
The Package Blueprint: visually analyzing and

quantifying package dependencies

Hani Abdeen, Stéphane Ducasse, Damien Pollet, Ilham Alloui, Jean-Rémy

Falleri

To cite this version:

Hani Abdeen, Stéphane Ducasse, Damien Pollet, Ilham Alloui, Jean-Rémy Falleri. The Package
Blueprint: visually analyzing and quantifying package dependencies. Science of Computer
Programming, Elsevier, 2014, 89 (Part C), pp. 298-319. <10.1016/j.scico.2014.02.016>. <hal-
00957695>

HAL Id: hal-00957695

https://hal.inria.fr/hal-00957695

Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47279704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00957695

The Package Blueprint: visually analyzing and quantifying package dependencies✩

Hani Abdeena, Stéphane Ducassea,∗, Damien Polleta, Ilham Alloui1, Jean-Rémy Falleric

aRMoD INRIA Lille Nord Europe, LIFL, CNRS UMR 8022
bLISTIC Université de Savoie, France

cUniv. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract

Large object-oriented applications are structured over many packages. Packages are important but complex structural entities that

are difficult to understand since they act as containers of classes, which can have many dependencies with other classes spread

over multiple packages. However to be able to take decisions (e.g., refactoring and/or assessment decisions), maintainers face the

challenges of managing (sorting, grouping) the massive amount of dependencies between classes spread over multiple packages.

To help maintainers, there is a need for at the same time understanding, and quantifying, dependencies between classes as well as

understanding how packages as containers of such classes depend on each other.

In this paper, we present a visualization, named Package Blueprint, that reveals in detail package internal structure, as well as the

dependencies between an observed package and its neighbors, at both package and class levels. Package Blueprint aims at assisting

maintainers in understanding package structure and dependencies, in particular when they focus on few packages and want to

take refactoring decisions and/or to assess the structure of those packages. A package blueprint is a space filling matrix-based

visualization, using two placement strategies that are enclosure and adjacency. Package blueprint is structured around the notion

of surfaces that group classes and their dependencies by their packages (i.e., enclosure placement); whilst surfaces are placed next

to their parent node which is the package under-analysis (i.e., adjacency placement). We present two views: one stressing how an

observed package depends upon the rest of the system and another stressing how the system depends upon that package.

To evaluate the contribution of package blueprint for understanding packages we performed an exploratory user study comparing

package blueprint with an advanced IDE. The results shows that users of package blueprint are faster in analyzing and assessing

package structure. The results are proved statically significant and they show that package blueprint considerably improve the

experience of standard browser users.

Keywords: Software engineering, Software comprehension, Software maintenance, Software visualisation

1. Introduction

To cope with the complexity of large object-oriented soft-

ware, applications are structured in packages. Packages are

units of reuse and deployment, and they play different devel-

opment roles (e.g., class containers, architectural elements...)

[1]. Well structured packages ease software system evolution

by supporting the replacement of its parts without impacting

the complete system [2, 3]. But as systems inevitably become

more complex, their package structure often drifts [4]. As a

consequence, it is important to maintain the structure of pack-

ages [5, 6].

In literature, there exist many approaches that support auto-

mated software remodularization [5, 7, 8]. Despite their suc-

cess in producing alternative structures, the new modulariza-

✩This article makes heavy use of colors. To better understand the ideas

presented in this paper, please read a colored version of it.
∗Corresponding author

Email addresses: hani.abdeen@inria.fr (Hani Abdeen),

stephane.ducasse@inria.fr (Stéphane Ducasse),

damien.pollet@inria.fr (Damien Pollet),

ilham.alloui@univ-savoie.fr (Ilham Alloui), falleri@labri.fr

(Jean-Rémy Falleri)

tions they propose remain difficult to understand and assess.

It is thus important to assist maintainers in understanding de-

tailled dependencies between classes, as well as understanding

how packages as containers of such classes depend on each

other.

Before going further, we define a package as an entity con-

taining classes. It may or may not have package import dec-

larations and may be or may not be associated with a names-

pace. This definition captures the situation of a large number

of object-oriented languages. Classes can depend on each other

via different kinds of dependencies. By definition, there is a di-

rect dependency from a class A to another one B if A references

B (i.e., A uses B as type of some variable or A methods invoke

methods of B).We refer to references that goes from A to B as

outgoing references of A and/or incoming references to B. In

the same vein, we say that A is the referencing class and B is

the referenced one.

Inter-classes dependencies can exist among classes belong-

ing to the same package (internal package dependencies) or

belonging to different packages (external package dependen-

cies). Hence, we say that packages depend on each others via

those external package dependencies. Thus, the organization

Preprint submitted to Journal ... March 10, 2014

of packages, with the classes they contain and the dependen-

cies among the classes, can be thought of as a compound graph

with one type of dependencies among the classes, namely ref-

erences. Roughly speaking, packages can thus be thought of as

clients and/or providers of classes [3]. We say that there is a

client-provider relationship between two packages P1 and P2,

if there is at least a class A in P1 that depends on at least another

class B in P2.

Several articles proposed visualizations that provide informa-

tion on packages and their dependencies, by visualizing met-

rics values, package connectivity and cycles, package evolution

or the common usage of package classes (e.g., [9–17]). Rele-

vant body of existing work on software understanding is based

on visualization approaches [18, 19], in particular, on node-

link visualizations [20–23]. On one hand, some researchers

explored matrix-based representation of graphs [24, 25] or of

software [26] and its evolution [27]. On another hand, impor-

tant progress have been made to support navigation over large

graphs and to propose scalable and sophisticated node-link vi-

sualizations for visualizing the connectivity graph of software

entities [23, 28–30]. However, while these approaches are valu-

able, the proposed visualizations are still not adapted to repre-

sent the dependencies induced by classes while being grouped

per package communication, nor do they show the importance

and impact of classes (and/or packages) according to their de-

pendencies with other classes (and/or packages). These visual-

izations fall short of revealing, at the same time, package struc-

ture, internal dependencies, their external dependencies at both

class and package levels as well as giving a first estimate of the

strength of such dependencies.

Paper Contribution

To address the limitations, outlined above, we propose

a space filling matrix-based visualization, namely Package

Blueprint, using two placement strategies that are enclosure and

adjacency[17]. A package blueprint reveals the package struc-

ture, its internal dependencies (i.e., package cohesiveness), as

well as the distribution of its external dependencies with classes

outside it, while being grouped by their packages. Package

blueprint is structured around the notion of surfaces. A pack-

age blueprint’ surface groups classes and their dependencies by

their package (i.e., enclosure placement); whilst the package

blueprint’ surfaces are placed next to their parent node which is

the package under-analysis (i.e., adjacency placement). How-

ever, package blueprint is a hybrid visualization because depen-

dencies are represented as nodes grouped into their correspond-

ing surfaces. We present two specific views that have the same

concepts but one stressing the references made from a package

to the other packages (outgoing references), and another stress-

ing the references made to a package by the rest of the system

(incoming references).

We show the usefulness of package blueprint to analyze and

understand package structure, and to address the limitations

outlined above of existing software visualizations, through sev-

eral examples taken from real-world software systems. To eval-

uate the contribution of package blueprint for understanding

packages we performed a comparative study comparing the use

of package blueprint visualization versus an advanced IDE. The

results shows that, overall, users of package blueprint are faster.

Package blueprint users performed very well when the task in-

volves a complete identification of all dependencies for a pack-

age or a class. Tasks involving more judgment, like identify-

ing important classes or explaining package design are less im-

pacted and standard browser users performed equally well, as

they spent more time reading the code, which could give them

a better understanding of some inner workings of the system,

not just of dependencies between packages and classes. The

results promise the usefulness of package blueprint visualiza-

tion as a complementary tool to standard code browsers, they

show that package blueprint could improve the experience of

standard browser users.

The work presented in this article extends our previous pa-

per [31] in the following points: (a) visualization improvement

based on the feedback and conclusion of the exploratory study,

(b) additional and complementary visualization for incoming

references (besides that of outgoing references), (c) a detailed

presentation of a case study and (d) a separate comparative

study analyzing the use of package blueprint versus standard

IDE support to perform package maintenance tasks.

Section 2 presents the challenges in supporting package un-

derstanding, and summarize the properties expected for effec-

tive visualizations. Section 3 presents how related works are

positioning themselves in this context. Section 4 presents the

structuring principles of a package blueprint, which are then

declined to support an outgoing reference and an incoming ref-

erence views. Section 5 presents the distinct views of package

blueprint at work and detail the different information that can

be extracted from package blueprint. The next section presents

a comparative study of package blueprint vs. IDE use. In Sec-

tion 7, we discuss our visualizations and position them w.r.t.

related work before concluding.

2. Challenges in Understanding Packages

Packages are complex entities: as they provide another ab-

straction layer they are not at the same conceptual level than

classes. Packages reflect several organizations: they are units

of code deployment or units of code ownership; they can also

encode team structure, architecture and stratification [1]. Good

packages should have only a few clear dependencies to other

packages [32–34]. However, as mentioned by R. Martin, im-

porting a class equals importing its complete package and its

dependencies recursively [1], therefore importing two classes

from the same package is really different from importing them

from two different packages. This is a key point, because be-

sides creating references in the system, classes should also be

assessed in the context of deployment, within their packages. In

practice, some packages may have either a lot of references to

other packages or only a couple of them. In summary, there is

no canonical form for packages but a diversity of configurations

that the maintainers should understand and assess.

In this section, we stress some important points related to

package understanding. We sketch some typical maintenance

2

tasks and provide an overview of data that can help to charac-

terize packages.

2.1. High-Level Maintenance Package Tasks

When maintaining an application, developers face tasks spe-

cific to packages. Here we present some key activities.

Package loading/unloading. Knowing whether a package im-

ports too many other packages is one of the first clues to a main-

tainer trying to reduce code bloat. Typical questions are “can

we easily load this package?” and “what are the other ones

that should be loaded as well?”. Similarly, “can we unload this

package?” is an important question in presence of class bloat.

For example, this happens for the Java default runtime which

often does not fit the memory constraints of small devices.

Repackaging. The corollary to the previous task is to know

whether it is possible to repackage a set of classes to mini-

mize external dependencies. In such a context, understanding

which classes are the most used internally or the most refer-

enced by other packages is key. But, to help understand the

package relations, this information on class references should

be presented at the granularity level of a package. Repackaging

involves identifying misplaced classes in a package and unnec-

essary dependencies to other packages. If a class has a lot more

references to different packages compared to other classes of

the package, it may be an indication that the class should be

moved out. Similarly, understanding the cohesion of a package

helps maintainers know whether the package can be split.

Architecture violations. Applications often follow architec-

tural patterns, e.g., a layered structure. When developers in-

tegrate changes, a key question they face is assessing the im-

pact of each change on the system architecture. For instance,

a change should not make a core package depend on its exten-

sions, nor make a database layer depend on UI layer.

2.2. Quantitative and Qualitative Characteristics

To support the understanding of dependencies between pack-

ages and classes, it is important to be able to characterize some

key aspects. Based on our experience, we identify two main

aspects: the general communication size and package cohe-

sion/couplings. Even thought there is no accepted metrics for

packages, getting a first impression is important.

Communication size. What is the general size of a package in

terms of classes, inheritance definitions, internal and external

class references, provider and client packages? This is useful to

answer questions like “do we have only a few classes commu-

nicating with the rest of the system?”

Cohesion and coupling. Transforming or evolving an applica-

tion follows natural boundaries defined by coupling and co-

hesion [33, 35]. One important challenge is then to under-

stand how the cohesion of a given package relates to its cou-

pling. Maintaining package structure sometimes involves de-

ciding whether to split or replace a package; for this, it is impor-

tant to identify misplaced classes, classes that are tightly cou-

pled within the package and those that are tightly coupled with

classes of other package.

2.3. Questions characterizing class/package relations

We conclude that to understand an observed package and as-

sist maintainers to take decisions about the package structure,

there is a need for capturing the following information phrased

as questions that a package maintainer asks

Size: What is the size and complexity of the observed pack-

age in terms of number of its classes and number of its

provider/client packages and/or classes?

Cohesion, Coupling and Repackaging: How the observed

package classes depend on each others? How package

classes depend on classes of other packages (and/or how

classes of other packages depend upon them)? What

classes of the observed package have more/less references

than other classes inside it? Do those classes participate

to the package cohesiveness or cause high coupling with

other packages?

Loading/Unloading and Architecture Violation: What are

the provider/client packages to the observed package?

Which ones belong (or do not) to the scope of the applica-

tion under-analysis? What classes of its provider packages

can have a direct impact on it and to which extent? Which

client (or provider) packages to the observed package are

more/less important than others in terms of communica-

tion size and number of classes involved in the communi-

cation?

3. Related Work

In this section we overview relevant generic graph visual-

izations that could be mapped to the problem of understanding

package structure and dependencies, then we look at relevant

visualizations that are specific to the problem of understand-

ing packages. We briefly discuss their limitations for revealing

package structure and dependencies at both package and class

levels.

3.1. Generic Graph Visualization

There is an extensive body of work related to the visualiza-

tion of graphs [17]. In this section we discuss relevant generic

graph visualizations. We briefly outline their limitations for

characterizing package structure and quantifying the dependen-

cies within and among packages.

Henry et al. propose NodeTrix, a hybrid graph visualization

mixing matrices for local details and node–link for the overall

structure [24]. It is tailored for the globally sparse but locally

3

dense graphs of social networks. One advantage is that it can

present both incoming and outgoing references in a single view.

However, it is not clear how NodeTrix can be mapped to show

the distribution of dependencies with, at the same time, two

types of node (packages and classes). One could represent each

package with a matrix which shows internal references between

classes, and links connecting classes for external references be-

tween packages. This is intuitive but defeats the purpose of

NodeTrix: as shown in this paper, some packages are internally

sparse, and some have dense external dependencies spread over

large number of packages. Or one could follow NodeTrix prin-

ciples and only focus on the topology of the class dependency

graph. Then the package structure is lost.

Abello and van Ham present Matrix Zoom, a hybrid visu-

alization for hierarchical sets of data, using matrices only for

fine-grained details [25]. The user navigates into the hierarchy

and can get some details on the focused subset in the matrix.

We believe both approaches have different requirements which

could be complementary. Matrix Zoom offers a single scalable

view of the whole dataset. This implies for example that all

packages of the studied system are displayed at once, even if

few packages have incoming/outgoing dependencies, resulting

in lost space in the matrix. However, we believe Marix Zoom

can not be adapted to display the distribution of dependencies

at both class and package levels.

Holten proposed Hierarchical Edges Bundles (HEB), an ap-

proach to improve the scalability of large hierarchical graph vi-

sualizations. Edges (links) are bundled together based on hi-

erarchical information; color mapping is used to represent the

edge types while saturation mapping and blending are used to

represent the edge directions [23, 30]. The technique has been

applied to see the communication between classes grouped by

packages in large systems and the bundling of edges produces

less cluttered display. However, HEB is not adapted to show at

the same time the internal and external package dependencies.

Moreover, due to occurrences of many link crossings between

nodes that are positioned in circle in HEB, it is not easy to iden-

tify all the packages (and classes) involved in a given communi-

cation and to identify patterns of inter packages dependencies.

This limit has been also reported by Henry et al [24].

3.2. Package Visualization

In literature, there are several articles provide or visualize in-

formation on software files, classes and/or packages. Many of

these approaches address software co-change, looking at cou-

pling from a temporal perspective [19, 27, 36–39], whereas in

this paper we focus on the static structure of dependencies.

Chuah and Eick use rich glyphs to characterize software ar-

tifacts and their evolution (number of bugs, number of deleted

lines, kind of language...) [9]. In particular, the time wheel ex-

ploits preattentive processing, and the infobug presents many

different data sources in a compact way. D’Ambros et al. pro-

pose an evolution radar to understand the package coupling

based on their evolution [10]. The radar view is effective at

identifying outliers but does not detail the structure. In the same

vein, to present the evolution of properties over time, Voinea et

al. [27] propose a view of CVS repositories where each ver-

sion is represented by a column and colors span over multiple

versions to represent a given property over time. Ducasse et al.

present Butterfly [11], a radar-based visualization that can be

used to present the values of several package metrics (e.g., the

number of classes, the number of incoming and outcoming de-

pendencies for a package), but only gives a high-level abstract-

ness of package structure. In a similar approach, Pinzger et al.

use Kiviat diagrams to present the evolution of package met-

rics [13]. Churcher et al. used 3D to visualize class cohesion

[21]. It is not clear that their technique can help for large classes

and can be applied to packages. In particular the structure of

communication around communicating packages seems to be

difficult to map to their approach. Using 3D on one hand can

help having more information available but on the other hand it

adds new problems like occlusion. In a similar approach, An-

drian Marcus et al. [26] propose a matrix-based representation

of files. Each dot represents a line and its color conveys one

semantics information (if statement for example). Then they

propose a 3D version of the matrix-based structure. The idea

behind the matrix-based presentation is to be able to offer a

compact representation of code. While those visualizations are

valuable, they are not adapted to present the static structure of

package dependencies.

Storey et al. [14] offer multiple top-down views of an ap-

plication, but these views do not scale very well with the num-

ber of dependencies. Particularly if both classes and packages

are displayed, then due to occurrences of many link crossings

between nodes it is very difficult to identify packages and/or

classes involved in a given communication.

Sangal et al. [40] adapt the dependency structure matrix

from the domain of process management to analyze software

architecture. Lungu et al. guide exploration of nested pack-

ages based on patterns in the package nesting and in the de-

pendencies between packages [12]; their work is integrated in

Softwarenaut and adapted to system discovery. Abdeen et al.

provide the Package Fingerprint visualization [16, 41]. They

focus on the contextual cohesion of a package, the co-use and

co-usage of package classes. However, although the visualiza-

tions of Abdeen et al., Sangal et al. and Lungu et al. are good

for fast overview on inter-package connectivity, package nest-

ing and software architecture, they can not be adapted for vi-

sualizing internal package dependencies and the distribution of

dependencies at class level.

Müller et al. [29] propose the Subversion Statistics Sifter

visualization for exploring the structure and evolution of Sub-

version repositories, with respect to both developer activity and

source code changes. Their visualization is designed as a bi-

ological tree, in which the repository under-analysis represent

the root node. The tree branches represent the path folders con-

tained in the repository.However, it is not clear how Subversion

Statistics Sifter visualization can be mapped to show the distri-

bution of package dependencies with at class level. One could

represent the package under-analysis as the root node, whilst

referenced packages and their classes are respectively repre-

sented by inner nodes and tree leaves. Then the package struc-

ture (classes defined in it and its internal dependencies) is lost.

4

Moreover, using this map, one can not capture the communi-

cation size between the package and its provider packages, nor

identify the package classes involved into a communication.

Those approaches, while valuable, fall short of providing a

fine-grained view of packages that would help in capturing in-

formation that we outlined in Section 2.3.

4. The Package Blueprint for Understanding Packages

This section presents the principles and layouts of our visu-

alization, Package Blueprint, that we propose to assist main-

tainers in understanding package structure and characteristics.

Before going in the details of the package blueprint views we

present the design constraints for our visualization.

4.1. Design Constraints for Visualization

In addition to the challenges raised by package understand-

ing (Section 2), the visualization itself raises challenges. Sev-

eral works identified the characteristics that an efficient visu-

alization should hold [42–44]. We stress that our visualization

should take into account the following properties:

Good mapping of phenomena of interest. We expect the vi-

sualization to highlight the general tendency of a package

in terms of its size, internal and external dependencies and

client/provider packages (and classes). Furthermore, we ex-

pect the visualization to reveal package structure and the dis-

tribution of its internal and external dependencies at class level.

Precisely, we expect the visualization to spot-out classes, de-

pendencies or packages that stand out in the context of an ob-

served package. We stress that we do not target a visualization

to present all the packages of a large system in one screenshot.

It is important to notice that we target a visualization that re-

veals, in details, the whole structure of an observed package,

along with its detailed relations with its provider (and/or client)

packages.

Good readability and low visual complexity. Although the vi-

sualization should offer a lot of information, it should not be

complex to analyze. A primary concern for graph visualiza-

tion is the choice between node–link layout and matrix-based

representation. Ghoniem et al. [28, 45] performed a compar-

ison study on the readability of node–link and matrix-based

representations. According to the study, Node–link represen-

tations are more intuitive and compact than matrix-based ones;

and are suitable for small and sparse graphs. However, matrix-

based representations, unlike node-link ones, do not have the

problems of edge crossing and node overlappling. As a conse-

quence, matrix-based representations are more suitable for de-

tailed analysis of dense graphs. Nevertheless, they may suffer

from scalability compared to node-link representations.

Since we target a visualization to reveal in details and clearly

the dependencies distribution for an observed package, and this

independently of the density of package dependencies, we be-

lieve matrix-based representation is more suitable for our visu-

alization than node-link one. Keep in mind that we do not tar-

get a visualization to present all the packages of a large system

in one screen-shot. Rather, we target a visualization to assist

maintainers in their refactoring and assessment decisions when

working on a subsystem. Maintainers face such decisions when

they are in contact to an observed package or a group of few

packages (subsystem). This considerably lowers the stress on

the scalability problem of matrix-based representation of our

approach.

Moreover, to reduce visual complexity, we target a visualiza-

tion that reuses the same visual conventions in all its parts and

views. From that perspective, by design this visualization does

not support semantic-zooming, but geometric-zooming.

Preattentive Visualization. Despite the quantity of information

to be offered by our visualization, we expect a visualization

to provide also a first impression of a package and its context,

in one glance. Therefore, we would like to exploit the gestalt

principles of visualization and preattentive processing1 as much

as possible to help spotting important information [44, 46–

48]. The preattentive visual features that are used in pack-

age blueprints are “length”, “width”, “filed”, “intensity” and

“color” (Sections 5.2 and 5.3 summarize how these features are

employed).

Simple navigation and interaction. The visualization should

enable maintainers to interact with it, to select and mark classes

and/or packages. An important point is to be able to identify a

class or the communication between packages across multiple

packages. It should enable maintainers to collect more infor-

mation from several packages.

4.2. Package Blueprint basic principles

A package blueprint shows the observed package as a rect-

angle, subdivided into parts representing the package’ “contact

areas”, that we name surfaces (see Figure 1):

Surface. Each surface conceptually represents the distribution

of the observed package dependencies, that are either in-

ternal to the observed package itself (the “head” surface)

or external pointing to (or coming from) another package

(a “body” surface).

Head surface. So called the “head”, it is reserved to repre-

sent the size of the observed package and the dependencies

among its classes. Thus, the head of a package blueprint

represents the communication size between the classes of

the observed package itself (i.e., the package cohesive-

ness). The head surface is more or less tall, according to

the number of classes involved in the observed package.

1Researchers in psychology and vision have discovered a number of visual

properties that are preattentively processed. They are detected immediately by

the visual system: viewers do not have to focus their attention on a specific

region in an image to determine whether elements with the given property are

present or absent. An example of a preattentive task is detecting a filled cir-

cle in a group of empty circles. Commonly used preattentive features include

length, width, size, shape, filed, curvature, intensity, hue, orientation, motion,

and depth of field. However, combining them can destroy their preattentive

power (in a context of filled squares and empty circles, a filled circle is usually

not detected preattentively). Some of the features are not adapted to our needs.

For example, we do not consider motion as applicable.

5

Outgoing references reading

head

body

Incoming references reading

headbody

package name

package name

Figure 1: To distinguish between the two main semantics (incoming and out-

going) we use the main orientation of the package blueprint. In both case the

important details are still read first; in the incoming view, the references are

made by the external classes, at the top, to the internal classes below them.

P2

A2

B2

P3

A3

B3

C3

P1

C1

A1

B1

D1

E1

F1

I1

G1

H1

P4

A4

I1H1

H1 I1

most—least referencing
internal classes

A4

B1

A2

B2 D1

E1

H1

B1

C3

B3

A1

E1

C1

external
referenced

classes

internal
classes

h
e
a
d

b
o
d
y

E1

E1

D1

C1

A1

I1

G1

F1

C1 A1 B1D1

internal
references

external
references

P1

D1

C1

E1

E1

E1

A3 E1 D1

P3 surface

P2 surface

P4 surface

references

Figure 2: Detailed layout of the outgoing references blueprint for P1.

Body surfaces. For other surfaces, different than the “head”,

that we name the “body” surfaces, each one conceptu-

ally represents the dependencies between the observed

package and another one. Hence, all body surfaces (the

body) of a package blueprint represent(s) the communi-

cation size between the observed package and the rest of

its system (i.e., the package coupling); whilst a body sur-

face represents the communication size between the ob-

served package and another one. Each body surface is

more or less tall, according to the strength of the commu-

nications between the observed package and the package

represented by that surface.

4.3. Outgoing Reference Blueprints

Package blueprint is a matrix-based representation of the

package dependencies. An outgoing references blueprint, as

demonstrated in Figure 2, is organized as follows:

Rows. They represent the package classes, and other classes

that are referenced by the package classes, namely external ref-

erenced classes. These classes are placed in the first, left-most,

column of the matrix and we refer to them by classes nodes.

Columns. They represent the referencing classes packaged

within the observed package. By definition, they are the pack-

age classes that point outgoing references to other classes, ei-

ther inside or outside the observed package. Each referencing

class has its reserved column to the right of the left-most one.

Cells. A filled cell represents a reference from the column

class (referencing class) to the row class (referenced class).

Hence, we refer to filled cells by reference nodes.

Enclosures (Surfaces). They group the matrix rows (i.e.,

represented classes) by their packages. Recall that the first sur-

face, the head, groups the classes of the observed package itself,

and thus it represents the observed package and its internal ref-

erences. Hence, reference nodes within the package blueprint

head represent the distribution of internal references to the ob-

served package, whilst those in the package blueprint body rep-

resent the distribution of its external references.

In Figure 2, on one hand the head of the blueprint represents

the internal structure of the observed package P1. For example,

we see that the class E1 internally refers tothe classes D1 and

C1. We can also see that, the classes B1, H1, I1 and F1 are not

referenced inside P1 (no filled cells in their rows); however, H1

and I1 reference G1 (see the filled cells in the row of G1). On

another hand, the surface corresponding to P3 groups the P3’

classes that are referenced by the observed package P1. Those

external referenced classes in P3 are: A3, B3 and C3. The

figure shows that the surface of P3 is taller than the surfaces

of P2 and P4, since the observed package P1 reference more

classes in P3 than in P2 or P4.

The body surface with their rows (i.e., external referenced

classes), and the package blueprint columns (i.e., referencing

classes), are ordered according to the number of their associ-

ated references. To convey quantitative information about the

number of references represented in a reference node (i.e., in a

filled cell), we use color intensity for reference nodes.

Order of Columns. The referencing classes of the observed

package, which represent the package blueprint columns (and

the head rows), are ordered horizontally from left to right (and

vertically from top to down), according to the number of classes

they refer to. Hence classes referencing the most occupy the

nearest columns from the left-most column.

Figure 2 shows that columns of referencing classes are or-

dered as follows: E1 (references 6 classes); D1 (references 3

classes); C1 (references 2 classes); A1, B1, H1 and I1 (each of

them references only one class). Within the head surface, bor-

dered squares highlight the top-left to bottom-right diagonal to

help the users clearly see the symmetry between the horizontal

and vertical orderings.

To show the size and cohesiveness of the obeserved package,

6

internal classes that do not make any reference still occupy a

row at the bottom of the head (e.g., G1 and F1). Both refer-

encing and not referencing classes are shown together with all

internal references among them (e.g., the not referencing G1 is

referenced by H1 and I1).

Order of Surfaces and Rows. We apply the same ordering

principle to the vertical ordering, both for body surfaces (i.e.,

provider packages) and for rows within a body surface (i.e., ex-

ternal referenced classes). For example, Figure 2, the surface

P3 in higher than the P4 because the class of the package P1

refer more classes in P3 than in P4. For provider packages, we

position body surfaces that contain the most referenced classes

the highest. For referenced classes within a body surface, we

order referenced classes from the most referenced at the top, to

the least referenced at the bottom.

Color-Intensity for References Nodes. Color intensity as-

signed to a reference node within a surface conveys the number

of references that go from the referencing class in the cell’s

column to the provider package represented by the cell’s sur-

face. The darker the cell the more references it conveys. Both

intensity and horizontal position represent the number of refer-

ences, but position is computed relatively to the whole package

blueprint, while intensity is relative to each surface.

Colors for Classes Nodes. To distinguish different cate-

gories of classes, we use colors for classes nodes. In the pack-

age blueprint head, we distinguish two categories of the ob-

served package classes: not referencing classes and referenc-

ing ones. Not referencing classes are colored lighter than ref-

erencing ones: e.g., in P1’ package blueprint, Figure 2, the

classes nodes of G1 and F1 are lighter than those of E1 . . . I1. In

the package blueprint body, we distinguish external referenced

classes which are not within the scope of the application un-

der study by coloring them cyan. Those classes can belong to

a third-party framework or to the base system. Otherwise, if a

referenced class is part of the analysis scope, we color it gray

like in the head.

However, to ease interactions with blueprints, users may use

other colors to select and/or mark classes (and/or packages).

The interaction mechanisms with blueprints are explained later.

Note. In diagrams explaining the package blueprint principles,

we use the name of the class inside its assigned nodes to fa-

cilitate the understanding of package blueprint layout; but in

the actual visualization, nodes are just colored boxes having

the same size. However, users can get more information about

nodes/surfaces (e.g., classes/packages names) by interacting

with package blueprint, as we will see in next sections.

Finally, we use package blueprint to display incoming refer-

ences in addition to outgoing references. To display incoming

references, the layout works the same, but we rotate it to easily

distinguish an incoming from an outgoing blueprint —as shown

in Figure 1 and detailed in Section 4.4.

4.4. Incoming Reference Blueprints

These key principles of a package blueprint are realized

slightly differently according to the direction of references (out-

going or incoming). To explore incoming references, we use a

C3

A3

A3 C3B3E1A4

C3

external
referencing

classes
internal
classes

head

body

internal
references

external
references

most—least
referenced
internal classes

P3

C3 C3

B3B3B3

D1

A3 A3

P
1

 s
u

rfa
c
e

P
4

 s
u

rfa
c
e

references

Figure 3: Detailed layout of the incoming reference blueprint (P3, Figure 2).

view similar to the outgoing reference blueprint. In a first ver-

sion of the package blueprint, the two views were visually too

close, and it was difficult to distinguish them in a glance. To

avoid confusion, we needed a layout that was really distinct

while sharing the same visual effect. Therefore, to visually dis-

tinguish blueprints for incoming reference from the ones for

outgoing references, we rotate the layout as shown in Figure 1.

In an incoming reference blueprint, surfaces are juxtaposed

horizontally from right to left: the rightmost surface is the head,

and we place surfaces for client packages to the left, ordered

by decreasing number of referencing classes. As the direction

of references is changed, in an incoming reference blueprint,

the columns are reserved for external referencing classes which

are placed in the top-most row, whilst other rows are reserved

for the package referenced classes. Similarly to the ordering

of an outgoing reference blueprint, in an incoming reference

blueprint the package referenced classes (i.e., rows) are sorted

top-to-bottom by number of references.

Figure 3 shows the incoming reference blueprint of P3 in

the configuration displayed in Figure 2. The blueprint body

has two surfaces: one for P1 and one for P4, because these

packages are the two clients of P3. P1 surface is at the right

of P4 surface, because it involves more referencing classes (E1

and D1, compared to just A4 for P4). C3 is given the topmost

row for internal classes, since it is the most referenced class

within P3 (from A3, B3 and E1), while A3 and B3 are both

referenced from only two classes (A3 from E1 and D1, and B3

from E1 and A4).

5. Analyzing Package Structure With Package Blueprint

Having presented the package blueprint layout, now we can

use package blueprints to analyze package structure and depen-

dencies in real contexts. In this section we show the usefulness

of package blueprint for analyzing package structure and de-

pendencies within the context of a complete application taken

from real object-oriented systems. Relevant questions are for

instance the questions outlined in Section 2.3. For this pur-

pose, we use the outgoing and incoming references blueprints

for analyzing the Squeak Network subsystem, which contains

7

178 classes and 18 packages, making up a library and a set

of applications such as a complete mail reader. However, be-

fore going further in using blueprints for package analysis, we

present the interaction mechanisms that package blueprint of-

fers for its users.

5.1. Interacting with package blueprint

Users of package blueprint can interact with it in three main

ways:

• Select and Mark classes and/or packages. Users can se-

lect and/or mark a class or a surface (the package repre-

sented by that surface). When the user selects a class, the

class nodes representing that class and references nodes

TelNetWordNet

SocksSocket

InternetConfiguration

Password

Url

Url

RFC822

HTTP
Socket

Protocols

Class

Package

Observed Package

annotation legend

HTMLParserEntitiesRemoteDirectory

Url

NetworkKernel

Figure 4: Outgoing Reference Package Blueprint Analysis.

Outgoing reference blueprints of 6 packages of the Network application (annotated screen-

shot - annotations are in italic). Those 6 packages contain 106 classes (class nodes in the

blueprint heads), which expose 326 outgoing references to other classes, intra- and inter-

package (reference nodes); causing 104 inter-package relationships (body surfaces).

Color marks: surfaces of Kernel package in orange ; surfaces of Protocols package

in yellow ; HTTPSocket class in red ; SocksSocket class in blue ; Inter-

netConfiguration class in green ; Password class in fuchsia . Recall that cyan color

“ ” always annotates external referenced classes that do not belong to the application

under-analysis.

NetworkKernel

Figure 5: Use fly-by-help to display class/package information.

The outgoing reference blueprint of NetworkKernel package. The mouse is pointing to a

class-node representing HTTPSocket class and the fly-by-help shows, in addition to the

class name, the name of classes in NetworkKernel that refer to HTTPSocket.

associated to it gets colored in red. The same happens

if the user mark a class with a color. Similarly, the user

can also select a surface (or mark it with a given a color).

Selecting/marking a surface means selecting/marking the

package represented by that surface, so all surfaces in rela-

tion with that package are then selected/marked (see Fig-

ure 4).

• Display class/package information. A user can get in-

formation via a fly-by-help on a class or a package. For

instance, a fly-by-help displays the class/package name

when the mouse is pointing to a class-node/surface in re-

lation with that class/package (see Figure 5). Finally user

can jump to the code in a default code browser.

• Filtering. To support visual information seeking mantra,

we implemented different visual filters that users can use

on demand. For instance, users can filter visual informa-

tion as follows. (a) Display only references that are in the

scope of the studied application and/or in the scope of spe-

cific group of packages. For example, package blueprints

in Figure 4 display all outgoing references, while those in

Figure 6 are filtered to display only references in the scope

of the analyzed application Network. (b) Users can also fil-

ter a package blueprint to display only the package classes

that are involved in communications with other classes. In

outgoing references blueprint, this filter will result in dis-

playing only classes that have outgoing references to other

classes in the package blueprint head. This can reduce the

head size of package blueprints, however, users will lose

information about package size and/or cohesiveness. In

the same way, (c) users may focus only on external pack-

age dependencies, so that package blueprints will be dis-

played without their head surfaces.

5.2. Outgoing Reference Blueprint Analysis

Figure 4 shows the outgoing references blueprints of 6 pack-

ages of the Network application. We selected those packages

8

from Network application since they define and refer to a cen-

tral class in Network, named HTTPSocket (colored in red in

Figure 4). In this section we demonstrate how the outgoing ref-

erences blueprint help in analyzing those packages and answer-

ing important questions about their structure and dependencies,

such as the questions we outlined in Section 2.3.

Large packages. In Figure 4 we can easily spot tall

blueprints, which are HTMLParserEntities, RemoteDictionary

and Protocols. Those packages are ‘large’ in terms of contained

classes and external referenced classes. Looking a bit closer to

those blueprints, on first hand, we see that among those pack-

ages the HTMLParserEntities package is the largest in terms of

contained classes in it –since it has the tallest head. On second

hand, we see that RemoteDictionary and Protocols are large in

terms of external referenced classes –since each of them has a

tall body with relatively small/short head. Hence, these two

packages are characterized as tightly coupled to the outside:

i.e., as demonstrated by the number of surfaces in their body,

those packages reference many other packages.

Small packages, but with complex implementations. By

looking to the head size of blueprints in Figure 4, we find that

the package TelNetWordNet is the smallest one in terms of con-

tained classes: it has the shortest head since it contains only

4 classes. However, giving the body’ height of TelNetWord-

Net blueprint and the number of surfaces in its body, we de-

duce that the classes in TelNetWordNet most probably provide

complex implementations: few classes (only four classes) refer-

ence a relatively large number of classes that spread over many

packages. The same can be deduced for RemoteDictionary

which contains a bit more classes than TelNetWordNet (see the

head height), but only four classes in RemoteDictionary (see

the head width) reference a relatively large number of classes

spread over many packages. As a consequence, loading these

small packages require loading all those referenced packages.

By comparing the blueprints of TelNetWordNet and Remote-

Dictionary to those of URL and Kernel, we can easily see that

the latter packages contain more classes than the former ones

(look to the head size). However, both packages, URL and Ker-

nel, reference less external classes than TelNetWordNet and

RemoteDictionary (see the body height).

Cohesive packages. In addition we see in Figure 4 that

Kernel and Url packages contain classes that are tightly inter-

referenced – since there are a lot of reference nodes (i.e., filled

cells) within the head of Kernel and Url package blueprints.

However, these blueprints of Kernel and Url packages show

also that there are more reference nodes inside the body sur-

faces than inside the head of blueprints. This indicates that the

classes of those packages have more interaction with classes

of other packages than inside their packages. This conveys a

first impression of the package cohesion even if it is not really

precise [33, 35]. Similarly, we can see that RemoteDirectory

and Protocols packages are less cohesive than Kernel and Url

packages. It is worth to note that in Protocols package, all inter-

nally referenced classes are classes that do not reference other

classes –since all reference nodes within the head of the Proto-

cols blueprint are under the head diagonal.

Sparse (non-cohesive) packages. Figure 4 shows that

HTMLParserEntities and TelNetWordNet packages are not

cohesive from the point of view of inter-class references –

since the heads of HTMLParserEntities and TelNetWordNet

blueprints contain respectively only two and one reference

nodes. However, HTMLParserEntities package seems much

sparser (non-cohesive) than TelNetWordNet package due to the

fact that the former contains much more classes than the latter

(see the head length). Hence the density of reference nodes

within the head of HTMLParserEntities blueprint seems much

low than that within the head of TelNetWordNet blueprint. It

is worth to note the blueprints of HTMLParserEntities and Tel-

NetWordNet show that the head of the former seems as a tall

rectangle (i.e., its height is much greater than its width), while

the head of the later seems as a square. This tells us that only

few classes in HTMLParserEntities have outgoing references

to other classes, while all classes in TelNetWordNet reference

other classes.

Most referencing classes, internally and externally.

Glancing at the blueprint of Kernel package, in Figure 4, and

focusing on reference nodes, we can spot the class making the

most internal references: it is the one represented by the second

column. In fact, there are more reference nodes (four) in this

column within the head than in other columns. Moreover, those

nodes are the darkest reference nodes within the head (we can

see this clearly in Figure 5). Using the fly-by-help, we learn the

class name, which is Socket. This means that Socket is refer-

encing 4 classes within the analyzed package Kernel and it is

the class which does the biggest number of references within

Kernel.

We also learn that the class OldSimpleClientSocket, repre-

sented by the first column in the Kernel blueprint, makes the

most external references – the class column includes, within

the blueprint body, nine reference nodes that are distributed

over seven distinct body surfaces. This means that this class

references nine classes into seven packages. However OldSim-

pleClientSocket references only two classes within Kernel as

shown in the blueprint head.

In the same way, we can see that the class Url, within Url pack-

age, references almost all classes inside the Url package, but it

does not reference any class outside the Url package (follow the

column of Url class, which is third column in the Url package

blueprint).

Hub classes. The blueprint of Protocols package shows that

that HTTPSocket class (colored in red) is a central class in

Protocols as it references most of the external classes refer-

enced displayed in the package blueprint (follow the column

of HTTPSocket). We can deduce the same thing for the class

ServerDirectory in RemoteDirectory package. Furthermore, by

following the surfaces in relation with Protocols, whose are

colored in yellow, we can easily see that all its referencing pack-

ages reference the class HTTPSocket. Only RemoteDirectory

references, in addition to HTTPSocket, two classes in Proto-

cols. Note that HTTPSocket has neither incoming references

nor outgoing references inside its package Protocols – since

in the head of Protocols blueprint the column and the row of

HTTPSocket contain no reference nodes.

Most references point to outside the analyzed application.

9

All the blueprints in Figure 4 show that most of the external

referenced classes are cyan, which means that they are not part

of the analyzed application, Network subsystem. Indeed those

referenced classes belong to the core libraries (e.g., Collection-

sStreams, CollectionsArrayed and CollectionsStrings) on top of

which Network library is developed.

Architecture violation with misplaced references. What

is striking in the blueprint of Kernel package is that all, except

one, of the external referenced classes are outside the appli-

cation (HTTPSocket which is highlighted in red and defined

in Protocols package). Since the package is named Kernel, it

is strange that it references other classes from the same appli-

cation Network, and especially to only one. This is clearly a

layering bug.

Potentially misplaced classes and refactoring candidates.

Again in Kernel package, we found that the class Password, col-

ored in fuchsia, has no outgoing nor incoming references inside

Kernel package – see in the head of Kernel package blueprint

the column and the row of this class. Looking closely at Pass-

word, we see that it is referenced by only one package: Re-

moteDirectory refers to Password class in Kernel – see the or-

ange surface and the fuchsia referenced class in the body of Re-

moteDirectory package blueprint. Thus we think that moving

Password class to this last package will increase the cohesion

of both packages, Kernel and RemoteDirectory.

Cyclic references with deploying or loading problems.

The cyclic reference between Kernel (highlighted in orange)

and Protocols (highlighted in yellow) indicated by the corre-

sponding colored surfaces, raises problem about the order of

deploying or loading the Network application. One possible

way to remove this cyclic reference consists in moving class

HTTPSocket to Kernel package. However, HTTPSocket also

references the URL package in Network application. There-

fore moving HTTPSocket to Kernel will result in disturbing

the status of Kernel as a core package. To keep Kernel with-

out references to any other package inside Network, a better

solution is to move the referencing classes SocksSocket (col-

ored in blue) and InternetConfiguration (colored in green) to

Protocols package. On one hand, InternetConfiguration has

neither incoming nor outgoing references inside Kernel pack-

age (see in the blueprint head the column and the row of this

class). So, moving InternetConfiguration to Protocols package

will increase the cohesion of both packages; On another hand,

SocksSocket references 3 classes inside Kernel but is not refer-

enced inside it. So moving SocksSocket to Protocols will in-

crease a bit the coupling between Protocols and Kernel, but this

will finally resolve the problem of cyclic references between

these two packages.

5.3. Incoming Reference Blueprint Analysis

As described in previous sections, the difference between an

incoming references blueprint and an outgoing one one is: the

incoming package blueprint shows how a package is used by

the rest of its system while the outgoing shows how a package

uses the rest of its system. Figure 6 shows the incoming ref-

erences blueprints for all Network packages, where only ref-

erences within the Network application are taken in account

(i.e., references from packages outside Network are not shown).

In this section we demonstrate how the incoming references

blueprints complement the outgoing references ones by captur-

ing further information about characteristics of Network pack-

ages.

Core Packages. In Figure 6 we see that Kernel is, surpris-

ingly, less important than Protocols. In fact, Figure 6 shows,

on one hand, that the most referenced packages within Network

application are Protocols and Url –since they have the biggest

number of surfaces within the body of their blueprints (both

are referenced from 7 packages within Network). Thus we de-

duce that these packages are the core of Network. The figure

shows, on another hand, that the Kernel package is referenced

by only four packages within Network, which are Protocols,

TelNetWordNet, KernelTest and RemoteDirectory. However,

Protocols package heavily references Kernel package. The in-

coming reference blueprint of Kernel package shows that the

surface in relation with Protocols tells us that Protocols pack-

age is the most referencing package to Kernel: that surface is

the closest to the head of Kernel and its the largest surface into

the blueprint body (it represents 4 referencing classes from Pro-

tocols package). Hence, Kernel package represents the basic

package within Network.

Leaf and isolated packages. Figure 6 clearly shows Net-

work leaf packages (i.e., packages which are referenced by

only one package) such as MailReaderFilters which is only

referenced by MailReader, or HTMLParserEntities by HTML-

Parser. We also identify packages which are completely iso-

lated (i.e., are not referenced by any package), since their

blueprints contain only one surface (the head surface), such as

SqueakPage and TelNetWordNet packages.

Most referenced package classes. Glancing to the incom-

ing references blueprint of Kernel package, in Figure 6, we eas-

ily spot the most referenced classes in Kernel, which are Net-

NameResolver and Socket. In fact those two referenced classes

are represented by the top rows in the blueprint. Moreover, the

number of reference nodes within those rows is clearly larger

than the number of reference nodes within other rows of the

blueprint. However, within the blueprint head, the reference

nodes in the row of NetNameResolver class are darker than

those in the row of Socket class. Thus, NetNameResolver has

more internal incoming references than Socket. In the same

way, we deduce that Socket has more external incoming refer-

ences than NetNameResolver (see the darkness of their corre-

sponding reference nodes within the blueprint body).

Similarly we detect dominant referenced classes into other

packages: the dominant referenced class in Url package is

MIMEDocument; in Protocols package, it is HTTPSocket; in

RFC822 package, it is MailAddressParser.

Co-Referencers. Figure 6 shows that the packages Re-

moteDirectory and TelNetWordNet are referencing together

the same set of packages within Network: both refer to classes

into Kernel, Protocols and Url packages (see the green and

orange surfaces within the body of blueprints). This gives

us an idea about the similarity between RemoteDirectory and

TelNetWordNet packages in terms of package co-referencing

within Network. However, by looking more closely at the sur-

10

RemoteDirectory

TelNetWordNet

SqueakPage

UUID

MailReader

MailReaderAddressBookMailReaderCategorizer

HTMLTokenizer

HTMLFormatter

MailReaderFilters

MailReader

HTMLParser

HTMLParserEntities

HTMLParser

HtmlParser

Socket

Kernel
NetNameResolver

Password

TelnetMachine
ServerDirectory

KernelTest Protocols

Protocols

FTPClient

HTTPSocket

PortugueseLexiconServer
SuperSwikiServer

ServerDirectory

Url
MIMEDocument

PortugueseLexiconServer

SuperSwikiServer
ServerDirectory

UrlTests

FileUrl

RFC822
MailAddressParser

KernelTest
MockSocketStreamSMTPClientTest

Class

Package

Observed Package

annotation legend

HTMLForms

Figure 6: Global view of the incoming references in the Network application (annotated screenshots - annotation are in italic).

In this view, there are 18 packages that contain 178 classes (class nodes in blueprint heads), having, between them, 165 inter-class references (reference nodes) and causing 36 inter-package

relationships (body surfaces), within the Network application scope. Color marks: surfaces of TelNetWordNet package in orange ; those of RemoteDirectory package in green .

faces in relation with RemoteDirectory and TelNetWordNet

packages (in Kernel, Protocols and Url blueprints), we see that

the similarity between RemoteDirectory and TelNetWordNet

is improper at the class granularity level. In fact, RemoteDirec-

tory and TelNetWordNet packages do not reference the same

classes within the cited referenced packages, except for Pro-

tocols package. In Protocols blueprint, we can see in the sur-

faces of RemoteDirectory and TelNetWordNet that the refer-

ences nodes are located in one (the same) row. Thus, Remote-

Directory and TelNetWordNet reference the same class in Pro-

tocols, which is HTTPSocket. Now glancing at the blueprint

of Url package, we see on one hand that RemoteDirectory and

TelNetWordNet share one referenced class in Url package –it is

the class represented in the first row of the Url blueprint (named

MIMEDocument). On another hand, we see that RemoteDirec-

tory references another class in Url package –named FileUrl and

represented by the third row in the Url blueprint. Finally, and in

the same way, we can easily identify that RemoteDirectory and

TelNetWordNet do not share any referenced in Kernel package.

Tightly coupled packages. To identify tightly coupled client

packages, we have just to follow large body surfaces in in-

coming references blueprints. Those body surfaces are always

placed close to the blueprint heads. For example, in Figure 6

we easily spot in the blueprint of Kernel package that Protocols

package is the most important client to Kernel, and it is tightly

coupled to it. Similarly, we see in the blueprint of MailRead-

erFilters package that MailReader package is tightly coupled

to the former one. However, the impact of potential changes

of provider packages on their clients is stressed by number of

references nodes within the surfaces of those client packages.

Again on the blueprint of MailReaderFilters package, giving

the density of references nodes within the surface of the client

package MailReader, this indicates that any changes in Mail-

ReaderFilters may largely impact MailReader package.

6. Comparative Study

The goal of this study is to assess the efficiency of pack-

age blueprints with respect to classic navigation tools used for

package dependencies found in IDEs. We took the Pharo open-

source Smalltalk IDE as a comparison because (1) it is an ad-

vanced IDE supporting good code browsing, cross-referencer,

debugger [49] and (2) because there is a community of devel-

opers willing to spend time to perform our study. The theory

behind this work and this comparative evaluation [50] is that

a package blueprint offers a good representation of packages

in terms of (a) their internal references, and (b) the package

dependencies, by grouping them according to their package

clients or providers. Such representation supports faster, and

better, analysis of package dependencies than normal IDEs.

We focus our evaluation on the following hypotheses:

1. users get better results in package-related tasks with pack-

age blueprints than with navigation tools;

2. users perform faster in package-related tasks with package

blueprints than with navigation tools.

6.1. Experiment Design

17 voluntary participants, from different countries in Europe,

North and South America, and from Asia, took part in the ex-

periment. Participant background ranged from master student

to professor or full-time developer. Most participants (exactly

11

14 participants) got a strong background in software develop-

ment. Each subject was randomly assigned to use either pack-

age blueprints or navigation tools. Thus two groups of partici-

pants were formed.

We devised a series of eleven questions split in three cate-

gories, each category mirroring some developer activities with

an increasing look for details but rooted in the tasks we men-

tioned in Section 2.1.

1. Application assessment: the first three questions target a

basic understanding of an application and its dependen-

cies, in particular, the detection of unexpected dependen-

cies to external library.

2. Architecture assessment: four questions ask for an assess-

ment of the architecture of the application, such as the

identification of internal implementation packages versus

API packages for clients, the identification of key classes,

the detection of cyclic dependencies between packages.

3. Detailed assessment: four questions ask for an assessment

at class level of package dependencies, in a perspective of

understanding/reengineering fine-grained dependencies.

For each task, each subject was asked to play a role: first as an

external developer and potential client of the application, sec-

ond as an architect of the application with a broad view, third

as a developer of the application.

We selected the Glamour engine for scripting browsers

(http://www.moosetechnology.org/tools/glamour) as

the case for study. Glamour was selected as a sample relevant

for package-related tasks (11 packages) yet of reasonable size

(150 classes). Moreover, it has a well-defined domain (browser

engine) which makes it easy for subjects to understand its de-

pendencies to the base platform. Finally, Glamour is shipped

with some applications using it, thus participants can also have

to look for Glamour clients.

We assessed the expected answers before the study by per-

forming the study ourselves and cross-checking the answers

with the developer of Glamour.

6.2. Experimental Setup

Subjects were not supervised by an observer and had to per-

form the study on their own. The following protocol was pro-

posed for both groups:

1. the subject receives materials for the study, including the

questionnaire with instructions, and a ready-made environ-

ment for the study itself;

2. he only uses the tool indicated to him, and no other tool;

3. he processes questions in order;

4. he times himself for each question;

5. he should take no more than 20 minutes per question, and

1h30 for the whole study (if one question takes longer, he

should stop it).

Subjects using navigation tools were considered experts

enough and not given further documentation. Subjects using

package blueprints had access to a presentation of package

blueprints, a screencast presenting tool usage, and an earlier

version of this paper. We did not provide hand-ons advice since

a lot of the participants were doing it remotely.

6.3. Questions and Expected Answers

1. How big is the application: a) in number of packages;

b) in number of classes (among ranges: <100; 100-200;

200-300; >300)?

With this question users should make a quick assessment

of the system.

Expected answers are a) 11, and b) in the range 100-200

(precisely 157 classes).

2. What are the most important packages: a) in terms of out-

going dependencies; b) in terms of incoming dependen-

cies; c) Overall, considering both outgoing and incoming

dependencies?

Users then proceed to identify important packages of the

application. Packages with lots of outgoing dependen-

cies are likely to be core packages and implementation

packages. Packages with lots of incoming dependencies

provide implementation for clients (internal and external).

The third question allows user to catch up packages which

score well on both sides, without being important on a sin-

gle side.

Expected answers are a) Glamour-Morphic, b) Glamour-

Core, and c) Glamour-Core.

3. Focus on package Glamour-Morphic: a) list all package

dependencies which are external to Glamour; b) in this

list, please signal any external package which is not part

of Pharo base (i.e., package must be loaded with Glam-

our); c) are there other unexpected/unwanted package de-

pendencies?

Finally, users should assess the external dependencies of

Glamour. We target Glamour-Morphic as it has an obvious

concern relating to the system (bridge to the Morphic UI

framework). The user should retrieve quickly all depen-

dencies to check whether Glamour is self-contained and

whether it makes reasonable requirements.

Expected answers: the complete list includes 15 pack-

ages, most relating (unsurprisingly) to Morphic, widgets,

and system graphics. There are two dependencies which

are not part of the base system, Mondrian and Magritte.

Another unwanted dependency is DeprecatedPreferences,

which is obviously a dependency to be discarded.

The user now switches to architecture assessment for the next

four questions.

4. Please characterize each Glamour package as either: a

provider package for external clients (package with which

external clients interact); (or) an internal package (pack-

age which should not be accessed by external clients).

The goal of this question (refining question 2) is to make

an assessment of packages as parts of the architecture.

Glamour-Core, Glamour-Browsers, Glamour-

Presentations, and Glamour-Tools are considered as

provider packages. Glamour-Announcements, Glamour-

Helpers, and Glamour-Morphic are implementation

packages.

5. Are some packages optional/modular (could be unloaded

without impacting the application)?

12

http://www.moosetechnology.org/tools/glamour

Users should detect packages without (internal) clients.

Unloading such packages would not affect the application.

Test packages and the Examples package are modular.

More surprising, the Glamour-Morphic package is also

modular, as Glamour does not depend on a specific render-

ing engine (other engines are available for different plat-

forms).

6. What are the important classes (consider incoming and

outgoing dependencies) in Glamour-Core? If possible, ex-

plain their roles.

In a manner similar to question 2, the user now dives

deeper to look for classes and should identify entry points

in the package.

Expected answers should include GLMBrowser and GLM-

Presentation, all members of package Glamour-Core.

7. Are there direct cyclic dependencies from Glamour-Core

to another package?

Finally, the user should be able to detect a violation of a

common architecture rule.

There are no cyclic dependency between Glamour-Core

and another package. While it looks like a simple ques-

tion, the primary goal is to assess how fast the user reaches

this conclusion.

Finally, the user switches to a developer’s point of view.

8. What are the most cohesive packages of the application?

The goal of this question was to test whether user could

form an opinion just by browsing classes (control group)

or by scanning the head surface (in package blueprints).

Expected answers are packages Glamour-Core and

Glamour-Browsers.

9. You notice a dependency to package DeprecatedPrefer-

ences in Glamour-Morphic. Can you detect the faulty

class? Explain the dependency: do you see an easy way to

solve it?

Given the above hint, the user should track references to

the Preferences class, which is now deprecated. Thus, the

user is able to identify classes making references to wrong

packages.

The user should notice 1) class GLMMorphicRenderer and

2) its dependency on the font system in old preferences.

10. Can you explain the organization of Glamour-Morphic

and its relationship with other packages?

With this question the user should rationalize the purpose

and the implementation of the Glamour-Morphic package,

providing a simple picture from multiple levels of infor-

mation (classes and packages).

We expected the users to retrieve the following informa-

tion: 1) package provides widgets, builds on top of Mor-

phic; 2) class GLMMorphicRenderer is important in the

package; 3) package also provides an event system; 4)

there are no Glamour client to the package (signaling it

is a modular package).

11. Multiple packages of Glamour have dependencies to ex-

ternal library Mondrian. List such packages. Could you

extract this dependency and make it optional (you can pro-

pose a solution)?

The user performs an assessment for a refactoring task.

He should be able to retrieve multiples sources of depen-

dencies (in multiple packages) and assess whether such

sources could be extracted.

Expected answers: there are dependencies to Mon-

drian in the Glamour-Tests, Glamour-Morphic, Glamour-

Examples, and Glamour-Presentations packages. Fortu-

nately, it appears all such dependencies relate to Mondrian

support in Glamour but are not necessary in the core ap-

plication. They could be extracted as class extensions in a

separate Glamour-Mondrian package.

6.4. Results

For each participant, we computed precision, recall, and f-

score for questions Q2–Q6, Q8, and Q10–Q11. For Q1, Q7,

and Q9, a normalized score was computed based on participant

answer. Finally, we drew boxplots for each group, showing

f-score or normalized score and time for each question in Fig-

ure 7. All materials used for the study, including evaluation

sheet and answers from the participants, are available on our

website2.

1. Most participants performed well in assessing the size

of the application. Participants using package blueprints

were faster. However, there were minor errors with pack-

age blueprints: some counted only 10 packages instead of

11 and some estimated the number of classes above 300.

The first mistake can be explained by a design defect on

our part: one small package was totally empty of internal

and external outgoing dependencies. At first we decided

that it was not necessary to display an “empty” package

blueprint. We revised this decision based on the above

result.

2. Users of package blueprints were able to quickly identify

important packages based on dependencies, with an aver-

age f-score of 0.87 and 7 out of 8 in less than 5 minutes.

On the contrary, users of the browser performed poorly,

with an average f-score of 0.48 and more than 11 min-

utes: they often cited Glamour-Core but forgot Glamour-

Morphic.

A possible explanation is that browser users focus on the

name Glamour-Core to assess its importance, while pack-

age blueprints offered a more factual view of dependen-

cies.

3. Users of package blueprints successfully identified all 15

dependencies of package Glamour-Morphic. 5 out of 8

found external dependency Mondrian and Magritte, and 3

found DeprecatedPreferences. On the other hand, browser

users performed poorly once again with an average f-score

of 0.46. Two participants found Mondrian and Magritte as

external dependencies, and none cited DeprecatedPrefer-

ences.

2http://rmod.lille.inria.fr/archives/demos/

PackageBlueprint

13

http://rmod.lille.inria.fr/archives/demos/PackageBlueprint
http://rmod.lille.inria.fr/archives/demos/PackageBlueprint

●

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 1 Score

●

browser blueprints

Q 1 Time

0
4

8
12

16
20 ●

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 2 Score

●

browser blueprints

Q 2 Time

0
4

8
12

16
20

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 3 Score

●●

browser blueprints

Q 3 Time

0
4

8
12

16
20

●

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 4 Score

browser blueprints

Q 4 Time

0
4

8
12

16
20

●

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 5 Score

●

●

browser blueprints

Q 5 Time

0
4

8
12

16
20

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 6 Score

browser blueprints

Q 6 Time

0
4

8
12

16
20

●

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 7 Score

●

browser blueprints

Q 7 Time

0
4

8
12

16
20

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 8 Score

●

browser blueprints

Q 8 Time

0
4

8
12

16
20

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 9 Score

●

browser blueprints

Q 9 Time

0
4

8
12

16
20

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 10 Score

●

browser blueprints

Q 10 Time

0
4

8
12

16
20

browser blueprints

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q 11 Score

browser blueprints

Q 11 Time

0
4

8
12

16
20

Figure 7: Boxplots showing score and time for questions 1 to 11. Browser group shown on left and package blueprints on right for each question.

14

4. The identification of provider and internal packages works

well with both tools. There is no significant difference

in score and time, although users of package blueprints

performed slightly faster and better with an average f-score

of 0.88.

5. A question of interest was whether participants would be

able to detect Glamour-Morphic as modular as intended by

Glamour designer. Only 2 people detected the case with

package blueprints, and none with the browser. However,

both groups performed well overall.

6. Users of package blueprints achieved a near perfect f-score

of 0.96 while looking for important classes. Users of

browser performed quite well at 0.74. More surprisingly,

this is the only question where the former were slower (9

minutes) than the latter (5 minutes).

A possible explanation is that package blueprint users took

time to scan through many classes and their dependencies,

while browser users were more successful building a men-

tal map of the inner workings of the system by browsing

classes themselves.

7. Participants answered correctly except for one case. The

interesting difference is how much time each group used to

reach this conclusion. Indeed, users of package blueprints

were much faster (with 5 out of 9 answering in 3 minutes

or less) while users of browser had different reaction times,

ranging from 2 minutes to 20 minutes.

8. This question on package cohesion was the most prob-

lematic. 4 out of 8 participants bypassed this question in

the browser group, telling they could not perform such a

task in a limited time, and one did the same in package

blueprint (telling he did not understood the visualization of

cohesion in package blueprints). The remaining browser

users had indeed poor results with a f-score at 0.37, but

package blueprint users performed much better at 0.86.

9. Most participants found and could explain the dependency

to DeprecatedPreferences (only two users of browser did

not succeed). The significant difference is again in the

time used to find the source of the problem. Package

blueprint users were much faster with an average of 2 min-

utes against 8 minutes for browser users.

10. This question was open as it elicited the subjective inter-

pretation of a package design. We still received mostly

good answers, with browser users performing slightly

better than package blueprint users. Surprisingly, only

browser users spotted the importance of events in the pack-

age, while only 2 users of package blueprints noticed the

absence of internal clients (same ones as for Q5).

11. Package blueprint users all proposed a complete solution

to the extraction of Mondrian. In particular, they were able

to identify all dependencies to Mondrian across packages.

Browser users were less successful with this aspect.

It took in average an hour for package blueprint users to per-

form the study with an average score of 0.85, against an hour

and a half for browser users with an average score of 0.70.

Note that two expert programmers refused to perform the ex-

periment without the package blueprint, because they felt the

Table 1: Two-tailed Wilcoxon test, with α = 0.05.

Comparison between Package Blueprint (PB) and Pharo IDE using the

Score and Time results of our 11 questions (see Figure 7).

Score ([0..1]) Time (minute)

∆ (PB - Pharo): + 0.11*** - 2.05***

0.95% Confidence Interval

lower bound: + 0.03 - 3.40

upper bound: + 0.17 - 1.00

Signification code: α6 0.001 (***); 6 0.01 (**); 6 0.05 (*).

default IDE was not up to the task. Table 1 shows the re-

sults of a tow-tailed Wilcoxon test comparing between Pack-

age Blueprint and the default IDE, using the results of our 11

questions discussed above. The results confirm our hypothesis

mentioned earlier in Section 6. Indeed, the results show that

Package Blueprint, overall, registers a better score (+0.11) and

a shorter time (-2 minutes) than the default IDE –with regard

to the aforementioned results of our 11 maintenance questions.

These results are statically significant at α = 0.001. Hence,

Package Blueprint supports faster, and better, analysis of pack-

age dependencies than normal IDEs.

Summary to this section. Overall, users of package blueprints

are faster. They performed very well when the task involves a

complete identification of all dependencies for a package or a

class. Tasks involving more judgment, like identifying impor-

tant classes or explaining package design are less impacted and

browser users performed equally well, as they spent more time

reading the code, which could give them a better understanding

of some inner workings of the system, not just of dependencies

between packages and classes.

6.5. Threats to validity

Having presented the comparative study of package blueprint

versus an advanced code browser and described the study re-

sults, this section identifies potential threats to validity relevant

to the study.

First of all, it is worth to note that most participants to

the study performed the evaluation remotely due to geograph-

ical distances. As a consequence, for practical reasons, those

participants performed the evaluation without our supervision.

Hence, we were not able to control the time they took, possible

disturbance, and their misinterpretations of the study questions.

Moreover, despite our effort to design precise questions,

most questions were open to human interpretations. Due to un-

controllable human-factors, this gave us a large distribution of

potential answers for each question, depending on the time the

user spent on the question, and his own interpretation of the

question.

Other threats to validity can be due to the limited number

of participants since we were not able to attract more than 17

voluntary participants to the study. Furthermore, only 4 partici-

pants among 17 ones are women. To the best of our knowledge,

none of participants suffer from color deficiencies nor had been

corrected to normal color vision.

15

Finally, one can arguments that there exist some tools, may

be visualization tools (e.g., [40, 41]), which are more dedi-

cated to browsing package dependencies than standard code

browsers, and thus they could have performed better. How-

ever, as discussed in Section 3, relevant existing tools that can

facilitate package understanding can not be adapted to browse

the dependencies at class and package levels, and/or to reveal

package internal structure. As a consequence, those tools are

not adapted to answer most questions of the study. We de-

cided to compare package blueprint with standard, advanced,

code browser as we believe standard code browsers are the most

polyvalent tools with respect to the package blueprint. Hence,

the role of this study was to assess how much package blueprint

could improve the experience of standard browser users.

7. Discussion

Having presented the advantages of package blueprint for an-

alyzing and understanding package structure and dependencies,

in this section we discus the design of package blueprint from

different perspectives. Finally, we present the main limitations

and drawbacks of the proposed visualization.

7.1. Design Choices

Navigation Choices. It is widely argued that visualizations are

not fully useful unless they support interactive exploration.

There is a large spectrum of means to support navigation such

as zoomable interfaces, multiple simultaneous views, fly-by-

help showing underlying details. In package blueprint, we did

not introduce semantic-zooming support for the following rea-

sons: (a) in this paper we target a visual map that acts as really

fast summary of a package and its relations; (a) we want to as-

sess whether the presented visualization, package blueprint, is

enough to support the tasks mentioned before. The idea of small

multiples presented by Tufte influenced the design of package

blueprint [51] even if the fact that package blueprint shows the

size of a package breaks the small multiple effect. However,

our experiences with package blueprint show that the user re-

ally want to know where a reference is made and the name of

the packages/classes. For this purpose, we successfully used

method source code as fly-by-help in another research topic

[52]. As a future work, we would like to experiment and use

fly-by-help to show for a given reference node the actual meth-

ods causing that reference. We also would like to experiment a

semantic-zooming out of package blueprint displaying the visu-

alization without classes and references nodes, as demonstrated

in the basic layout of package blueprint in Figure 1. We be-

lieve such a semantic-zooming out of package blueprint would

give a fast overview of package size and connectivity with other

packages, without providing specific details about the the dis-

tribution of package internal and external references.

Outgoing vs. incoming. Ideally we would have preferred to

have only one view showing in a structured way (e.g., by us-

ing enclosure placement strategy: surfaces) the incoming and

outgoing references made by packages. Our attempts were

not satisfactory. Naturally, displaying both incoming and out-

going references in one view will considerably increase the

complexity of package blueprint visualization: (a) increase the

view occupied-space to display both referenced and referencing

classes and packages; (b) use more visual semantics to distin-

guish clients from providers, and distinguish whether a refer-

ence node represents incoming references, outgoing ones, or

both. This is why we decided to split them in two views. Hav-

ing two views showing different flows of dependencies can be

confusing and it took us several attempts and experiments to

find a solution so that the reader can distinguish the incoming

and outgoing flows. For this purpose, we took the general shape

of the package blueprint (horizontal vs. vertical) as distinctive

sign between the two semantics. To help the reader, we always

keep the reading order of a reference from top to bottom in both

views as illustrated in Figure 1. In some cases, it is practical to

see at the same time the incoming and outgoing view of the

same package. Therefore, our tool lets the user see both views

of a single package side by side. Nevertheless, this solution

does not work well when we want to see a complete system

because it mixes concerns.

Shapes. For the time being we represent the classes and refer-

ences nodes with squares only. We could convey more informa-

tion by using several visually distinct shapes. But it is not clear

which ones and how efficient the results will be since the shape

size is intentionally quite small to provide a compact overview.

Position Choices. Package blueprint uses two placement

strategies that are enclosure and adjacency [17]. We designed

package blueprint to be structured around the notion of sur-

faces that groups classes and their dependencies by their pack-

age (i.e., enclosure placement); whilst the package blueprint’

surfaces have two categories: (1) the head surface which rep-

resents the parent node, that is the package under-analysis; (2)

body surfaces which represent the packages in relation with the

package under-analysis (i.e., the parent node), those are placed

next to their parent node (i.e., adjacency placement). However,

package blueprint is a hybrid visualization because dependen-

cies are represented as nodes grouped into their corresponding

surfaces. We used those placement strategies together to dis-

play the distribution of package references in structured man-

ner and at both class and package levels, not only internal ref-

erences, but also external ones. In this way, users can focus on

the first surface (i.e., the top surface in an outgoing references

blueprint) to understand the internal package structure; or focus

on body surfaces (or one of them) to understand the exact re-

lations between the observed package and its providers/clients

(or one of them), in an outgoing/incoming references blueprint.

Moreover, to help users in reading package blueprint, body sur-

faces are ordered, after the head, from most-coupled package to

less-coupled one. This way, we do not force the reader to scroll

through big visualizations, and use the fact that the reader pays

more attention to the surfaces that are close to the head.

Seriation. Rows within a surface are sorted according to the

number of references they contain. In an earlier version we

16

applied the dendrogram seriation algorithm [53] to group lines

having similar referencing classes. However the resulting views

were not as meaningful as with a simple ordering.

In a package blueprint head, internal classes are ordered so that

the head presents a symmetric matrix. This way, when the user

focuses on the i column (i.e., a column reserved for class x)

s/he can easily see the information about the internal references

within the package of this class by looking to the i row in the

package blueprint head. Such an ordering reveals also the di-

rect cyclic references within the package under consideration.

In previous versions, the head only showed classes performing

references [31] and our users suggested such a change to be

able to grasp package size.

Impact of Boundaries. We color classes that do not belong to

the application in cyan. This way, users distinguish clearly

the dependencies from/to classes packaged outside the analyzed

application, from the dependencies among the analyzed appli-

cation classes. Moreover, we found it really effective to use

colors for marking packages (surfaces) or classes (classes and

references nodes) so that the user can interactively mark enti-

ties on which he wants to focus on; this increases the usability

of the tool and speeds up understanding packages.

7.2. Limitations

Inheritance dependencies. In this paper we considered only

one type of inter-class dependencies, namely reference. How-

ever, other types of dependencies, such as inheritances, can

exist between classes. We believe that presented package

blueprint views, which are specific to outgoing and incoming

references, are not well adapted to show inheritance hierarchies

of classes. Therefore, in [31] the authors provide a specific view

namely inheritance package blueprint, that is tree-based visu-

alization rather matrix-based one, to support understanding of

inheritance dependencies at class and package levels. We be-

lieve that the inheritance package blueprint, as defined in [31],

together within outgoing references blueprint and incoming ref-

erences one, represent an integral set of views for understanding

package structure and dependencies.

Package Nesting. Currently we do not support package nest-

ing. A solution like the one proposed by Lungu et al. seems

complementary to ours and interesting to deal with package

nesting [12].

Dependency Paths. Another limitation of package blueprint is

that it fails to support the understanding of dependency paths,

i.e., is there a path from one class to another one using mul-

tiple intermediaries. This is an advantage for node-link visu-

alizations against matrix-based ones [28], such as the package

blueprint visualization. In package blueprint, we are currently

limited to see the references made to another class and we have

to follow manually the path. Nevertheless, such a limitation

could be addressed by visualizing, optionally, cross-links be-

tween surfaces (or classes nodes) of different blueprints, so that

users can follow the dependency paths. However, this would

cause the known drawback of node–link visualizations, regard-

ing link crossing and the unsuitability for dense graphs [28, 45].

7.3. Drawbacks

Naturally, the package blueprint inherits the drawbacks of

matrix–based representation. As outlined in Section 4.1, ac-

cording to the study of Ghoniem et al. [28, 45] that compares

between node–link and matrix-based representations, matrix-

based representations suffer from scalability. The study states,

on one hand, that node–link representations are more compact

than matrix-based ones. Nevertheless, on another hand, node–

link representations suffer from problems of edge crossing and

node overlappling, and as a consequence, they are not suitable

for dense graphs. This drawback of node–link representations

was widely outlined [24], even for very advanced node–link vi-

sualizations [23, 30].

As a consequence, and despite the scalability problem of

matrix-based representation, we chose this representation for

designing the package blueprint visualization because the fol-

lowing facts:

• There are many visualizations, said scalable, that are

adapted to overview the connectivity among packages (or

classes) in a compact manner. However, those visualiza-

tions are not adapted to reveal the distribution of depen-

dencies, both intra and inter packages, at package and

class levels (see Related Work Section 3).

• Thus, there are many zoomed-out visualizations that scale

well with few information about package dependencies,

but there is no complementary, zoomed-in, visualizations

that reveal in details package structure and dependencies.

• We target a visualization that reveals in details, and

clearly, the distribution of package dependencies, at pack-

age and class levels. According to the authors’ experience,

such a graph is usually very dense in real-world applica-

tions. In fact, this is why we target a visualization to assist

maintainers in their refactoring and assessment decisions

about package structure.

• Finally, we believe maintainers do not face such deci-

sions when they overview a whole large system consisting

of some hundreds packages, but rather when they are in

contact to an observed package or a group of few pack-

ages (subsystem). As a consequence, scalability concerns

would be considerably mitigated in such a context.

However, to meet scalability concerns and still support vi-

sual information, we implemented different visual annotations

(colors) that users can use on demand. Those annotations, as

described in Section 5.1, help users to understand the multiple

interactions that a package can have with other packages.

8. Conclusion

In this paper, we tackled the problem of understanding the

details of packages with a focus on their dependencies. We de-

scribed package blueprint, a visual approach for characterizing

package structure and quantifying the distribution of package

dependencies, at package and class levels. Although package

17

blueprint reveals in details package structure and dependen-

cies, we believe it is still a compact visualization supporting

overview of software applications in limited display, of reason-

able size, without losing the essential details about the distri-

bution of package internal and external references. Therefore

it can be used to get a first impression of a system and also to

understand fine-grained structures and relations.

While designing package blueprint, we tried to exploit gestalt

visualization and small multiples principles [51]. We success-

fully applied the visualization to real-world software applica-

tions and we have been able to point out large and complex

packages, core packages and/or classes, isolated packages, co-

hesive and/or sparse packages, tightly coupled packages, mis-

placed classes (refacoring candidates) and references (archi-

tecture violation), direct cyclic references, and badly designed

packages. We also introduced interactivity to help users focus

and navigate between several packages within a given software

application.

We do not consider that package blueprint should be used in

isolation from other tools and/or standard code browsers. In our

recent work on remodularization, we use DSM to spot cyclic

dependencies [15, 40], then we zoom on the packages and use

package blueprint to get a finer understanding of the package

references. The synergy between DSM and package blueprint

proved to be really useful. In addition, sometimes we comple-

ment the view using Distribution Map [54] to understand how

a property (such as developers) spreads on a set of packages.

We validated the package blueprint usability by conducting

tests with several independent software engineers. The results

were positive, even if the numbers of testers was low (22).

Testers concluded that the package blueprint is useful for un-

derstanding and analyzing packages. We performed a separate

comparative study with a group of software developers which

shows an improvement in both time and precision for package

maintenance tasks compared to standard code browsing tools.

References

[1] R. C. Martin, Design principles and design patterns,

www.objectmentor.com (2000).

[2] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th Edi-

tion, McGraw-Hill, Inc., 2010.

[3] H. Abdeen, S. Ducasse, H. A. Sahraoui, Modularization metrics: As-

sessing package organization in legacy large object-oriented software, in:

International Working Conference on Reverse Engineering (WCRE’11),

IEEE Computer Society Press, 2011, pp. 394– 398.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Im-

proving the Design of Existing Code, Addison Wesley, 1999.

[5] H. Abdeen, S. Ducasse, H. A. Sahraoui, I. Alloui, Automatic package

coupling and cycle minimization, in: Proceedings of the 16th Interna-

tional Working Conference on Reverse Engineering (WCRE’09), IEEE

Computer Society Press, Washington, DC, USA, 2009, pp. 103–112.

[6] H. Abdeen, H. A. Sahraoui, O. Shata, N. Anquetil, S. Ducasse, Towards

automatically improving package structure while respecting original de-

sign decisions, in: Proceedings of the 20th International Working Con-

ference on Reverse Engineering (WCRE ’13), IEEE Computer Society

Press, 2013, pp. 212–221.

[7] N. Anquetil, T. Lethbridge, Experiments with Clustering as a Software

Remodularization Method, in: Proceedings of WCRE ’99 (6th Working

Conference on Reverse Engineering), 1999, pp. 235–255.

[8] B. S. Mitchell, S. Mancoridis, On the automatic modularization of soft-

ware systems using the bunch tool, IEEE Transactions on Software Engi-

neering 32 (3) (2006) 193–208.

[9] M. C. Chuah, S. G. Eick, Information rich glyphs for software manage-

ment data, IEEE Computer Graphics and Applications 18 (4) (1998) 24–

29.

[10] M. D’Ambros, M. Lanza, Reverse engineering with logical coupling, in:

Proceedings of WCRE 2006 (13th Working Conference on Reverse En-

gineering), 2006, pp. 189 – 198.

[11] S. Ducasse, M. Lanza, L. Ponisio, Butterflies: A visual approach to

characterize packages, in: Proceedings of the 11th IEEE International

Software Metrics Symposium (METRICS’05), IEEE Computer Society,

2005, pp. 70–77.

[12] M. Lungu, M. Lanza, T. Gı̂rba, Package patterns for visual architecture

recovery, in: Proceedings of CSMR 2006 (10th European Conference

on Software Maintenance and Reengineering), IEEE Computer Society

Press, Los Alamitos CA, 2006, pp. 185–196.

[13] M. Pinzger, H. Gall, M. Fischer, M. Lanza, Visualizing multiple evolu-

tion metrics, in: Proceedings of SoftVis 2005 (2nd ACM Symposium on

Software Visualization), St. Louis, Missouri, USA, 2005, pp. 67–75.

[14] M.-A. D. Storey, K. Wong, F. D. Fracchia, H. A. Müller, On integrat-

ing visualization techniques for effective software exploration, in: Pro-

ceedings of IEEE Symposium on Information Visualization (InfoVis ’97),

IEEE Computer Society, 1997, pp. 38–48.

[15] J. Laval, S. Denier, S. Ducasse, A. Bergel, Identifying cycle causes

with enriched dependency structural matrix, in: WCRE ’09: Proceed-

ings of the 2009 16th Working Conference on Reverse Engineering, Lille,

France, 2009.

[16] H. Abdeen, I. Alloui, S. Ducasse, D. Pollet, M. Suen, Package refer-

ence fingerprint: a rich and compact visualization to understand package

relationships, in: European Conference on Software Maintenance and

Reengineering (CSMR), IEEE Computer Society Press, 2008, pp. 213–

222.

[17] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van

Wijk, J.-D. Fekete, D. W. Fellner, Visual analysis of large graphs: State-

of-the-art and future research challenges, Comput. Graph. Forum 30 (6)

(2011) 1719–1749.

[18] I. Herman, G. Melançon, M. S. Marshall, Graph visualization and navi-

gation in information visualization: A survey, IEEE Transactions on Vi-

sualization and Computer Graphics 6 (1) (2000) 24–43.

[19] M.-A. D. Storey, D. Čubranić, D. M. German, On the use of visualiza-

tion to support awareness of human activities in software development: a

survey and a framework, in: SoftVis’05: Proceedings of the 2005 ACM

symposium on software visualization, ACM Press, 2005, pp. 193–202.

[20] M.-A. D. Storey, H. A. Müller, Manipulating and documenting software

structures using SHriMP Views, in: Proceedings of ICSM ’95 (Interna-

tional Conference on Software Maintenance), IEEE Computer Society

Press, 1995, pp. 275–284.

[21] N. Churcher, W. Irwin, R. Kriz, Visualising class cohesion with virtual

worlds, in: APVis ’03: Proceedings of the Asia-Pacific symposium on In-

formation visualisation, Australian Computer Society, Inc., Darlinghurst,

Australia, Australia, 2003, pp. 89–97.

[22] S. Karouach, B. Dousset, Visualisation de relations par des graphes inter-

actifs de grande taille, Journal of ISDM (Information Sciences for Deci-

sion Making) 6 (57) (2003) 12.

[23] D. Holten, Hierarchical edge bundles: Visualization of adjacency rela-

tions in hierarchal data, IEEE Transactions on Visualization and Com-

puter Graphics 12 (5).

[24] N. Henry, J.-D. Fekete, M. J. McGuffin, Nodetrix: a hybrid visualization

of social networks, IEEE Trans. Vis. Comput. Graph. 13 (6) (2007) 1302–

1309.

[25] J. Abello, F. van Ham, Matrix zoom: A visual interface to semi-external

graphs, in: 10th IEEE Symposium on Information Visualization (InfoVis

2004), 10-12 October 2004, Austin, TX, USA, IEEE Computer Society,

2004, pp. 183–190.

[26] A. Marcus, L. Feng, J. I. Maletic, 3D representations for software visual-

ization, in: Proceedings of the ACM Symposium on Software Visualiza-

tion, IEEE, 2003, pp. 27–ff.

[27] L. Voinea, A. Telea, J. J. van Wijk, CVSscan: visualization of code evo-

lution, in: SoftVis ’05: Proceedings of the 2005 ACM symposium on

Software visualization, ACM, New York, NY, USA, 2005, pp. 47–56.

18

[28] M. Ghoniem, J.-D. Fekete, P. Castagliola, On the readability of graphs us-

ing node-link and matrix-based representations: a controlled experiment

and statistical analysis, Information Visualization 4 (2) (2005) 114–135.

[29] C. Müller, G. Reina, M. Burch, D. Weiskopf, Subversion statistics sifter,

in: Proceedings of the 6th international conference on Advances in visual

computing - Volume Part III, ISVC’10, Springer-Verlag, Berlin, Heidel-

berg, 2010, pp. 447–457.

[30] D. Holten, Visualization of graphs and trees for software analysis, Ph.D.

thesis, Computer science department, iSBN 978-90-386-1882-1 (2009).

[31] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, I. Alloui, Package surface

blueprints: Visually supporting the understanding of package relation-

ships, in: ICSM ’07: Proceedings of the IEEE International Conference

on Software Maintenance, 2007, pp. 94–103.

[32] H. Abdeen, Visualizing, assessing and re-modularizing object-oriented

architectural elements, Ph.D. thesis, Université de Lille (2009).

[33] L. C. Briand, J. W. Daly, J. K. Wüst, A Unified Framework for Coupling

Measurement in Object-Oriented Systems, IEEE Transactions on Soft-

ware Engineering 25 (1) (1999) 91–121.

[34] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer-

Verlag, 2006.

[35] L. C. Briand, J. W. Daly, J. K. Wüst, A Unified Framework for Cohesion

Measurement in Object-Oriented Systems, Empirical Software Engineer-

ing: An International Journal 3 (1) (1998) 65–117.

[36] D. Beyer, Co-change visualization, in: Proceedings of the 21st IEEE In-

ternational Conference on Software Maintenance (ICSM), Industrial and

Tool volume, 2005, pp. 89–92.

[37] S. Eick, T. Graves, A. Karr, A. Mockus, P. Schuster, Visualizing software

changes, IEEE Transactions on Software Engineering 28 (4) (2002) 396–

412.

[38] J. Froehlich, P. Dourish, Unifying artifacts and activities in a visual tool

for distributed software development teams, in: Proceedings of the 26th

International Conference on Software Engineering, IEEE Computer So-

ciety, Washington, DC, USA, 2004, pp. 387–396.

[39] X. Xie, D. Poshyvanyk, A. Marcus, Visualization of CVS repository in-

formation, in: WCRE’06: Proceedings of the 13th Working Conference

on Reverse Engineering, IEEE Computer Society, Washington, DC, USA,

2006, pp. 231–242.

[40] N. Sangal, E. Jordan, V. Sinha, D. Jackson, Using dependency models to

manage complex software architecture, in: Proceedings of OOPSLA’05,

2005, pp. 167–176.

[41] H. Abdeen, S. Ducasse, D. Pollet, I. Alloui, Package fingerprints: A vi-

sual summary of package interface usage, Inf. Softw. Technol. 52 (12)

(2010) 1312–1330.

[42] J. Bertin, Semiology of Graphics, University of Wisconsin Press, 1983.

[43] E. R. Tufte, The Visual Display of Quantitative Information, 2nd Edition,

Graphics Press, 2001.

[44] C. Ware, Information visualization: perception for design, Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2000.

[45] M. Ghoniem, J.-D. Fekete, P. Castagliola, A comparison of the readability

of graphs using node-link and matrix-based representations, in: Proceed-

ings of the IEEE Symposium on Information Visualization, INFOVIS ’04,

IEEE Computer Society, Washington, DC, USA, 2004, pp. 17–24.

[46] A. Treisman, Preattentive processing in vision, Computer Vision, Graph-

ics, and Image Processing 31 (2) (1985) 156–177.

[47] C. G. Healey, Visualization of multivariate data using preattentive pro-

cessing, Master’s thesis, Department of Computer Science, University of

Bristish Columbia (1992).

[48] C. G. Healey, K. S. Booth, E. J. T., Harnessing preattentive processes

for multivariate data visualization, in: GI ’93: Proceedings of Graphics

Interface, 1993.

[49] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker,

Pharo by Example, Square Bracket Associates, 2009.

[50] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting empiri-

cal methods for software engineering research, in: F. Shull, J. Singer,

D. I. K. Sjoberg (Eds.), Guide to Advanced Empirical Software Engineer-

ing, Springer verlag, 2008.

[51] E. R. Tufte, Visual & Statistical Thinking: Displays of Evidence for De-

cision Making, Graphics Press, Cheshire, CT, USA, 1997.

[52] V. Uquillas Gómez, S. Ducasse, T. D’Hondt, Visually supporting source

code changes integration: the torch dashboard, in: Working Conference

on Reverse Engineering (WCRE 2010), 2010.

[53] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review, ACM

Computing Surveys 31 (3) (1999) 264–323.

[54] S. Ducasse, T. Gı̂rba, A. Kuhn, Distribution map, in: Proceedings of 22nd

IEEE International Conference on Software Maintenance (ICSM ’06),

IEEE Computer Society, Los Alamitos CA, 2006, pp. 203–212.

19

	Introduction
	Challenges in Understanding Packages
	High-Level Maintenance Package Tasks
	Quantitative and Qualitative Characteristics
	Questions characterizing class/package relations

	Related Work
	Generic Graph Visualization
	Package Visualization

	The Package Blueprint for Understanding Packages
	Design Constraints for Visualization
	Package Blueprint basic principles
	Outgoing Reference Blueprints
	Incoming Reference Blueprints

	Analyzing Package Structure With Package Blueprint
	Interacting with package blueprint
	Outgoing Reference Blueprint Analysis
	Incoming Reference Blueprint Analysis

	Comparative Study
	Experiment Design
	Experimental Setup
	Questions and Expected Answers
	Results
	Threats to validity

	Discussion
	Design Choices
	Limitations
	Drawbacks

	Conclusion

