological process of uranium immobilization (e.g. Fredrickson et al., 2000; Ganesh et al., 
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1999; Lovley and Phillips, 1992; Lovley et al., 1991; North et al., 2004; Senko et al., 

2002; Wade Jr. and DiChristina, 2000).  Unfortunately, uraninite is rapidly oxidized to 

the more mobile and reactive uranyl ion (UO2
2+) in oxic conditions (Langmuir, 1997; 

Murphy and Shock, 1999), and more slowly oxidized under nitrate-reducing conditions 

by  Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of 

Fe(II) by nitrite (Senko et al., 2002; Senko et al., 2005a; Senko et al., 2005b).  In 

addition, bioreduction can only be promoted at circumneutral pH. 

Fewer studies are available on the bioremediation of uranium in oxidizing 

conditions (Macaskie et al., 1994; Powers et al., 2002).  Biomineralization, or microbial-

mediated mineral precipitation, offers a complementary approach to bioreduction.  

Resistance to heavy metals has been reported for bacterial strains exhibiting acid 

phosphatase activity (Jeong et al., 1997; Macaskie et al., 1994; Montgomery et al., 1995).  

Bacterial non-specific acid phosphatases (NSAPs) are a group of secreted 

phosphohydrolases (phosphatases) that hydrolyze a number of structurally unrelated 

organic phosphomonoester substrates in acidic-to-neutral pH conditions (Rossolini et al., 

1998).  NSAPs are secreted by bacteria, as soluble periplasmic proteins or membrane-

bound lipoproteins, to liberate inorganic phosphate from organophosphate substrates and 

comprise three different molecular families designated Class A, Class B, and Class C 

(Rossolini et al., 1998).  The three classes are distinguished by the conserved amino acid 

motif and X-ray crystallography and protein comparative modeling has identified the 

active sites in Class A NSAPs as Lys115, Arg122, Ser148, Gly149, His150, Arg183, 

His189, and Asp193; Class B NSAPs as Asp44, Asp46, Thr48, Arg114, Asp167, and 
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Asp171; and Class C NSAPs as Asp84, Asp86, Thr88, Arg146, Asp201, and Asp205 

(Martinez et al., 2007).   

Phosphorus metabolism by NSAPs is unregulated and much less characterized 

(Rossolini et al., 1998) compared to alkaline phosphatases regulated by the Pho regulon 

that induces phosphatase activity in phosphate-limiting conditions (Kertesz et al., 1994; 

Vershinina and Znamenskaya, 2002; Wanner, 1993).  The alkaline phosphatase of 

Escherichia coli (E. coli) is the most studied of all bacterial alkaline phosphatase 

enzymes (Coleman, 1992; Kim and Wyckoff, 1991; Vershinina and Znamenskaya, 2002).  

The overall reaction mechanism of phosphatase in E.coli is demonstrated in Figure 1.7.  

At acidic pH, the hydrolysis of E-P is rate-limiting and the dissociation of E•P is the rate-

determining step at alkaline pH (Kim and Wyckoff, 1991).  The enzymatic reaction 

produces a covalent serine-phosphate (E-P) intermediate that progresses to form 

inorganic phosphate (Pi) and an alcohol.  The active site of the enzyme contains three 

metal-binding sites (M1, M2, and M3) that are occupied by zinc (M1 and M2) and 

magnesium (M3) (Stec et al., 2000).  Alkaline phosphatase activity in E. coli is regulated 

by the Pho regulon that contains genes involved in the transport and assimilation of 

phosphate.  During phosphate-starvation conditions, the Pho regulon induces psi 

(phosphate starvation-inducible) genes that code for proteins involved in phosphate 

transport and when phosphate is in excess the Pho regulon is repressed by the formation 

of the PhoR and PhoU repressor complex.  The Pho regulon is found is several other 

bacterial species, including Bacillus subtilis (Vershinina and Znamenskaya, 2002).   
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Figure 1.7  The overall reaction scheme of the alkaline phosphatase.  The E-P is the 
phosphoseryl enzyme formed with Ser102 and E•ROP and E•P are the non-covalent 
complexes with substrate or product (Kim and Wyckoff, 1991). 

 

Several phosphatase-positive microorganisms tolerant to heavy metals have 

constitutively expressed Class A NSAPs (Macaskie et al., 1992; Macaskie et al., 1995; 

Yong and Macaskie, 1995) that facilitate the precipitation of cell-bound uranium-

phosphate (Macaskie et al., 1994) as HUO2PO4 · 4H2O (Jeong et al., 1997).  Significant 

accumulation of phosphate is observed in the presence of constitutively-expressed 

phosphatases (Martinez et al., 2007; Powers et al., 2002) suggesting that microbial NSAP 

activity may play a key role in the biomineralization of uranium. 

1.6  Research Scope and Objectives 

 Environmental conditions in uranium contaminated waste sites impose unique 

biogeochemical obstacles that must be addressed to successfully remediate uranium 

contaminations.  Low pH and high nitrate concentrations in soils and groundwater affect 

microbial activity and the speciation and mobility of uranium.  Microorganisms that are 

able to survive in such conditions may possess unique abilities that can be exploited in 

developing new bioremediation strategies.  The overall objective of this research is to 

explore new ways to promote indigenous bacterial processes in these contaminated waste 

sites that immobilize U(VI) at low pH and high nitrate concentrations. 
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 Previous work has identified bacterial isolates from U contaminated areas of the 

ORFRC that exhibit phosphatase activity in the presence of an organophosphate substrate 

(Martinez et al., 2007).  The primary goal of this study is to determine if indigenous 

microbial communities in contaminated soils from the ORFRC produce enough 

phosphate through the expression of phosphatase enzymes to precipitate insoluble U(VI) 

phosphate minerals, as a complementary strategy to the immobilization of U through 

bioreduction.   

 It is critical to our overall understanding of U behavior in natural environments to 

assess changes in the chemical speciation and molecular structure of U(VI).  In this work, 

a combination of state-of-the-art analytical tools was used to monitor the composition of 

dissolved constituents as a function of time and the speciation of U in the solid phase.  

Chapter 2 of this dissertation outlines the various analytical techniques used in this study.  

Concentrations of dissolved chemical constituents were monitored by inductively-

coupled plasma mass spectrometry (dissolved uranium and other metals), ion 

chromatography and capillary electrophoresis (anions and organophosphates), 

voltammetry (dissolved oxygen, Mn2+, Fe2+, ΣH2S), and other common techniques (e.g. 

phosphate and nitrite by spectrophotometry).  Synchrotron-based X-ray diffraction and 

X-ray absorption spectroscopy were used to determine the speciation and the molecular 

structure of uranium in the solid-phase. 

 Chapter III investigates the biomineralization of U(VI) in pure culture aerobic 

incubations with three bacterial species isolated from the ORFRC in the presence of high 

U(VI) and nitrate concentrations to elucidate the conditions most favorable for successful 

U remediation.  The objectives of this work were to (1) determine whether the strains 
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hydrolyzed sufficient phosphate from an organophosphate substrate to precipitate 

uranium, (2) establish whether pH has an effect on phosphatase activity and U(VI) 

precipitation, and (3) identify the uranium solid phase formed during biomineralization.  

 The ORFRC subsurface is primarily oxic; however oxygen can be rapidly 

consumed during microbial respiration.  In Chapter IV one of the bacterial isolates from 

the ORFRC was investigated for its ability to exhibit the same phosphatase activity in 

anaerobic conditions.  The objectives of this work were to determine whether (1) the 

isolate can grow anaerobically with nitrate as terminal electron acceptor, (2) sufficient 

phosphate is hydrolyzed to anaerobically precipitate U(VI), and (3) compare the minerals 

formed in anaerobic and aerobic conditions. 

 Chapter V focuses on contaminated ORFRC soil studies using flow-through 

reactors.  The primary goal of this work is to determine how soils react to the amendment 

of an organophosphate compound as sole C and P source.  Parameters such as pH and 

nitrate concentrations were adjusted to assess their effect on phosphatase activity.  The 

chemical composition of pore water effluents was monitored to identify the 

biogeochemical processes occurring in the soils.  At the end of the experiments the 

chemical speciation and molecular structure of uranium in the soils were determined 

using a combination of wet chemical extraction and XAS measurements.  A one-

dimensional transport model was used to determine the advection, dispersion, and 

retardation factor in the reactors using a conservative tracer.  The model was then used 

with the reactive species involved in U(VI) biomineralization to assess their rates of 

transformation and estimate the rate of precipitation of uranium phosphate minerals.  The 

objectives of this study were to determine whether (1) indigenous microorganisms in a 



 19

contaminated soil hydrolyze an organophosphate substrate as sole C and P source, (2) pH 

affects natural microbial phosphatase activity, (3) uranium phosphate is precipitated in 

the soil column, and (4) soil permeability changes as a result of organophosphate 

amendments. 

 Finally, Chapter VI synthesizes the findings of this research, discusses whether 

the biomineralization of uranium phosphate as a result of microbial phosphatase activity 

appears a valuable approach to uranium bioremediation, provides new questions 

identified by these studies, and presents a number of recommendations for future 

investigations. 

 Appendices are found at the end of the thesis.  Appendix A contains supporting 

information and additional data relevant to Chapter 3.  Appendix B describes the 

Matlab™ code used for the one-dimensional advection-dispersion and reactive transport 

models used in Chapter 5 to determine transport parameters and rates of transformation in 

flow-through reactors.  Appendix C provides additional analytical and transport model 

data from the flow-through experiments in Chapter 5.   
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CHAPTER 2  

 

ANALYTICAL TECHNIQUES 

2.1  Inductively-Coupled Plasma Mass Spectrometry 

 
 Total dissolved uranium concentrations were measured by inductively-coupled 

plasma mass spectrometry (ICP-MS) with an Agilent 7500a Series system.  Samples 

were filtered (0.2 µm pore size, AcetatePlus; GE Water and Process Technologies) and 

acidified with 2% nitric acid (trace metal grade, Fisher) diluted in Nanopure water 

(Barnstead).  Uranium standards and samples contained holmium and bismuth (SPEX 

certiPrep) as internal standards.  Samples were corrected by the averaged holmium and 

bismuth response normalized to calibration response.  The detection limit of uranium was 

0.1 nM.  Calibration standards (0 to 4000 ppt) were analyzed every 30 samples and at the 

start and completion of each run cycle to account for instrument drift. Blanks, calibration 

check standards (95-105% recovery), and River Water Certified Reference Material for 

Trace Metals (SLRS-4, National Research Council Canada, Ottawa, Canada) were 

analyzed for quality controls.  The analytical error on triplicate samples was < 3% 

relative standard deviation (RSD).   

2.2  Colorimetry 

2.2.1  Phosphate  

 Phosphate concentrations were determined by colorimetric analysis based on the 

method of Murphy and Riley (1962).  Measurements were conducted at 885 nm on a 



 21

Milton Roy Spectronic 601 spectrophotometer with standards of 0 to 25 µM made from a 

stock solution of KH2PO4 (Fisher) in Nanopure water.  Reagents used included 

ammonium molybdate (0.023 M), sulfuric acid (2.8 M), potassium antimonyl tartrate (4.2 

mM), and ascorbic acid (0.31 M).  All chemicals used were reagent grade (Fisher).  

Reagents were stored in the refrigerator and stable for months, except ascorbic acid 

which was stable for only 2 weeks.  Immediately prior to analysis 1.6 mL ammonium 

molybdate, 4 mL sulfuric acid, 0.8 mL potassium antimonyl tartrate, and 1.6 mL ascorbic 

acid were combined.  An aliquot of this mixture (100 µL) was added to 1 mL of each 

standard and sample.  The blue color was allowed to develop for 20 minutes and the 

samples were analyzed at 885 nm.  Minimum detection was 2 µM and analytical error on 

duplicate samples was < 4% RSD.  

2.2.2  Nitrite 

 Nitrite concentrations were determined by colorimetric analysis (Grasshoff, 

1983).  Measurements were conducted at 540 nm on a Milton Roy Spectronic 601 

spectrophotometer with standards of 0 to 20 µM made from a stock solution of anhydrous 

NaNO2 (Fisher) in Nanopure water.  The NaNO2 was dried at 100°C for 1 hour prior to 

preparation.  The reagents used included sulphanilamide (Fisher) and N-1-

napthylethylenediamine dihydrochloride (NED) (Sigma).  Sulphanilamide (0.25 g) was 

added to 2.5 mL of concentrated HCl (trace metal grade; Fisher) in 25 mL Nanopure 

water (5.8 mM) and stored in the refrigerator.  NED (0.025 g) was added to Nanopure 

water to a total volume of 25 mL (0.97 mM) and stored in a dark bottle in the refrigerator.  

Sulphanilamide (20 µL) was added to 1 mL of each standard and sample, mixed, and 

allowed to react for 1 minute.  NED (20 µL) was then added and the sample allowed to 
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develop for 15 minutes before analysis at 530 nm.  Minimum detection was 2.5 µM and 

analytical error on duplicate samples was < 5% RSD. 

2.2.3  Ammonium 

 Ammonium concentrations were determined by colorimetric analysis based on 

Strickland and Parsons (1972).  Measurements were conducted at 640 nm on a Milton 

Roy Spectronic 601 spectrophotometer with standards of 0 to 20 µM made from a stock 

solution of NH4Cl (Fisher) in Nanopure water.  The NH4Cl was dried at 55°C overnight 

prior to preparation.  Reagents used included phenol (8.5 mM; Sigma), nitroprusside (2.5 

mM in 95% ethanol (Aldrich; Sigma), and an alkaline solution (3.75 g sodium citrate 

(Sigma Aldrich) and 0.2 g NaOH (Fisher) in 250 mL Nanopure water). Immediately prior 

to analysis 2.5 mL of 4-6% sodium hypochlorite (NaOCl, Fisher) was added to 10 mL of 

the alkaline reagent to create an oxidizing reagent.  The reagents were added in the 

following order to 1 mL of each sample and standard: phenol (500 µL), nitroprusside 

(500 µL), and oxidizing reagent (1 mL).  The glass sample vials were parafilmed and 

heated at 45°C for 1 hour before analysis at 640 nm.   

2.3  Capillary Electrophoresis 

 Concentrations of bromide (Br-), chloride (Cl-), nitrate (NO3
-), and sulfate (SO4

2-) 

for a portion of the work presented in Chapter 5 of this dissertation were determined by 

capillary electrophoresis (CE). 

2.3.1  Overview of technique 

 Electrophoresis is the movement of charged chemical species under the influence 

of an electric field along a capillary column, most commonly made of bare fused-silica, 
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connected to a cathode at one end and an anode at the other.  Analysis of chemical 

species by CE is based on (1) electroosmosis mobility and (2) electrophoretic mobility 

(Weinberger, 2000). 

 The electroosmosis flow (EOF) is the bulk flow of a conducting background 

electrolyte buffer (BGE) solution through the capillary when a large difference of 

potential (10-30 kV) is applied between both ends of the capillary.  The interior capillary 

wall contains silanol (Si-OH) groups, which at pH > 2 have a negative charge (SiO-).  

Positive cations in the buffer solution are attracted to the negatively-charged capillary 

wall and form an electric double layer and a potential difference (zeta potential).  The 

cations in the diffuse layer are moved with the EOF toward the cathode. The mobility of 

the EOF is dependent on the pH and ionic strength of the buffer.  At high pH, silanol 

groups on the capillary wall are completely ionized and mobility is greatest.  At low pH 

the surface is protonated (SiOH), diminishing the velocity of the EOF.  At pH 4 the EOF 

is suppressed.  The diffuse double layer is compressed at high ionic strength, decreasing 

the zeta potential and reducing the EOF mobility.  The charge on the capillary wall, and 

therefore the EOF, may also be controlled by the addition of either permanent or 

temporary (dynamic) coatings to the column.  Chemicals coat the interior wall of the 

capillary and produce a stable surface whose charge is not affected by electrolytes or pH.   

 Electrophoretic mobility describes how fast an ion moves through the BGE in the 

capillary, and is determined by the positive motion of the electrical force and the 

retarding frictional force.  Electrophoretic mobility of a given ion is determined by its 

charge-to-size ratio and the average charge along the capillary walls.  Small ions of high 



 24

charge have a greater mobility than large ions of low charge.  Mixtures of different ions 

and solutes may be separated due to the difference in their electrophoretic mobilities. 

 The sample is injected at the anode end of the column and moves along with the 

EOF toward the cathode.  Anions in the sample migrate against the EOF toward the 

anode, and cations migrate with the EOF to the cathode.  A detector (UV or fluorescence) 

is located at the cathode end and records the passage of the ions on an electropherogram, 

which represents graphically migration time vs. detector response. 

 Detection is either in the direct mode or the indirect mode.  Direct detection is 

employed when the compound to be separated absorbs in the region of the detector.  In 

the indirect mode, the compound does not absorb in the detector region, and an absorbing 

buffer is used as the BGE. The decrease in absorbance of the BGE is recorded when the 

analyte passes in front of the detector.   

2.3.2  Anion analysis 

 Anions were detected in indirect mode by UV at 254 nm on a Beckman P/ACE 

MDQ system equipped with a photo-diode array and a UV/Vis.  New columns were 

conditioned prior to analysis for 10 min at 93.8 kPa with 1 M NaOH and then Nanopure 

water for 8 min.  The chromate buffer used as the BGE was prepared with K2CrO4 (ICN 

Biomedicals), a surfactant cetyltrimethylammoniumbromide (CTAB; Acros), and 

methanol (Diress and Lucy, 2005).  Stock solutions of K2CrO4 (50 mM) and CTAB (2.5 

mM) were prepared with Nanopure water and filtered (0.2 µm pore size, AcetatePlus; GE 

Water and Process Technologies).  The K2CrO4 solution was adjusted to pH 8 with 1 M 

HCl prior to filtering.  The BGE was prepared daily by adding 1 mL K2CrO4, 1 mL 
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CTAB, 3 mL methanol, and 5 mL Nanopure water. The solution was mixed carefully so 

as not to create bubbles.   

 During analysis, the column was conditioned before each run cycle as follows:  

0.1 M NaOH for 2 min, Nanopure water for 2 min, and then BGE buffer for 3 min all at 

93.8 kPa. Samples were injected for 2.0 s at 5 kPa and detected indirectly at -15 kV in 

chromate buffer for 10 min by UV at 254 nm.  The chromate buffer was replaced every 6 

sample runs.  Anion standards of 0 to 1 mM were prepared from stock solutions of NaBr 

(Sigma), KCl (Sigma), NaNO3 (Sigma), and MgSO4 (Sigma).  Detection limits for all 

anions was 50 µM and >95% recovery on calibration check standards.  Anion 

electropherograms (baseline corrected) and calibration curves are shown in Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1  (a) Electropherograms (baseline corrected) and (b) calibration curves of Br-, 
Cl-, NO3

-, and SO4
2- as determined by indirect detection in chromate buffer by capillary 

electrophoresis.   
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2.4  Ion Chromatography 

 
 Concentrations of bromide (Br-), chloride (Cl-), nitrate (NO3

-), sulfate (SO4
2-), 

glycerol-2-phosphate (G2P) were determined by ion chromatography (IC) for a portion of 

the work presented in Chapter 5 of this dissertation.  All measurements were conducted 

on a Dionex DX-300 Series IC equipped with a Dionex IonPac® AS14A 

chromatography column (4 x 250 mm), AG14A guard column (4 x 50 mm), and AMMS 

300 (4 mm) suppressor.  Anion standards of 0 to 250 µM were prepared from stock 

solutions of NaBr (Sigma), KCl (Sigma), NaNO3 (Sigma), MgSO4 (Sigma), and G2P 

(Sigma Aldrich) and Nanopure water.  Anions were measured using a bicarbonate buffer 

(1 mM NaHCO3 and 8 mM Na2CO3) as eluent at a flow rate of 1 mL min-1 and a 

regenerant solution of 25.8 mM H2SO4. 

 

2.5  Voltammetry 

 
 Oxygen and reduced species, such as Fe2+, Mn2+, and ΣH2S, were analyzed 

voltammetrically in-line in the flow cell with a computer-operated DLK-100A or DLK-

60 potentiostat (Analytical Instrument Systems).  All measurements were performed with 

Au/Hg solid-state microelectrodes fabricated as described in Brendel and Luther (1995), 

a platinum counter electrode, and an Ag/AgCl reference electrode.  The working 

microelectrodes consisted of a 100-µm-diameter Au wire housed in 3-mm PEEK tubing 

connected via a copper conducting wire to a potentiostat.  The Au surface was polished 

with diamond pastes of 15, 6, 1, and 0.25 µm (Buehler), mercury plated for 6 min at -0.1 

V in a Hg(NO3)2 solution, and then polarized at -9 V for 90 s to form a good amalgam 
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between the Au and Hg (Brendel and Luther, 1995).  Finally, electrodes were tested for 

quality and calibrated for dissolved oxygen O2 by linear sweep voltammetry, then Mn2+ 

by cathodic square wave voltammetry in degassed 0.02 mol L-1 NaCl.  Both the O2 (MDL 

≈ 4 µmol L-1) and Mn2+ (MDL ≈ 15 µmol L-1) calibrations were run from -0.1 to -1.75 V 

with a scan rate of 200 mV s-1 in 0.02 mol L-1 NaCl.  A pre-conditioning potential of -0.1 

V for 10 s was applied to all O2 and Mn2+ measurements to clean the surface of the 

microelectrodes between measurements (Brendel and Luther, 1995).  The Mn2+ 

calibration curves were used to elucidate the concentrations of other species with the pilot 

ion method (Brendel and Luther, 1995). 

2.6  Synchrotron X-ray Absorption Spectroscopy 

2.6.1  X-ray Absorption Spectroscopy (XAS) 

 Solid uranyl phosphate and soil samples were analyzed by XAS at Stanford 

Synchrotron Radiation Lightsource (SSRL) on beam lines 11-2 (Fall 2006) and 10-2 

(summer 2007, summer 2008, winter 2009).  Uranyl phosphate samples were measured 

in 1.5 mL centrifuge tubes and soil samples were placed in windowed lexan sample 

holders sealed with Kapton tape. For the XAS analysis presented in Chapter 3 of this 

dissertation, uranium LIII-edge XAS spectra were collected at SSRL beamline 11-2 using 

a focused X-ray beam with a 23 keV harmonic rejection cutoff.  The incident energy was 

selected with a Si(220) monochromator.  Transmission and fluorescence data were 

collected simultaneously.  For the remaining XAS analysis presented in Chapters 4 and 5, 

uranium LIII-edge XAS spectra were collected at SSRL beamline 10-2 using a focused X-

ray beam with a 23 keV harmonic rejection cutoff and a 13 element Ge detector.  The 

incident energy was selected with a Si(111) monochromator crystal.  Transmission and 
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fluorescence data were collected simultaneously.  All extended X-ray absorption fine 

structure (EXAFS) data were reduced using Sam’s Interface for XAS Package 

(SIXPACK) (Webb, 2005).  Phase and amplitude files for the EXAFS fitting were 

created with FEFF7 (Ankudinov et al., 1998; Zabinsky et al., 1995).  Since the Debye-

Waller factors (σ) correlated highly with coordination numbers (N), σ’s for some shells 

were each fixed at their average values.   

 The structure of U(VI) is distinguished by the linear uranyl ion [O = U = O]2+ 

containing 2 axial oxygen atoms (Oax; Figure 2.2a) surrounded by 4 to 6 equatorial 

oxygen atoms (Oeq; Figure 2.2b) (Cotton et al., 1999).  The coordination number of Oax is 

always 2 and the radial distance, R (in Ǻ), between U and Oax is typically ~1.80 Ǻ 

(Figure 2.2a).  Uranyl equatorial oxygen atoms typically display U-Oeq distances of ~2.30 

Ǻ; however, uranyl surface complexes can stretch some of the Oeq and thus increase bond 

distances up to ~ 2.45 Ǻ depending on the ligand, which splits the Oeq shells (Figure 2.2b 

and d).  Split equatorial oxygen shells are common in uranyl complexes with minerals 

including, alumina silicates (Hudson et al., 1999; Sylwester et al., 2000), apatite (Fuller et 

al., 2003), and iron oxides (Waite et al., 1994).  In the latter complexes, two of the shorter 

Oeq are bound to two neighboring iron oxide edge oxygens in a bidentate fashion, 

forming Fe-Oeq-U angles of ca. 112º (Figure 2.2d) (Bargar et al., 2000).  The uranyl ion is 

also distinguished by multiple scattering (MS) of photoelectrons between the Oax and U 

atoms.  Therefore, all EXAFS fittings in this study include three U-Oax MS paths with the 

coordination number (N) set to 2 atoms, the radial distance (R) set to 2 ROax, and the 

Debye-Waller factor (σ2) set to 2 σ2
Oax.  A P shell at ~3.6 Ǻ (Figure 2.2c) was included in 

all samples containing P, along with the MS paths U-Oeq-P (~3.7 Ǻ) and U-Oeq-P-Oeq 
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(~3.8 Ǻ).  U-P minerals are composed of sheets of square bipyramidal uranyl and 

tetrahedral phosphate [(UO2)(PO4)]- attached by interlayer charge-balancing cations 

(Catalano and Brown Jr., 2004; Locock and Burns, 2003), and higher P coordination 

numbers reflect the formation of these structured U-P sheets. Oeq atoms at ~2.45 Ǻ are 

also common in coordination complexes with carbonates (U-C radial distance ~2.80 Ǻ) 

and indicate the bidentate sharing of two oxygen atoms between uranyl and carbonate 

(Figure 2.2d).  Ternary complexes of Fe-U-C (Bargar et al., 2000) are common in natural 

systems (Waite et al., 1994) and are observed in ORFRC soils (Bostick et al., 2002). A 

uranium-carbon shell with radial distance of ~ 2.80 Ǻ (Figure 2.2d) that included the two 

triangular U-C-Oeq MS paths (~3.24 Ǻ) greatly improved the fits.  As all samples were 

natural soils, Fe and Mn (~3.3 to 3.43 Ǻ) shells were also included in fittings where 

appropriate (Figure 2.2d).   



 30

 

Figure 2.2  U(VI) coordination complexes used in EXAFS fittings included (a) U-Oax, (b) 
U-Oeq, (c) U-P (precipitation), (d) U-Fe (adsorption) and U-C shells.  Distances shown in 
angstroms (Ǻ) are approximate radial bond distances.  (e) A typical R-space diagram 
displaying peaks corresponding to fitted shells.  Solid and dashed lines indicate data and 
fitted data, respectively. 

2.6.2  Elemental imaging and µ-XANES 

 Elemental imaging and µ-XANES analysis was conducted on selected samples at 

SSRL beam line 2-3 (2009) using a Si(111) monochromator and a motorized three 

element monolithic Germanium (Ge 3) detector.  Elemental data was acquired by 

continuous scan across the sample grid with a focused beam of 2 µm diameter.  Soil 

samples were thin-sectioned by Spectrum Petrographics, Inc. prior to analysis. 
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CHAPTER 3  

URANIUM BIOMINERALIZATION AS A RESULT OF BACTERIAL 

PHOSPHATASE ACTIVITY:  INSIGHTS FROM BACTERIAL 

ISOLATES FROM A CONTAMINATED SUBSURFACE 

 
Reproduced in part with permission from Beazley, M. J.; Martinez, R. J.; Sobecky, P. A.; 

Webb, S. M.; Taillefert, M. Uranium biomineralization as a result of bacterial 
phosphatase activity:  Insights from bacterial isolates from a contaminated subsurface. 
Environ. Sci. Technol. 41, 5701-5707.  Copyright 2007, American Chemical Society. 

 

3.1  Abstract 

 Uranium contamination is an environmental concern at the Department of 

Energy’s Field Research Center in Oak Ridge, Tennessee.  In this study, we investigated 

whether phosphate biomineralization, or the aerobic precipitation of U(VI)-phosphate 

phases facilitated by the enzymatic activities of microorganisms, offers an alternative to 

the more extensively studied anaerobic U(VI) bioreduction.  Three heterotrophic bacteria 

isolated from FRC soils were studied for their ability to grow and liberate phosphate in 

the presence of U(VI) and an organophosphate between pH 4.5 and 7.0.  The objectives 

were to determine whether the strains hydrolyzed sufficient phosphate to precipitate 

uranium, to determine whether low pH might have an effect on U(VI) precipitation, and 

to identify the uranium solid phase formed during biomineralization.  Two bacterial 

strains hydrolyzed sufficient organophosphate to precipitate 73 to 95% total uranium 

after 120 hours of incubation in simulated groundwater.  The highest rates of uranium 

precipitation and phosphatase activity were observed between pH 5.0 and 7.0.  EXAFS 
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spectra identified the uranyl phosphate precipitate as an autunite/meta-autunite group 

mineral.  The results of this study indicate that aerobic heterotrophic bacteria within a 

uranium-contaminated environment that can hydrolyze organophosphate, especially in 

low pH conditions, may play an important role in the bioremediation of uranium. 

3.2  Introduction 

 Radioactive wastes from nuclear weapon production and spent nuclear fuel is a 

major environmental problem at Department of Energy (DOE) facilities across the United 

States.  Uranium contamination is a particular concern at the DOE Field Research Center 

(FRC) in the Oak Ridge National Laboratory Reservation at Oak Ridge, Tennessee.   

Over 30 years of uranium enrichment at the facility produced wastes that have 

contaminated soil and groundwater adjacent to the disposal ponds with high levels of 

depleted uranium and nitric acid (Brooks, 2001).  The biogeochemical complexities at the 

FRC site, such as low pH and high concentrations of contaminants (toxic metals, Al, Ni, 

and nitrate) (Brooks, 2001), make remediation a difficult process, and several different 

strategies, including both abiotic and biotic approaches, have been examined over the 

past five years (Istok et al., 2004; North et al., 2004; Wu et al., 2006a; Wu et al., 2006b; 

Zhou and Gu, 2005).  

 The fate of uranium in a natural environment is governed by a variety of chemical 

reactions, including reduction/oxidation, sorption/desorption, precipitation/dissolution, 

and complexation reactions.  The two primary oxidation states of uranium are +4 and +6 

(Cotton et al., 1999).  U(IV) is stable in anaerobic conditions, mainly in the form of the 

solid mineral uraninite (UO2(s)), but if exposed to dissolved oxygen, uraninite can readily 

oxidize to the more mobile U(VI) (Finch and Murakami, 1999; Langmuir, 1997).  U(VI) 
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dominates in oxidizing conditions as the highly soluble and stable linear uranyl ion, 

UO2
2+ (Langmuir, 1997; Murphy and Shock, 1999).  Uranyl mobility in natural systems 

below circumneutral pH is controlled primarily by adsorption, precipitation, and 

complexation reactions (Langmuir, 1978).  Uranyl efficiently adsorbs to mineral surfaces, 

such as iron oxides, over a range of pH, precipitates as insoluble phosphate minerals, 

such as autunite (Ca(UO2)2(PO4)2), and complexes with organic matter, such as humic 

and fulvic substances  (Finch and Murakami, 1999; Langmuir, 1997).  However, above 

circumneutral pH, uranyl mobility is controlled by carbonates found in most groundwater 

systems (Langmuir, 1978).  Carbonate affects the chemical reactions of uranium through 

the formation of uranyl carbonate complexes.  These strong and highly soluble 

complexes increase the solubility of uranium by limiting mineral adsorption processes 

and aiding in the oxidation of U(IV) minerals and dissolution of U(VI) minerals 

(Langmuir, 1997). 

 Previous studies on the bioremediation of uranium have focused primarily on the 

bacterial reduction of U(VI) to uraninite (Istok et al., 2004; Lovley et al., 1991; Wade Jr. 

and DiChristina, 2000; Wu et al., 2006b).  In fact, several bacterial species indigenous to 

the FRC actively reduce U(VI) (North et al., 2004; Shelobolina et al., 2004).  However, 

much of the uranium contamination at the FRC is within the vadose zone in which oxic 

conditions prevail (Stubbs et al., 2006).  Surprisingly, only a few studies are available on 

the bioremediation of uranium in aerobic conditions (Macaskie et al., 1994; Powers et al., 

2002).  In addition, the pH of the contaminated groundwater of the FRC ranges between 

3 and 6 which coincides with the highest concentrations of dissolved uranium (Brooks, 

2001; Wu et al., 2006a; Wu et al., 2006b).  In these pH conditions, carbonates should not 
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control uranyl solubility and uranyl mineral precipitation may be favored, particularly in 

the presence of anions such as orthophosphate (Langmuir, 1997).  Unfortunately, free 

orthophosphate is rarely found in soils and aquatic systems.  It is instead incorporated in 

minerals (Langmuir, 1997) or complexed by organic compounds (Turner et al., 2002).  In 

these conditions, microorganisms acquire needed phosphate via phosphatase enzymes 

which hydrolyze PO4
3- from organophosphate substrates for transport into the cell 

(Macaskie et al., 1994).  We hypothesize that microorganisms in contaminated systems 

may constitutively express phosphatase genes resulting in enzymatic activity that 

produces excess orthophosphate and precipitates uranium in a process termed 

biomineralization.  Thus, microbially-mediated mineral precipitation may offer a 

complementary approach to anaerobic bioreduction in aerobic environments, such as 

vadose zones.  

 The objectives of this study were (1) to determine if the phosphatase activity of 

three aerobic heterotrophic bacterial strains isolated from the FRC promotes the 

precipitation of solid uranium phosphate in the presence of an organophosphate 

compound, (2) to investigate if pH and organophosphate concentration affect uranium 

solubility and phosphatase activity, and (3) to identify the chemical composition of the 

uranium mineral formed during biomineralization. 

3.3  Materials and Methods  

3.3.1  Subsurface strains and growth conditions   

 Three metal-resistant subsurface bacterial strains used in this study, Arthrobacter 

sp. X34, Bacillus sp. Y9-2, and Rahnella sp. Y9602 were previously isolated from FRC 

contaminated subsurface soils and identified by 16S rDNA phylogeny (Martinez et al., 
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2006).  These three genera are commonly found in terrestrial subsurface environments 

(Balkwill and Boone, 1997; Rozhon et al., 2006). Two of these strains (Rahnella sp. and 

Bacillus sp.) exhibited phosphatase-positive phenotypes as determined by histochemical 

screening (Martinez et al., 2007).  Cells were grown in pH-buffered simulated 

groundwater consisting of 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES) (pH 5.5), 

2 µM FeSO4, 5 µM MnCl2, 8 µM Na2MoO4, 0.8 mM MgSO4, 7.5 mM NaNO3, 0.4 mM 

KCl, 7.5 mM KNO3, 0.2 mM Ca(NO3)2, and amended with 10 mM glycerol-3-phosphate 

(G3P) (Sigma-Aldrich). Nutrient broth (NB) agar (3 g beef extract, 5 g peptone, 15 g agar 

per liter) was used for the maintenance of the FRC strains. 

3.3.2  Incubations 

 Incubations with all three bacterial strains were conducted at pH 5.5, the 

representative pH of contaminated soils at the FRC (Brooks, 2001; Wu et al., 2006a; Wu 

et al., 2006b).  As carbonate is less likely to play a role in the FRC subsurface below 

circumneutral pH, carbonates were not added to the simulated groundwater. Triplicate 

flasks containing 250 mL simulated groundwater (pH 5.5) amended with 10 mM G3P as 

the sole carbon and phosphorus source were inoculated with approximately 107 cells mL-1 

of each strain.  Prior to inoculation, FRC strains were grown overnight at 30oC in NB 

agar (pH 6.8) from frozen stocks (-80oC).  The next day, cells from solid medium were 

grown 16-18 hr in NB broth (pH 5.5) and subsequently diluted 1/50 into fresh NB (pH 

5.5) and grown to mid-log phase.  Cells were harvested by centrifugation (10,000g for 10 

min), washed twice with isotonic saline (8.5 g L-1 NaCl), and gently resuspended in 

simulated groundwater (pH 5.5).  Cells resuspended in simulated groundwater were 

inoculated into experimental flasks and assayed for:  (a) viable cell activity; or (b) non-
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viable cell activity (i.e., heat-killed cells). Heat-killed cells were held for 30 min at 85°C 

and allowed to cool to room temperature before inoculation. Abiotic controls contained 

the exact media components but lacked either a viable or heat-killed cell inoculum. 

Abiotic control experiments with uranium did not identify any matrix interferences from 

simulated groundwater and MES.  All flasks were incubated at 30oC, 200 rpm, and 

amended with 200 µM uranyl acetate (Spectrum) after 36 hr of incubation.  Subsamples 

were aseptically removed (24 hr time intervals) to determine (i) culturable cell counts, (ii) 

orthophosphate concentration, (iii) pH, and (iv) soluble uranium concentrations.  Viable 

cell numbers, reported as colony forming units (CFU), were determined by serially 

diluting 1 mL subsamples in saline and plating onto NB agar.  Further incubations of the 

Rahnella sp. were conducted at pH 4.5, 5.0, and 7.0 to ascertain the most favorable pH 

for phosphatase activity and uranium phosphate precipitation.   

3.3.3  Chemical control experiments and analysis 

 A direct titration of 10 mM G3P with 1 N NaOH in simulated groundwater (I = 

0.02 M) was performed to determine the acid-base properties of G3P with a Thermo 

Orion 91-06 pH electrode.  Equivalence points were determined to calculate the pKa’s of 

G3P (Harris, 1999).  In addition, 200 µM uranyl solutions were equilibrated for 48 hr 

with varying concentrations of G3P to investigate the solubility of uranium in the 

presence of an organophosphate compound. 

 Dissolved U(VI) concentrations were measured by inductively-coupled plasma 

mass spectrometry (ICP-MS) with an Agilent 7500a Series system.  Samples were 

filtered (0.2 µm pore size, AcetatePlus; GE Water and Process Technologies) and 

acidified with 2% nitric acid (trace metal grade, Fisher) diluted in Nanopure water 
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(Barnstead).  Uranium standards and samples contained holmium and bismuth (SPEX 

certiPrep) as internal standards.  Blanks, calibration check standards (95-105% recovery), 

and River Water Certified Reference Material for Trace Metals (SLRS-4, National 

Research Council Canada, Ottawa, Canada) were analyzed for quality controls.  The 

analytical error on triplicate samples was < 3% relative standard deviation (RSD).  Total 

free phosphate (PO4
3-) concentrations were determined by spectrophotometry (Murphy 

and Riley, 1962).  The analytical error on duplicate samples was < 4% RSD.  

Thermodynamic equilibrium modeling was conducted using MINEQL+ (v. 4.5) updated 

with the Nuclear Energy Agency’s thermodynamic database for uranium (Guillaumont et 

al., 2003; Schecher and McAvoy, 2001).  

 At the conclusion of the incubations, the remaining solution was centrifuged and 

the solid precipitate collected for analysis by X-ray absorption spectroscopy (XAS) at the 

Stanford Synchrotron Radiation Laboratory (SSRL).  Uranium LIII-edge XAS spectra 

were collected at SSRL beamline 11-2 using a focused X-ray beam with a 23 keV 

harmonic rejection cutoff.  The incident energy was selected with a Si(220) 

monochromator.  Transmission and fluorescence data were collected simultaneously.  All 

extended X-ray absorption fine structure (EXAFS) data were reduced using SIXPACK 

(Webb, 2005).  Oax and Oeq shells for uranium were fit initially and subtracted from the 

raw data to create second-shell residual spectra.  This technique allows for a more 

sensitive response of the fitting procedure to the second-shell contributions in the sample 

spectra.  Phase and amplitude files for the EXAFS fitting were created with FEFF7 

(Ankudinov et al., 1998; Zabinsky et al., 1995).  Since the Debye-Waller factors (σ) 

correlated highly with coordination numbers (N), σ’s for some shells were each fixed at 
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their average values.  The U=Oax=U=Oax transdioxo multiple scattering path (Hudson et 

al., 1996) was included in all fits.  

3.4  Results and Discussion 

3.4.1  Speciation of uranium and G3P 

 Uranyl hydrolysis is well known (Cotton et al., 1999; Langmuir, 1997) and the 

primary species of uranyl in oxic conditions in the absence of carbonate at and below 

circumneutral pH are UO2
2+, UO2OH+, (UO2)2(OH)2

2+, and (UO2)3(OH)5
+.  In contrast, 

the acid-base properties of G3P and its speciation with U(VI) are not well known. A 

direct titration of G3P with 1 N NaOH in simulated groundwater identified G3P as a 

diprotic acid with two equivalence points (Ve1 = 1.39 mL, Ve2 = 1.74 mL) corresponding 

to pKa values of pKa1 = 2.07 and pKa2 = 6.4 (Figure 3.1a).  The resulting speciation 

diagram (Figure 3.1b) shows the primary form of G3P between pH 3 and 6 is HG3P-, 

with one deprotonated phosphate available for binding with the uranyl ion.   
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Figure 3.1 .  (a) Direct titration of 10 mM G3P in simulated groundwater (I = 0.02 M) 
with 1 N NaOH indicates a diprotic acid with two equivalence points (Ve1 = 1.39 mL, 
Ve2 = 1.74 mL).  (b) The resulting speciation diagram of 10 mM G3P in simulated 
groundwater. 
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 To demonstrate that the organophosphate ligand does not interfere with uranium 

abiotically, it was necessary to characterize the nature of the chemical interactions 

between uranium and G3P.  Batch titrations at constant uranyl concentration (200 µM) 

and varying G3P concentrations revealed that uranyl solubility depends on the 

concentration of G3P at pH 5.5 (Figure 3.2a).  Uranyl precipitated chemically in a mole-

to-mole ratio with G3P when the solution [U]:[G3P] molar ratio was greater than or equal 

to 1:3.  These data suggest that a monodentate bond is formed between the uranyl ion and 

G3P, resulting in a mononuclear U-G3P complex.  Monodentate coordination is not 

uncommon with uranyl; LIII-edge EXAFS measurements of uranium(VI) with glucose 6-

phosphate (G6P) and fructose 6-phosphate (F6P) at pH 5.5 show monodentate 

coordination via the oxygen atoms of the phosphate group (Koban et al., 2004).    

However, uranyl solubility increased when the [U]:[G3P] ratio was smaller than 1:5 and 

was completely soluble in the presence of 10 mM G3P.  The increase in uranyl solubility 

with increasing organophosphate concentration has been observed with other 

organophosphates, such as phytic acid (Seaman et al., 2003), and is probably caused by 

an increase in steric hindrances due to strict ligand coordination requirements within the 

plane perpendicular to the linear uranyl ion.  Interestingly, uranyl solubility did not 

demonstrate significant dependence on G3P concentration at pH 7 and was insoluble at 

all ligand concentrations (Figure 3.2a).  Therefore, high concentrations of 

organophosphate and low pHs may favor solubility of uranium.   

 The same batch reactions were repeated with free orthophosphate to confirm that 

uranium could be removed by precipitation with orthophosphate once G3P is hydrolyzed.  

Uranyl precipitation also occurred with free orthophosphate at pH 5.5, and uranyl was 
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least soluble when the [U]:[P] ratio was greater than or equal to 1:5 (Figure 3.2). In 

contrast to G3P, the solubility of uranyl did not increase below a [U]:[P] ratio of 1:5, 

indicating that the removal of uranium could be promoted by orthophosphate.  

Unfortunately, the concentration of free orthophosphate is often low in groundwater, and 

most available phosphorus is in the form of organic compounds (Turner et al., 2002).  

Thus, uranium phosphate precipitation is only a viable remediation strategy if indigenous 

microorganisms hydrolyze enough organophosphate.  More importantly, these 

microorganisms have to survive and grow in the presence of UO2
2+. 
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Figure 3.2  Solubility of 200 µM U(VI) as a function of (a) G3P concentration and (b) 
PO4

3- concentration in simulated groundwater at pH 5.5 and 7.0.  Labels 1, 2, 3, 4, and 5 
represent [U]:[L]  molar ratios of 4:1, 2:1, 1:1, 1:3, and 1:5 with [L] = [G3P] or [PO4

3-]. 
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3.4.2  Incubations 

 Incubations with strains of Rahnella, Bacillus, and Arthrobacter spp. were 

conducted at pH 5.5 in the presence of 10 mM G3P (to ensure that G3P was not 

precipitating chemically with uranium) with 200 µM UO2
2+ added at 36 hr.  CFU counts 

were determined to monitor cell viability throughout the 120 hr incubation period.  

Arthrobacter sp. and Bacillus sp. CFU counts did not increase during the incubations 

with or without uranium addition (Figure 3.3a).  In contrast, Rahnella sp. CFU counts 

exhibited a significant decrease (106-fold) upon the addition of uranium, but by the end of 

the incubation CFU counts were comparable to the control without uranium (Figure 

3.3a).   

 The rates of uranium precipitation and G3P hydrolysis in the presence of the three 

bacterial strains are shown in Figure 3.3b and c.  Rahnella sp. hydrolyzed 9 times more 

G3P than Bacillus sp. after 120 hrs regardless of the presence of uranium (Figure A. 1:  

A).  However, in the presence of uranium both strains hydrolyzed approximately 55% 

less G3P than in controls without uranium.  In Rahnella sp. incubations, 34% uranium 

precipitated within one hour after amendment in the presence of ~ 0.5 mM free 

orthophosphate.  After 12 hours, 78% uranium precipitated while free orthophosphate 

concentrations doubled (Figure 3.3b and c).  After 5 days, 95% of uranium was removed 

and orthophosphate concentrations increased to 2.4 mM, suggesting that Rahnella sp. is 

not significantly affected by the presence of U(VI).  Uranium was not removed in 

incubations with heat-killed cells of Rahnella sp., demonstrating that adsorption of 

uranium to cell membranes is not significant at pH 5.5 (Figure 3.3b).  Simultaneously, 

Bacillus sp. cells did not demonstrate appreciable growth in the simulated groundwater as 

CFU counts remained constant throughout the incubation in the presence or absence of 
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uranium (Figure 3.3a).  Bacillus sp. demonstrated only moderate phosphatase activity 

(Figure 3.3c), with ~ 300 µM hydrolyzed phosphate in solution at steady-state.  Yet, 31% 

uranium precipitated within one hour after amendment, and 73% of the initial uranium 

was removed by precipitation after 5 days (Figure 3.3b). Some Bacillus strains 

accumulate uranium on outer cell wall surface layers via inner sphere complexes with 

cell bound phosphate and carboxyl groups, which function as protective barriers to heavy 

metals (Merroun et al., 2005; Panak et al., 2002; Panak et al., 2000).  As observed with 

the Rahnella strain, uranium was not removed in incubations with heat-killed cells of 

Bacillus sp. (Figure 3.3b), indicating U(VI) did not adsorb or complex with cell surfaces.   

   In contrast, Arthrobacter sp. cells did not demonstrate any measurable 

phosphatase activity, with zero free phosphate detected at pH 5.5 before and after 

uranium addition (Figure 3.3c).  Dissolved uranium remained stable at initial 

concentrations in the chemical control, heat-killed cell control, and in the presence of live 

cells (Figure 3.3b).  However, cells remained culturable throughout the incubation though 

they did not grow, as a function of time (Figure 3.3a), suggesting a different protection 

mechanism from uranium toxicity.  A previous study has shown some Arthrobacter 

strains can accumulate uranium intracellularly and possibly precipitate uranium with 

polyphosphates as means of detoxification (Suzuki and Banfield, 2004).  Altogether, 

these incubations suggest that bacterial species with phosphatase activity, such as 

Rahnella sp. and Bacillus sp., can survive in the presence of UO2
2+ and hydrolyze 

sufficient organophosphate to precipitate U(VI). 
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Figure 3.3  (a) Average colony forming units (CFU) from three replicate incubations, (b) 
percent U(VI) precipitation, and (c) phosphate concentrations in incubations at pH 5.5 
with 200 µM UO2

2+, 10 mM G3P, and three bacterial species in simulated groundwater 
(standard deviation represents variations of triplicate incubations).   
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 Incubations of Rahnella sp. were also conducted at different pH to determine the 

most favorable pH for uranium phosphate precipitation and phosphatase activity and to 

establish if biomineralization of uranium can occur within the pH range of the FRC 

groundwater.  Uranium precipitation rate was dependent on pH (Figure 3.4a). Uranium 

precipitation was minimal and cell growth significantly less at pH 4.5, possibly due to the 

combined stress of low pH and uranium toxicity (Suzuki and Banfield, 2004). Only 28% 

of initial uranium was precipitated at pH 4.5 at steady-state, compared to 90 and 97% 

precipitation at pH 5.5 and 7.0, respectively.  Chemical and heat-killed cell controls did 

not demonstrate any abiotic uranium precipitation or adsorption at and below pH 5.5 

(Figure A. 2; Appendix A).  Chemical precipitation of uranium did occur, however, at pH 

7.0 in control samples (Figure 3.2a), suggesting that the precipitation of U(VI) in these 

incubations with Rahnella sp. at pH 7 is chemical. 

 Hydrolysis of G3P by Rahnella sp. demonstrated a dependence on pH and 

uranium addition (Figure 3.4b and c).  In the absence of U(VI), Rahnella sp. hydrolyzed 

1.5 times more G3P at pH 7.0 compared to pH 4.5 (Figure A. 1;Appendix A) and in the 

presence of U(VI), 4 times more G3P was hydrolyzed at pH 7.0 than at pH 4.5.  The 

percent phosphate difference between samples with and without U(VI) at each timepoint 

as a function of pH is shown in Figure 3.4c.  After 36 hrs, samples without uranium 

consistently contained more orthophosphate than samples with uranium throughout the 

experiments; however, after ~ 97% uranium precipitated, such as at pH 7, the difference 

in orthophosphate concentrations was minimal. 
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Figure 3.4  (a) Average percent U(VI) precipitation, (b) average phosphate concentrations 
in the presence of U(VI), and (c) percent phosphate difference between samples with and 
without U(VI) in incubations of Rahnella sp. at different pH in simulated groundwater.  
U(VI) was added after 36 hours (n represents the number of replicate incubations 
conducted and averaged). 
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3.4.3  Solid-phase characterization 

 Uranium XAS spectra for biological and control bulk precipitates are shown in 

Figure 3.5 and fitted parameters listed in Table A. 1 (Appendix A).  Biological samples 

included precipitates from incubations with Rahnella sp. in the presence of 200 µM 

UO2
2+ and 10 mM G3P in simulated groundwater at pH 5.5 (A) and pH 7.0 (B).  Abiotic 

samples consisted of simulated groundwater amended with 200 µM UO2
2+ in the 

presence of 200 µM NaH2PO4 at pH 5.5 (C) and in the presence of 10 mM G3P at pH 7.0 

(D).  

 The XANES structure (Figure 3.5a) in both biological and chemical samples 

displays a characteristic shoulder between 17180 and 17190 eV consistent with U(VI) 

oxidation state.  The k-space region from 8.5 to 10.5 Å-1 shows the difference between 

the samples containing phosphate (A, B, and C) and the sample without phosphate (D).  

Precipitates with phosphate were characteristic of the closely related autunite and meta-

autunite group minerals, while the precipitate without phosphate was a uranium 

hydroxide mineral.  The autunite/meta-autunite group includes minerals such as meta-

ankoleite (K2(UO2)2(PO4)2), autunite (Ca(UO2)2(PO4)2), chernikovite (H2(UO2)2(PO4)2), 

and saléeite (Mg(UO2)2(PO4)2.  Due to the structural similarities of these autunite-type 

minerals their EXAFS spectra are difficult to distinguish (Catalano and Brown Jr., 2004; 

Fuller et al., 2002).  These minerals display sheets of square bipyramidal uranyl and 

tetrahedral phosphate [(UO2)(PO4)]- attached by interlayer charge-balancing cations 

(Catalano and Brown Jr., 2004; Locock and Burns, 2003).  As a result, the polynuclear 
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structure of autunite may explain the greater stability of autunite precipitates compared to 

the mononuclear U-G3P complex. 

 The U-P distances in phosphate precipitates (~ 3.58 Å average) indicate uranyl 

formed a monodentate complex with phosphate (Table A. 1; Appendix A).  The two 

precipitates formed at pH 5.5 contained an average 2.35 coordinating P molecules 

compared to 0.75 in the phosphate precipitate formed at pH 7.0 (Table A. 1; Appendix 

A).  The lower coordination number of P molecules at pH 7.0 suggests the existence of a 

mixture of uranium phosphate and uranium hydroxide minerals, which would be 

consistent with thermodynamic predictions at higher pH. 

 The biological uranyl phosphate precipitate (A) had approximately the same 

EXAFS structure as the chemical uranyl phosphate precipitate (C) at pH 5.5 (Figure 3.5b 

and c), suggesting little difference between uranium mineralized in the presence of PO4
3- 

bio-hydrolyzed from an organophosphate substrate and uranium precipitated with free 

orthophosphate.  Interestingly, the chemical precipitation of U(VI)-hydroxide in control 

samples (Figure 3.5 D and Table A. 1; Appendix A) and the high precipitation rates in 

live incubations at pH 7.0 suggested that the uranyl precipitation in Rahnella sp. 

incubations was chemical.  However, EXAFS measurements (Figure 3.5 B and Table A. 

1; Appendix A) identified the precipitate as a mixture of autunite/meta-autunite and 

uranyl hydroxide indicating a biologically-mediated uranyl phosphate formation at pH 

7.0.  Thermodynamic modeling using MINEQL+ (v. 4.5) (Schecher and McAvoy, 2001) 

predicts the principle mineral phase at pH 7.0 as autunite/meta-autunite with uranyl 

hydroxide comprising only a small percentage of the mineral mixture (Figure 1.5).  In 

contrast, EXAFS identified uranyl hydroxide as the only mineral phase formed at pH 7.0 
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in chemical control incubations without phosphate (Figure 3.5 D and Table A. 1; 

Appendix A). The difference in the composition of the uranyl mineral formed in the 

presence of live cells compared to the mineral formed in chemical controls demonstrates 

that the precipitation of uranium is driven by biological activities.  Thermodynamic 

modeling of simulated groundwater containing 200 µM UO2
2+ and 1 mM PO4

3- (1:5 

ratio) identifies a low solubility range for autunite between pH 4 and 8, even in the 

presence of high concentrations of sulfate and nitrate (not shown).  Carbonate that is 

prevalent in natural systems plays an important role in uranium solubility; however, 

thermodynamic calculations predict that carbonate should not affect autunite solubility 

below pH 8.  These findings demonstrate the potential applicability of uranium phosphate 

biomineralization as a bioremediation strategy in aerobic aquifers below circumneutral 

pH where uranium is a major contaminant. 
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Figure 3.5 Uranium (a) XANES, (b) k-space and (c) R-space diagrams of the LIII-edge 
EXAFS from precipitates obtained during incubations with Rahnella sp. in the presence 
of 200 µM UO2

2+ and 10 mM G3P in simulated groundwater at pH 5.5 (A) and pH 7.0 
(B).  Abiotic samples consisted of simulated groundwater amended with 200 µM UO2

2+ 
in the presence of 200 µM NaH2PO4 at pH 5.5 (C) and 10 mM G3P at pH 7.0 (D). 
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 The results of this study demonstrate that some aerobic heterotrophic bacteria 

isolated from a uranium-contaminated environment can catalyze the precipitation of 

uranium phosphate in oxic conditions through the activity of their phosphatase enzymes.  

Previous studies have suggested that organisms increase their phosphatase activity as a 

protection mechanism from heavy metal contamination in toxic environments (Macaskie 

et al., 1994; Montgomery et al., 1995; Powers et al., 2002; Sobecky et al., 1996; Yong 

and Macaskie, 1999).  In this study, we have demonstrated that two aerobic heterotrophic 

bacterial species isolated from a contaminated soil sample from Area 3 of the FRC site at 

Oak Ridge, Tennessee can hydrolyze sufficient organophosphate to precipitate up to 95% 

total uranium.  We are particularly interested in the role these organisms may potentially 

have in the bioremediation of uranium at the FRC and how pH and organophosphate 

ligand concentration affect uranium solubility in such a system. 

3.4.4  Applications for in situ bioremediation   

 Soils from Area 3 contain 2 orders of magnitude more uranium, as precipitated 

uranium phosphate, in shale micropores than uranium adsorbed onto iron oxide surfaces 

(Stubbs et al., 2006).  These findings indicate local saturation of uranium phosphate 

compared to the bulk groundwater and imply that the pH of the groundwater is too low to 

favor adsorption of positive uranyl species onto positively charged iron oxides (Stubbs et 

al., 2006).  Indeed, these conditions should be favorable to phosphate adsorption onto 

iron oxides, and adsorption of phosphate onto goethite-coated sand (Cheng et al., 2004) 

and ferrihydrite (Payne et al., 1996) below pH 7 can increase the uptake of uranyl via the 

formation of ternary surface complexes between UO2
2+ and PO4

3-.  However, free 

orthophosphate concentrations are usually low in groundwater, and phosphorus is very 
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often complexed with organic compounds (Turner et al., 2002).  If precipitation of 

uranium phosphate due to localized niches is such a large sink for uranium, 

microenvironments containing indigenous microorganisms, such as Rahnella sp., 

exhibiting phosphatase activity may produce enough orthophosphate to cause local 

saturation of uranium phosphates.  Thus, uranium phosphate precipitation, either 

chemically or biologically-mediated, could be enhanced in areas where the uranyl-to-

orthophosphate ratio and pH are low. 

 At the Oak Ridge FRC, where uranium contamination is mostly within the vadose 

zone and below circumneutral pH, remediation may be promoted, through enhancement 

of microbial phosphatase activity, by addition of organophosphate compounds.  

Microbial-mediated hydrolysis of high concentrations of organophosphates may produce 

enough orthophosphate to significantly reduce the solubility of uranyl.  Our findings 

demonstrate that the aerobic and low pH conditions at the FRC may be ideal for the 

application of biomineralization of uranium through the activity of phosphatase enzymes. 
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CHAPTER 4  

NONREDUCTIVE BIOMINERALIZATION OF URANIUM(VI) 

PHOSPHATE VIA MICROBIAL PHOSPHATASE ACTIVITY IN 

ANAEROBIC CONDITIONS 

This is a preprint of an article whose final and definitive form has been published in 
Geomicrobiology Journal, authored by Beazley, M. J.; Martinez, R. J.; Sobecky, P. A.; 
Webb, S. M.; Taillefert, M. entitled Non reductive biomineralization of uranium(VI) 

phosphate via microbial phosphatase activity in anaerobic conditions.  
 Copyright 2009, Taylor & Francis Group, LLC.   

Geomicrobiology Journal is available online at: http://www.informaworld.com/smpp/. 
 
 

4.1  Abstract 

The remediation of uranium from soils and groundwater at Department of Energy (DOE) 

sites across the United States represents a major environmental issue, and bioremediation 

has exhibited great potential as a strategy to immobilize U in the subsurface.  The 

bioreduction of U(VI) to insoluble U(IV) uraninite has been proposed to be an effective 

bioremediation process in anaerobic conditions. However, high concentrations of nitrate 

and low pH found in some contaminated areas have been shown to limit the efficiency of 

microbial reduction of uranium.  In the present study, nonreductive uranium 

biomineralization promoted by microbial phosphatase activity was investigated in 

anaerobic conditions in the presence of high nitrate and low pH as an alternative 

approach to the bioreduction of U(VI).  A facultative anaerobe, Rahnella sp. Y9602, 

isolated from soils at DOE’s Oak Ridge Field Research Center (ORFRC), was able to 

respire anaerobically on nitrate as a terminal electron acceptor in the presence of 

glycerol-3-phosphate (G3P) as the sole carbon and phosphorus source and hydrolyzed 
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sufficient phosphate to precipitate 95% total uranium after 120 hours in synthetic 

groundwater at pH 5.5.  Synchrotron X-ray diffraction and X-ray absorption spectroscopy 

identified the mineral formed as chernikovite, a U(VI) autunite-type mineral.  The results 

of this study suggest that in contaminated subsurfaces, such as at the ORFRC, where high 

concentrations of nitrate and low pH may limit uranium bioreduction, the 

biomineralization of U(VI) phosphate minerals may be a more attractive approach for in 

situ remediation providing that a source of organophosphate is supplied for 

bioremediation. 

4.2  Introduction 

 Over thirty years of uranium enrichment at the DOE Oak Ridge, Tennessee site 

left a legacy of uranium contamination in soils and groundwater (Brooks, 2001).  These 

contaminated systems are characterized by high concentrations of uranium and other 

toxic metals, as well as, high nitrate and low pH (Brooks, 2001; Wu et al., 2006a).  

Complete removal of uranium from groundwater and soils through methods such as 

extraction and pump and treat is infeasible on large spatial scales, and research in recent 

years has focused on ways to lower the solubility of uranium in situ, thereby stopping 

and/or slowing its migration through the subsurface (e.g. Arey et al., 1999; Istok et al., 

2004; Wu et al., 2006a; Wu et al., 2007).   

 The solubility of uranium in the subsurface is influenced by the redox conditions, 

pH, soil matrix, and the presence/absence of organic ligands, phosphate, and carbonate 

(Langmuir, 1997).  Uranium exists in the environment in two primary oxidation states, 

the soluble uranyl ion (U(VI)) and the insoluble uraninite mineral (U(IV)).  Uranium(VI) 

reduction to U(IV) occurs either chemically by Fe(II) adsorbed onto mineral surfaces 
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(Boyanov et al., 2007; Jeon et al., 2005; Liger et al., 1999; O'Loughlin et al., 2003) or 

biologically by dissimilatory metal-reducing bacteria (DMRB) and sulfate-reducing 

bacteria (SRB) (Fredrickson et al., 2000; Lovley and Phillips, 1992; Lovley et al., 1991; 

North et al., 2004; Wade Jr. and DiChristina, 2000). Unfortunately, uraninite is rapidly 

oxidized to the more mobile and reactive uranyl ion (UVIO2
2+) in oxic conditions 

(Langmuir, 1997; Murphy and Shock, 1999), and more slowly oxidized under nitrate-

reducing conditions by nitrite or Fe(III) oxyhydroxides (Senko et al., 2002; Senko et al., 

2005a; Senko et al., 2005b). Groundwater pH exerts a strong influence on the speciation 

and solubility of U(VI).  Below circumneutral pH, uranyl is positively charged and exists 

primarily as the soluble species UO2
2+ and UO2OH+ (Langmuir, 1997).  In the presence 

of phosphate, insoluble uranyl phosphate minerals are thermodynamically stable between 

pH 4 and 8 (Guillaumont et al., 2003; Schecher and McAvoy, 2001).  Uranyl availability 

in the dissolved phase can also be limited by adsorptive reactions with amorphous Fe(III) 

oxyhydroxides between pH 4.5 and 8 (Hsi and Langmuir, 1985) and with hydroxyapatite 

at circumneutral pH even in the presence of uranyl carbonate complexes (Fuller et al., 

2002).   Above circumneutral pH, uranyl forms strong and highly soluble uranyl 

carbonate complexes (e.g. UO2(CO2)3
4-, UO2(CO3)2

2-) that limit mineral adsorption and 

promote the oxidative dissolution of uraninite by dissolved oxygen, thus increasing 

uranium mobility (De Pablo et al., 1999; Langmuir, 1997).  It is, therefore, important to 

consider the pertinent environmental conditions that affect uranium speciation when 

evaluating a remediation strategy.   

 The reduction of U(VI) to the insoluble U(IV) uraninite by metal-reducing 

bacterial species has been demonstrated to immobilize uranium in biostimulated soils at 
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the Oak Ridge Field Research Center (ORFRC) (Wu et al., 2006a; Wu et al., 2006b; Wu 

et al., 2007).  U(VI) reduction, however, can be limited or hindered by low pH, high 

concentrations of nitrate, iron and manganese oxides, and infusion of dissolved oxygen 

through groundwater recharge.  Typical uranium-reducing microorganisms, such as 

Shewanella sp. and Geobacter sp., grow optimally at and above pH 7 (Venkateswaran et 

al., 1999), and most remediation strategies include raising the pH to increase microbial 

activity (Wu et al., 2006a; Wu et al., 2006b).  Nitrate is a co-contaminant at the ORFRC 

with concentrations as high as 160 mM (Wu et al., 2006a) and is an energetically more 

favorable electron acceptor than U(VI) at circumneutral pH (Edwards et al., 2007) and 

must be removed before U(VI) can be reduced (Finneran et al., 2002)  In addition, high 

nitrate concentrations may promote the oxidation of U(IV) by anaerobic, nitrate-

dependent oxidizers (Beller, 2005) or by Fe(III) produced during nitrite oxidation of 

Fe(II) (Senko et al., 2005a; Senko et al., 2005b).  Metal oxides and oxyhydroxides, such 

as iron and manganese, can also act as competitive electron acceptors and slow rates of 

enzymatic reduction of U(VI) (Fredrickson et al., 2002; Wielinga et al., 2000).  The 

effect of bacterial non-specific acid phosphatase (NSAP) activity on uranium solubility 

(Macaskie et al., 1994; Macaskie et al., 1992) is much less studied compared to bacterial 

reduction but has recently received attention as a possible remediation strategy at the 

ORFRC (Beazley et al., 2007; Martinez et al., 2007).  Bacterial phosphatase enzymes 

hydrolyze phosphate moieties from organophosphate substrates to release phosphate and 

biologically induce precipitation of U(VI) as uranyl phosphate minerals, such as autunite 

[Ca(UO2)2(PO4)2], chernikovite [H2(UO2)2(PO4)2], and ankoleite [K2(UO2)2(PO4)2].  Cell-
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bound accumulation of heavy metal phosphates as a result of NSAP activity has been 

suggested as a possible resistance mechanism to toxic metals (Macaskie et al., 1994).   

 In a previous study, ORFRC isolates (Bacillus sp. strain Y9-2 and Rahnella sp. 

strain Y9602) exhibiting phosphatase-positive phenotypes indicative of constitutive 

NSAP activity were grown aerobically in synthetic groundwater with nitrate and 

glycerol-3-phosphate (G3P) as the sole nitrogen, carbon, and phosphorus sources.  Both 

strains liberated sufficient phosphate to precipitate 73 to 95% of uranium between pH 5 

and 7 (Beazley et al., 2007; Martinez et al., 2007).  Rates of uranium precipitation were 

highest between pH 5.0 and pH 7.0 because in this pH range the predominant dissolved 

phosphate species are H2PO4
- and HPO4

2- that can form favorable complexes with 

positively-charged uranyl molecules.  Below pH 5.0, however, uranyl precipitation is 

minimal due to the partial protonation of phosphate and the decrease in cell growth, 

possibly due to pH stress and uranium toxicity (Suzuki and Banfield, 2004).  Analysis by 

X-ray absorption spectroscopy (XAS) identified the precipitate formed in oxic conditions 

as a U(VI)  autunite/meta-autunite group mineral (Beazley et al., 2007). 

 Dissolved oxygen is typically low (< 31 µM) in deep ORFRC contaminated soils, 

but can range up to 125 µM in more shallow groundwater recharge areas 

(http://public.ornl.gov/orifc/sitenarrative.cfm). A microorganism with the ability to 

induce the precipitation of uranium both in aerobic and anaerobic conditions, in a wide 

range of pH, and in the presence of high concentrations of nitrate would be advantageous 

for in situ remediation at the ORFRC.  The present study expands our previous work and 

determines whether Rahnella sp. Y9602 isolated from the ORFRC grows anaerobically 
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and exhibits sufficient phosphatase activity to precipitate uranyl phosphate in moderately 

low pH conditions. 

4.2  Materials and Methods 

4.2.1  Subsurface Bacterial Strains and Growth Conditions.   

 The facultatively anaerobic gram-negative subsurface bacterial strain used in this 

study, Rahnella sp. Y9602, was previously isolated from ORFRC contaminated soils and 

identified as similar (98% identity) to Rahnella aquatilis (ATCC33989) by 16S rDNA 

sequencing (Martinez et al., 2006).  Phosphatase phenotypes were previously determined 

by histochemical screening (Martinez et al., 2007).  Cells were grown in pH-buffered 

synthetic groundwater consisting of 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES) 

(pH 5.5), 2 µM FeSO4, 5 µM MnCl2, 8 µM Na2MoO4, 0.8 mM MgSO4, 7.5 mM NaNO3, 

0.4 mM KCl, 7.5 mM KNO3, 0.2 mM Ca(NO3)2, and amended with 10 mM glycerol-3-

phosphate (G3P) (Sigma Aldrich).  Nutrient broth (NB) agar (3 g beef extract, 5 g 

peptone, 15 g agar per liter) was used for the maintenance of the ORFRC strain.  

 Incubations with Rahnella sp. Y9602 were conducted as previously described 

(Beazley et al., 2007; Martinez et al., 2007), except they were maintained under anoxic 

conditions in a Coy Laboratory Instruments, Inc. anaerobic chamber maintained at 25 °C 

under an atmosphere of 1% H2, 5% CO2, and 94% N2.  Briefly, triplicate flasks 

containing 250 mL synthetic groundwater (pH 5.5) amended with 10 mM G3P as the sole 

carbon and phosphorus source and 15 mM nitrate as the terminal electron acceptor were 

inoculated with approximately 107 cells mL-1 of the Rahnella sp. Y9602 strain. A set of 

flasks containing live cells were inoculated in the absence of uranium, while another set 

of flasks containing actively growing cells were amended with 200 µM uranyl acetate 
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(Spectrum) 36 h after inoculation.  Abiotic and heat-killed cell controls were inoculated 

simultaneously to identify any matrix and cell membrane interactions with uranium.  

Subsamples were aseptically removed (24 h time intervals) to determine (1) culturable 

cell counts, (2) orthophosphate concentrations, (3) nitrite concentrations, (4) pH, and (5) 

soluble uranium concentrations.  Viable cell numbers, reported as colony forming units 

(CFU), were determined by serially diluting 1 mL subsamples in saline and plating onto 

NB agar.  

4.2.2  Sampling and Analyses 

 Nitrate reduction and denitrification assays were conducted according to Smibert 

and Krieg (1994). Briefly, test tubes containing tryptic soy broth (TSB) medium 

supplemented with 0.1% KNO3 and 0.17% agar were inoculated with Escherichia coli 

MG1655, Pseudomonas aeruginosa, and the ORFRC Rahnella sp. Y9602.  The E. coli 

and P. aeruginosa strains were used as positive controls for nitrate respiration and 

denitrification, respectively.  In this assay, the presence of nitrite was determined from 

the reaction of nitrite with an aromatic amine leading to the formation of a diazonium 

compound that forms a pink azo dye with a second amine (Smibert and Krieg, 1994).   

Dissolved U(VI) concentrations were measured by inductively-coupled plasma mass 

spectrometry (ICP-MS) with an Agilent 7500a Series system.  Samples were filtered (0.2 

µm pore size, AcetatePlus; GE Water and Process Technologies) and acidified with 2% 

nitric acid (trace metal grade, Fisher) diluted in Nanopure water (Barnstead).  Holmium 

and bismuth (SPEX certiPrep) were used as internal standards and River Water Certified 

Reference Material for Trace Metals (SLRS-4, National Research Council Canada, 

Ottawa, Canada) for quality controls.  Analytical error on triplicate samples was <3% 
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relative standard deviation (RSD).  Total free phosphate (ΣPO4
3-) concentrations were 

determined by spectrophotometry (Murphy and Riley, 1962).  Analytical error on 

duplicate samples was <4% RSD.  Nitrite (NO2
-) concentrations were determined by 

spectrophotometry (Grasshoff, 1983) with an analytical error on duplicate samples of 

<5% RSD.  Ammonium (NH4
+) concentrations were determined colorimetrically 

according to Strickland and Parsons (1972).   

4.2.3  X-Ray Analyses 

 The precipitate formed during the incubations was collected by centrifugation at 

the conclusion of the experiments, and analyzed by X-ray absorption spectroscopy (XAS) 

and X-ray diffraction (XRD) at the Stanford Synchrotron Radiation Laboratory (SSRL), 

and compared to precipitate formed abiotically.  The abiotic uranyl phosphate precipitate 

was prepared by combining 200 µM uranyl acetate with 1 mM dihydrogen phosphate and 

allowed to equilibrate for 48 h.  The precipitate was collected by centrifugation and 

washed with deionized water to remove excess phosphate.  Uranium LIII-edge XAS 

spectra were collected on wet samples at SSRL beam line 10-2 using a forced X-ray 

beam with a 23 keV harmonic rejection cutoff.  The incident energy was selected with a 

Si(220) monochromator.  Transmission and fluorescence data were collected 

simultaneously.  All extended X-ray absorption fine structure (EXAFS) data were 

reduced using SIXPACK (Webb, 2005).  Oax and Oeq shells for uranium were fit initially 

and subtracted from the raw data to create second-shell residual spectra.  This technique 

allows for a more sensitive response of the fitting procedure to the second-shell 

contributions in the sample spectra.  Phase and amplitude files for the EXAFS fitting 

were created with FEFF7 (Ankudinov et al., 1998; Zabinsky et al., 1995).  Since the 
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Debye-Waller factors (σ) correlated highly with coordination numbers (N), σ’s for some 

shells were each fixed at their average values.  The U═Oax═U═Oax transdioxo multiple 

scattering path (Hudson et al., 1996) was included in all fits.   

 To identify crystalline uranium phases, XRD intensity data were collected on wet 

samples using the two-circle diffractometer on SSRL beam line 2-1 (using a Bicron 

NaI(Tl) detector equipped with Soller slits).  The diffractometer was calibrated with LaB6 

and the incident X-ray beam was tuned to λ = 1.034 Å.  

4.2.4  Electron Microscopy 

 Upon completion of Rahnella sp. Y9602 uranium biomineralization incubations, 

40 ml of culture was pelletted and re-suspended in 1 mL fixative (2.5% glutaraldehyde in 

0.1 M cacodylate buffer).  After 2 hours fixation at 4°C, bacteria were washed with the 

same buffer and post-fixed with buffered 1% osmium tetroxide at room temperature for 

60 minutes.  Samples were also prepared without osmium tetroxide to verify that electron 

dense regions on cell surfaces were due to uranium and not the osmium stain. Following 

buffer washes, the bacteria were dehydrated, infiltrated, and embedded in Spurr’s resin 

(Ted Pella Inc., Redding CA).  Ultrathin sections of uranium-associated bacteria were cut 

at a thickness of 100 nm with a Leica Ultracut S mictrome.  Examination of the ultrathin 

sections was carried out on a Hitachi HD2000 transmission electron microscope (TEM, 

Hitachi High Technologies America, Inc., Pleasanton, CA) with an accelerating voltage 

of 200 kV and equipped with an Oxford INCA Energy 200 energy-dispersive X-ray 

(EDX) spectrometer.  

 Analysis of Rahnella sp. Y9602 biomineralized uranium was also conducted with 

a Hitachi S3500N variable-pressure scanning electron microscope (VP-SEM) equipped 
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with an Oxford INCA Energy 200 energy-dispersive X-ray spectrometer.  An 

accelerating voltage of 20 kV and a chamber pressure of 20 Pa were used for all analyses.  

Upon completion of uranium biomineralization incubations, 300 µl of the uranium-

associated cell pellet was placed on a glass fiber filter and visualized.  The uranium-

associated cell pellets were not fixed or sputter-coated with metal stains for visualization. 

4.3  Results 

4.3.1  Nitrate Respiration 

 The nitrate respiration and denitrification assays (Figure 4.1a) showed that, after 

24 h of inoculation, Rahnella sp. Y9602 was capable of nitrate respiration but unable to 

denitrify when compared to P. aeruginosa.  Anaerobic batch reactor incubations 

confirmed that Rahnella sp. Y9602 respired on nitrate as evidenced by the increase of 

nitrite concentrations in live cell incubations.  Nitrite accumulated up to 3.5 mM during 

growth in U-free media and to 2.5 mM in media containing U (Figure 4.1b).  NH4
+ was 

not detected in anaerobic incubations (Figure 4.1b) indicating that Rahnella sp. Y9602 is 

not able to respire using the dissimilatory nitrate reduction to ammonium (DNRA) 

pathway.   
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Figure 4.1  (a) Nitrate reduction and denitrification assays used to test the ability of 
Rahnella sp. to respire on nitrate and denitrify.  Pink color indicates the accumulation of 
nitrite 24 h after inoculation.  Rahnella sp. tested positive for nitrate respiration, but 
negative for denitrification when compared to E. coli (positive control for nitrate 
respiration and negative control for denitrification) and P. aeruginosa (positive control 
for denitrification).  (b) Nitrate, nitrite, and ammonium concentrations in anaerobic (open 
symbols) and aerobic incubations (closed symbols) of Rahnella sp. in synthetic 
groundwater at pH 5.5 with 10 mM G3P and 200 µM UO2

2+ (standard deviation 
represents variations of triplicate incubations). 
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4.3.2  Anaerobic metabolism in the presence and absence of U(VI) 

     Colony forming units (CFUs) were determined at each time interval to monitor 

culturable cells throughout the incubations (Figure 4.2a). In the absence of U, Rahnella 

sp. Y9602 cell densities increased 6-fold within the first 24 h of incubation under anoxic 

conditions. After 24 h, however, anaerobic growth ceased and CFUs gradually decreased 

to approximately 106 cells  mL-1 after 120 h incubation.  Anaerobic CFUs were 250 times 

lower than aerobic CFUs after 120 h.  In the presence of U, both aerobic and anaerobic 

CFUs demonstrated the same dramatic decrease in culturable cells to approximately 103 

cells mL-1 within 12 h after the addition of uranium. While CFUs from aerobic 

incubations rebounded once uranium was removed from solution, CFUs decreased to 101 

cells mL-1 after 120 h in anaerobic conditions. 

 Approximately 80% total uranium precipitated anaerobically within one hour of 

uranyl addition in live cell incubations, and up to 95% precipitated after 120 h.  

Anaerobic precipitation of U was 2.4 times greater within one hour of U addition 

compared to aerobic precipitation. After 48 h, however, 95% total U was removed from 

both aerobic and anaerobic incubations.  U precipitation was negligible in heat-killed cell 

and abiotic controls (Figure 4.2b).   

 Phosphate liberation by Rahnella sp. Y9602 was consistently greater aerobically 

than anaerobically at all time points (Figure 4.2c).  Aerobically-grown cells produced 

approximately 1.3 times greater phosphate than cells grown under anaerobic conditions 

after 24 h. This difference steadily increased over the course of the incubations until 

concentrations reached approximately 2.4 times greater levels in aerobic conditions than 

anaerobic conditions by the end of the experiment. Phosphate concentrations increased 

steadily in live cell incubations throughout the anaerobic experiment to a final 



 66

concentration of 1.7 mM in the absence of uranium and 1 mM in the presence of 

uranium.  Both aerobic and anaerobic incubations containing U consistently produced 

less phosphate than samples without U.  Abiotic hydrolysis of G3P did not occur as 

evidenced by the absence of orthophosphate in chemical and heat-killed cell controls 

(Figure 4.2c).   
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Figure 4.2 (a)  Average colony forming units (CFU), (b) percent U(VI) precipitation, and 
(c) phosphate concentrations produced by Rahnella sp. incubated in synthetic 
groundwater under anaerobic conditions (dark symbols) and aerobic conditions (open 
symbols) at pH 5.5 with 200 µM UO2

2+ and 10 mM G3P (standard deviation represents 
variations of triplicate incubations).  Aerobic data from Beazley et al. 2007. 
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 4.3.3  Solid-Phase Analysis 

 Synchrotron-based XRD results of the biotic uranyl phosphate precipitate formed 

anaerobically were compared to abiotic and biotic uranyl phosphate precipitates formed 

aerobically (Figure 4.3).  XRD indicated the presence of chernikovite [H2(UO2)2(PO4)2] 

in all three samples when compared to published data (Ross, 1955; Van Haverbeke et al., 

1996) and the International Centre for Diffraction Data (ICDD) file 08-0296 (Figure 4.3).  

Chernikovite has a tetragonal crystal system with axial length designations a = b ≠ c 

(where a, b, and c correspond to unit cell vectors in the x, y, and z planes, respectively) 

(Cullity, 1978).  Calculated unit cell parameters for the three precipitates are listed in 

Table 4.1 along with estimated particle sizes for the major reflections as determined using 

the Scherrer formula (Cullity, 1978).  Calculated unit cell dimensions were:  a = 7.01 Å, b 

= 7.01 Å, and c = 8.98 Å for the abiotic and aerobic biotic samples and a = 7.01 Å, b = 

7.01 Å, and c = 9.04 Å for the anaerobic biotic sample.  These calculations were in good 

agreement with Ross (1955) providing further evidence of the presence of chernikovite in 

the samples.  The broad and low intensity peaks of the biotic samples (Figure 4.3) 

indicated smaller particle sizes compared to the abiotic sample.  Particle sizes along the x 

and y planes in the biotic samples were larger than those in the z plane (demonstrated by 

sharper peaks in the 110 and 200 reflections), suggesting a “sheet-like” precipitate was 

formed during the incubations. 
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Table 4.1 Calculated Unit Cell Parameters for U-P precipitates 

 
abiotic:  a = 7.01 Å, b = 7.01 Å, c = 8.98 Å 
aerobic biotic:  a = 7.01 Å, b= 7.01 Å, c = 8.98 Å 
anaerobic biotic:  a = 7.01 Å, b = 7.01 Å, c = 9.04 Å 
 

 
hkl 

abiotic 
t (Å) 

aerobic biotic 
t (Å) 

anaerobic biotic 
t (Å) 

001 409 90.2 72.9 
110 774 621 297 

a, b, and c correspond to unit cell vectors in the x, y, and z planes, respectively 
t = particle size in Å as calculated using the Scherrer formula 
hkl represent plane designation by Miller indices 
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Figure 4.3  X-ray diffraction patterns of U(VI)-phosphate precipitates obtained during 
anaerobic and aerobic incubations with Rahnella sp. in synthetic groundwater at pH 5.5 
in the presence of 200 µM UO2

2+ and 10 mM G3P compared to an abiotic uranyl 
phosphate precipitate and the ICDD file 08-0296. 

 

 



 70

 U LIII-edge XANES analysis of both aerobic and anaerobic biotic samples 

displayed the characteristic shoulder of U(VI) oxidation state between 17,180 and 17,200 

eV and were similar to an abiotic uranyl phosphate control precipitate (Figure 4.4a).  

EXAFS fitted parameters (Table 4.2) showed general agreement among the three 

precipitates with regard to Oeq R distances (~ 2.26 Å), P coordination numbers (~ 1.4), U-

P distances (~ 3.60 Å), and P-O distances (~ 1.62 Å) (Figure 4.4b).  The k-space fitted 

region from 8.5 to 10.5 Å-1 was indicative of the autunite/meta-autunite mineral group 

(Figure 4.4c).   

 The aerobic biotic precipitate formed in the presence of Rahnella sp. Y9602 

appeared representative of an amorphous mineral, characterized by ~ 1µm void spaces 

that may have resulted from the presence/absence of rod-shaped Rahnella sp. Y9602 cells 

or areas on the mineral surface that did not fully crystallize (Figure 4.5a).  TEM images 

displaying a 2-dimensional view of the progress of crystallization as a function of time 

along with EDX elemental analyses of the crystals (Figure 4.5b) revealed that U mainly 

coated the cell surfaces within one hour after addition of U (37 h). TEM samples 

prepared with and without osmium tetroxide at time 37 h both show electron dense 

material containing uranium, suggesting that osmium did not interfere with the cell 

images.  Over time, however, U desorbed from the cell surface and precipitated outside 

the cells.  Simultaneously, the electron density of the precipitate increased with time.  
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Figure 4.4  Uranium (a) XANES, (b) R-space, and (c) k-space diagrams of the LIII-edge 
EXAFS from precipitates obtained during anaerobic and aerobic incubations with 
Rahnella sp. in synthetic groundwater at pH 5.5  in the presence of 200 µM UO2

2+ and 10 
mM G3P compared to an abiotic uranyl phosphate precipitate.   
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Table 4.2  Parameters derived from fitting U LIII-edge EXAFS for U-P precipitates 

Sample  Oax Oeq P POU 
MS* 

OPOU 
MS* 

PO 
dist† Rfactor ∆E0 

 N 2 3.2  
(0.7) 

1.3 
(0.8) 2.6 1.3 1.57 

(0.12) 0.0189 -0.99 
(2.2) 

abiotic R(Å) 1.78 
(0.004) 

2.27 
(0.01) 

3.57 
(0.05) 3.71 3.84    

 σ(Å2) 0.0043 
(0.0005) 

0.005 
(0.001) 0.005 0.005 0.005    

          

 N 2 3.2 
 (0.6) 

1.6 
(0.8) 3.2 1.6 1.65 

(0.7) 0.0144 -1.6 
(1.9) 

aerobic 
biotic R(Å) 1.77 

(0.008) 
2.26 

(0.01) 
3.61 

(0.02) 3.76 3.91    

 σ(Å2) 0.0047 
(0.0005) 

0.004 
(0.001) 0.005 0.005 0.005    

          

 N 2 2.3  
(0.4) 

1.2 
(0.7) 2.4 1.2 1.65 

(0.08) 0.0116 3.2 
(1.7) 

anaerobic 
biotic R(Å) 1.79 

(0.007) 
2.28 

(0.009) 
3.62 

(0.02) 3.78 3.94    

 σ(Å2) 0.0043 
(0.0004) 

0.003 
(0.001) 0.005 0.005 0.005    

Errors are given in parentheses (no error means the value was fixed, or calculated from 
other parameters)  
* MS denotes multiple scattering paths 
 † PO dist is the distance between the P-O in phosphate coordination (used for the MS 
paths) 
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Figure 4.5  Electron microscopic images of aerobic biotic precipitate. (a) VP-SEM image 
of amorphous U(VI)-phosphate precipitate formed in aerobic biotic incubation after 120 
hrs. (b) TEM micrographs of samples collected as a function of time during the 
incubations showing the progression of U(VI)-phosphate crystallization.  Note presence 
of U surrounding cell membranes at 37 h and absence at 72 h as crystallization proceeds.  
Time 37 h TEM images treated with (top) and without (bottom) OsO4 are included to 
show that electron dense regions on cell surfaces were due to uranium and not the 
osmium stain. Arrows (1) and (2) indicate the locations of the corresponding EDX 
analyses. 
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4.4  Discussion 

 Previous work has shown that successful remediation strategies of toxic 

radionuclides such as uranium need to account for the geochemical conditions of each 

particular subsurface environment (Wu et al., 2006a; Wu et al., 2006b).  In areas of the 

ORFRC, where subsurface soils are characterized by high concentrations of uranium and 

nitrate and low pH, the precipitation of sparingly soluble uranyl phosphate minerals may 

be an alternative approach to biotic reduction which occurs preferably at circumneutral 

pH (Venkateswaran et al., 1999) and low nitrate concentrations (Edwards et al., 2007).  

Indeed, thermodynamics predicts a wide pH range (4 to 8) for the favorable precipitation 

of uranyl phosphate minerals (Langmuir, 1978; Sandino and Bruno, 1992).  Dissolved 

inorganic phosphate tends to be limiting in most soil systems due to its incorporation in 

minerals (Langmuir, 1997) or its complexation by organic compounds (Turner et al., 

2002).  In such conditions, many microorganisms obtain this essential nutrient through 

the enzymatic hydrolysis of phosphate from organophosphate substrates (Macaskie et al., 

1992).  Rahnella sp. Y9602, isolated from contaminated areas of the ORFRC, is able to 

enzymatically hydrolyze up to ~ 7.5 pmol P cell-1 from G3P and precipitate 95% of 

U(VI) in aerobic conditions (Beazley et al., 2007; Martinez et al., 2007). Even though 

much of the contamination at the ORFRC is within the oxic vadose zone (Stubbs et al., 

2006), anaerobic conditions may develop when biological activity is stimulated.  

Therefore, it would be remedially advantageous if indigenous facultative microorganisms 

could provide phosphate for uranium precipitation in both aerobic and anaerobic 

conditions, at low pH, and in the presence of high nitrate concentrations. 
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 In the present study, anaerobic incubations were conducted with the gram-

negative facultative anaerobe Rahnella sp. Y9602, in the presence of 10 mM G3P and 

200 µM UO2
2+ at pH 5.5.  Our objectives were to determine if (1) Rahnella sp. Y9602 

could exhibit phosphatase activity in anaerobic conditions, (2) Rahnella sp. Y9602 could 

hydrolyze enough G3P to precipitate uranyl phosphate anaerobically, and (3) the mineral 

formed was the same as that formed under aerobic conditions.  Rahnella sp. Y9602 

demonstrates robust growth under oxic conditions as evidenced by high concentrations of 

phosphate and increasing CFUs even in the presence of U and nitrate (Figure 4.2a and c).  

In the absence of oxygen Rahnella sp. Y9602 is able to use nitrate as a terminal electron 

acceptor for respiration as demonstrated by robust growth following repeated culture 

passages into rich anoxic media containing 15 mM nitrate (data not shown). Interestingly, 

Rahnella sp. Y9602 is incapable of denitrifying or reducing nitrate to ammonium (Figure 

4.1).  The inability of Rahnella sp. Y9602 to complete denitrification is in agreement 

with the characterized Rahnella aquatilis type strain identified by (Krieg and Holt, 1984). 

Nitrate reduction rates by Rahnella sp. Y9602 followed an apparent first order with 

respect to nitrate and pseudo-first order rate constants of 2.2 x 10-5 min-1 and 3.3 x 10-5 

min-1 were derived from incubations with and without U, respectively.  These rate 

constants are small compared to the rate constant of 0.18 min-1 derived from experiments 

with Pseudomonas fluorescens (Betlach and Tiedje, 1981). 

 Nitrite toxicity is known to occur among microorganisms and induces a variety of 

inhibitory effects on bacterial growth, including an increase in the proton permeability of 

cyctoplasmic membranes in P. fluorescens (Sijbesma et al., 1996), inhibition of electron 

carriers in the respiratory system (Rake and Eagon, 1980), and even inhibition of 
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denitrification in denitrifying organisms (Bollag and Henninger, 1978; Meijer et al., 

1979).  Bollag and Henninger (1978) studied the effects of nitrite toxicity under aerobic 

and anaerobic conditions on a variety of soil bacteria including isolates of a gram-

negative, facultatively-anaerobic Pseudomonas. They found that tolerance to nitrite (up to 

9 mM NO2
-) was increased in the presence of oxygen but that cell growth was drastically 

reduced under anaerobic conditions in the presence of 3 mM NO2
-.  In the present study, 

live cell counts of Rahnella sp. Y9602 decrease slightly after 36 h, when nitrite 

concentrations reach approximately 2.6 mM, demonstrating the possible toxic effects of 

nitrite.  In the presence of U and under anaerobic conditions, however, Rahnella sp. 

Y9602 is unable to overcome the combined toxic effects of both nitrite and U, and 

growth is completely suppressed (Figure 4.2a).  The slow growth of Rahnella sp. Y9602 

due to the combined toxicity of nitrite and U may have resulted in low nitrate reduction 

rates.  It is important to note that these incubations were conducted in batch reactors 

where nitrite was able to accumulate in the medium.  Bacteria able to respire 

anaerobically on nitrogen oxide compounds are diverse (Drysdale et al., 1999; Knowles, 

1982). The majority of these prokaryotes possess the reductases needed to completely 

reduce NO3
- to N2 or NH4

+. Some, however, lack NO3
- reductases and are only able to 

reduce NO2
-.  Others lack N2O reductases and produce N2O as the final product.  Finally, 

some carry the N2O reductase genes, but cannot reduce NO3
- or NO2

- (Bothe et al., 2000; 

Knowles, 1982).  At low pH, NO2
- is also reduced chemically by Fe(II) (Knowles, 1982) 

and oxidized by MnO2(s) (Luther and Popp, 2002).   Therefore, in natural environments, 

consortia of microorganisms, groundwater flow, and other geochemical species may 
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scavenge or distribute nitrite within the system to prevent accumulation of such toxic 

levels.   

 Remarkably, Rahnella sp. Y9602 hydrolyzes sufficient phosphate, even in the 

presence of nitrite, to precipitate U(VI) (Figure 4.2b) and the difference in U precipitation 

at steady state is not significant between aerobic and anaerobic incubations.  

Anaerobically, however, 80% U precipitates within one hour after addition while only 

34% of U(VI) is removed in the aerobic incubations within the same time period.  These 

findings are surprising as cell densities in aerobic conditions are higher and should lead to 

faster U precipitation rates than in anaerobic conditions.  It is possible that higher cell 

densities in aerobic incubations may provide more cell lysis material which could 

possibly complex U and prevent initial precipitation.  Twelve hours after U addition, 

however, the concentration of U precipitated is similar in both incubations, suggesting 

that these initial differences are not significant. 

 XRD, XANES, and EXAFS analyses (Figures 4.3 and 4.4) of the precipitates 

formed in the incubations identify the same mineral both aerobically and anaerobically.  

XANES analysis indicates that all precipitates are of the U(VI) valence state 

demonstrating that Rahnella sp. Y9602 does not reduce U in anaerobic conditions.  The 

average U-P distance of 3.6 Å suggests a monodentate bond formation between U and P 

(Table 4.2). The k-space region from 8.5 to 10.5 Å-1 (Figure 4.4c) is characteristic of 

autunite-type minerals; however due to their similarities they are difficult to distinguish 

by EXAFS alone (Catalano and Brown Jr., 2004; Fuller et al., 2002).  XRD patterns 

identify the minerals formed as chernikovite [H2(UO2)2(PO4)2] (Figure 4.3) and the 

broader peaks of lower intensity show that the biotic precipitates are more amorphous 



 78

compared to abiotically-produced uranyl phosphate minerals.  VP-SEM also indicates 

that the chernikovite formed in biotic incubations is more amorphous (Figure 4.5a) than 

the tabular crystals formed during synthetic production of chernikovite (Van Haverbeke 

et al., 1996).  The incorporation of organic compounds within biomineralized structures 

has been observed to affect crystallinity (De Yoreo and Vekilov, 2003), suggesting that 

organic material released by Rahnella sp. Y9602 during cell growth and lysis may affect 

the growth and crystallinity of chernikovite.  Particle size estimates suggest all of the 

precipitates are “sheet-like” minerals with more unit cells stacked in the x and y plane 

than the z plane.   

 Interestingly, TEM images show that U coats the cell immediately upon addition 

of U to the incubations but, then separates from the cell surface over time as uranyl 

phosphate precipitates in the bulk solution (Figure 4.5b).  This observation may explain 

why CFU counts initially decrease in aerobic incubations, but then rebound over time as 

U precipitates (Figure 4.2a).  EDX elemental analyses of the uranyl coating on the cell 

surface show the presence of U and P; however, these analyses cannot identify the 

chemical composition of U.  U could be precipitated as uranyl phosphate or adsorbed on 

the cell surface and the presence of P in the coating could be due to membrane 

phospholipids or free phosphate as a result of phosphatase activity.  EXAFS 

measurements indicate that at low pH uranyl binds to phosphoryl functional groups on 

the cell wall of gram-positive Bacillus subtilis as an inner-sphere complex (Kelly et al., 

2002).  Gram-negative bacteria carry a thinner peptidoglycan layer than gram-positive 

bacteria, yet the concentration of cell wall phosphoryl groups in Rahnella sp. Y9602 may 

still be high enough to adsorb U initially.  As phosphate accumulates in the surrounding 
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media, however, uranyl ions are probably desorbed from the cell surface by stronger 

ionic attractions with the free negatively-charged orthophosphate.  In addition, the same 

mineral is formed whether Rahnella sp. Y9602 is incubated anaerobically or aerobically. 

These findings suggest that the precipitation of uranyl phosphate is a pure chemical 

process governed by pH and the concentration of phosphate generated by the microbial 

hydrolysis of organophosphate by phosphatase enzymes.  Thus, the cells may provide a 

nucleation surface that activates the precipitation of uranyl phosphate and provides for 

the shape of the subsequent “sheet-like” mineral structure.   

 The results of this study demonstrate the potential for the bioremediation of 

uranium catalyzed by the activity of phosphatase enzymes from a facultative 

microorganism in both aerobic and anaerobic conditions.  The Rahnella strain used in this 

study was isolated from ORFRC subsurface soils (Martinez et al., 2006).  Sequences 

related to the Rahnella genus have also been identified in a groundwater 16S clone 

library from Area 3 of the ORFRC (Fields et al., 2005).  Together, these findings provide 

evidence for the importance of Rahnella spp. and other microorganisms that share similar 

phosphate-liberating physiologies. Uranyl phosphate minerals are sparingly soluble in a 

wide range of pH (Ohnuki et al., 2004; Wellman et al., 2007; Zheng et al., 2006) and 

remain stable for long periods of time (Jerden Jr. and Sinha, 2003).  In contrast, 

bioreduction of U(VI) has been shown to occur optimally above pH 7, and its product, 

uraninite, is easily oxidized in the presence of oxygen and nitrate-reducing conditions  

(Moon et al., 2007; Senko et al., 2005b; Tokunaga et al., 2008; Wan et al., 2005; Wu et 

al., 2007).  In contaminated areas, such as the ORFRC, where high concentrations of 

nitrate and low pH may limit or hinder U bioreduction, the biomineralization of U(VI) 
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phosphate minerals may be a more attractive approach for in situ remediation.  Future 

experiments should examine the competition between bioreduction and non-reductive 

biomineralization of U in natural systems and the effect of the presence of carbonates on 

the stability of the minerals formed.    

4.5  Conclusions 

 The results of this investigation illustrate the potential for controlling the 

solubility of uranium through phosphatase activity by subsurface soil microorganisms in 

contaminated waste sites in both aerobic and anaerobic conditions.  The facultative gram-

negative anaerobe, Rahnella sp. Y9602, isolated from the ORFRC subsurface 

demonstrates strong phosphatase activity in both aerobic and anaerobic conditions and in 

the presence of high nitrate and low pH.  The phosphate hydrolyzed from an 

organophosphate substrate is sufficient to precipitate 95% total U(VI) as the uranyl 

phosphate mineral chernikovite very rapidly.  The precipitation of chernikovite appears to 

be a pure chemical process, whose kinetics is governed by pH, the concentration of 

phosphate generated by the microbial hydrolysis of organophosphate by phosphatase 

enzymes, and probably the adsorption of U(VI) to the cell surfaces.  Uranyl phosphates 

are stable in a wide range of pH for long periods of time and may be preferable to the 

more reactive and easily oxidized uraninite produced during U(VI) bioreduction.   
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CHAPTER 5  

 

THE EFFECT OF pH ON THE REMOVAL OF URANIUM 

THROUGH THE ACTIVITY OF NATURAL MICROBIAL 

PHOSPHATASES IN SOILS FROM A URANIUM-CONTAMINATED 

WASTE SITE 

 
 

5.1  Abstract 

 

The biomineralization of U(VI) as a result of microbial phosphatase activity has revealed 

a promising new bioremediation approach to immobilize uranium as uranium phosphate 

minerals in both aerobic and anaerobic conditions.  In this study, two uranium 

contaminated soils from the Department of Energy Oak Ridge Field Research Center 

(ORFRC) exposed to low and circumneutral pH groundwater were amended with an 

organophosphate substrate, as sole carbon and phosphorus source, in small flow-through 

reactors to determine whether natural phosphatase activity of indigenous soil bacteria was 

able to promote the immobilization of uranium(VI) phosphate minerals.  High 

concentrations of phosphate were detected in the effluents of flow-through reactors 

within one day of organophosphate amendments at both low and high pH, compared to 

negligible phosphate production in control reactors amended with U(VI) only, suggesting 

that phosphatase-liberating microorganisms were readily stimulated by the 
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organophosphate substrate.  Steady-state concentrations of phosphate were reached 

within days after addition, suggesting that non-specific acid phosphatase activity was 

expressed constitutively. A sequential solid-phase extraction scheme, EXAFS 

measurements, and reactive transport modeling were combined to demonstrate that at 

both low and high pH, U(VI) was primarily precipitated as uranyl phosphate minerals and 

partially adsorbed to iron oxides.  Precipitated U(VI) was distinguished from adsorbed 

U(VI) by extraction with both AcOH and hydroxylamine compared to release of 

adsorbed uranium solely by AcOH in U control reactors.  Net phosphate production rates 

and respective organophosphate consumption rates were highest in low pH soils 

compared to circumneutral soils providing 3 times more phosphate for U-P precipitation.  

EXAFS measurements reveal that U(VI) was directly adsorbed to iron oxides at high pH, 

while U(VI) formed ternary complexes with phosphate pre-adsorbed to iron oxides at low 

pH.  The results of this study indicate that the biomineralization of U(VI) phosphate as a 

result of natural phosphatase activity in contaminated soils is an effective strategy for the 

remediation of uranium.  Biomineralization of U(VI) phosphate was observed over a 

wide pH range in the presence of high uranium and nitrate concentrations and may be a 

complementary remediation approach to bioreduction which requires high pH, low 

nitrate, and reducing conditions.  
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5.2  Introduction 

 The fate and mobility of U in soils and groundwater are determined primarily by 

its oxidation state, adsorption/desorption reactions at the mineral-water interface, 

precipitation/dissolution, and complexation reactions (Langmuir, 1997).  All of these 

factors are influenced by pH, redox conditions, biological activity, soil matrix 

composition, and groundwater constituents.  The combination of these parameters 

contributes to the complexity of natural systems and makes remediation of contaminated 

areas difficult.  U contamination is a concern at Department of Energy (DOE) sites across 

the United States, but it is a primary environmental problem at the Oak Ridge National 

Laboratory Reservation at Oak Ridge, Tennessee.  Soils and groundwater at the Oak 

Ridge Field Research Center (ORFRC) are heavily contaminated by chemical wastes, 

including high concentrations of depleted U (up to 252 µM) and nitrate (up to 645 mM) 

as a result of  more than 30 years of U enrichment at the facility (Brooks, 2001).  The 

cleanup of U and other toxic heavy metals and radionuclides at the ORFRC is a major 

environmental challenge, and the development of remediation strategies has been 

ongoing for the past 15 years (NABIR, 2003).   

 Subsurface conditions at the ORFRC are primarily oxidizing, and U(VI) is the 

dominant oxidation state in most areas (Stubbs et al., 2006).  ORFRC soils are mainly 

fine textured silt and clay derived from limestone and shale parent rock, containing 

organic matter and iron and aluminum oxide mineral coatings, that are exposed to 

groundwater with pHs ranging from 3.5 to circumneutral depending on location and 

depth in the subsurface (Roh et al., 2000).  Characterization of ORFRC soils by electron 
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microbeam identifies the major U-bearing solid-phases as Fe oxyhydroxides, mixed Mn-

Fe oxides, and uranium phosphates (Stubbs et al., 2006).    

  In oxic conditions, U exists as the highly soluble uranyl ion, UO2
2+.  Below 

circumneutral pH, uranyl is positively charged and forms the soluble species UO2
2+ and 

UO2OH+.  Above pH 7, uranyl carbonate complexes dominate as UO2(CO2)3
4- and 

UO2(CO3)2
2- (Langmuir, 1997).  The formation of these strong, highly soluble uranyl 

carbonate complexes increases U(VI) mobility by preventing the adsorption of U(VI) on 

mineral surfaces (Fox et al., 2006; Langmuir, 1978) and promoting U(IV) and U(VI) 

mineral dissolution (De Pablo et al., 1999; Sowder et al., 2001).   

 The adsorption of U(VI) to Fe oxides is favorable between pH 4 and 8 (low 

adsorption edge at pH 4 to 5 and maximum adsorption at pH 6 to 7) (Hsi and Langmuir, 

1985; Langmuir, 1997) and can be enhanced at lower pH by the sorption of negatively-

charged functional groups, such as carboxylate and hydroxyl functional groups (two of 

the main components of NOM) as well as phosphoryl ligands (Cheng et al., 2004; 

Lenhart and Honeyman, 1999; Payne et al., 1996; Warren and Haack, 2001), to the Fe 

oxide surface.  Phosphoryl groups carry a negative charge between pH 2 and 12 

(Benjamin, 2002), carboxylate groups deprotonate between pH 3 and 5 (Perdue, 1985), 

and hydroxyls deprotonate above pH 7 (Benjamin, 2002).  Therefore, in the typical range 

of pHs of natural systems (5 to 7), phosphate and NOM are negatively charged and 

available for adsorption to oxide surfaces.  The sorption of negatively-charged functional 

groups promotes the adsorption of positively-charged metal species, such as uranyl.  

Hence, the addition of phosphate to ferrihydrite ((Payne et al., 1996), goethite-coated 

sand (Cheng et al., 2004; Cheng et al., 2006), and alumina (Zhijun et al., 2006) greatly 
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increases U(VI) adsorption due to the formation of U(VI) phosphate ternary complexes 

that shift the low U(VI) adsorption edge to pH 3 to 4.  Adsorption of U(VI) is also 

increased on ferrihydrite in the presence humic acid (HA) (up to pH 7) by shifting the 

low adsorption edge to low pHs (Payne et al., 1996). 

 U(VI) is immobilized by reduction to U(IV) either chemically by Fe(II) adsorbed 

onto mineral surfaces (Boyanov et al., 2007; Jeon et al., 2005; Liger et al., 1999; 

O'Loughlin et al., 2003) or biologically by dissimilatory metal-reducing bacteria 

(DMRB) and sulfate-reducing bacteria (SRB) (Fredrickson et al., 2000; Lovley and 

Phillips, 1992; Lovley et al., 1991; North et al., 2004; Wade Jr. and DiChristina, 2000) to 

form the insoluble mineral uraninite.  Unfortunately, uraninite is rapidly oxidized to the 

more mobile and reactive uranyl ion (UO2
2+) in oxic conditions (Langmuir, 1997; 

Murphy and Shock, 1999), and more slowly oxidized under nitrate-reducing conditions 

by nitrite or reactive Fe(III) oxyhydroxides formed by chemical oxidation of Fe(II) by 

nitrite (Senko et al., 2002; Senko et al., 2005a; Senko et al., 2005b).  Previous 

remediation studies conducted at the ORFRC have demonstrated the potential for in situ 

bioremediation of U by reduction through the stimulation of iron- and sulfate-reducing 

bacteria (Wu et al., 2006a; Wu et al., 2006b; Wu et al., 2007).  However, these studies 

had to overcome numerous obstacles, including low pH and high nitrate concentrations 

that may limit or hinder U(VI) reduction (Finneran et al., 2002; Istok et al., 2004; Senko 

et al., 2002).  Before U bioreduction could be stimulated during the pilot test study 

conducted at the ORFRC, groundwater in the treatment zone had to be extracted and 

treated above ground to remove aqueous aluminum (to prevent Al-hydroxide formation at 

pH > 4.5), calcium (to prevent stable aqueous Ca-U-CO3 complex formation), and nitrate 
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(to remove a more favorable terminal electron acceptor).  The groundwater pH was then 

adjusted from pH 3.5 to > 6 to promote microbial growth of the iron- and sulfate-

reducing bacteria.  From these studies, it is clear that the cleanup of U at this site is a 

major challenge, and it is important to consider all the biogeochemical processes unique 

to these soils when developing new remediation strategies  

 U(VI) forms highly insoluble minerals in a 1:1 stoichiometry with phosphate that 

are sparingly soluble in a wide range of pH (Ohnuki et al., 2004; Wellman et al., 2007; 

Zheng et al., 2006).  These minerals comprise members of the autunite/meta-autunite 

group minerals, which include calcium autunite [Ca(UO2)2(PO4)2], chernikovite 

[H2(UO2)2(PO4)2], saléeite [Mg(UO2)2(PO4)2], and ankoleite [K2(UO2)2(PO4)2], and 

remain stable for long periods of time (Jerden Jr. and Sinha, 2003), suggesting that uranyl 

phosphates may provide a long-term sink for U at contaminated waste sites. Phosphate 

addition to contaminated soils, however, was accompanied by a 30% decrease in 

hydraulic conductivity of the subsurface as a result of phosphate precipitation at the 

injection site, suggesting that the precipitation of U-P minerals may be restricted to short 

distances from the injection points in a real subsurface (Wellman et al., 2006). 

   The biomineralization of U(VI) as a result of phosphatase activity is another 

biologically-induced mechanism that can reduce the solubility of U(VI).  Microorganisms 

that display metal-resistant phenotypes can survive in the presence of up to 200 µM 

U(VI) when stimulated with a labile organophosphate source (Martinez et al., 2007) and 

U-P precipitation through the activity of microbial phosphatases may occur over a wide 

range of pH (Beazley et al., 2007).  Aerobic soil slurries of ORFRC soil amended with 

organophosphate resulted in up to 91% of total organophosphate hydrolysis and 
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stimulated 1084 phyla demonstrating the high diversity of microorganisms in these soils 

(Martinez, 2008).  Previous laboratory experiments with the bacterial species Rahnella 

sp. Y9602 isolated from the ORFRC have shown that > 97% of U(VI) is precipitated at 

pH 5.5 as the uranyl phosphate mineral chernikovite in both aerobic and anaerobic 

conditions when phosphatase activity is stimulated with an organophosphate compound 

(Beazley et al., 2007; Beazley et al., 2009; Martinez et al., 2007).  These studies 

demonstrate the potential for in situ bioremediation of uranyl phosphate as a result of 

microbial phosphatase activity through the introduction of an organophosphate source.  

The overall objective of this work was to investigate the potential for in situ 

biomineralization of uranyl phosphate at conditions representative of the ORFRC, 

including low pH, high nitrate concentrations, and in aerobic conditions, through the 

injection of an organophosphate substrate to stimulate indigenous microbial phosphatase 

activity. 

 Flow-through reactors have proven useful to study biogeochemical 

transformations in sediments and soils (Barnett et al., 2000; Carey and Taillefert, 2005; 

Hansel et al., 2003; Roychoudhury, 2001; Roychoudhury et al., 2003; Roychoudhury et 

al., 1998) when actual in situ work may be difficult to conduct or experimental conditions 

have to be tested before in situ stimulation.  In addition, geochemical parameters, such as 

pH, carbon, nutrients, and oxygen concentrations, can be adjusted easily to determine 

their effects on soil and sedimentary environments.  Finally, flow-through reactors can 

also provide information about the transport of pore waters that can be used in 

mathematical models.  
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 In this study, ORFRC soils from Area 3 were used with flow-through reactors and 

in situ conditions were simulated by pumping synthetic groundwater containing high 

concentrations of nitrate (10 and 15 mM) and U(VI) (200 µM) into the reactors.  The 

objective of this work was to determine (1) if indigenous soil bacteria displayed 

phosphatase activity when supplied an organophosphate source, (2) if the pH of the soil 

affected natural phosphatase activity, (3) if the solubility of U(VI) was reduced through 

the precipitation of uranyl phosphates and (4) if soil permeability changed as a result of 

organophosphate amendments. 

5.3  Materials and Methods 

5.3.1  Reactors 

 The soil flow –through reactors consisted of cylinders 8 and 12 cm in length with 

an inside diameter of 3.8 cm (Figure 5.1 and Figure 5.2).  Each end of the cylinder was 

capped with identical screw covers containing an O-ring, a plastic mesh screen, and a 

0.45 µm filter (Micro Filtration Systems).  The influent was pumped by a high-precision 

multi-channel pump (IsmaTec®) through Teflon tubing into an opening in the base of the 

cylinder and funneled through radial grooves designed to ensure uniform distribution of 

the solution in the cross-section of the reactor base.  The solution then entered the soil 

through the mesh screen and filter of the reactor where it was forced upward through an 

identical filter, screen, and opening at the top of the reactor. The effluent exiting the 

reactor was pumped through a homemade PEEK™ flow cell ca. 7.4 cm in length that can 

accommodate a PEEK™ mercury gold (Au/Hg) microelectrode for the in-line 

measurements of O2, Mn2+, Fe2+, and ΣH2S (Luther et al., 2002).  The counter and 

reference electrodes were placed in a saline solution (0.02 M NaCl) at the outflow of the 
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flow cell during measurements to provide the necessary electrical contact between the 

three electrodes.  After the effluent was pumped through the flow cell, it was collected in 

polypropylene Falcon® tubes with a fraction collector (Eldex) at a rate of two to four 

samples per day for each reactor.  Samples were analyzed for anion composition and pH 

on the day of collection, and samples for U analysis were acidified in 2% trace metal 

grade HNO3 (Fisher). 
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Figure 5.1  Schematic of a flow-through reactor experimental set-up.  Synthetic 
groundwater was pumped into the base of each reactor through a mesh screen and 0.45 
µm filter.  The flow was directed upwards into the reactor into a flow cell positioned after 
the output of the reactor that contained a voltammetric Au/Hg microelectrode to monitor 
O2, Mn2+, Fe2+, and ΣH2S.  The effluent was then collected with a fraction collector.   
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Figure 5.2.  Photograph of the flow-through reactor experimental set-up showing, from 
left to right, the synthetic groundwater influent, multi-channel peristaltic pump, and three 
flow-through reactors and flow cells.   A voltammetric Au/Hg microelectrode was 
positioned in the flow cell during oxygen measurements and the effluent was collected 
periodically with a fraction collector (not pictured). 
 
 

5.3.2  Experimental Design 

 Two different sets of experiments were conducted with soils collected from Area 

3 of the ORFRC.   

 (1) Four 12-cm reactors were filled with homogenized soil (~ 190 g) from core 

FB069 (courtesy of D. Watson, ORNL).  The natural pH of the soil was ca. 7 and influent 

was pumped through the reactors at a flow rate of ca. 1.35 mL h-1 for 30 to 35 days.  The 

influent was made of aerated and unbuffered synthetic groundwater consisting of 2 µM 

FeSO4, 5 µM MnCl2, 8 µM Na2MoO4, 0.8 mM MgSO4, 7.5 mM NaNO3, 0.4 mM KCl, 

7.5 mM KNO3, 0.2 mM Ca(NO3)2, and 20 mM NaBr (conservative tracer).  The influent 

of three of the reactors was amended with 10 mM glycerol-3-phosphate (G3P) (Sigma 
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Aldrich) at day 6 and 200 µM uranyl acetate (Spectrum) at day 9 of the experiment.  G3P 

concentration in the influent was reduced to 5 mM at day 9.  The fourth reactor (control) 

was run for 35 days with influent consisting of synthetic groundwater amended only with 

U added at day 6.      

 (2)  Four 8-cm cores were filled with homogenized soil (~ 120 g) from core 

FWB120-06-48 (courtesy of D. Watson, ORNL).  The natural pH of the soil was ca. 3.7 

and influent was pumped through the reactors at a flow rate of ca. 1.2 mL h-1.  The 

influent consisted of the aerated synthetic groundwater described above adjusted as 

follows:  it was buffered at pH 5.5 with 50 mM 2-(N-Morpholino)ethanesulfonic acid 

(MES); nitrate and bromide concentrations were decreased to 10 mM; and glycerol-2-

phosphate (G2P) was used as the organophosphate source as G3P was no longer 

commercially available.  The concentration of MES was decreased to 25 mM once the 

effluent stabilized at pH 5.5.  Synthetic groundwater without bromide was pumped 

through all the reactors until the pH increased from 3.7 to 5.5 (28 days).  The influent of 

three of the reactors was amended continuously with G2P after day 28 and all reactors 

(including the control) were supplied with 200 µM uranyl acetate solution after day 51.  

The bromide tracer was added with G2P, removed from the solution at day 44, and 

reintroduced with U at day 51 to determine whether the transport of pore waters (i.e., 

retardation factor, diffusion coefficient, and advection) changed with time.   

 All chemicals used were reagent grade.  Necessary sterile procedures were 

undertaken to ensure no outside contamination was introduced to the soils inside the 

reactors.  All solutions were autoclaved or filter-sterilized.  Reactor parts, filters, tubing, 

and influent containers were autoclaved or UV-irradiated.  Reactors were run on the lab 
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bench at room temperature and covered with aluminum foil to avoid light interferences.  

Upon completion of the experiments, the reactors were disassembled and the soils 

removed in 1-2 cm sections in an anaerobic chamber (Coy Laboratory Instruments, Inc.) 

to prevent oxidation of any reduced U.  The soil sections were analyzed for U by 

sequential extraction and synchrotron X-ray absorption spectroscopy. 

 The results of these experiments are reported separately below and designated as 

“high pH” for the reactors run at pH 7.0 and “low pH” for the reactors run at pH 5.5.  

Each set included three reactors continuously amended with organophosphate and U(VI) 

and one reactor continuously supplemented with U(VI) only.  The reactors amended with 

organophosphate are referred to as “org-P amended” and the U(VI)-amended reactors as 

the “U-control”.  Error bars represent the standard deviations from the average 

measurements in the three org-P amended reactors.  It was logistically difficult to run 

more than four reactors at one time; therefore, only one control was run with each 

experiment. 

5.3.3  Analytical Methods 

5.3.3.1  Analyses of effluent pore waters  

  The pH of collected pore waters was determined with an Orion pH electrode by 

measuring the potential and temperature with a pH meter (Orion model 290Aplus).  A 

certified buffer reagent (pH 7) (Fisher) was used as a standard for all pH measurements, 

and pH was calculated from the Nernst equation.  Dissolved U(VI) concentrations were 

measured by inductively-coupled plasma mass spectrometry (ICP-MS) with an Agilent 

7500a Series system.  Samples were acidified with 2% nitric acid (trace metal grade, 

Fisher) diluted in Nanopure water (Barnstead).  Holmium and bismuth (SPEX certiPrep) 
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were used as internal standards and River Water Certified Reference Material for Trace 

Metals (SLRS-4, National Research Council Canada, Ottawa, Canada) for quality 

controls.  Analytical error on triplicate samples was <3% relative standard deviation 

(RSD).  Total free phosphate (ΣPO4
3-) concentrations were determined by 

spectrophotometry (Murphy and Riley, 1962).  Analytical error on duplicate samples was 

<4% RSD.  Nitrite (NO2
-) concentrations were determined by spectrophotometry 

(Grasshoff, 1983) with an analytical error on duplicate samples of <5% RSD.  Bromide 

(Br-), chloride (Cl-), nitrate (NO3
-), and sulfate (SO4

2-) were analyzed by capillary 

electrophoresis (CE) (Beckman P/ACE MDQ series) for the pH 7 experiments using 

chromate (5 mM) as electrolyte (Diress and Lucy, 2005).  The anions and G2P from the 

pH 5.5 experiments were analyzed by ion chromatography (IC) using a Dionex, DX-300 

series equipped with a Dionex IonPac® AS4A chromatography column, AG4A guard 

column, and AMMS III suppressor.  Anions were measured with a bicarbonate buffer (1 

mM NaHCO3 and 8 mM Na2CO3) at a flow rate of 1 mL min-1 and a regenerant solution 

of 25.8 mM H2SO4.  Mass balance calculations for total nitrogen (N) removal from the 

low pH experiments were determined by adding the measured concentrations of nitrate 

and nitrite at each time point in the effluent and dividing by total nitrate added to the 

influent.   

5.3.3.2  In-line voltammetric measurements  

 Dissolved oxygen and reduced species, such as Fe2+, Mn2+, and ΣH2S, were 

analyzed voltammetrically in-line in the flow cell with a computer-operated DLK-100A 

or DLK-60 potentiostat (Analytical Instrument Systems).  All measurements were 

performed with Au/Hg solid-state microelectrode, a platinum counter electrode, and an 
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Ag/AgCl reference electrode fabricated as described in Brendel and Luther (1995).  The 

working microelectrodes consisted of a 100-µm-diameter Au wire housed in 3-mm PEEK 

tubing connected via a copper conducting wire to a potentiostat.  The Au surface was 

polished with diamond pastes of 15, 6, 1, and 0.25 µm (Buehler), mercury plated at -0.1 

V in a Hg(NO3)2 solution, and then polarized at -9 V for 90 s to form a good amalgam 

between the Au and Hg (Brendel and Luther, 1995).  Finally, electrodes were tested for 

quality and calibrated for dissolved oxygen O2 by linear sweep voltammetry, then Mn2+ 

by cathodic square wave voltammetry in degassed 0.02 M NaCl.  Both the O2 (MDL ≈ 4 

µmol L-1) and Mn2+ (MDL ≈ 15 µM) calibrations were run from -0.1 to -1.75 V with a 

scan rate of 200 mV s-1 in 0.02 M NaCl.  A pre-conditioning potential of -0.1 V for 10 s 

was applied to all O2 and Mn2+ measurements to clean the surface of the microelectrodes 

between measurements (Brendel and Luther, 1995).  The Mn2+ calibration curves were 

used to elucidate the concentrations of other species with the pilot ion method (Brendel 

and Luther, 1995). 

5.3.3.3  Solid phase characterization  

 The soil samples collected from reactors conducted at pH 7 and amended with 

G3P were chemically extracted using the sequential method of Tessier et al. (1979).  Soil 

samples from each of the 1-2 cm core sections were weighed (~ 0.5 g) and placed in a 50-

mL polypropylene Falcon® tube.  The following procedures were conducted sequentially 

(after each procedure the sample was centrifuged, the supernatant removed for analysis, 

and the remaining sample weighed):  (1) 4 mL of MgCl2 was added to the sample and 

rotated for 1 h at 20°C to obtain the exchangeable fraction or the fraction loosely 

adsorbed to soil; (2) 4 mL of sodium acetate (NaOAc) adjusted to pH 5 with acetic acid 
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(AcOH) was added to the residue and rotated for ca. 15 h at 20°C to obtain carbonate or 

phosphate mineral fraction; (3) 10 mL of NH2OH·HCl in 25% (v/v) AcOH for 6 h at 

96°C in a water bath (Fisher Scientific) with occasional agitation to obtain the fraction of 

U(VI) associated with Fe and Mn oxides; (4) 1.5 mL of 0.02 mol L-1 HNO3 and 2.5 mL 

of 25% H2O2 (pH 2) for 2 h at 96°C, a second 1.5 mL aliquot of 25% H2O2 for 3 h at 

96°C, and 5 mL of 2.5 mol L-1 NH4OAc in 20% (v/v) HNO3 rotated for 1 h at 20°C to 

extract the fraction bound to organic matter; (5) finally,  5 mL concentrated HNO3 for 3 h 

at 96°C to extract the residual U.  The supernatant from each of the fractions was 

analyzed for dissolved metal species by ICP-MS.   

 To carefully examine the solid phase speciation of U(VI) obtained with this 

extraction scheme, adsorption of U(VI) onto ORFRC soils was tested using batch 

adsorption experiments conducted in 50-mL Falcon® tubes.  The experiments were 

performed in duplicate to check the reproducibility of the results.  The samples were 

prepared by adding 0.5 g of FB069 or FWB120-06 soil to 2 mL of deionized water 

containing 0.5 mM uranyl acetate (2 µmol g-1).  The FB069 samples were maintained at 

pH 7 and the pH of the FWB120-06 samples was adjusted to 5.5.  The samples were 

rotated at room temperature for 48 h and then centrifuged. The supernatant was then 

removed, filtered (0.2 µm pore size, AcetatePlus; GE Water and Process Technologies), 

and analyzed for U by ICP-MS.  The soil was then sequentially extracted as described 

above and analyzed for U and phosphate. 

 Chemically-formed uranyl phosphate precipitates were mixed with ORFRC soils 

in batch experiments to identify the extraction step of the sequential procedure that 

quantifies precipitated U(VI)-phosphate.  The experiments were performed in duplicate 
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to check the reproducibility of the results.  Uranyl phosphate precipitate was prepared by 

adding 0.5 mM uranyl acetate to 0.5 mM phosphate (from K2HPO4 stock; pH adjusted to 

5.5), allowed to equilibrate for 48 h, and then centrifuged.  The supernatant was then 

filtered and analyzed for U by ICP-MS to determine U concentration in the precipitate.  

The uranyl phosphate precipitate was transferred with deionized water (2 mL) to 0.5 g of 

FB069 or FWB120-06 soil in 50-mL Falcon® tubes.  The FB069 and FWB120-06 

samples were maintained at pH 7 and 5.5, respectively.  The samples were rotated at 

room temperature for 48 h, centrifuged, and the supernatant removed, filtered, and 

analyzed for U and phosphate.  The soil was sequentially extracted as described above 

and analyzed for U and phosphate. 

 Selected samples from all of the reactor experiments were analyzed by X-ray 

absorption spectroscopy (XAS) and X-ray Microprobe (µ-XANES) at the Stanford 

Synchrotron Radiation Laboratory (SSRL). Samples for XAS were loaded in windowed 

Lexan sample holders and sealed with Kapton tape.  Samples from reactors run at pH 5.5 

were maintained anoxic in a sealed jar for transport to SSRL and under N2 atmosphere at 

the beam line.  Uranium LIII-edge XAS spectra were collected at SSRL beam line 10-2 

using a forced X-ray beam with a 23 keV harmonic rejection cutoff and a 13 element Ge 

detector.  The incident energy was selected with a Si(220) monochromator crystal.  

Transmission and fluorescence data were collected simultaneously.  All extended X-ray 

absorption fine structure (EXAFS) data were reduced using SIXPACK (Webb, 2005).  

Phase and amplitude files for the EXAFS fitting were created with FEFF7 (Ankudinov et 

al., 1998; Zabinsky et al., 1995).  Since the Debye-Waller factors (σ) correlated highly 

with coordination numbers (N), σ’s for some shells were each fixed at their average 
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values.  The U═Oax═U═Oax transdioxo multiple scattering path (Hudson et al., 1996) 

was included in all fits.   

 Elemental imaging and µ-XANES analysis was conducted on selected samples at 

SSRL beam line 2-3 using a Si(111) monochromator and a motorized three element 

monolithic Germanium (Ge 3) detector.  Elemental data was acquired by continuous scan 

across the sample grid with a focused beam of 2 µm diameter.  Soil samples were thin-

sectioned by Spectrum Petrographics, Inc. prior to analysis. 

5.4  Results 

5.4.1  Speciation of U(VI) in the solid phase 

5.4.1.1  U and P composition of initial ORFRC soils 

 The ORFRC soils were obtained from two different sites within Area 3 of the 

ORFRC.  FB069 was from an area characterized by low porosity (0.20), high pH (~7), 

low U and high nitrate concentrations. The initial concentrations of soil U and PO4
3- were 

0.063 and 3.10 µmol g-1, respectively.  FWB120-06 soils were characterized by mid 

porosities (0.49), low pH (~3.7), high U and high nitrate concentrations. The initial 

concentrations of soil U and PO4
3- were 0.223 and 0.36 µmol g-1, respectively.  The two 

soils displayed distinct differences in their uranium speciation (Figure 5.3a).  U in the 

acidic soil was more loosely bound to the solid surfaces as displayed by > 60% U 

extracted in the exchangeable and AcOH-extracted fractions and decreasing 

concentrations found in the more tightly bound fractions.  In contrast, more U was bound 

to OM (28%) and in the residual portion (22%) of the neutral soil compared to the 

relatively even distribution (~15%) of the first three more loosely bound fractions (Figure 
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5.3a). Phosphate in both soils was primarily extracted with hydroxylamine and associated 

with OM (Figure 5.3b).  More phosphate was extractable with hydroxylamine than 

associated with OM in the low pH soil compared to a more even distribution of 

phosphate between the two fractions in the high pH soil.  

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

90-95% recovery

(b)(a)
FWB120: total U = 0.223 µmol g-1; 
                total P = 0.36 µmol g-1

FB069: total U = 0.063 µmol g-1; 
             total P = 3.10 µmol g-1

ResidualBound to
   OM

hydroxl-
 amine 
extracted

  AcOH-
extracted

Exchange-
     able

U(
VI

) µ
m

ol
 g

-1

Extracted Fraction

 FB069 - pH 7 soil
 FWB120 - pH 3.7 soil

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ResidualBound to
   OM

hydroxl-
 amine 
extracted

  AcOH-
extracted

Exchange-
     able

Σ 
PO

43-
 µ

m
ol

 g
-1

Extracted Fraction  
Figure 5.3.  Total µmol g-1 (a) U and (b) phosphate sequentially extracted from the 
original ORFRC soils.  FB069 soil displayed a natural pH ca. 7, lower U and higher P 
concentrations compared to the acidic FWB120-06 soil (pH 3.7) that contained higher U 
and lower P concentrations. The two soils demonstrated distinct differences in solid U 
speciation.  The neutral soil contained higher U concentrations in the more strongly 
bound fractions (30% bound to OM and 22% in the residual) compared to the acidic soil 
where 36 and 33% of the U was found in the exchangeable and AcOH-extracted 
fractions, respectively.  Phosphate in both soils was primarily extracted with 
hydroxylamine and associated with OM.  Error bars represent the standard deviations 
from the average measurements in duplicate samples. 
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5.4.1.2  U(VI) adsorption onto ORFRC soils in acidic and circumneutral pH conditions 

 Batch adsorption experiments conducted with FB069 and FWB120-06 soils at pH 

7 and 5.5 resulted in a concentration of 1.61 (± 0.3) µM U(VI) in the supernatant of the 

high pH soil and 153 (± 8.6) µM in the low pH soil, indicating the majority of the U(VI) 

was adsorbed onto the soil.  U(VI) adsorbed more strongly to the high pH soil as 

evidenced by the low exchangeable fraction (3%) and the 93% removal in the AcOH-

extracted fraction (Figure 5.4).  In contrast, U(VI) adsorbed more loosely to the acidic 

soil as evidenced by 65% U(VI) removed in the exchangeable fraction and 28% extracted 

in the AcOH-extracted fraction (Figure 5.4).  
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Figure 5.4  Speciation of U(VI) equilibrated for 48 h with ORFRC soils (2 µmol g-1) in 
batch reactors (70 and 99% total U(VI) was adsorbed to the low and high pH soils after 
equilibration).  FB069 soil incubated at pH 7 revealed 93% of total U in the AcOH-
extracted fraction.  FWB120-06 soils incubated at pH 5.5 displayed 65% total U in the 
exchangeable fraction and 28% in the AcOH-extracted fraction. 
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5.4.1.3  Extraction of uranyl phosphate precipitates equilibrated with ORFRC soils 

 Laboratory-prepared uranyl phosphate precipitates (2 µmol g-1) were mixed with 

ORFRC soil at pH 7 (FBO69) and 5.5 (FWB120-06) and sequentially extracted to 

identify the extraction step that leaches U-P minerals. U-P precipitates were extracted 

with AcOH and hydroxylamine in both soils (Figure 5.5a and b).    
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Figure 5.5  Uranyl phosphate precipitate (2 µmol g-1) equilibrated with ORFRC soils in 
batch reactors was sequentially extracted to determine what extraction dissolves U-P 
precipitates. U-P precipitates were released by AcOH and hydroxylamine in ORFRC 
soils at pH 5.5 and 7. 

 

5.4.2  Removal of uranium in flow-through columns at circumneutral pH 

5.4.2.1  Dissolved constituents in the effluent 

 The pH remained relatively constant between 6.5 and 7.0 throughout the 

experiment in both control and org-P amended reactors (Figure 5.6a).  Dissolved oxygen 

decreased from saturation to ca. 60 µM in org-P amended reactors within 6 d after G3P 
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was added to the influent (Figure 5.6b). Reduced species Fe2+, Mn2+, and ΣH2S were not 

detected in the effluent indicating that conditions in the flow-through reactors were not 

favorable for microbial iron reduction or sulfate reduction. 

 Bromide was added as a conservative tracer (Roychoudhury et al., 1998) to 

determine transport parameters, including the retardation factor, diffusion coefficient, and 

advection rate, and to establish residence time of the synthetic groundwater in the 

reactors.  Bromide was injected at day 1 and demonstrated conservative behavior 

throughout the experiment (Figure 5.6c).  Residence time as determined from the 

bromide breakthrough curve was ca. 5 days in the org-P amended reactors.   

 Chloride concentrations remained relatively constant throughout the experiments 

(Figure 5.7a).  The effluent of the org-P reactors contained slightly more chloride than the 

control due to the addition of hydrochloric acid (HCl) to adjust the pH of G3P in the 

influent solution.  Nitrate concentrations decreased by ca. 3 mmol L-1 after the addition of 

G3P in amended reactors and remained steady for the rest of the experiment.  After U 

addition, the difference between nitrate concentrations in the control and amended 

reactors was negligible (Figure 5.7b).  Sulfate remained constant throughout the 

experiment and behaved as a conservative tracer demonstrating a 5 d breakthrough curve 

(Figure 5.7c).   
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Figure 5.6  Average (a) pH, (b) dissolved oxygen, and (c) bromide measured as a 
function of time in the effluents of the org-P amended flow-through reactors containing 
high pH soils compared to the U-control.  Oxygen was consumed in org-P amended 
reactors after G3P was injected.  Bromide (20 mM) was injected at day 1 in all reactors. 
Error bars represent the standard deviations from the average measurements in the three 
org-P amended reactors.  Dashed lines indicate the addition of G2P and U(VI). 
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Figure 5.7. Average (a) chloride, (b) nitrate, and (c) sulfate concentrations measured as a 
function of time in the effluents of the org-P amended flow-through reactors containing 
high pH soils compared to the U-control. Error bars represent the standard deviations 
from the average measurements in the three org-P amended reactors. Dashed lines 
indicate the addition of G2P and U(VI). 
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 Phosphate was not detected in the effluent of the reactors prior to G3P addition 

nor in the control reactor (Figure 5.8a) indicating little or no exchangeable phosphate on 

the soils.  After G3P was added, however, phosphate concentrations in the effluent 

increased to > 0.5 mM in less than one day (Figure 5.8a).  At day 10,  phosphate 

concentrations reached ca. 1 mM, gradually decreased to ca. 0.5 mM at day 15, and then 

gradually increased again to >1 mM by 25 d.   

 U concentrations in the effluent of org-P amended reactors increased to > 15 µM 

initially, then decreased to < 4 µM at day 17, and remained stable at ca. 1 µM until the 

end of the experiment (Figure 5.8b).  In contrast, U concentration in the control reactor 

effluent gradually increased to ca. 40 µM over the duration of the experiment (Figure 

5.8b).  These data show that approximately 97% of U(VI) introduced to the system is 

retained in the org-P amended reactors, while only approximately 80% U(VI) is retained 

in the U-control.  
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Figure 5.8.  Average (a) phosphate and (b) U concentrations measured as a function of 
time in the effluents of the org-P amended flow-through reactors containing high pH soils 
compared to the U-control.  Phosphate was not detected in the control effluent, but the 
hydrolysis of 10 mM G3P produced up to 1 mM ΣPO4

3- in the org-P amended effluents.  
U (200 µM) was added on day 9 and approximately 97% U was retained in the org-P 
amended reactors compared to 80 % U retention in the control reactor by the end of the 
experiment.  Error bars represent the standard deviations from the average measurements 
in the three org-P amended reactors.  Dashed lines indicate the addition of G2P and 
U(VI). 

 

5.4.2.2  Speciation of solid uranium in high pH flow-through column studies 

 Soil in the flow-through reactors was removed in cm-length sections after the 

experiments were completed.  Each section was sequentially extracted and analyzed for 

U(VI) and P to determine the fraction(s) they were associated with (see Appendix C, 

Figures C.1-6 for extractions of individual reactors).  Approximately 0.62 (± 0.07) µmol 

g-1 U(VI) was added to the soils and more than 97% was retained on the org-P amended 

columns compared to 88% retention on the U control soil.  In addition, highest 

concentrations of total U(VI) added to the soils was found closest to the flow-through 
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reactors’ inlet and decreased dramatically as distance from the reactors’ inlets increased 

(Figure 5.9).  U(VI) in org-P amended reactors was extracted with a combination of 

AcOH and hydroxylamine indicative of the release of U-P minerals (Figure 5.9a).  In 

contrast, U(VI) in the U control reactor was extracted primarily with AcOH indicative of 

the release of adsorbed U(VI) (Figure 5.9b).   
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Figure 5.9  Average U (µmol g-1) distributions in soil sections from (a) org-P amended 
and (b) U control high pH flow-through reactors as determined by sequential extraction.  
Soil sections nearest the influent inlet contained the highest concentrations of total.  
U(VI) in org-P amended reactors was released by a combination of AcOH and 
hydroxylamine indicative of U-P mineral precipitation.  U(VI) in U control reactor was 
released primarily by AcOH indicative of U adsorbed to mineral surfaces.  
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  Comparatively, total phosphate (ca. 4 (± 0.2) µmol g-1 total retained on the 

columns) and exchangeable phosphate were distributed evenly across the length the 

reactors (Figure 5.10), and the soil layers the closest to the inlets were equally extracted 

by AcOH and hydroxylamine.  Phosphate associated with the AcOH-extracted fraction 

decreased from 0.18 µmol g-1 in sections nearest the reactors’ inlet to 0.08 µmol g-1 at the 

end of the reactors, while phosphate extracted by hydroxylamine remained relatively 

constant across the length of the reactor. 
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Figure 5.10  Average total phosphate (µmol g-1) distribution in soil sections from the high 
pH flow-through reactor experiments as determined by sequential extraction.  Phosphate 
concentrations were spread evenly across the length of the reactor and displayed a similar 
trend as U, with concentrations in the AcOH-extracted fraction highest in sections nearest 
to the flow inlet (where precipitation occurred), changing to the hydroxylamine extracted 
fraction as distance from the inlet increased.   

 

 The 0-1 cm soil sections from each of the org-P amended and the U amended 

control flow-through reactors were analyzed by synchrotron X-ray absorption 
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spectroscopy (XAS).  The oxidation state of U in the soil samples was determined by U 

LIII-edge X-ray absorption near-edge structure (XANES).  The normalized and 

background subtracted spectra of the samples (Figure 5.11) displayed the characteristic 

shoulder between 17,180 and 17,190 eV, which is consistent with U(VI) oxidation state. 
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Figure 5.11  Uranium LIII-edge XANES spectra of the soil samples from the three org-P 
amended and the U(VI) amended control flow-through reactors conducted at pH 7.  

 

    

 The k3-weighted extended X-ray absorption fine structure (EXAFS) data and fits 

for the four soil samples are shown in Figure 5.12 and Figure 5.13.  Fitting parameters 

are listed in Table 5.1.  The FEFF7 phase and amplitude files (Ankudinov et al., 1998; 
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Zabinsky et al., 1995) used for the fitting of EXAFS in the natural soil samples of this 

study were first tested on a known chernikovite sample and good agreement was reached 

with previous fittings (Beazley et al., 2007; Beazley et al., 2009).   

  All samples show the presence of the Oax shell at ~1.80 Ǻ (Table 5.1) and two 

different equatorial oxygen shells observed at ~2.30 Ǻ and between ~2.39 and 2.47 Ǻ.  

The coordination numbers of Oeq atoms at 2.30 Ǻ and 2.46 Ǻ are approximately equally 

distributed in the control reactor compared to higher coordination numbers at ~2.30 Ǻ in 

the org-P amended reactors.  

 Synchrotron microprobe elemental mapping of a soil sample from the high pH 

Reactor 1 is shown in Figure 5.14. The green areas represent uranium distribution on the 

surface of the soil particle while red represents the iron substrate.  U is distributed in 

discrete areas on the surface of the soil and appears to collect in micropores.  XANES 

analysis performed in the areas indicated with white arrows identified U(VI) as the 

oxidation state of uranium (data not shown). 
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Figure 5.12  Uranium R-space diagrams of the LIII-edge EXAFS of the soil samples from 
the three org-P amended flow-through reactors compared to the U(VI) amended control 
reactor conducted at pH 7.  Solid lines represent experimental data and dashed lines 
represent the fitted data. 
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Figure 5.13  Uranium k-space diagrams of the LIII-edge EXAFS of the soil samples from 
the three org-P amended flow-through reactors compared to the U(VI) amended control 
reactor conducted at pH 7.  Solid lines represent experimental data and dashed lines 
represent the fitted data. 
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Table 5.1  Parameters derived from fitting of U LIII-edge EXAFS of flow-through reactor 
soil samples conducted at pH 7. 

Reactor Shell N R (Ǻ) σ2 (Ǻ2) ∆E0 (eV) χν2 R factor

Oax 2 1.80 (0.006) 0.003 (0.0009) 8.68 (1.3) 0.203 0.0112 

Oeq 1.52 (0.34) 2.33 (0.02) 0.003    

U 
amended 

control 
0-1 cm Oeq 1.48 (0.48) 2.46 (0.01) 0.003    

 C 1.27 (0.38) 2.94 (0.02) 0.003    

  Fe 0.14 (0.1) 3.46 (0.04) 0.003       

Oax 2 1.80 (0.009) 0.004 (0.001) 10.9 (2) 0.227 0.0141 Reactor 1  
0-1 cm Oeq 2.47 (0.6) 2.29 (0.01) 0.003    

 Oeq 0.14 (0.4) 2.39 (0.25) 0.003    

 C 1.38 (1.6) 2.90 (0.06) 0.003    

 Fe 0.25 (0.17) 3.42 (0.03) 0.003    

 P 0.27 (0.45) 3.68 (0.11) 0.005    

 POU MS* 0.54 3.77 (0.06) 0.005    

 OPOU MS* 0.27 3.85 (0.05) 0.005    

  PO dist** 1.56 (0.05)           

Oax 2 1.80 (0.009) 0.005 (0.001) 10.4 (1.8) 1.629 0.0134 Reactor 2  
0-1 cm Oeq 2.17 (0.57) 2.29 (0.02) 0.003    

 Oeq 0.17 (0.35) 2.41 (0.2) 0.003    

 C 1.37 (1.5) 2.92 (0.08) 0.003    

 Fe 0.34 (0.11) 3.43 (0.02) 0.003    

 P 0.21 (0.16) 3.55 (0.43) 0.005    

 POU MS* 0.42 3.62 (0.17) 0.005    

 OPOU MS* 0.21 3.99 (0.06) 0.005    

  PO dist** 1.7 (0.06)           

Oax 2 1.80 (0.01) 0.004 (0.001) 10.9 (2.1) 0.275 0.0110 Reactor 3 
0-1 cm Oeq 2.68 (0.7) 2.30 (0.01) 0.003    

 Oeq 0.42 (0.5) 2.45 (0.06) 0.003    

 C 1.67 (2.2) 2.90 (0.05) 0.003    

 Fe 0.40 (0.11) 3.44 (0.02) 0.003    

 P 2.56 (1.9) 3.79 (0.7) 0.005    

 POU MS* 5.11 3.89 (0.05) 0.005    

 OPOU MS* 2.56 3.98 (0.03) 0.005    

  PO dist** 1.68 (0.03)           

Errors are given in parentheses (no error means the value was fixed, or calculated from other  

parameters)       

*  MS denotes multiple scattering paths     
** PO dist is the distance between the P-O in phosphate coordination (used for the MS paths) 
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Figure 5.14  Synchrotron microprobe elemental mapping of a soil sample from the high 
pH Reactor 1.  Green areas denote U and red represent Fe.  U is distributed on the surface 
of the soil in discrete areas and appears to collect in micropores. White arrows signify 
areas of the surface analyzed by µ-XANES. Scalebar units: µm. 

 

5.4.3  Removal of uranium in flow-through columns at low pH 

5.4.3.1  Dissolved constituents in the effluent 

 ORFRC soil used in the low pH reactors displayed an initial pH of ca. 3.7 when 

equilibrated with synthetic groundwater buffered at pH 5.5.  The synthetic groundwater 

was pumped through the reactors for 28 d to raise the effluent of the reactors to pH 5.5 

(Figure 5.15a).  During that time, no reactions were observed among the species of 

interest.  Effluent pH remained relatively constant for the remainder of the experiment.  

Dissolved oxygen concentrations decreased to ca. 60 µM in the org-P amended reactors 

between days 28 and 40, but remained constant after U was added to the system on day 

51. The U-control reactor demonstrated a slight decrease in dissolved oxygen between 30 

and 40 d, but returned to saturated concentrations by the end of the experiment (Figure 

5.15b).  Reduced species Fe2+, Mn2+, and ΣH2S were not detected in the effluent, 
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indicating that conditions in the flow-through reactors were not favorable to metal and 

sulfate reducers. 

 Bromide was added as a conservative tracer to the influent at day 28, was 

removed at day 44, and reintroduced at day 51 to determine if the porosity of the soil 

changed with time.  Bromide demonstrated conservative behavior and the breakthrough 

curve indicated a 4 d residence time in both org-P amended and control reactors (Figure 

5.15c).   

 Chloride concentrations remained relatively constant throughout the experiments 

(Figure 5.16a), but the effluent of the org-P reactors contained ca. 7 mM more chloride 

than the control due to the addition of HCl to adjust the pH of G2P in the influent 

solution.  Sulfate concentrations remained constant throughout the experiment in both 

org-P amended and control reactors, indicating that sulfate reducing conditions were not 

favored in these experiments (Figure 5.16b).  Average nitrate concentrations in the org-P 

amended reactors decreased dramatically (> 60%) after G2P addition, and an increase (up 

to 3 mM) in nitrite concentrations was observed simultaneously (Figure 5.16c).  Nitrate 

concentrations in the effluent of the U-control reactor remained constant, and nitrite was 

never detected during these experiments (Figure 5.16c). 
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Figure 5.15. Average (a) pH, (b) dissolved oxygen, and (c) bromide measured as a 
function of time in the effluents of the org-P amended flow-through reactors containing 
low pH soils compared to the U-control.   Oxygen was consumed in org-P amended 
reactors after G2P was injected.  Bromide (10 mM) was injected at day 28, removed at 
day 44, and reintroduced at day 51 to determine if soil porosity had changed in the org-P 
amended soils.  Bromide was injected simultaneously with U(VI) only at day 51 in the U-
control reactor. Error bars represent the standard deviations from the average 
measurements in the three org-P amended reactors.  Dashed lines indicate the addition of 
G2P and U(VI). 
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Figure 5.16.  Average (a) chloride, (b) sulfate, and (c) nitrate and nitrite measured as a 
function of time in the effluents of the org-P amended flow-through reactors containing 
low pH soils compared to the U-control.   The org-P amended reactors contained higher 
concentrations of chloride due to the addition of HCl to adjust the pH of G2P. Sulfate 
concentrations remained relatively constant in all reactors throughout the experiment.  
Nitrate (10 mM) was continuously pumped into the flow-through reactors and average 
nitrate concentrations in org-P amended reactors decreased with a corresponding net 
nitrite production after G2P (10 mM) was injected.  Nitrate concentration remained 
constant and nitrite was not detected throughout the incubations in the control reactor.  
Error bars represent the standard deviations from the average measurements in the three 
org-P amended reactors.  Dashed lines indicate the addition of G2P and U(VI). 
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 The high error bars associated with the average concentrations of nitrate and 

nitrite (Figure 5.16c) are due to the significant differences between the three flow-

through reactors amended with org-P.  Nitrate was introduced to the reactors at a constant 

concentration of 10 mM in all four reactors throughout the experiment, yet nitrate and 

nitrite behaved differently in each reactor (Figure 5.17). 

 Nitrate concentrations in the effluent of all reactors stabilized at ca. 12 mM prior 

to G2P addition, but nitrate was consumed in all reactors after G2P was introduced to the 

influent (Figure 5.17).  After U was added to the reactors, nitrate consumption continued 

in Reactors 2 and 3 until day 60, when nitrate concentrations at the output of these two 

reactors was negligible (Figure 5.17 b and c), while nitrate concentrations returned to 9 

mM in the effluent of Reactor 1 (Figure 5.17a).  Nitrite increased to ca. 2 -3 mM in the 

three reactors after G2P addition but, while nitrite was consumed in Reactor 1 and 3 by 

days 55-60 (Figure 5.17a and Figure 5.17c), a net nitrite production of up to 9 mM was 

observed by day 61 in Reactor 2.  Mass balance calculations of total nitrogen (N) added 

to the system (Figure 5.18) indicate significant removal ( > 80%) of total N in Reactors 2 

and 3 by a mechanism other than nitrate reduction.  Loss of N was most probably due to 

the formation of other denitrification products, such as N2O, NO, and N2, or NH4
+ during 

dissimilatory nitrate reduction to NH4
+ (DNRA). 



 119

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14 (c)(b)(a)  G3P
added

   U
added

   U
added

 G3P
added

   U
added

 G3P
added

Reactor 2 Reactor 3Reactor 1

 nitrate     nitrite

[N
O

3-  ] 
  [

NO
2-  ] 

m
M

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

time (days) time (days) time (days)

0

50

100

150

200

 dissolved O2

 [O
2] 
µM

 

 

Figure 5.17.  Nitrate, nitrite, and dissolved oxygen concentrations of org-P amended 
reactors containing low pH soil as a function of time in (a) Reactor 1, (b) Reactor 2, and 
(c) Reactor 3.  The concentration of nitrate (10 mM) in the flow-through reactor influent 
was held constant throughout the experiment.  Dashed lines indicate the addition of G2P 
and U(VI).  Dashed lines indicate the addition of G2P and U(VI). 
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Figure 5.18. Mass balance of total N in the org-P amended flow-through reactors 
containing low pH soil compared to the unamended control.   Total N (10 mM) is 
balanced prior to G2P addition (10 mM).  At the end of the experiment, ca. 80 % of total 
N is accounted for in Reactor 1, 20 % in Reactor 2, and only 4 % in Reactor 3. 
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 Average G2P concentrations in the effluent increased up to ca. 8 mM with a 5 d 

breakthrough curve (Figure 5.19a) and remained relatively constant (between 5 to 7 mM) 

for the rest of the experiment.  Phosphate was not detected in the effluent of the reactors 

prior to G2P addition; indicating little or no exchangeable phosphate on the soils.  After 

G2P was added, however, phosphate concentrations in the effluent raised to > 0.2 mM in 

one day, then gradually to ca. 3 mM by day 45, and remained between 2 and 3 mM 

throughout the rest of the experiment (Figure 5.19a).  U concentrations in the effluent of 

the control reactor suddenly increased to ca. 34 µM within 24 d after U injection (Figure 

5.19b), corresponding to approximately 85% of the total input of U(VI) removed in the 

reactors.  Average U concentrations in the org-P reactors demonstrated more variability 

over the same time period but they appeared to stabilize at approximately 15 µM by the 

end of the experiment, thus demonstrating a constant removal of approximately 95% at 

steady state.   
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Figure 5.19. (a) Average G2P and phosphate concentrations measured as a function of 
time in the effluents of the org-P amended flow-through reactors containing low pH soils 
compared to the U-control.  G2P (10 mM) was added at day 28 and average G2P 
concentrations increased within 5 d of G2P injection and remained relatively constant 
between 5 and 7 mM for the rest of the experiment.  Phosphate increased to ca. 3 mM in 
org-P amended reactors, but was not detected in the control reactor.  (b) U concentrations 
measured in control and org-P amended flow-through reactors after U injection (200 µM) 
at day 51.  Error bars represent the standard deviations from the average measurements in 
the three org-P amended reactors. Dashed lines indicate the addition of G2P and U(VI). 
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5.4.3.2  Speciation of solid uranium in low pH flow-through column studies 

 Soil in the flow-through reactors was removed in cm-length sections after the 

experiments were completed.  Each section was sequentially extracted and analyzed for 

U(VI) and P to determine the fraction(s) they were associated with (see Appendix C, 

Figures C.7-12 for extractions of individual reactors).  Approximately 1.1 (± 0.1) µmol g-

1 U(VI) was added to the soils and more than 95% was retained on the org-P amended 

columns compared to 95% retention on the U control soil.  In addition, highest 

concentrations of total U(VI) added to the soils was found closest to the flow-through 

reactors’ inlet and decreased dramatically as distance from the reactors’ inlets increased 

(Figure 5.20).  U(VI) in org-P amended reactors was extracted with a combination of 

AcOH and hydroxylamine indicative of the release of U-P minerals (Figure 5.20a).  In 

contrast, U(VI) in the U control reactor was extracted primarily with AcOH indicative of 

the release of adsorbed U(VI) (Figure 5.20b).   
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Figure 5.20  Average U (µmol g-1) distributions in soil sections from (a) org-P amended 
and (b) U control low pH flow-through reactors as determined by sequential extraction.  
Soil sections nearest the influent inlet contained the highest concentrations of total.  
U(VI) in org-P amended reactors was released by a combination of AcOH and 
hydroxylamine indicative of U-P mineral precipitation.  U(VI) in U control reactor was 
released primarily by AcOH indicative of U adsorbed to mineral surfaces.  

  
 
 

  Comparatively, total phosphate (ca. 8 (± 0.7) µmol g-1 total retained on the 

columns) and exchangeable phosphate were distributed evenly across the length the 

reactors (Figure 5.21).  Phosphate released by AcOH and hydroxylamine was also 

distributed relatively evenly within the reactor indicative of U-P minerals.  
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Figure 5.21  Average total phosphate (µmol g-1) distribution in soil sections from the low 
pH flow-through reactor experiments as determined by sequential extraction.  Phosphate 
concentrations were spread evenly across the length of the reactor and released primarily 
by AcOH and hydroxylamine. 

 

 Soil sections from each of the org-P amended and the U amended control flow-

through reactors were analyzed by synchrotron X-ray absorption spectroscopy (XAS).  

The oxidation state of U in the soil samples was determined by U LIII-edge X-ray 

absorption near-edge structure (XANES).  The normalized and background subtracted 

spectra of the samples (Figure 5.22) displayed the characteristic shoulder between 17,180 

and 17,190 eV, which is consistent with U(VI) oxidation state. 
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Figure 5.22  Uranium LIII-edge XANES spectra of the soil samples from the three org-P 
amended and the U(VI) amended control flow-through reactors conducted at pH 5.5. The 
cm designation indicates the reactor section that was analyzed as measured in cm from 
the inlet of the reactor.    

 The k3-weighted extended X-ray absorption fine structure (EXAFS) data and fits 

for the soil samples from the low pH reactors are shown in Figure 5.23 and Figure 5.24.  

Fitting parameters are listed in Table 5.2. All samples show the presence of the Oax shell 

at ~1.80 Ǻ and the equatorial oxygen shells are split with 2 U-Oeq shells at ~2.30 Ǻ and 

~2.39 to 2.47 Ǻ, except for the low pH Reactor 3 at 3-4 cm that has only one U-Oeq shell 

at 2.31 Ǻ.  The coordination numbers of Oeq atoms at 2.30 Ǻ and 2.46 Ǻ are 

approximately equally distributed in the control reactor compared to higher coordination 

numbers at ~2.30 Ǻ in the org-P amended reactors.   C was prevalent in all samples with 

shells at ~2.92 Ǻ and Ns of 1 to 1.75.  Fe shells at ~ 3.43 Ǻ were found in the U-control, 
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Reactor 2, and Reactor 3, but not in the fit of Reactor 1.  Instead, a Mn shell was included 

in the fit at 3.33 Ǻ in Reactor 1. 
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Figure 5.23  Uranium R-space diagrams of the LIII-edge EXAFS of the soil samples from 
the three org-P amended flow-through reactors compared to the U(VI) amended control 
reactor conducted at pH 5.5.  Solid lines represent experimental data and dashed lines 
represent the fitted data.  The cm designation indicates the reactor section that was 
analyzed as measured in cm from the inlet of the reactor.    
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Figure 5.24  Uranium k-space diagrams of the LIII-edge EXAFS of the soil samples from 
the three org-P amended flow-through reactors compared to the U(VI) amended control 
reactor conducted at pH 5.5.  Solid lines represent experimental data and dashed lines 
represent the fitted data.  The cm designation indicates the reactor section that was 
analyzed as measured in cm from the inlet of the reactor.    
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Table 5.2  Parameters derived from fitting of U LIII-edge EXAFS of flow-through reactor 
soil samples conducted at pH 5.5. 

Reactor Shell N R (Ǻ) σ2 (Ǻ2) ∆E0 (eV) χν2 R factor
Oax 2 1.80 (0.007) 0.004 (0.0009) 17.3 (1.53) 0.630 0.0130 
Oeq 1.28 (0.49) 2.35 (0.04) 0.003    

U 
amended 

control Oeq 1.04 (0.55) 2.47 (0.05) 0.003    
 C 1.01 (0.4) 2.92 (0.02) 0.003    
  Fe 0.15 (0.1) 3.47 (0.04) 0.003       

Reactor 1 Oax 2 1.79 (0.008) 0.005 (0.001) 12.7 (1.5) 0.735 0.0111 
0-1 cm Oeq 2.17 (0.6) 2.29 (0.01) 0.003    

 Oeq 0.64 (0.43) 2.45 (0.03) 0.003    
 C 1.44 (0.7) 2.93 (0.05) 0.003    
 Mn 0.29 (0.1) 3.39 (0.02) 0.003    
 Fe N/A      
 P 0.25 (0.28) 3.5 (0.27) 0.005    
 POU MS* 0.5 3.58 (0.1) 0.005    
 OPOU MS* 0.25 3.71 (0.09) 0.005    
  PO dist** 1.42 (0.09)           

Reactor 1 Oax 2 1.80 (0.01) 0.005 (0.002) 14.8 (2.9) 0.0162 0.0172 
2-3 cm Oeq 1.74 (0.6) 2.30 (0.03) 0.003    

 Oeq 0.93 (0.6) 2.45 (0.06) 0.003    
 C 1.05 (0.8) 2.93 (0.03) 0.003    
 Mn 0.19 (0.13) 3.33 (0.04) 0.003    
 Fe N/A      
 P 0.98 (1.5) 3.62 (0.12) 0.005    
 POU MS* 1.96 3.72 (0.06) 0.005    
 OPOU MS* 0.98 3.86 (0.03) 0.005    
  PO dist** 1.56 (0.04)           

Reactor 2 Oax 2 1.77 (0.01) 0.003 (0.001) 9.2 (2.4) 0.264 0.0129 
0-1 cm Oeq 2.70 (0.71) 2.28 (0.02) 0.003    

 Oeq 0.18 (0.5) 2.40 (0.2) 0.003    
 C 1.74 (0.6) 2.88 (0.02) 0.003    
 Mn N/A      
 Fe 0.15 (0.23) 3.43 (0.06) 0.003    
 P 2.49 (1.9) 3.70 (0.05) 0.005    
 POU MS* 4.98 3.83 (0.02) 0.005    
 OPOU MS* 2.49 3.94 (0.02) 0.005    
  PO dist** 1.66 (0.03)           
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Table 5.2 (cont)       
Reactor Shell N R (Ǻ) σ2 (Ǻ2) ∆E0 (eV) χν2 R factor

Reactor 3 Oax 2 1.79 (0.006) 0.004 (0.001) 12.9 (1.3) 0.263 0.0118 
0-1 cm Oeq 2.25 (0.5) 2.30 (0.009) 0.003    

 Oeq 0.33 (0.4) 2.48 (0.06) 0.003    
 C 1.5 (0.5) 2.93 (0.02) 0.003    
 Mn N/A      
 Fe 0.12 (0.3) 3.41 (0.16) 0.003    
 P 0.07 (0.08) 3.68 (0.23) 0.005    
 POU MS* 0.15 3.86 0.005    
 OPOU MS* 0.07 3.91 0.005    
  PO dist** 1.61           

Reactor 3 Oax 2 1.79 (0.008) 0.002 (0.001) 13.4 (1.9) 0.086 0.012 
3-4 cm Oeq 2.48 (0.9) 2.31 (0.01) 0.003 (0.002)    

 Oeq N/A      
 C 1.75 (0.9) 2.95 (0.04) 0.003    
 Mn N/A      
 Fe 0.22 (0.1) 3.49 (0.03) 0.003    
 P 1.55 (1.9) 3.77 (0.1) 0.005    
 POU MS* 3.10 3.87 (0.07) 0.005    
 OPOU MS* 1.55 3.96 (0.06) 0.005    
  PO dist** 1.65 (0.06)           

Errors are given in parentheses (no error means the value was fixed, or calculated from other  
parameters)       
*  MS denotes multiple scattering paths     
** PO dist is the distance between the P-O in phosphate coordination (used for the MS paths) 
cm denotes section of reactor analyzed as measured in cm from bottom of reactor (inlet end). 
N/A indicates fitting of the shell did not improve the fit    
2 C-O-U MS paths (not listed) improved the fitting for all samples 
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5.5  Discussion 

 Previous studies have demonstrated that microbial phosphatase activity promotes 

the immobilization of uranium phosphate minerals in pure cultures (Beazley et al., 2007; 

Beazley et al., 2009; Martinez et al., 2007) and contaminated soil slurries (Martinez, 

2008).  To develop a successful in situ remediation strategy, it is necessary to determine 

whether natural phosphatases can be expressed in soils from the contaminated waste site.  

Flow-through reactors have been successfully used to study the biogeochemical cycling 

of chemical species in soils and sediments (e.g. Carey and Taillefert, 2005; 

Roychoudhury, 2001; Roychoudhury et al., 1998).  With these devices, parameters such 

as flow rate, pH, concentration of reactants, and oxygen concentration, can be adjusted to 

reflect in situ conditions or alter biogeochemical processes.  In this study, flow-through 

reactor experiments were undertaken with soils from the ORFRC to determine whether 

(1) indigenous soil bacteria display phosphatase activity when supplied an 

organophosphate source, (2) pH and high nitrate concentrations affect natural 

phosphatase activity, (3) the solubility of U(VI) can be reduced through the precipitation 

of uranyl phosphate, and (4) soil permeability changes as a result of organophosphate 

amendments.  

5.5.1  Phosphate production by phosphatase activity 

 The flow-through reactor experiments were conducted with soils from two 

different locations within the contaminated zone (Area 3) of the ORFRC. These soils 

represent the heterogeneity of subsurface environments at the ORFRC and were chosen 

for their distinct differences in pH (pH 3.7 and 7) and U content (0.22 and 0.063 µmol g-

1).  Microbial diversity and abundance of phylotypes at the ORFRC are dependent on the 
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geochemistry of the soils (Akob et al., 2007; Madden et al., 2007), and previous 

PhyloChip microarray studies of soil slurry incubations conducted with ORFRC soil from 

the same location identified high microbial diversity at low pH, even among replicate 

samples (Martinez, 2008). Therefore, it is expected that these soils may contain distinctly 

different microbial assemblages and that phosphatase activity is affected by differences in 

pH and U(VI) concentration.  Even though preliminary studies with flow-through 

reactors demonstrated the production of phosphate after amendment with 

organophosphate in the pH 3.7 soils (data not shown), the pH was raised in these 

experiments to accelerate reaction rates.  

 Phosphate concentrations in the reactor effluents reached ca. 500 µM within one 

day of organophosphate addition to both high and low pH flow-through reactors and 

continued to increase to steady state concentrations (ca. 1 to 3 mM) in 10 days compared 

to the negligible phosphate production observed in the U-control reactors (Figure 5.8 and 

Figure 5.19).  Phosphate production remained relatively constant for the remainder of the 

experiments, suggesting that non-specific acid phosphatase (NSAP) activity is expressed 

constitutively in these soils.  The presence of constitutively-expressed NSAPs may be 

advantageous for U(VI) bioremediation because phosphate production in these conditions 

is only limited by the concentration of the organophosphate substrate.  In contrast, 

phosphatases induced only in limiting phosphate conditions (i.e. regulated phosphatases) 

should be deactivated at high phosphate concentrations (Vershinina and Znamenskaya, 

2002) and may not provide the necessary amount of phosphate needed for U-P 

precipitation.  Interestingly, phosphate concentrations were 50 – 60% higher in the 

effluent of the low pH flow-through reactors compared to the high pH reactors and were 
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not significantly affected by the addition of 200 µM U(VI).  In turn, phosphate 

concentrations decreased by ca. 0.5 mM at both pH immediately after U(VI) addition, 

possibly due to a combination of U-P precipitation and U(VI) toxicity.  Within ca. 10 

days after U(VI) addition, however, phosphate production returned to previous intensity 

and even increased in the high pH reactors by ca. 50%.  Previous studies with pure 

cultures of NSAP-carrying Rahnella sp. demonstrated a similar decrease in phosphate in 

aerobic conditions, as well as a reduction in cell viability immediately upon U(VI) 

addition to incubations and a rebound to previous concentrations within ca. 48 hr 

(Beazley et al., 2007).  The rebound in cell viability was attributed to the fact that U(VI), 

initially adsorbed to cell membranes, was desorbed from the cell surface as U-P 

precipitated from the solution (Beazley et al., 2009).  Although difficult to demonstrate, 

U(VI) addition to the flow-through reactors may have had the same effect on bacterial 

cells. 

 The addition of organophosphate to the flow-through reactors also provided a 

carbon substrate that stimulated microbial activity.  The hydrolysis of G2P produces 

glycerol that can in turn be used as a carbon source by various microbes.  Thus, the 

constitutively-expressed NSAPs may have supplied a carbon source for aerobic 

microorganisms in the high pH soils (Figure 5.7) and nitrate-reducing bacteria in the low 

pH soils (Figure 5.17).  Nitrate reduction was observed in the low pH soils, even though 

the reactors remained oxic (Figure 5.15), suggesting that the higher activity of NSAPs in 

the low pH conditions compared to the high pH soils may have promoted nitrate reducing 

conditions in suboxic or anoxic niches (Patureau et al., 2000; Tiedje et al., 1982).  In 

addition, uranium reducing conditions may have developed as a result of NSAP activity 
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and the depletion of nitrate in two of the low pH reactors (Figure 5.17).  U XANES 

analysis, however, identified the U(VI) valence state in soils from these reactors (Figure 

5.22) as well as in the high pH soils (Figure 5.11). Unless uraninite was in the colloidal 

form (Suzuki et al., 2002) in anaerobic niches in the low pH reactors, these results 

suggest that the majority of uranium remained oxidized. 

5.5.2  Speciation of U(VI) in the solid phase 

 Our past studies on the biomineralization of U(VI) as a result of phosphatase 

activity were conducted in pure culture incubations in synthetic groundwater, and the 

characterization of the precipitate formed was straightforward.  Distinctive yellow 

precipitate was observed after centrifugation of the incubation media and further analysis 

by synchrotron-based XRD and XAS identified the relatively pure mineral as 

chernikovite (Beazley et al., 2007; Beazley et al., 2009).  In turn, adsorption of U(VI) to 

mineral surfaces is likely significant in soils and sediments, and distinguishing adsorption 

from precipitation of U(VI) in natural systems may be difficult.  In this study, a 

sequential chemical extraction was compared with synchrotron-based XAS 

measurements to characterize the speciation of uranium in the solid-phase. 

 Only small concentrations of U(VI) were measured in the effluents of both soils 

amended with organophosphate compared to the U(VI)-amended controls (Figure 5.8 

Figure 5.19), indicating that U(VI) was removed from solution by adsorption onto the 

solid phase or precipitation as uranium phosphate mineral.  Interestingly, ca. 30% of the 

total U(VI) extracted from the high and low pH reactors was found within one cm of the 

reactor influent inlet (Figures 5.9 and 5.20), indicating that U(VI) was removed from 

solution immediately upon introduction, even if 200 µM U(VI) was continuously added 
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to the soils.  In addition, the U(VI) within this section was extracted by both AcOH and 

hydroxylamine in the org-P amended reactors suggesting the release of U-P minerals.  In 

contrast, the U(VI) in the U control reactors was released primarily by AcOH indicative 

of adsorbed U(VI).  These findings are consistent with previous biomineralization 

incubations that demonstrated the rapid precipitation of uranyl phosphate within 1 hr of 

addition to incubations containing hydrolyzed phosphate (Beazley et al., 2007; Beazley et 

al., 2009).  XAS measurements also confirmed that higher concentrations of U(VI) in the 

low pH reactors were found near the reactor inlet as the resolution of XANES and 

EXAFS spectra decreased dramatically 3 to 4 cm away from the inlet (data not shown).  

In contrast to the accumulation of U(VI) near the reactors’ inlet, phosphate was 

distributed evenly throughout the soil (Figures 5.10 and 5.21) and found in high 

concentrations in the effluent (Figure 5.8).  As previously observed (Wellman et al., 

2006), phosphate added in similar flow-through columns is readily precipitated onto the 

soils near the injection points.  Together with the steady-state production of phosphate at 

the output of the reactors, these findings suggest that phosphatase activity was occurring 

homogeneously throughout the reactor.  The uniform distribution of phosphatase activity 

through the reactors is most advantageous for remediation purposes.  It demonstrates that 

organophosphate can be spread over significant distances before being hydrolyzed.    

 The chemical extractions of phosphate in the original soils reveal most phosphate 

is either adsorbed to iron oxides (released by hydroxylamine) or bound to organic matter 

compounds (released by H2O2) while the fraction of phosphate extracted with AcOH is 

negligible in both soils (Figure 5.3).  In turn, sequential extractions conducted with the 

same soils amended with uranium phosphate precipitates showed that uranium phosphate 
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is dissolved during sequential extraction with AcOH and hydroxylamine (Figure 5.5).  

Together, these data indicate that the fractions of phosphate extracted by AcOH and 

hydroxylamine represent the true fraction of uranium phosphate precipitated during the 

incubations.  Thus, the precipitation of U-P minerals at low and circumneutral pH, 

identified by the fractions of phosphate extracted by AcOH and hydroxylamine, occurred 

primarily within the first 1 cm of the reactors’ inlets (Figures 5.10 and 5.21), the soil 

layers displaying also the highest U(VI) concentrations extracted by AcOH and 

hydroxylamine (Figures 5.9 and 5.20). 

 Soil samples are heterogeneous and probably contain a mixture of surface 

complexes and precipitates.  Therefore, the fitting of the EXAFS spectra of such samples 

reflect this complexity by producing lower U-ligand coordination numbers than that 

observed in pure phases (Bostick et al., 2002).  P shells were included in all EXAFS fits 

of org-P amended reactor samples with radial U-P distances of ~3.6 Ǻ that are indicative 

of monodentate coordination with phosphorus. U-P minerals are composed of sheets of 

square bipyramidal uranyl and tetrahedral phosphate [(UO2)(PO4)]- attached by interlayer 

charge-balancing cations (Catalano and Brown Jr., 2004; Locock and Burns, 2003), and 

higher P coordination numbers reflect the formation of these structured U-P sheets.  As 

precipitation of U-P is more thermodynamically favorable at low pH (Figure 1.5), it is 

expected that higher P coordination numbers (N>1) should be observed in these samples.  

In fact, 3 of the low pH reactor samples contained P coordination numbers ≥ 1 (Table 

5.2), and their corresponding EXAFS spectra demonstrated signals in the k-space region 

from 8.5 to 10.5 Å-1 (Figure 5.24) characteristic of autunite-type minerals (Fuller et al., 

2002).  Interestingly, an N of 2.56 is observed in the fitting of the soil from the one of the 
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high pH org-P amended reactors (Table 5.1), suggesting that uranyl is coordinated by 

2.56 P atoms.  This data is in good agreement with the stoichiometric U:P ratio 

determined from chemical extractions of these soils (Figure 5.10) and indicative of U-P 

precipitation as observed in previous incubations with Rahnella sp. incubations (Table 

4.2).  In addition, the EXAFS spectra of soil samples from the high pH reactors 

demonstrate the typical autunite-type k-space region from 8.5 to 10.5 Å-1 (Figure 5.13).   

These findings from both EXAFS fittings and chemical extractions suggest that U-P 

biomineralization occurred in both the high and low pH reactors.   

 Simultaneously, some samples from both high and low pH soils display P 

coordination numbers (N<1) (Table 5.1 and Table 5.2) that are common for U-P 

adsorption because uranyl coordination in such interactions is shared between phosphate 

and atoms associated with the soil surface.  Though it is difficult to distinguish adsorption 

and precipitation processes by EXAFS alone (Arey et al., 1999; Bostick et al., 2002), the 

EXAFS spectra clearly show that U(VI) is coordinated with phosphate at both pH across 

each reactor (Table 5.1 and Table 5.2). Synchrotron microprobe analysis indicates that 

U(VI) is distributed in discrete areas on the surface of the soil and appears to collect in 

micropores (Figure 5.14).  It is suggested that adsorption of U(VI) to mineral surfaces in 

the presence of phosphate may be a precursor to the precipitation of uranyl phosphate 

minerals (Sato et al., 1997), and these surface pockets may provide the ideal environment 

for U-P precipitation.  In fact, previous electron microprobe and TEM analysis of 

ORFRC soils determined that U-P precipitates in shale micropores contained 2 orders of 

magnitude more uranium than that adsorbed onto iron oxide surfaces (Stubbs et al., 

2006).   
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 U(VI) was more tightly bound to the original high pH soils compared to the 

original low pH soils (Figure 5.3), and U(VI) adsorption experiments with the same soils 

confirmed this behavior (Figure 5.4).  These data suggest that U(VI) strongly adsorbs to 

mineral surfaces such as iron oxides, present in high concentrations in ORFRC soils 

(Stubbs et al., 2006), that display maximum U(VI) adsorption between pH 6 and 7 (Hsi 

and Langmuir, 1985; Langmuir, 1997). Indeed, at pH > 7, deprotonation of iron oxide 

surfaces provides negatively-charged surface sites for complexation with positively-

charged aqueous uranyl species UO2
2+, UO2OH+, and (UO2)2(OH)2

2+ in the absence of 

carbonate (Barnett et al., 2002; Cheng et al., 2006).  Simultaneously, negatively-charged 

phosphate does likely not adsorb significantly to iron oxides at circumneutral pH because 

their surface charge is most probably neutral or slightly negatively charged (Stumm and 

Morgan, 1996).  U(VI) in the original low pH soil (35% extracted by Mg2+ and 30% 

extracted by AcOH ) was loosely bound (Figure 5.3), suggesting that much of the U(VI) 

was attached to the mineral surface as weak outer-sphere electrostatic complexes that are 

easily desorbed by competing cations. U(VI) adsorption experiments performed on the 

same soils confirm that most uranium is exchangeable by Mg2+ (Figure 5.4).  At lower 

pH, both uranyl and mineral surfaces tend to be positively charged, and strong surface 

complexation may not be as favorable as at high pH unless phosphate is pre-adsorbed to 

iron oxides (Cheng et al., 2004).  Phosphate adsorbs readily to iron oxides at low pH 

because iron oxides are positively charged (pHZPC ≤ 7) and phosphate is negatively 

charged (Stumm, 1997).  Indeed, the majority of phosphate in the original low pH soil 

was extracted by hydroxylamine (Figure 5.3), suggesting that phosphate is primarily 

adsorbed to iron oxides in these soils.  Adsorption column studies of U(VI) and 
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phosphate on goethite-coated sand in low pH conditions demonstrated that the adsorption 

of phosphate onto mineral surfaces prior to U(VI) addition greatly and irreversibly 

enhances uranyl adsorption by formation of ternary complexes (Cheng et al., 2007).  

Thus, from the sequential extractions of the original soils, it appears that uranium 

adsorption to the soils should be favored at circumneutral pH, provided that carbonates 

are not produced in significant concentrations by microbial processes, while phosphate 

adsorption should be favored at low pH.   

 EXAFS fittings of the soil samples indicated split Oeq shells (at ~ 2.3 and 2.45 Ǻ) 

in all but one sample (3-4 cm section of the low pH Reactor 3) (Table 5.1 and Table 5.2).  

Uranyl equatorial oxygen atoms typically display U-Oeq distances of ~2.30 Ǻ; however, 

uranyl surface complexes can stretch some of the Oeq and thus increase bond distances up 

to ~ 2.45 Ǻ depending on the ligand, which splits the Oeq shells.  Split equatorial oxygen 

shells are common in uranyl complexes with minerals including, alumina silicates 

(Hudson et al., 1999; Sylwester et al., 2000), apatite (Fuller et al., 2003), and iron oxides 

(Waite et al., 1994).  In the latter complexes, two of the shorter Oeq are bound to two 

neighboring iron oxide edge oxygens in a bidentate fashion, forming Fe-Oeq-U angles of 

ca. 112º (Bargar et al., 2000).  The formation of Fe-Oeq-U complexes leads to U-Fe radial 

distances of ~3.43 Ǻ that are observed in the majority of the reactor samples at both pHs, 

suggesting that uranyl adsorbs to iron oxides as an inner-sphere complex.  Higher Fe 

coordination numbers are observed in soils from the high pH reactors compared to the 

low pH soils, suggesting that U-Fe adsorption is more prevalent at high pH than at low 

pH.  These findings are in good agreement with the bulk extraction data that showed 
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adsorbed U(VI) at high pH requires a stronger extracting reagent than adsorbed U(VI) at 

lower pH (Figure 5.4).   

 Oeq atoms at ~2.45 Ǻ are also common in coordination complexes with carbonates 

(U-C radial distance ~2.90 Ǻ) and indicate the bidentate sharing of two oxygen atoms 

between uranyl and carbonate.  Ternary complexes of Fe-U-C (Bargar et al., 2000) are 

common in natural systems (Waite et al., 1994) and are observed in ORFRC soils 

(Bostick et al., 2002).  The higher Oeq coordination numbers at ~ 2.45 Ǻ in the two U-

control samples suggests that Fe-U-C ternary complexes are more abundant at both pHs 

in soils amended with U(VI) only than in soils amended with both U(VI) and org-P.  This 

is not surprising as adsorption to mineral surfaces is likely the primary removal 

mechanism for U(VI) in the control samples.  Yet, the C shell at ~2.90 Ǻ is pronounced 

in all org-P amended reactors, and coordination numbers of C atoms (~1.48) are 

comparable at both pH.  Carbonate is expected to play a more significant role at high pH 

due to the formation of uranyl carbonate complexes that may prevent adsorption of U(VI) 

in the high pH soils and thus promote reactivity of U(VI) with phosphate.  However, 

these findings also suggest that the high microbial activity observed at low pH produced 

large enough quantities of bicarbonate to complex U(VI) and favor removal of U(VI) by 

adsorption.   

 EXAFS fittings of the low pH soil samples also indicate a lower number of Fe 

atoms in coordination with U(VI) than in high pH samples.  In fact, Fe could not be 

included in the fit of two samples from one of the reactors amended with org-P.  These 

findings suggest that U(VI) adsorption to iron oxides is not a dominant mechanism at low 

pH or that >Fe-P-U ternary complexes are formed on iron oxide surfaces (Cheng et al., 
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2006).  Overall, the prevalence of the 2.30 Ǻ equatorial oxygen in the org-P amended 

reactors at both pH suggests that, even in the presence of high concentrations of 

carbonate and adsorption to iron oxides, uranyl is primarily bound to phosphate.  These 

findings suggest that, at high pH, uranyl precipitates with phosphate and, at low pH, 

uranyl is primarily associated with phosphate as both adsorbed onto Fe and Mn oxides 

and precipitated as U-P minerals. 

 In summary, the bulk extraction and EXAFS data, thus far are both indicative of 

U-P mineral formation at both low and high pH.  In the next section, a reactive transport 

model is presented to calculate net rates of production and consumption of uranium, 

phosphate, and all other species that could be used to differentiate the mechanisms of 

U(VI) and phosphate removal on the solid phase.    

5.5.3  Transport parameters and net reaction rates of organophosphate hydrolysis, 

nitrate reduction, and U(VI) precipitation 

 The fate of a chemical species through a porous medium is determined by its 

transport through the medium and its reactivity.  Transport is described by advection, or 

the movement of the fluid through the pores at some velocity, and dispersion, including 

both molecular and mechanical dispersion (Schnoor, 1996) and can be determined with 

chemical tracers using transport models (Roychoudhury, 2001; Roychoudhury et al., 

1998).  For this study, a one-dimensional advection-dispersion model (Equation 5-1) was 

used to determine the dispersion coefficient (D), the advection rate (v), and the 

retardation factor (R) within the reactors (Roychoudhury et al., 1998), using the bromide 

breakthrough curve.   
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 The analytical solution to the governing equation (Van Genuchten, 1981)  was 

used with an optimization procedure to calculate the three parameters.  The optimization 

procedure, written in Matlab™, minimizes the difference between the data and the 

analytical solution of the differential equation to determine the three unknown 

parameters.  The boundary conditions consistent with a flow-through reactor with 

continuous input of chemical species include:       

  0),(),0(0)0,( 0 =
∂
∂

== tLC
x

CtCxC        (5-2)  

where x is the spatial variable in the reactor, t is time, L is the total length of the reactor, 

and C0 is the input concentration of bromide.  

 The model was used to determine transport parameters R, D, and v in the flow-

through reactors using the bromide breakthrough curves.  Bromide was introduced at day 

1 in the high-pH flow-through reactors, and its concentration in the influent remained 

constant throughout the experiment.  Bromide was introduced at day 28 in the low-pH 

flow-through reactors, removed at day 44, and re-introduced at day 51.  The modeled 

average bromide concentrations fit the data well for both high-pH and low-pH reactors 

(Figure 5.25).  Table 5.3 lists the average transport parameters, R, D, and v, for each 

system (see Table C. 1 in Appendix C for transport parameters determined for individual 

reactors).   
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Figure 5.25  Bromide breakthrough curve modeled (solid lines) with a one-dimensional 
transport equation (Equation 5-2) from average bromide concentrations from flow-
through reactors at pH (a) 7 and (b) 5.5.  The open circles represent the experimental data 
(red for org-P amended and blue for controls) and error bars represent the standard 
deviations from the average measurements in the three org-P amended reactors. 
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Table 5.3  Average transport parameters determined with a one-dimensional advection-
dispersion model of the average bromide concentrations in the effluent of flow-through 
reactors.  

 Reactor 
Retardation 
Factor (R)

Dispersion    
coefficient (D)       

(cm2 sec-1) 
Advection Rate (υ)    

(cm sec-1) 

High pH org-P amended 0.99 9.8 (± 8) 10-4  7.4 (± 7.7) 10-5  

  U-control 0.99 1.7 10-4 1.6 10-5 

Low pH org-P amended  0.99 3.2 (± 3) 10-4  6.3 (± 0.8) 10-5 

 org-P amended  0.99 1.5 (± 0.7) 10-4  2.2 (± 2.9)  10-5 

 U-control 0.99 3.3 10-5 3.6 10-5 
 

 As expected, the retardation factors for all reactors are ca. 1 indicating that the 

mean transport of bromide through the flow-through reactors is not affected by 

adsorption of bromide.  Diffusion coefficients indicate diffusion is dispersive.  The 

calculated advection rate and dispersion coefficients in the low pH soils amended with 

org-P are respectively 3 times and one-half lower after day 50 than between day 28 and 

40 during the incubations, indicating the porosity of the soil decreased over time probably 

due to mineral precipitation.   

 The net production or consumption rates of phosphate, U(VI), G2P, nitrate, and 

nitrite were determined for time periods during which some of the species of interest 

were constantly injected into the reactors and chemical changes were observed in the 

effluents of the reactors.  The boundary conditions were (Equation 5-3), 

  0),(),( 000 =
∂
∂

=+
∂
∂

−=
=

tLC
x

vCCv
x
CDCtxC

xr       (5-3) 

 
where t0 ≥ 0 is the initial time selected to determine rates during a particular time period, 

Cr is the concentration of the species of interest across the reactor assuming that the 

concentration of the effluent is representative of the concentration in the reactors, and all 
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other parameters are the same as previously.  The transport parameters calculated from 

the bromide breakthrough curves were averaged for each reactor and used with the 

analytical solution to the governing equation (Van Genuchten, 1981) to determine net 

reaction rates in each reactor by fitting the experimental data in Matlab™ using the least-

squares optimization procedure described previously.  A typical example of the type of 

fitting and rates obtained with these calculations is presented in Figure 5.26. (See 

Appendix C, Figures C.13-20 for individual reactor fittings).   
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Table 5.4  Net reaction rates for dissolved PO4
3-, G2P, UO2

2+, NO2
-, and NO3

- in the 
flow-through reactors conducted at pH 5.5 as determined by the one-dimensional reactive 
transport model.  Positive and negative rates indicate production and consumption of a 
species, respectively.  

Reactor Days 
PO4

3-        
(mM d-1) 

G2P      
(mM d-1) 

UO2
2+            

(µM d-1) 
NO2

-          
(mM d-1) 

NO3
-       

(mM d-1) 
Low pH 
U-control  28 - 78 0 0  0 -0.46 

 28 - 50 0 0  0  
 50 - 60 0 0  0  
  60 - 78 0 0 -0.87 0   

Reactor 1 28 - 78 0.92 -1.4    
 28 - 50    1.0 -2.0 
 50 - 60    -2.0 10-6  
 60 - 78   -8.6   

Reactor 2 28 - 78 0.69 -1.1    
 28 - 50    0.4 -1.3 
 50 - 60    2.1 -3.2 
 60 - 78   -6.9 -2.7 10-6  

Reactor 3 28 - 78 0.60 -1.3    
 28 - 50    0.5 -1.4 
 50 - 60    -2.8 10-6 -3.2 
  60 - 78     -6.9     

Average org-P 
amended  28 - 78 0.73 ± 0.17 -1.3 ± 0.15    

 28 - 50    0.63 ± 0.3 -1.6 ± 0.4 
 50 - 60     -2.6 ± 0.98 
 60 - 78      -7.5 ± 0.98 -2.5 (± 0.4) 10-7   

High pH       
U-control 6 - 30 0  -9.3 0 0 
Reactor 1 6 - 30  0.29  -80 0 0 
Reactor 2 6 - 30  0.23  -29 0 0 
Reactor 3 6 - 30 0.79  -15 0 0 

Average org-P 
amended 6 - 30  0.43 ± 0.31  -41 ± 34 0 0 
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Figure 5.26  Reactor 2 experimental (open circles) vs. modeled (solid lines) data from a 
one-dimensional reactive transport model for (a) G2P and PO4

3-, (b) NO2
- and NO3

-, and 
(c) PO4

3- and UO2
2+ (solid red line represents total net consumption rate (adsorption + 

precipitation; dashed red line represents net consumption rate from precipitation only).  
Positive and negative rates indicate net production and consumption of a species, 
respectively.  Dashed black lines represent the modeled bromide breakthrough curves. 
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 Net phosphate production rates within ca. 10 days after organophosphate 

amendments in the low pH soils (0.73 ± 0.17 mM d-1) were approximately 1.7 times 

higher compared to the high pH soils (0.43 ± 0.31 mM d-1), suggesting that the 

indigenous microorganisms in the more contaminated low pH soil were using 

phosphatase activity as a defense mechanism against toxic U(VI) (Macaskie et al., 1994; 

Montgomery et al., 1995; Powers et al., 2002; Sobecky et al., 1996; Yong and Macaskie, 

1999).  In addition, 3 times as much phosphate was extracted from low pH soils 

compared to the circumneutral soils (Figures 5.10 and 5.21) confirming higher phosphate 

production rates at the lower pH.  The greater average net rate of G2P consumption (-1.3 

± 0.15 mM d-1) in the low pH soils compared to the average net production of phosphate, 

suggests that an average 0.57 (± 0.23) mM d-1 phosphate was consumed by other 

reactions, such as adsorption and precipitation.  Interestingly, a much higher net 

phosphate production rate is observed for the high pH Reactor 3 (0.79 mM d-1) that 

agrees with higher P coordination numbers as determined by EXAFS (Table 5.1), 

suggesting the removal of P by U-P precipitation. 

 The introduction of G2P also induced microbial denitrification at low pH (Figure 

5.17), and net nitrate consumption rates of -1.6 (± 0.38) mM d-1 were calculated 

compared to corresponding net nitrite production rates of 0.63 (± 0.3) mM d-1 between 

days 28 and 50.  These data suggest that nitrate was reduced further to NH4
+ or N2 and 

by-products of denitrification. Nitrate and nitrite reduction continued throughout the 

remainder of the experiment in Reactors 2 and 3, while both processes ceased in Reactor 

1 (Figure 5.27).  Nitrate concentrations followed the same trend as G2P concentrations in 

each reactor suggesting the respiration of G2P was driving nitrate reduction (Figure 
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5.27).  The high rates of nitrate reduction coupled to G2P respiration likely introduced 

high levels of carbonate and contributed to the carbon signal observed in the EXAFS data 

at low pH (Table 5.2).  .   
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Figure 5.27.  G2P, phosphate, and nitrate concentrations in the effluents of org-P 
amended reactors containing low pH soils as a function of time in (a) Reactor 1, (b) 
Reactor 2, and (c) Reactor 3.  G2P (10 mM) was added at day 28 and 10 mM nitrate was 
continuously pumped into the reactors from day 1.  Dashed lines indicate the addition of 
G2P and U(VI). 
 
 
 Batch U(VI) adsorption experiments conducted with ORFRC soils revealed that 

the high pH soil adsorbed more U(VI) as determined by the remaining soluble U(VI) in 

the supernatant (Figure 5.4).  Distribution coefficients, KD, for the two soils were 

determined using Equation 5-4 (Knox et al., 2008)      

            

    
eralfinal

finalspikespike
D MC

CCV
K

min*
)( −

=     (5-4) 

where Cspike is the U(VI) concentration in the solution prior to soil addition (mg L-1), Cfinal 
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is the U(VI) concentration in the solution after contact with the soil (mg L-1), Mmineral is 

the soil mass (g), and Vspike is the volume of the solution (mL).  KD values of 1218 mL g-1 

and 8.9 mL g-1 were found for the high and low pH soils, respectively, in agreement with 

previously reported KD values ranging between 15 and 10000 mL g-1 (pH 1 to 7) for 

ORFRC soils (Barnett et al., 2002).   

 The transport of a chemical species through a porous medium is affected by both 

the porosity of the medium and adsorption on to the solid phase and can be described by 

the retardation factor, R (Schnoor, 1996) according to Equation 5-5:    

     
φ

ρ DB K
R += 1     (5-5) 

where ρB is the bulk density of the soil (g/cm3), KD is the distribution coefficient,  and φ  

is the porosity of the soil (mL/g). The R values calculated from Equation 5-5 using the 

batch U(VI) adsorption experiments indicate that the high pH soil displayed a much 

higher retardation factor (R = 9136) compared to the low pH soil (R = 30.7).  These 

calculations suggest that the transport of U(VI) should be much slower in the high pH 

soils compared to the low pH soils.  Indeed the net removal rates of U(VI), including both 

adsorption and precipitation of U-P minerals (when the retardation factor is set at 0.99), 

in the org-P amended reactors at high pH (-41 ± 34 µM d-1) are much higher than in the 

low pH reactors (-7.5 ± 0.98 µM d-1) (Table 5.4).  In addition, the net U(VI) removal 

rates in the U-control reactors were lower at both pH than the corresponding removal 

rates in the org-P amended reactors, indicating that the precipitation of U-P minerals 

increased removal rates by 88 and 77%, respectively, in the low and high pH soils.   

 The combination of the solid phase extractions, EXAFS analyses, and transport 

model data show that uranium phosphate precipitation is the major mechanism of 
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removal of U(VI) in the high pH soils, while U(VI) is also removed by adsorption onto 

iron oxides through formation of ternary U-P-Fe complexes in the low pH soils. Uranium 

was primarily released with AcOH and hydroxylamine (the extractants shown to dissolve 

uranium phosphate minerals) during sequential extraction of the high and low pH soils 

compared to release by AcOH only in U control reactors.  The coordination number of 

uranium to phosphorus measured by EXAFS is greater than one in most samples of both 

soils, suggesting the precipitation of U-P minerals. 

5.6  Conclusions 

 
 Flow-through reactor experiments with contaminated soils from the ORFRC were 

conducted to determine whether (1) indigenous soil bacteria displayed phosphatase 

activity when supplied an organophosphate source, (2) pH and high nitrate concentrations 

affected natural phosphatase activity, (3) the solubility of U(VI) was reduced through the 

precipitation of uranyl phosphates, and (4) soil permeability changes as a result of 

organophosphate amendments.  The results clearly indicate that the addition of an 

organophosphate substrate as sole carbon and phosphorus source to ORFRC soils 

promotes the expression of indigenous phosphatases.  High concentrations of phosphate 

were detected in flow-through reactor effluents within one day of G2P and G3P 

amendments at both low and high pH, compared to negligible phosphate production in U-

control reactors, indicating that phosphatase-carrying microorganisms are readily 

stimulated by the organophosphate substrate.  Steady-state concentrations of phosphate 

were reached within days after addition, suggesting that non-specific acid phosphatase 

activity was expressed constitutively.  In addition, phosphate was distributed evenly 
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throughout the reactor columns, demonstrating that organophosphate hydrolysis occurred 

homogeneously inside the soil reactors.  These findings have important implications for 

the development of future in situ bioremediation strategies.  First, addition of a labile 

organophosphate, such as G2P/G3P, should not impede hydraulic flow and clog injection 

valves observed with the addition of free orthophosphate.  Second, the solubility and 

lability of G2P/G3P allows for greater surface coverage, thereby increasing the 

bioavailability of the organophosphate for hydrolysis.  Finally, the presence of 

constitutively-expressed phosphatases in ORFRC soils represents advantage because 

phosphate production should only be limited by organophosphate availability.  

 Despite the continuous input of aerated groundwater to the soils, dissolved 

oxygen concentrations decreased in both soils as additional evidence that microbial 

activity was intense during these incubations. In fact, nitrate and nitrite reduction were 

observed in two of the reactors at low pH, suggesting that nitrate reducing conditions 

were occurring in small anaerobic microniches.  Interestingly, phosphatase activity was 

not affected by nitrate and nitrite reduction, and higher net phosphate production rates 

were observed at lower pH compared to higher pH suggesting that indigenous 

microorganisms in the more contaminated low pH soil were using phosphatase activity as 

a defense mechanism against U(VI). 

 XANES and µ-XANES analyses of soils indicated uranium maintained the U(VI) 

oxidation state throughout the experiments even on a micron-scale, suggesting that 

conditions were not favorable for microbial U(VI) reduction.  Spatial elemental mapping 

of soils amended with org-P in the presence of phosphatase activity, demonstrated that 

U(VI) was distributed discretely on soil surfaces and appeared to collect in small 
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micropores.  These small concentrated areas of uranyl may provide the ideal environment 

for the mineralization of uranium phosphate.  

 The combination of solid-phase extractions schemes, EXAFS measurements, and 

reactive transport modeling demonstrated that U(VI) was primarily precipitated as uranyl 

phosphate minerals at high pH and precipitated as uranyl phosphate and partially 

adsorbed to iron-phosphate complexes at low pH.   

 The results of this study indicate that the biomineralization of U(VI) phosphate as 

a result of phosphatase activity in contaminated soils is an effective strategy for the 

remediation of uranium.  Biomineralization of U(VI) phosphate was observed over a 

wide pH range and in the presence of high uranium and nitrate concentrations, and may 

be a complementary approach to bioreduction which requires high pH and low nitrate 

conditions.  
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CHAPTER 6  

CONCLUSIONS 

 
 The cleanup of uranium contaminated groundwater and soils at DOE facilities 

across the United States is a major undertaking and research over the past 15 years has 

focused on new and innovative methods of remediation.  This dissertation examines the 

potential of a new and effective strategy for the bioremediation of uranium via microbial 

phosphatase activity.  The strategy involves the addition of organophosphate compound 

as sole carbon and phosphorus source in soils to activate non-specific acid phosphatases 

that would result in the chemical precipitation of uranium phosphate minerals in both 

aerobic and anaerobic conditions.  The main hypotheses tested in this thesis include:  

1. Bacterial isolates from a contaminated waste site express phosphatase activity 

when provided an organophosphate substrate as sole C and P source in both pure 

cultures and contaminated soils. 

2. Sufficient phosphate is hydrolyzed to precipitation U-P minerals. 

3. Phosphatase activity and U-P biomineralization are affected by pH. 

 

 Pure culture incubations in aerobic conditions were conducted with three 

microbial isolates from the DOE ORFRC contaminated waste site.  The objectives of this 

work were to (1) determine whether the strains hydrolyzed sufficient phosphate from an 

organophosphate substrate to precipitate uranium, (2) determine whether pH has an effect 

on phosphatase activity and U(VI) precipitation, and (3) identify the uranium solid phase 



 154

formed during biomineralization.  Two of the bacterial strains studied, Rahnella sp.  

Y9602 and Bacillus sp. Y92 displayed phosphatase activity but Rahnella sp. Y9602 

hydrolyzed 9 times more G3P than Bacillus sp. Y92 after 120 h regardless of the 

presence of uranium.  Phosphate production was sufficient to precipitate 73 to 95% total 

U(VI) at pH 5.5 in the presence of 15 mM nitrate within 1 h of the addition of U(VI) to 

incubations.   

 Incubations of Rahnella sp. Y9602 were also conducted at different pH to 

determine the most favorable pH for phosphatase activity and uranium precipitation.  

Hydrolysis of G3P demonstrated a dependence on pH and uranium addition.  Rahnella 

sp. Y9602 hydrolyzed 1.5 times more G3P at pH 7.0 compared to pH 4.5 in the absence 

of U(VI) most probably due to the expression of both alkaline and acidic phosphatases.  

In the presence of U(VI), however, 4 times more G3P was hydrolyzed at pH 7.0 than at 

pH 4.5.  U(VI) precipitation was also dependent on pH.  Only 28% of initial U(VI) was 

precipitated at pH 4.5 compared to 90 to 97% precipitation at pH 5.5 and 7.0, 

respectively.  U-P precipitation is more favorable at pH 5.5 to 7.0 due the increased 

electronegativity of phosphate at the higher pH. 

 Solid-phase analysis by synchrotron-based XAS identified the mineral formed 

during uranyl biomineralization as an autunite/meta-autunite type mineral with a 

monodentate bond formed between the uranyl and phosphate molecules.  The precipitates 

formed at pH 5.5 contained ~3 more P coordinating molecules than the precipitates at pH 

7.0, suggesting the existence of a mixture of uranyl phosphate and uranyl hydroxide 

minerals.  The biological uranyl phosphate displayed approximately the same EXAFS 

structure as a chemical uranyl phosphate precipitate at pH 5.5, indicating that the 
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precipitation of uranyl phosphate was a chemical process, though induced by the 

microbial hydrolysis of organophosphate. This work demonstrated that microbial 

phosphatase activity hydrolyzed sufficient phosphate to precipitate a highly insoluble 

uranyl phosphate mineral even at low pH and in the presence of high nitrate 

concentrations provided that aerobic conditions were maintained during the incubations. 

 Pure culture incubations were then conducted with Rahnella sp. Y9602 in 

anaerobic conditions to determine whether (1) the microbe could grow anaerobically with 

nitrate as the terminal electron acceptor, (2) sufficient phosphate was hydrolyzed to 

precipitate U(VI), and (3) the same mineral was formed as in aerobic conditions.  

Rahnella sp. Y9602 was able to respire anaerobically on nitrate as a terminal electron 

acceptor in the presence of G3P as the sole carbon and phosphorus source and produced 

nitrite as reduced metabolite which eventually proved toxic to the organism.  Even in the 

presence of nitrite, Rahnella sp. Y9602 hydrolyzed sufficient phosphate to precipitate 

95% total U(VI) at pH 5.5.   

 Synchrotron-based solid-phase analyses demonstrated that the same mineral was 

formed during both aerobic and anaerobic incubations with Rahnella sp. Y9602..  

XANES analysis of the anaerobic precipitate indicated a U(VI) oxidation state 

demonstrating that Rahnella sp. Y9602 did not reduce U(VI).  EXAFS analysis identified 

the precipitate formed as an autunite/meta-autunite mineral with a structure 

approximately the same as that of the aerobic mineral formed during aerobic incubations 

with Rahnella sp. Y9602.  Further analysis by synchrotron-based XRD identified the 

uranyl phosphate mineral as amorphous chernikovite [H2(UO2)2(PO4)2].  TEM images 

indicated that U(VI) coated the microbial cell membranes immediately upon addition to 
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incubations and separated from the cell surface over time as uranyl phosphate 

precipitated in the bulk solution, suggesting the cells provided a nucleation surface that 

activated precipitation.  This work further demonstrated the potential for the 

bioremediation of uranium facilitated by the activity of phosphatase-carrying 

microorganisms in both aerobic and anaerobic conditions at low pH and in the presence 

of high nitrate concentrations.   

 Finally, flow-through reactors were used to determine how natural microbial 

communities react to organophosphate amendment in quasi natural conditions. 

Parameters such as pH and nitrate concentrations were adjusted to assess their effect on 

phosphatase activity.  The objectives of this part of the study were to determine whether 

(1) indigenous microorganisms in a contaminated soil hydrolyzed phosphate from an 

organophosphate substrate, (2) pH and nitrate concentrations affected phosphatase 

activity, (3) enough phosphate was produced to precipitate U(VI), and (4) 

organophosphates could be transported sufficiently far in soils to generate U(VI) 

precipitate on a wide spatial scale.     

 The addition of an organophosphate substrate to contaminated ORFRC soils at 

both high and low pH resulted in the immediate production of high concentrations of 

phosphate, compared to U-control reactors amended with U(VI) only.  In general, 

millimolar concentrations of phosphate were hydrolyzed at both pH, but higher rates of 

phosphate production were observed at low pH.  Organophosphate hydrolysis reached 

steady state within ca. 10 days and was maintained throughout the experiment indicating 

constitutively-expressed phosphatases were active at both pHs.  Uranium was 

precipitated as uranium phosphate mineral in both soils, but a fraction of the uranium was 
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removed by adsorption onto iron oxides (high pH soil) or by ternary complex formation 

with phosphate pre-adsorbed onto iron oxides (low pH soils).  Microprobe analysis of 

soils from the high pH experiments indicated that U(VI) was distributed discretely on 

mineral surfaces and collected in micropores, suggesting that localized mineral surfaces 

may be ideal environments for the precipitation of U-P minerals.  Uranium removal rates 

were much higher at high pH compared to low pH, suggesting that overall the 

immobilization of U(VI) through the activity of natural microbial phosphatases was most 

efficient in the high pH soils. 

 Overall, the results of this study demonstrate the biomineralization of U(VI) 

phosphate as a result of microbial phosphatase activity is efficient in both pure cultures 

and soils from a contaminated waste site.  High levels of phosphatase activity were 

observed across a wide range of pH, in both aerobic and anaerobic conditions, and in the 

presence of high nitrate and uranium concentrations.  The nonreductive biomineralization 

of U(VI) provides a promising new approach for in situ uranium bioremediation in low 

pH, high nitrate, and aerobic conditions that could be complementary to U(VI) 

bioreduction in high pH, low nitrate, and reducing environments. 
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6.1  Recommendations for future research 

 
 Several questions have arisen from the present study, and suggestions for future 

research in the area of U(VI) biomineralization are provided below.  This study 

demonstrated the potential for the bioremediation of U(VI) phosphate as a result of 

microbial phosphatase activity.  The mineral formed in the pure culture incubations was 

quasi amorphous with organic material from microbial cells incorporated into the mineral 

matrix.  The stability of this mineral to changes in pH, redox conditions, ionic strength, 

temperature, and ligands (such as carbonate) has to be investigated to assess its use as a 

long term repository for uranium in the subsurface. 

 Adsorption of phosphate onto these soils should be investigated in flow-through 

control incubations to differentiate the rate of phosphate adsorption independently from 

uranium phosphate mineral precipitation.   

 Analysis of the changes in the soil microbial populations before and at the 

conclusion of the experiments should be conducted to shed light on the type of 

microorganisms affected by the addition of organophosphate.   

 The addition of different organophosphate substrates may help determine the most 

feasible phosphorus source for uranium biomineralization.  Eventually, the use of natural 

organophosphates (i.e. phytate) should be envisioned to determine how natural phytases 

could be stimulated in natural soils.   

 The stability of the uranium phosphate biomineralized product could be studied 

by alternating the redox conditions of the reactor and stimulate more realistic in situ 

conditions.  The addition of high concentrations of phosphate to soils may affect the 

overall geochemistry and microbiology of these systems.  Phosphate adsorbs very 
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efficiently to mineral surfaces and may decrease the bioavailability of iron surface for 

bioreduction.  In addition, the increase in a limiting nutrient, such as phosphate, may 

stimulate otherwise dormant microbial communities that may out-compete other bacterial 

assemblages that may or may not have negative impacts on the system.   

 Finally, as demonstrated above, it is difficult to distinguish between adsorbed and 

precipitated uranyl phosphate minerals using X-ray absorption spectroscopy (XAS).  

Future work in this area should concentrate on determining the best combination of 

analytical tools to help make this distinction.  Imaging techniques such as scanning and 

transmission electron microscopy (SEM and TEM) may be combined with XAS (both U 

and P) and new chemical extraction methods.   
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APPENDIX A  

SUPPLEMENTAL INFORMATION FOR CHAPTER 3 
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Figure A. 1  Average phosphate concentrations in aerobic incubations of three bacterial 
species in simulated groundwater at pH 5.5, in the presence of 10 mM G3P, with and 
without 200 µM UO2

2+ (standard deviation represents variations of triplicate 
incubations). Closed and open symbols represent incubations with UO2

2+ and without 
UO2

2+, respectively. 
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Figure A. 2  Average %UO2

2+ precipitation in chemical (closed symbols) and heat-killed 
(open symbols) control incubations as a function of pH with Rahnella sp. in the presence 
of 200 µM UO2

2+ and 10 mM G3P in simulated groundwater (standard deviation 
represents variations of triplicate incubations).  %UO2

2+ precipitation increases at pH 7.0 
as a result of the chemical precipitation of uranyl hydroxide. 
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Figure A. 3  Solubility of uranyl as a function of G2P, G3P, IP6 (phytic acid), and PO4

3- 
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Table A. 1  Parameters derived from fitting of U LIII-edge EXAFS for samples collected 
from aerobic pure culture incubations. 

Sample  Oax Oeq P POU 
MS* 

OPOU 
MS* 

PO 
dist† Rfactor ∆E0 

 N 2 2.7  
(0.4) 

1.2 
(0.4) 2.4 1.2 1.57 

(0.06) 0.009 -5 
(1.4) 

A 
Rahnella 

sp.  pH 5.5 
R(Å) 1.79 

(0.005) 
2.28 

(0.007) 
3.59 

(0.02) 3.72 3.84    

 σ(Å2) 0.003 
(0.0003) 

0.003 
(0.00009) 0.003 0.003 0.003    

          

 N 2 3.1 
 (0.7) 

0.7 
(1.3) 1.5 0.7 1.4 

(0.4) 0.0207 -6.4 
(2.1) 

B 
Rahnella 

sp.  pH 7.0 
R(Å) 1.78 

(0.01) 
2.28 

(0.01) 
3.54 

(0.06) 3.62 3.7    

 σ(Å2) 0.0036 
(0.0005) 

0.004 
(0.002) 0.003 0.003 0.003    

          

 N 2 3.7  
(0.7) 

1.6 
(0.9) 3.1 1.6 1.56 

(0.07) 0.0174 -5.4 
(1.9) 

C 
abiotic U-P   

pH 5.5 
R(Å) 1.79 

(0.009) 
2.27 

(0.01) 
3.58 

(0.03) 3.71 3.84    

 σ(Å2) 0.0047 
(0.0006) 

0.005 
(0.002) 0.003 0.003 0.003    

 N 2 1.6   1.7  
(1)  (1)     0.0497 -0.8 

(3.1) 

D 
abiotic   
pH 7.0 
(no P) 

R(Å) 1.81 
(0.01) 

2.31   2.47  
(0.04) (0.04)       

 σ(Å2) 0.0038 
(0.0006) 

0.005    0.005 
(0.005)       

Errors are given in parentheses (no error means the value was fixed, or calculated from 
other parameters)  

* MS denotes multiple scattering paths 

 † PO dist is the distance between the P-O in phosphate coordination (used for the MS 
paths) 
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APPENDIX B  

DESCRIPTIONS OF TRANSPORT MODELS 

B.1  Bromide breakthrough curve model 

 The Matlab™ code for the one-dimensional advection-dispersion model used to 

model the bromide breakthrough curves in the flow-through reactors in Chapter 5.  The 

main routine “TracerBr” and subroutine “funPFR” are described below. 

% This program calculates the breakthrough curve of a tracer (Bromide) in a PFR 
clear 
global x time n BrCexp Br0 v 
R = 0.99; 
D = 1e-5;              % cm2/sec 
Br0 = 12e-3;             % M 
Q = 1.2;                  % ml/hr 
fi = 0.49;             % Porosity 
A = (3.86/2)^2*pi;         % Surface area cm^2 
% Load the data for each reactor 
% 
load Bromide14.txt -ascii 
load Bromide15.txt -ascii 
load Bromide16.txt -ascii 
load Bromide17.txt -ascii 
 
time141 = (Bromide14(1:6,1)-Bromide14(1,1))*86400;                   % Correct for t0 = 0 - [sec] 
time142 = (Bromide14(12:length(Bromide14),1)-Bromide14(12,1))*86400;  % Correct for t0 = 0 
time151 = (Bromide15(1:6,1)-Bromide15(1,1))*86400;                    
time152 = (Bromide15(11:length(Bromide15),1)-Bromide15(11,1))*86400;  
time161 = (Bromide16(1:6,1)-Bromide16(1,1))*86400; 
time162 = (Bromide16(12:length(Bromide16),1)-Bromide16(12,1))*86400; 
time171 = (Bromide17(1:5,1)-Bromide17(1,1))*86400; 
time172 = (Bromide17(12:length(Bromide17),1)-Bromide17(12,1))*86400; 
 
 
BrC11 = Bromide14(1:6,2);                          % Load the Bromide data     
BrC12 = Bromide14(12:length(Bromide14),2); 
BrC21 = Bromide15(1:6,2);                   
BrC22 = Bromide15(11:length(Bromide15),2); 
BrC31 = Bromide16(1:6,2); 
BrC32 = Bromide16(12:length(Bromide16),2); 
BrC41 = Bromide17(1:5,2); 
BrC42 = Bromide17(12:length(Bromide17),2); 
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% Analytical solution for bromide 
X0 = [R;D;v];              % vector containing the parameters to optimize 
dx = 0.05;                    % node space - [cm] 
x = (0:dx:8)';                % length of the reactor - [cm] 
n = length(x); 
P = v*dx/D                    % Peclet # 
% 
% Optimize R, D, and v to minimize the least square difference between the data 
% and the modeled Bromide concentration at the output of the PFR 
LB = [0;0]; 
UB = [1;1e-2]; 
for i = 1:2                % i represents the two Br- amendments in the same reactor 
    for j = 1:4            % j represents the reactor number 
        eval(['time = [0:max(time' num2str(13+j) num2str(i) ')/48:max(time' num2str(13+j) 
         num2str(i) ')];']);                                                % Define a new time vector 
        time = time';                 % time vector in sec 
        eval(['BrC' num2str(j) num2str(i) 'i = interp1(time' num2str(13+j) num2str(i) ',BrC'  
        num2str(j) num2str(i) ',time)*1e-3;'])  % Interpolate the concentration 
        eval(['BrC' num2str(i) ' (:,' num2str(j) ' )= BrC' num2str(j) num2str(i) 'i;']); 
        eval(['BrCexp = BrC' num2str(i) '(:,j);']); 
        X = lsqnonlin('funPFR',X0,LB,UB);        % Use a least square non linear method 
    % 
    % Analytical solution for bromide 
    % 
        R = X(1); 
        D = X(2); 
        v = X(3); 
        par(:,4*(i-1)+j) = X 
        Br(:,1) = zeros(n,1); 
        for p = 2:length(time) 
            m = length(time); 
            A1 = 1/2*erfc((R*x-v*time(p))/(2*(D*R*time(p))^0.5)); 
            A2 = 1/2*exp(v*x/D).*erfc((R*x+v*time(p))/(2*(D*R*time(p))^0.5)); 
            A = A1+A2; 
            Br(:,p) = Br0*A; 
        end 
        BrCopt = [time/86400 Br(n,:)'];      % Regroup time and data at output reactor into a matrix 
        clear X 
 
        figure(1) 
        surf(time(2:m)/86500,x,Br(:,2:m)) 
        xlabel('time - [days]') 
        ylabel('depth - [cm]') 
        zlabel('Bromide - [M]') 
        pause(5) 
 
        figure(2) 
        eval(['B = BrC' num2str(j) num2str(i) ';']); 
        eval(['t1 = time' num2str(13+j) num2str(i) ';']); 
        if j == 1; 
            plot(time/86500,Br(n,:)'/1e-3,'b',t1/86400,B,'bo') 
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            hold on 
        elseif j == 2; 
            plot(time/86500,Br(n,:)'/1e-3,'r',t1/86400,B,'ro') 
            hold on 
        elseif j == 3; 
            plot(time/86500,Br(n,:)'/1e-3,'g',t1/86400,B,'go') 
            hold on    
        else 
            plot(time/86500,Br(n,:)'/1e-3,'m',t1/86400,B,'mo') 
            hold on 
        end 
    % 
    % Save calculated values and plot the data 
    % 
        filename = ['BrC' int2str(j) int2str(i) 'opt.txt']; 
        eval(['save ' filename ' BrCopt -ascii']); 
    end 
    title('Bromide Tracer Breakthrough Curves in Reactors C1, C2, C3, and C4') 
    xlabel('time - [days]') 
    ylabel('Bromide - [mM]') 
    legend('C1','C2','','C3','','C4','') 
end 
% 
% Save parameters R, D, and v 
% 
save paramRDv.txt par –ascii 
 
Subroutine funPFR :  
% Subroutine to calculate Bromide breakthrough curve and optimize the parameters 
% R, D, and v to minimize the theoretical and experimental data 
% 
function F = funPFR(X) 
global x time n BrCexp Br0 v 
% Analytical solution for bromide 
R = X(1); 
D = X(2); 
v = X(3); 
Br(:,1) = zeros(n,1); 
for i = 2:length(time) 
     A1 = 1/2*erfc((R*x-v*time(i))/(2*(D*R*time(i))^0.5)); 
     A2 = 1/2*exp(v*x/D).*erfc((R*x+v*time(i))/(2*(D*R*time(i))^0.5)); 
     A = A1+A2; 
     Br(:,i) = Br0*A; 
end 
F = Br(n,:)'-BrCexp; 
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B.2  Reactive transport model 

 The Matlab™ code for the one-dimensional reactive transport model used to 

determine net production/consumption rates in the flow-through reactors in Chapter 5.  

The main routine “ratecalc”  and subroutine funPFRRate are described below. 

% This program calculates the net rate of reactions of NO3
-, NO2

-, PO4
3-, G2P, and dissolved 

uranium in a PFR using Gemuchten's analytical solutions. It optimizes the difference between the 
data and the model for two cases:  zero-order production (k>0) or consumption (k<0). k is in fact 
the reaction rate 
% 
clear 
global x ta n Cexp C0 Ci v D R 
 
Q = 1.2;               % Measured flow rate - [ml/hr] 
fi = 0.49;             % Porosity of the soil 
A = (3.86/2)^2*pi;     % Surface area of the Reactor - [cm^2] 
L = 8;                  % Length of the Reactor - [cm] 
U0 = 200e-6;     % Concentration of U(VI) introduced in the reactor at t=0 
G0 = 0.01; 
% Load the optimized parameters using Bromide as tracer 
load paramRDv.txt -ascii 
R = paramRDv(1,:);  % Retardation coefficient optimized with Br- 
D = paramRDv(2,:);  % Difussion coefficient optimized with Br- - [cm2/sec] 
v = paramRDv(3,:);  % Advection optimized with Br- [cm/s]  
% Load the data for each reactor 
load R14NO2NO3.txt -ascii 
load R14Udiss.txt -ascii 
load R14PO4.txt -ascii 
load R15NO2.txt -ascii 
load R15NO3.txt -ascii 
load R15Udiss.txt -ascii 
load R15PO4.txt -ascii 
load R15G2P.txt -ascii 
load R16NO2.txt -ascii 
load R16NO3.txt -ascii 
load R16Udiss.txt -ascii 
load R16PO4.txt -ascii 
load R16G2P.txt -ascii 
load R17NO2.txt -ascii 
load R17NO3.txt -ascii 
load R17Udiss.txt -ascii 
load R17PO4.txt -ascii 
load R17G2P.txt -ascii 
 
t14NO2 = [0;R14NO2NO3(:,1)]*86400;    % Reactor 14 - Time vector corrected for t0 = 0 - [sec] 
t14NO3 = [0;R14NO2NO3(:,3)]*86400; 
t14U = [0;R14Udiss(:,1)]*86400; 
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t14P = [0;R14PO4(:,1)]*86400; 
 
t15NO2 = [0;R15NO2(:,1)]*86400;           % Reactor 15 - Time vector corrected for t0 = 0 - [sec] 
t15NO3 = [0;R15NO3(:,1)]*86400; 
t15U = [0;R15Udiss(:,1)]*86400; 
t15P = [0;R15PO4(:,1)]*86400; 
t15G = [0;R15G2P(:,1)]*86400; 
 
t16NO2 = [0;R16NO2(:,1)]*86400;            % Reactor 16 - Time vector corrected for t0 = 0 - [sec] 
t16NO3 = [0;R16NO3(:,1)]*86400; 
t16U = [0;R16Udiss(:,1)]*86400; 
t16P = [0;R16PO4(:,1)]*86400; 
t16G = [0;R16G2P(:,1)]*86400; 
 
t17NO2 = [0;R17NO2(:,1)]*86400;            % Reactor 17 - Time vector corrected for t0 = 0 - [sec] 
t17NO3 = [0;R17NO3(:,1)]*86400; 
t17U = [0;R17Udiss(:,1)]*86400; 
t17P = [0;R17PO4(:,1)]*86400; 
t17G = [0;R17G2P(:,1)]*86400; 
 
NO214 = [0;R14NO2NO3(:,2)]*1e-3;          % Reactor 14 - NO2, NO3, U(VI), PO4 data 
NO314 = [0;R14NO2NO3(:,4)]*1e-3; 
U14 = [0;R14Udiss(:,2)]*1e-6; 
P14 = [0;R14PO4(:,2)]*1e-3; 
 
NO215 = [0;R15NO2(:,2)]*1e-3;                 % Reactor 15 - NO2, NO3, U(VI), PO4, G2P data 
NO315 = [0;R15NO3(:,2)]*1e-3; 
U15 = [0;R15Udiss(:,2)]*1e-6; 
P15 = [0;R15PO4(:,2)]*1e-3; 
G15 = [0;R15G2P(:,2)]*1e-3; 
 
NO216 = [0;R16NO2(:,2)]*1e-3;                 % Reactor 16 - NO2, NO3, U(VI), PO4, G2P data 
NO316 = [0;R16NO3(:,2)]*1e-3; 
U16 = [0;R16Udiss(:,2)]*1e-6; 
P16 = [0;R16PO4(:,2)]*1e-3; 
G16 = [0;R16G2P(:,2)]*1e-3; 
 
NO217 = [0;R17NO2(:,2)]*1e-3;                 % Reactor 17 - NO2, NO3, U(VI), PO4, G2P data 
NO317 = [0;R17NO3(:,2)]*1e-3; 
U17 = [0;R17Udiss(:,2)]*1e-6; 
P17 = [0;R17PO4(:,2)]*1e-3; 
G17 = [0;R17G2P(:,2)]*1e-3; 
% 
% Plot the data and ask for what species and time interval the calculation needs to be done 
% 
p = input('What reactor do you want to determine the reaction rates (14 control, 15 rep 1, 16 rep 
2, or 17 rep 3)?'); 
eval(['t1 = t' num2str(p) 'NO2;']); 
eval(['NO2 = NO2' num2str(p) ';']); 
eval(['t2 = t' num2str(p) 'NO3;']); 
eval(['NO3 = NO3' num2str(p) ';']); 
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eval(['t3 = t' num2str(p) 'U;']); 
eval(['U = U' num2str(p) ';']); 
eval(['t4 = t' num2str(p) 'P;']); 
eval(['P = P' num2str(p) ';']); 
if p == 14 
    R = mean(R);     % Derive the retardation coefficient as the average of the retardation 
coefficients in R15, R16, and R17 
    D = mean(D);    % Derive the diffusion coefficient as the average of the diffusion coefficients 
in R15, R16, and R17 
    v = mean(v);       % Derive the advection as the average of the advection in R15, R16, and R17 
    else 
    R = mean(R(2*p-29:2*p-28));    % Derive the retardation coefficient as the average of the 
retardation coefficients of the two tracer injections in R15, R16, or R17 
    D = mean(D(2*p-29:2*p-28));    % Derive the diffusion coefficient as the average of the 
diffusion coefficients of the two tracer injections in R15, R16, or R17 
    v = mean(v(2*p-29:2*p-28));    % Derive the advection as the average of the advection of the 
two tracer injections in R15, R16, or R17 
    eval(['t5 = t' num2str(p) 'G;']); 
    eval(['G = G' num2str(p) ';']); 
end 
 
figure(1) 
if p ==14                         % This is for Reactor 14 only (the control without G2P) 
    subplot(4,1,1) 
    plot(t1/86400,NO2/1e-3,'sr') 
    title('NO2-, NO3-, and PO43- at the output of PFR') 
    ylabel('NO2- - [mM]') 
    subplot(4,1,2) 
    plot(t2/86400,NO3/1e-3,'vb') 
    ylabel('NO3- - [mM]') 
    subplot(4,1,3) 
    plot(t3/86400,U/1e-6,'^b') 
    ylabel('U(VI) - [uM]') 
    subplot(4,1,4) 
    plot(t4/86400,P/1e-3,'^k') 
    ylabel('PO43- - [mM]') 
    xlabel('Time - [days]') 
else                                % This is for Reactors 15, 16, or 17 
    subplot(5,1,1) 
    plot(t1/86400,NO2/1e-3,'sr') 
    title('NO2-, NO3-, PO43-, and G2P at the output of PFR') 
    ylabel('NO2- - [mM]') 
    subplot(5,1,2) 
    plot(t2/86400,NO3/1e-3,'vb') 
    ylabel('NO3- - [mM]') 
    subplot(5,1,3) 
    plot(t3/86400,U/1e-6,'^b') 
    ylabel('U(VI) - [uM]') 
    subplot(5,1,4) 
    plot(t4/86400,P/1e-3,'^k') 
    ylabel('PO43- - [mM]') 
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    subplot(5,1,5) 
    plot(t5/86400,G/1e-3,'dg') 
    xlabel('Time - [days]') 
    ylabel('G2P - [mM]') 
end 
j = input('What species do you want to determine the rate (NO2 = 1; NO3 = 2; U(VI) = 3; PO43- 
= 4; G2P = 5)?'); 
ti = input('At what time you wish to start the calculation?'); 
tf = input('At what time you wish to finish the calculation?'); 
h = input('Do you want to calculate a net consumption (0) or a production (1) rate'); 
close 
% 
% Analytical solution for 1-D transient reactive transport equation with simple source or sink 
term 
% 
dx = 0.1; 
x = (0:dx:L)';                      % length of the reactor - [cm] 
n = length(x); 
dt = 86400*(tf-ti)/160; 
t = (86400*ti:dt:86400*tf)';           % time - [sec] 
ta = t-t(1);                          % apparent time set to zero to start calculation anywhere 
m = length(ta); 
NO2i = interp1(t1,NO2,t); 
NO3i = interp1(t2,NO3,t); 
Ui = interp1(t3,U,t); 
Pi = interp1(t4,P,t); 
if exist('G') 
    Gi = interp1(t5,G,t); 
    Ciall = [NO2i NO3i Ui Pi Gi]; 
    Ci0all = [0 max(NO3) U0 0 G0];     
    else 
    Ciall = [NO2i NO3i Ui Pi]; 
    Ci0all = [0 max(NO3) 0 0];     
end 
% 
% Optimize k (first order rate constant) to minimize the least square difference between the data 
% and the modeled NO2-, NO3-, U(VI), PO43-, or G2P concentration at the output of the PFR 
% 
Cexp = Ciall(:,j);                  % Experimental data used to fit the parameter 
C0 = Ci0all(j);                      % Initial reactor input concentration at x = 0 
Ci = Ciall(1,j);                      % Initial concentration at all x taken as the first output data 
                                              % from the reactors, assuming the reactors are first homogeneous 
if h == 0                                % Consumption Case 
    k = -1.5e-5;% -1.5e-5 
    LB = -1e-3; %-1e-3          % Format parameters for the non-linear least-square optimization 
    UB = 0; 
elseif h == 1                          % Production Case 
    k = 1.5e-5; 
    LB = 0;                             % Format parameters for the non-linear least-square optimization 
    UB = 1e-3; 
else 
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    break 
end 
X0 = k;                                  % vector containing the parameters to optimize 
[X,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin('funPFRRate',X0,LB,UB);           
% Use a least square non linear method of optimization of the rate of removal or production. 
k = X(1); 
% 
% Calculate analytical solution 
% 
C(:,1) = Ci*ones(n,1); 
for i = 2:length(ta)        % THIS CASE IS FOR C(x,0) = Ci; FLUX CONDITION AT x = 0 AT 
ALL t; AND ZERO-ORDER SOURCE (k NOT 0) - CASE C1 
    A1 = 1/2*erfc((R*x-v*ta(i))/(2*sqrt(D*R*ta(i))))+sqrt(v^2*ta(i)/(pi*D*R))*exp(-(R*x-
v*ta(i)).^2/(4*D*R*ta(i))); 
    A2 = 1/2*(1+v*x/D+v^2*ta(i)/(D*R)).*exp(v*x/D).*erfc((R*x+v*ta(i))/(2*sqrt(D*R*ta(i)))); 
    A3 = A1-A2; 
     
    A4 = (ta(i)/2-R*x/(2*v)-D*R/(2*v^2)).*erfc((R*x-v*ta(i))/(2*sqrt(D*R*ta(i)))); 
    A5 = sqrt(ta(i)/(4*pi*D*R))*(R*x+v*ta(i)+2*D*R/v).*exp(-(R*x-v*ta(i)).^2/(4*D*R*ta(i))); 
    A6 = (ta(i)/2-
D*R/(2*v^2)+(R*x+v*ta(i)).^2/(4*D*R)).*exp(v*x/D).*erfc((R*x+v*ta(i))/(2*sqrt(D*R*ta(i)))); 
    A7 = k/R*(ta(i)-A4-A5+A6); 
    C(:,i) = Ci+(C0-Ci)*A3+A7; 
end 
% 
% Save calculated values and plot the data 
% 
Copt = [t/86400 C(n,:)']; 
filename = ['C' int2str(p) '_Spec' int2str(j) 't' int2str(ti) '_' int2str(tf) 'opt.txt']; 
eval(['save ' filename ' Copt -ascii']); 
figure(1) 
surf(t([1:m])/86500,x,C(:,[1:m])) 
xlabel('time - [days]') 
ylabel('depth - [cm]') 
zlabel('Concentration - [M]') 
 
figure(2) 
if p ==14                       % This is for Reactor 14 only (the control without G2P) 
    subplot(4,1,1) 
    plot(t1/86400,NO2/1e-3,'sr') 
    title('NO2-, NO3-, and PO43- at the output of PFR') 
    ylabel('NO2- - [mM]') 
    hold on 
    subplot(4,1,2) 
    plot(t2/86400,NO3/1e-3,'vb') 
    ylabel('NO3- - [mM]') 
    hold on 
    subplot(4,1,3) 
    plot(t3/86400,U/1e-6,'^b') 
    ylabel('U(VI) - [uM]') 
    hold on     
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    subplot(4,1,4) 
    plot(t4/86400,P/1e-3,'^k') 
    ylabel('PO43- - [mM]') 
    xlabel('Time - [days]') 
    hold on 
    if j == 1; 
        subplot(4,1,1) 
        plot(t/86400,C(n,:)*1e3,'r') 
    elseif j == 2; 
        subplot(4,1,2) 
        plot(t/86400,C(n,:)*1e3,'b') 
    elseif j == 3; 
        subplot(4,1,3) 
        plot(t/86400,C(n,:)*1e6,'b') 
    else 
        subplot(4,1,4) 
        plot(t/86400,C(n,:)*1e3,'k') 
    end 
else                              % This is for Reactors 15, 16, or 17 
    subplot(5,1,1) 
    plot(t1/86400,NO2/1e-3,'sr') 
    title('NO2-, NO3-, PO43-, and G2P at the output of PFR') 
    ylabel('NO2- - [mM]') 
    hold on 
    subplot(5,1,2) 
    plot(t2/86400,NO3/1e-3,'vb') 
    ylabel('NO3- - [mM]') 
    hold on 
    subplot(5,1,3) 
    plot(t3/86400,U/1e-6,'^b') 
    ylabel('U(VI) - [uM]') 
    hold on 
    subplot(5,1,4) 
    plot(t4/86400,P/1e-3,'^k') 
    ylabel('PO43- - [mM]') 
    hold on 
    subplot(5,1,5) 
    plot(t5/86400,G/1e-3,'dg') 
    xlabel('Time - [days]') 
    ylabel('G2P - [mM]') 
    hold on 
    if j == 1; 
        subplot(5,1,1) 
        plot(t/86400,C(n,:)*1e3,'r') 
    elseif j == 2; 
        subplot(5,1,2) 
        plot(t/86400,C(n,:)*1e3,'b') 
    elseif j == 3; 
        subplot(5,1,3) 
        plot(t/86400,C(n,:)*1e6,'b') 
    elseif j == 4; 
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        subplot(5,1,4) 
        plot(t/86400,C(n,:)*1e3,'k') 
    else 
        subplot(5,1,5) 
        plot(t/86400,C(n,:)*1e3,'g') 
    end 
end 
disp('k = ') 
disp(k*86400) 
disp('mole/day') 
 
Subroutine funPFRRate: 
 
% Subroutine to calculate rate of reaction for NO2-, NO3-, U(VI), PO43-, and G2P 
transformation and optimize the parameter k to minimize the theoretical and experimental data 
% 
function F = funPFRRate(X) 
global x ta n Cexp C0 Ci v D R 
% 
% Analytical solution for Fe(II), SO42-, or H2S 
% 
k = X(1); 
C(:,1) = Ci*ones(n,1); 
for i = 2:length(ta)        % THIS CASE IS FOR C(x,0) = Ci; FLUX CONDITION AT x = 0 AT 
ALL t; AND ZERO-ORDER SOURCE (k NOT 0) - CASE C1 
    A1 = 1/2*erfc((R*x-v*ta(i))/(2*sqrt(D*R*ta(i))))+sqrt(v^2*ta(i)/(pi*D*R))*exp(-(R*x-
v*ta(i)).^2/(4*D*R*ta(i))); 
    A2 = 1/2*(1+v*x/D+v^2*ta(i)/(D*R)).*exp(v*x/D).*erfc((R*x+v*ta(i))/(2*sqrt(D*R*ta(i)))); 
    A3 = A1-A2; 
     
    A4 = (ta(i)/2-R*x/(2*v)-D*R/(2*v^2)).*erfc((R*x-v*ta(i))/(2*sqrt(D*R*ta(i)))); 
    A5 = sqrt(ta(i)/(4*pi*D*R))*(R*x+v*ta(i)+2*D*R/v).*exp(-(R*x-v*ta(i)).^2/(4*D*R*ta(i))); 
    A6 = (ta(i)/2-
D*R/(2*v^2)+(R*x+v*ta(i)).^2/(4*D*R)).*exp(v*x/D).*erfc((R*x+v*ta(i))/(2*sqrt(D*R*ta(i)))); 
    A7 = k/R*(ta(i)-A4-A5+A6); 
    C(:,i) = Ci+(C0-Ci)*A3+A7; 
end 
F = (C(n,:)'-Cexp)*1e3; 
disp('F = ') 
disp(norm(F)) 
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APPENDIX C  

SUPPLEMENTAL INFORMATION FOR CHAPTER 5 
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Figure C. 1  U distribution in soil from Reactor 1 of the high pH flow-through reactor 
experiments as determined by sequential extraction.  
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Figure C. 2 Phosphate distribution in soil from Reactor 1 of the high pH flow-through 
reactor experiments as determined by sequential extraction.   
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Figure C. 3 U distribution in soil from Reactor 2 of the high pH flow-through reactor 
experiments as determined by sequential extraction.  
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Figure C. 4  Phosphate distribution in soil from Reactor 2 of the high pH flow-through 
reactor experiments as determined by sequential extraction.   
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Figure C. 5  U distribution in soil from Reactor 3 of the high pH flow-through reactor 
experiments as determined by sequential extraction.   
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Figure C. 6  Phosphate distribution in soil from Reactor 3 of the high pH flow-through 
reactor experiments as determined by sequential extraction.     
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Figure C. 7  U distribution in soil from Reactor 1 of the low pH flow-through reactor 
experiments as determined by sequential extraction. 

 

0-1 1-2 2-3 3-4 4-5 5-7 7-8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

direction of flow

Σ 
PO

43-
 µ

m
ol

 g
-1

distance from bottom of core (cm)

 exchangeable                        AcOH-extracted
 hydroxylamine extracted        bound to OM
 residual  total PO4

3-

 
Figure C. 8   Phosphate distribution in soil from Reactor 1 of the low pH flow-through 
reactor experiments as determined by sequential extraction.   
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Figure C. 9  U distribution in soil from Reactor 2 of the low pH flow-through reactor 
experiments as determined by sequential extraction. 
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Figure C. 10  Phosphate distribution in soil from Reactor 2 of the low pH flow-through 
reactor experiments as determined by sequential extraction.   
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Figure C. 11  U distribution in soil from Reactor 3 of the low pH flow-through reactor 
experiments as determined by sequential extraction. 
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Figure C. 12  Phosphate distribution in soil from Reactor 3 of the low pH flow-through 
reactor experiments as determined by sequential extraction.   
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Table C. 1  Transport parameters determined from a one-dimensional advection-
dispersion model for individual reactors. 

Reactor Retardation 
Factor (R) 

Dispersion 
coefficient (D) 

(cm2/sec) 

Advection rate (v) 
(cm/sec) 

High-pH org-P amended 
(averaged) 0.99 9.8 (± 7.5) 10-4 1.1 (± 0.78) 10-4 

 - Reactor 1 0.99 3.3 10-4 6.7  10-5 
 - Reactor 2 0.99 8.2  10-4 4.7 10-5 
 - Reactor 3 0.99 1.8  10-3 1.9  10-4 
High-pH control 0.99 1.7  10-4 1.6  10-5 
Low-pH org-P amended 
 (curve 1) (averaged) 0.99 3.2 (± 2.8) 10-4 6.1 (± 0.8) 10-5 

 - Reactor 1 0.99 1.8  10-4 6.6 10-5 
 - Reactor 2 0.99 6.4  10-4 6.6  10-5 
 - Reactor 3 0.99 1.4  10-4 5.2  10-5 
Low-pH org-P amended 
(curve 2) (averaged) 0.99 1.5 (± 0.7) 10-4 2.9 (± 1.6) 10-5 

 - Reactor 1 0.99 1.2  10-4 1.8  10-5 
 - Reactor 2 0.99 1.0  10-4 4.8  10-5 
 - Reactor 3 0.99 2.3  10-4 2.2  10-5 
Low-pH control 0.99 3.3  10-5 3.6  10-5 
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Figure C. 13  Low pH Reactor 1 continuously amended with 10 mM G2P and 200 µM  
UO2

2+. Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model: (a) G2P and PO4

3-, (b) NO2
- and NO3

-, and (c) and 
UO2

2+.  Positive and negative rates indicate net production and consumption of a species, 
respectively.  Dashed black lines are the modeled bromide breakthrough curves. 
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Figure C. 14   Low pH Reactor 2 continuously amended with 10 mM G2P and 200 µM  
UO2

2+. Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model: (a) G2P and PO4

3-, (b) NO2
- and NO3

-, and (c) 
UO2

2+.  Positive and negative rates indicate net production and consumption of a species, 
respectively.  Dashed black lines are the modeled bromide breakthrough curves. 
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Figure C. 15  Low pH Reactor 3 continuously amended with 10 mM G2P and 200 µM  
UO2

2+. Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model: (a) G2P and PO4

3-, (b) NO2
- and NO3

-, and (c) 
UO2

2+. Positive and negative rates indicate net production and consumption of a species, 
respectively.  Dashed black lines are the modeled bromide breakthrough curves. 
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Figure C. 16  Low pH control reactor continuously amended with 200 µM  UO2
2+. 

Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model: PO4

3-, NO3
-, and UO2

2+.  Positive and negative 
rates indicate net production and consumption of a species, respectively.  Dashed line is 
the modeled bromide breakthrough curve. 
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Figure C. 17  High pH Reactor 1 continuously amended with 10 mM G3P and 200 µM  
UO2

2+. Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model:  PO4

3- and UO2
2+. Positive and negative rates 

indicate net production and consumption of a species, respectively.  Dashed black lines 
are the modeled bromide breakthrough curves. 
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Figure C. 18  High pH Reactor 2 continuously amended with 10 mM G3P and 200 µM  
UO2

2+. Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model:  PO4

3- and UO2
2+.  Positive and negative rates 

indicate net production and consumption of a species, respectively.  Dashed black line is 
the modeled bromide breakthrough curves. 
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Figure C. 19 High pH Reactor 3 continuously amended with 10 mM G3P and 200 µM  
UO2

2+. Experimental (open circles) vs. modeled (solid lines) data from a one-dimensional 
advection-dispersion transport model:  PO4

3- and UO2
2+.  Positive and negative rates 

indicate net production and consumption of a species, respectively.  Dashed black line is 
the modeled bromide breakthrough curves. 
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Figure C. 20 High pH U-control reactor continuously amended with 200 µM UO2
2+. 

Experimental (open circles) vs. modeled (solid lines) UO2
2+ data determined from a one-

dimensional advection-dispersion transport model.  (Positive and negative rates indicate 
net production and consumption of a species, respectively.  Dashed black line is the 
modeled bromide breakthrough curves. 
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