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émanant des établissements d’enseignement et de
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Abstract

We consider the U(1) Chern-Simons gauge theory defined in a general closed oriented 3-manifold
M ; the functional integration is used to compute the normalized partition function and the expec-
tation values of the link holonomies. The nonperturbative path-integral is defined in the space of
the gauge orbits of the connections which belong to the various inequivalent U(1) principal bun-
dles over M ; the different sectors of configuration space are labelled by the elements of the first
homology group of M and are characterized by appropriate background connections. The gauge
orbits of flat connections, whose classification is also based on the homology group, control the
nonperturbative contributions to the mean values. The functional integration is carried out in any
3-manifold M , and the corresponding path-integral invariants turn out to be strictly related with
the abelian Reshetikhin-Turaev surgery invariants.

1. Introduction

In a recent article [1] we have presented a path-integral computation of the normalized partition
function Zk(M) of the U(1) Chern-Simons (CS) field theory [2, 3, 4] defined in a closed oriented 3-
manifold M . It has been shown [1] that, when the first homology group H1(M) is finite, functional
integration allows to recover —in a nontrivial way— the abelian Reshethikin-Turaev [5, 6, 7, 8]
surgery invariant.

The present article completes the construction of the path-integral solution of the U(1) quan-
tum CS field theory initiated in Ref. [9]. We extend the computation of Zk(M) to the general
case in which the homology group of M is not necessarily finite and may contain nontrivial free
(abelian) components. We give a detailed description of abelian gauge theories in topological
nontrivial manifolds, and the resulting extension of the gauge symmetry group is discussed. We
classify the gauge orbits of flat connections; their role in the functional integration is determined.
The path-integral computation of both the perturbative and the nonperturbative components of
the expectation values of the gauge holonomies associated with oriented colored framed links is
illustrated. The result of the functional integration is compared with the combinatorial invariants
of Reshetikhin-Turaev; it is found that the path-integral invariants are related with the abelian
surgery invariants of Reshetikhin-Turaev by means of a nontrivial multiplicative factor which only
depends on the torsion numbers and on the first Betti number of the manifold M .

A general outlook on the nonperturbative method —which is used to carry out the complete
functional integration of the observables for the abelian CS theory in a general manifold M— is
contained in Section 2; the details are given in the remaining sections. As in our previous articles
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[1, 9, 10], we use the Deligne-Beilinson (DB) formalism [11, 12, 13] to deal with the U(1) gauge
fields; the functional integration amounts to a sum over the inequivalent U(1) principal bundles
over M supplemented by an integration over the gauge orbits of the corresponding connections.
The essentials of the Deligne-Beilinson formalism are collected in the Appendix. The structure of
configuration space is described in Section 3, where the path-integral normalizations of the partition
function and of the reduced expectation values are also introduced. Section 4 contains a description
of the gauge orbits of U(1) flat connections in the manifoldM ; the classification of the different types
of flat connections is based on the first homology group of M . The functional integration is carried
out in Section 5, and the comparison of the path-integral invariants with the surgery Reshetikhin-
Turaev invariants is contained in Section 6. Examples of computations of path-integral invariants
in lens spaces are reported in Section 7. Section 8 contains the conclusions.

2. Overview

The functional integration in the abelian CS field theory can be carried out by means of the
nonperturbative method developed in [1, 9, 10]. In order to introduce progressively the main
features of this method, let us first consider the case of a homology sphere M0, for which the first
homology group H1(M0) is trivial; the 3-sphere S3 and the Poincaré manifold1 are examples of
homology spheres. Let us recall that the homology group of a manifold M corresponds to the
abelianization [14] of the fundamental group π1(M); i.e. given a presentation of π1(M) in terms
of generators and relations, a presentation of H1(M) can be obtained by imposing the additional
constraint that the generators of π1(M) commute.

The field variables of the U(1) CS theory in M0 are described by a 1-form A ∈ Ω1(M0) with
components A = Aµ(x)dx

µ, and the action is

S[A] = 2πk

∫

M0

d3x εµνρ Aµ∂νAρ = 2πk

∫

M0

A ∧ dA , (1)

where k 6= 0 denotes the real coupling constant of the model. The action is invariant under usual
gauge transformations Aµ(x) → Aµ(x) + ∂µξ(x). This means that the action can be understood as
a function of the gauge orbits.

2.1. Generating functional

In order to define the expectation values 〈Aµ(x)Aν (y) · · ·Aλ(z)〉 of the products of fields, one
needs to introduce a gauge-fixing procedure because the gauge field Aµ(x) is not gauge-invariant.
However, if one is interested in the correlation functions 〈Fµν(x)Fρσ(y) · · ·Fλτ (z)〉 of the curvature
Fµν(x) = ∂µAν(x)− ∂νAµ(x), the gauge-fixing is not required. In facts, let us introduce a classical
external source which is described by a 1-form B = Bµ(x)dx

µ; the integral

∫
dA ∧B =

∫
A ∧ dB (2)

1This is the first example constructed by Poincaré of a non-simply-connected closed 3-manifold whose first ho-
mology group is trivial [14].
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is invariant under gauge transformations acting on A because the curvature F = dA is gauge-
invariant. The generating functional G[B] for the correlation functions of the curvature is defined
by

G[B] =
〈
e2πi

∫
A∧dB

〉
≡

∫
DA e2πik

∫
A∧dA e2πi

∫
A∧dB

∫
DA e2πik

∫
A∧dA

, (3)

indeed the coefficients of the Taylor expansion of G[B] in powers of B coincide with the correlation
functions of the curvature. Any configuration Aµ(x) can be written as

Aµ(x) = −
1

2k
Bµ(x) + ωµ(x) , (4)

where Bµ(x) is fixed and ωµ(x) can fluctuate. Since

k

∫

M0

A ∧ dA+

∫

M0

A ∧ dB = k

∫

M0

ω ∧ dω −
1

4k

∫

M0

B ∧B , (5)

and the functional integration is invariant under translations, i.e. DA = Dω, one finds

〈
e2πi

∫
A∧dB

〉
= e−(2πi/4k)

∫
B∧dB

∫
Dω e2πik

∫
ω∧dω

∫
DA e2πik

∫
A∧dA

= e−(2πi/4k)
∫
B∧dB . (6)

So without the introduction of any gauge-fixing —and hence without the introduction of any metric
in M— the Feynman path-integral gives

G[B] = exp (iGc[B]) = exp

(
−
2πi

4k

∫

M0

B ∧ dB

)
. (7)

The generating functional of the connected correlation functions of the curvature Gc[B] formally
coincides with the Chern-Simons action (1) with the replacement k −→ −1/4k.

Remark 1. The result (6) can also be obtained by means of the standard perturbation theory with,
for instance, the BRST gauge-fixing procedure of the Landau gauge; in the case of the abelian
CS theory, the method presented in Ref.[15] can be used in any homology sphere. Expression
(7) is also a consequence of the Schwinger-Dyson equations. Indeed the only connected diagram
entering Gc[B] is given by the two-point function of the curvature 〈εµνρ∂νAρ(x)ε

λστ∂σAτ (y)〉 =
N−1

∫
DAeiS[A]εµνρ∂νAρ(x)ε

λστ∂σAτ (y). Since εµνρ∂νAρ(x) = (1/4πk) δS[A]/δAµ(x), one finds

〈εµνρ∂νAρ(x)ε
λστ∂σAτ (y)〉 = (−i/4πk)N−1

∫
DA (δeiS[A]/δAµ(x)) ε

λστ∂σAτ (y)

= (i/4πk)N−1

∫
DAeiS[A]ελστ δ[∂σAτ (y)]/δAµ(x)

= −
i

4πk
ελσµ

∂

∂xσ
δ3(x− y) , (8)

which is precisely the kernel appearing in Gc[B].

Remark 2. Since the action (1) and the source coupling (2) are both invariant under gauge trans-
formations Aµ(x) → Aµ(x) + ∂µξ(x), the functional integration in the computation of the expecta-
tion value (3) can be interpreted as an integration over the gauge orbits.
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The generating functional (7), which gives the solution of the abelian CS theory in M0, depends
on the smooth classical source Bµ(x). In order to bring the topological content of G[B] to light, it
is convenient to consider the limit in which the source Bµ(x) is supported by knots and links in the
manifold M0.

2.2. Knots and links

For each oriented knot C ⊂ M0 one can introduce [9, 13, 16, 17] a de Rham-Federer 2-current
jC such that, for any 1-form ω, one has

∮
C ω =

∫
M0

ω ∧ jC . Moreover, given a Seifert surface Σ

for C (that verifies ∂Σ = C), the associated 1-current αΣ satisfies jC = dαΣ and then
∮
C ω =∫

M0

ω ∧ jC =
∫
M0

ω ∧ dαΣ. So, given the link C1 ∪ C2 ⊂ M0, the linking number of C1 and C2 is

given by ℓk(C1, C2) =
∫
M0

jC1
∧αΣ2

=
∫
M0

αΣ1
∧jC2

without the introduction of any regularization.
Let L = C1 ∪ C2 ∪ · · · ∪ Cn ⊂ M0 be an oriented framed colored link in which the knot Cj

is endowed with the framing Cjf and its color is specified by the real charge qj . Let us introduce
the 1-current αL :=

∑
j qjαΣj where Cj is the boundary of the surface Σj . In the B → αL limit,

equation (6) becomes [9]

〈
e2πi

∫
A∧dαL

〉
=

〈
e
2πi

∑n
j=1

qj
∮
Cj

A
〉
≡ 〈WL(A)〉

∣∣∣
M0

=

= exp

(
−
2πi

4k

∫

M0

αL ∧ dαL

)
= exp

(
−
2πi

4k
ΛM0

(L,L)
)
, (9)

in which the quadratic function ΛM0
(L,L) of the link L is given by

ΛM0
(L,L) =

n∑

i,j=1

qiqj ℓk(Ci, Cjf )
∣∣∣
M0

, (10)

where ℓk(Ci, Cjf )
∣∣
M0

denotes the linking number of Ci and Cjf in M0. Note that, for integer values

of the charges qi, ΛM0
(L,L) takes integer values. The B → αL limit can be taken after the path-

integral computation or directly before the functional integration; in both cases expression (9) is
obtained.

2.3. The complete solution

When the abelian CS theory is defined in a 3-manifold M which is not a homology sphere, the
formalism presented above needs to be significantly improved in various aspects.

(1) Gauge symmetry. The first issue is related with the gauge symmetry. We consider the CS gauge
theory in which the fields are U(1) connections on M ; when M is not a homology sphere, U(1)
gauge fields are no more described by 1-forms, one needs additional variables to characterize gauge
connections. Each connection can be described by a triplet of local field variables which are defined
in the open sets of a good cover of M and in their intersections. The gauge orbits of the U(1)
connections will be described by DB classes belonging to the space H1

D(M); a few basic definitions
of the Deligne-Beilinson formalism can be found in the Appendix. In the DB approach —as well
as in any formalism in which the U(1) gauge holonomies represent a complete set of observables—
the charges qj and the coupling constant k must assume integer values.

(2) Configuration space. Each gauge connection refers to a U(1) principal bundle over M that may
be nontrivial, and the space of the gauge orbits accordingly admits a canonical decomposition into
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various disjoint sectors or fibres which can be labelled by the elements of the first homology group
H1(M) of M . As far as the functional integration is concerned, the important point is that all
the gauge orbits of a given fibre can be obtained by adding 1-forms (modulo closed 1-forms with
integral periods which corresponds to gauge transformations) to a chosen fixed orbit, that can be
interpreted as an origin element of the fibre and plays the role of a background gauge configuration.
For each element of H1(M) one has an appropriate background connection. Thus the functional
integration in each fibre consists of a path integration over 1-form variables in the presence of a (in
general non-trivial) gauge background which characterizes the fibre. Then, in the entire functional
integration, one has to sum over all the backgrounds.

Each path-integral with fixed background can be normalized with respect to the functional
integration in presence of the trivial background of the vanishing connection; in this way one can
give a meaningful definition [1] the partition function of the CS theory.

Since the homology group of a homology sphere is trivial, in the case of a homology sphere the
space of gauge connections consists of a single fibre —the set of 1-forms modulo gauge transformations—
and the corresponding origin, or background field, can be taken to be the null connection; so one
recovers the circumstances described in § 2.1 and § 2.2.

(3) Chern-Simons action. In the presence of a nontrivial U(1) principal bundle, the dependence of
the CS action on the gauge orbits of the corresponding connections is not given by expression (1);
one needs to improve the definition of the CS action so that U(1) gauge invariance is maintained. In
the DB formalism, the gauge orbits of U(1) connections are described by the so-called DB classes;
for each class A ∈ H1

D(M) the abelian CS action is given by

S[A] = 2πk

∫

M

A ∗A , (11)

where A ∗ A denotes the DB product [13] of A with A, which represents a generalization of the
lagrangian appearing in equation (1); details on this point can be found in the Appendix.

(4) Generalized currents. When the homology class of a knot C ⊂ M is not trivial, there is no
Seifert surface Σ with boundary ∂Σ = C; consequently one cannot define a 1-current αΣ associated
with C. Nevertheless, the standard de Rham-Federer theory of currents admits a generalization [9]
which is based on appropriate distributional DB classes. This means that, for any link L ⊂ M ,
one can find a distributional DB class ηL such that the abelian holonomy associated with L can be
written as

exp

(
2πi

∮

L

A

)
−→ exp

(
2πi

∫

M

A ∗ ηL

)
= holonomy . (12)

In the case of a homology sphere, expression (12) coincides with the gauge invariant coupling∫
A ∧ dαL appearing in equation (9), ηL being given by αL.

(5) Nonperturbative functional integration. When trying to compute the expectation values of the
holonomies, one encounters the following path-integral

∫
DA e2πi

∫
M

(kA∗A+A∗ηL) . (13)

In order to carry out the functional integration over the DB classes by using the nonperturbative
method illustrated above, one would like to introduce a change of variables which is similar to the

5



change of variables defined in equation (4), namely

“ A = −
1

2k
ηL +A′ ” , (14)

where A′ denotes the fluctuating variable. Unfortunately, as it stands equation (14) is not coherent
because the product of the rational number (1/2k) 6= 1 with the DB class ηL is not a DB class in
general; in fact the abelian group H1

D(M) is not a linear space over the field R but rather over Z,
and the naive use of equation (14) would spoil gauge invariance. In order to solve this problem
one needs to distinguish DB classes —together with their local representatives 1-forms— from the
1-forms globally defined in M . It turns out that

(i) when the homology class [L] of L is trivial, one can define [9] a class η′L such that η′L + η′L +
· · ·+ η′L = (2k) η′L = ηL and, as will be shown in Section 5, this solves the problem;

(ii) when the nontrivial element [L] belongs to the torsion component of H1(M), one can always
find an integer p that trivializes the homology, p[L] = 0, and then one can proceed in a way
which is rather similar to the method adopted in case (i);

(iii) the real obstruction that prevents the introduction of a change of variables of the type (14)
is found when [L] has a nontrivial component which belongs to the freely generated subgroup
of H1(M). But in this case there is really no need to change variables —as indicated in
equation (14)— because the direct functional integration over the zero modes gives a vanishing
expectation value to the holomomy.

(6) Flat connections. The nontriviality of the homology group H1(M) also implies the existence
of gauge orbits of flat connections which have an important role in the functional integration. On
the one hand, the flat connections which are related with the torsion component of the homology
control the extent of the nonperturbative effects in the mean values and, on the other hand, the
flat connections which are induced by the (abelian) freely generated component of the homology
implement the cancellation mechanism in the functional integration mentioned in point (iii).

One eventually produces a complete nonperturbative functional integration of the partition
function and of the expectation values of the observables. So, the abelian CS model is a particular
example of a significant gauge quantum field theory that can be defined in a general oriented
3-manifold M , the orbit space of gauge connections is nontrivially structured according to the
various inequivalent U(1) principal bundles over M , the topology of the manifold M is revealed by
the presence of flat connections that give rise to nonperturbative contributions to the observables,
and one gets a complete computation of the path-integral.

3. The quantum abelian Chern-Simons gauge theory

Let the atlas U = {Ua} be a good cover of the closed oriented 3-manifold M ; a U(1) gauge
connection A on M can be described by a triplet of local variables

A = {va, λab, nabc} , (15)

where the va’s are 1-forms in the open sets Ua, the λab’s represent 0-forms (functions) in the
intersections Ua ∩ Ub and the nabc’s are integers defined in the intersections Ua ∩ Ub ∩ Uc. The
functions λab codify the gauge ambiguity vb − va = dλab in the intersection Ua ∩ Ub. Similarly, the
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integers nabc ensure the consistency condition λbc − λac + λab = nabc that the 0-forms λab must
satisfy in the intersections Ua∩Ub∩Uc. The connection which is associated with a 1-form ω globally
defined in M , ω ∈ Ω1(M), has components {ωa, 0, 0}, where ωa is the restriction of ω in Ua.

An element χ of Ω1
Z
(M) is a closed 1-form with integral periods, i.e. a 1-form on M such that,

(i) dχ = 0 and (ii) for any knot C ⊂ M , one has
∮
C χ = n ∈ Z. One says that χ is a . Let us assume

that a complete set of observables is given by the set of holonomies {exp
(
2πi

∮
L A
)
} associated with

links L ⊂ M . Then the connections A and A + χ with χ ∈ Ω1
Z
(M) are gauge equivalent because

there is no observable that can distinguish them. Consequently the space Ω1
Z
(M) of closed 1-forms

with integral periods corresponds to the set of gauge transformations. The gauge orbit A of a given
connection A is the equivalence class of connections {A+χ} with varying χ ∈ Ω1

Z
(M). Each gauge

orbit can be represented by one generic element of the class, and the notation

A ↔ {va, λab, nabc}

means that the class A can be represented by the connection A = {va, λab, nabc}.
The configuration space of a U(1) gauge theory is given by the set of equivalence classes of U(1)

gauge connections on M modulo gauge transformations, and can be identified with the cohomology
space H1

D(M) of the Deligne-Beilinson classes. This space admits a canonical fibration over the
first homology group H1(M) which is induced by the exact sequence

0 → Ω1(M)/Ω1
Z
(M) → H1

D(M) → H1(M) → 0 . (16)

Hence the space H1
D(M) can be interpreted as a disconnected affine space whose connected compo-

nents are indexed by the elements of the homology group of M . The 1-forms modulo closed forms
with integral periods —i.e. the elements of Ω1(M)/Ω1

Z
(M)— act as translations on each connected

component. A picture of H1
D(M) is shown in Figure 3.1; the different fibres match the inequivalent

U(1) principal bundles over M and, for a fixed principal bundle, the elements of each fibre describe
the gauge orbits of the corresponding connections.

H (M)1

0

A
0

γ

Aγ
^

^

Aγ
^

A =      + ω

Figure 3.1. Fibration of H1
D(M) over H1(M).

Each class A ∈ H1
D(M) which belongs to the fibre over the element γ ∈ H1(M) can be written as

A = Âγ + ω , (17)
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where Âγ represents a specified origin in the fibre and ω ∈ Ω1(M)/Ω1
Z
(M). The choice of the class

Âγ for each element γ ∈ H1(M) is not unique. One can take Â0 = 0 as the origin of the fibre over
the trivial element of H1(M).

The abelian CS field theory is a U(1) gauge theory with action S[A] given by the integral on
M of the DB product A ∗ A, S[A] = 2πk

∫
M A ∗ A, where k is the (nonvanishing) integer coupling

constant of the theory. A modification of the orientation of M is equivalent to a change of the sign
of k, so one can assume k > 0. The properties of the DB ∗-product have been discussed for instance
in Ref.[13]; the explicit decomposition of S[A] in terms of the field components can also be found
in the Appendix. The functional integration is modeled [1, 9] on the structure of the configuration
space. According to equation (17), the whole path-integral is assumed to be given by

∫
DAeiS[A] =

∑

γ∈H1(M)

∫
Dω eiS[Âγ+ω] . (18)

Since the CS action is a quadratic function of A, the result of the functional integration does not
depend on the particular choice of the origins Âγ . Then one has to fix the overall normalization
because only the ratios of functional integrations can be well defined. A natural possibility [1] is to
choose the overall normalization to be given by the integral over the gauge orbits of the connections
of the trivial U(1) principal bundle over M , that is the integral over the 1-forms globally defined
in M modulo closed 1-forms with integral periods.

Definition 1. For each function X(A) of the DB classes, the corresponding reduced expectation
value 〈〈X(A)〉〉

∣∣
M

is defined by

〈〈X(A)〉〉
∣∣∣
M

≡

∑
γ∈H1(M)

∫
Dω eiS[Âγ+ω]X(Âγ + ω)
∫
Dω eiS[Â0+ω]

=
∑

γ∈H1(M)

∫
Dω eiS[Âγ+ω] X(Âγ + ω)∫

Dω eiS[ω]
. (19)

When X(A) = 1, one obtains the normalized partition function

Zk(M) ≡ 〈〈1〉〉
∣∣∣
M

=
∑

γ∈H1(M)

∫
Dω eiS[Âγ+ω]

∫
Dω eiS[ω]

. (20)

Remark 3. Note that the standard expectation values 〈X(A)〉
∣∣
M

are defined by

〈X(A)〉
∣∣∣
M

≡

∑
γ∈H1(M)

∫
Dω eiS[Âγ+ω] X(Âγ + ω)

∑
γ∈H1(M)

∫
Dω eiS[Âγ+ω]

, (21)

and can be expressed as

〈X(A)〉
∣∣∣
M

=
〈〈X(A)〉〉

∣∣∣
M

Zk(M)
. (22)

The introduction of the reduced expectation values is useful because it may happen that Zk(M)
vanishes and expression (21) may formally diverge, whereas 〈〈X(A)〉〉

∣∣
M

is always well defined. By
definition, for any homology sphere M0 one has Zk(M0) = 1 because H1(M0) = 0, and then in this
case 〈〈X(A)〉〉

∣∣
M0

= 〈X(A)〉
∣∣
M0

.
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Equation (19) shows that the whole functional integration is given by a sum of ordinary path-

integrals over 1-forms ω in the presence of varying background gauge configurations {Âγ}; the

background fields {Âγ} characterize the inequivalent U(1) principal bundles overM and are labelled
by the elements of the homology group of M .

For each oriented knot C ⊂ M , the associated holonomy WC : H1
D(M) → U(1) is a function

of A which is denoted by WC(A) = exp
(
2πi

∮
C A
)
. The precise definition of the holonomy WC(A)

and its dependence on the field components is discussed in the Appendix.
The holonomy WC(A) is an element of the structure group U(1); in the irreducible U(1) rep-

resentation which is labelled by q ∈ Z, the holonomy WC(A) is represented by exp
(
2πiq

∮
C A

)
.

Thus we consider oriented colored knots in which the color of each knot is specified precisely by the
integer value of a charge q.

In computing the expectation value 〈〈WC〉〉
∣∣
M

one finds ambiguities because the expectation
values of products of fields at the same point are not well defined. This is a standard feature of
quantum field theory; differently from the products of classical fields at the same point —that are
well defined— the path-integral mean values of the products of fields at the same points are not
well defined in general. These ambiguities in 〈〈WC〉〉

∣∣
M

are completely removed [1, 9] by introducing
a framing [14] for each knot and by taking the appropriate limit [18] —in order to define the mean
value of the product of fields at coincident points— according to the framing that has been chosen.
As a result, at the quantum level, holonomies are really well defined for framed knots or for bands.
Given a framed oriented colored knot C ⊂ M , the corresponding expectation value 〈〈WC〉〉

∣∣
M

is
well defined.

Consider a framed oriented colored link L = C1 ∪ C2 ∪ · · · ∪ Cn ⊂ M , in which the color of
the component Cj is specified by the integer charge qj (with j = 1, 2, ..., n); the gauge holonomy
WL : A → WL(A) is just the product of the holonomies of the single components

WL(A) = e2πi
∮
L
A ≡ e

2πiq1
∮
C1

A
e
2πiq2

∮
C2

A
· · · e2πiqn

∮
Cn

A . (23)

The expectation values 〈〈WL〉〉
∣∣
M

together with the partition function Zk(M) are the basic observ-
ables we shall consider.

Remark 4. The charge q is quantized because it describes the irreducible representations of the
structure group U(1). Then the group of gauge transformations which do not modify the value of
the holonomies —which are associated with colored links— is given precisely by the set of closed
1-forms with integral periods. That is why the DB formalism is particularly convenient for the
description of gauge theories with structure group U(1). If a link component has charge q = 0,
this link component can simply be eliminated. If the oriented knot C has charge q, a change of
the orientation of C is equivalent to the replacement q → −q. The DB formalism also necessitates
an integer coupling constant k. For fixed integer k, the expectation values 〈〈WL〉〉

∣∣
M

are invariant
under the substitution qj → qj + 2k where qj is the charge carried by a generic link component.
This can easily be verified for homology spheres, see equation (10), and in fact holds in general [9].
Consequently one can impose that the charge q of each knot takes the values {0, 1, 2, ..., 2k − 1};
i.e. color space coincides with the set of residue classes of integers mod 2k.

Remark 5. At the classical level, the holonomy exp
(
2πiq

∮
C A

)
—for the oriented knot C ⊂ M

and integer charge q > 1— can be interpreted as the holonomy associated with the path q C, in
which the integral of A covers q times the knot C. At the quantum level the charge variables of the
knots —which refer to color space— admit a purely topological interpretation based on satellites
[9, 18] and on the band connected sums [1, 19, 20] of knots.

9



4. Homology and flat connections

The homology group H1(M) of the 3-manifold M is an abelian finitely generated group; it can
be decomposed as

H1(M) = F (M)⊕ T (M) , (24)

where F (M) is the so-called freely generated component

F (M) = Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
B

, (25)

with B ∈ N commuting generators, and T (M) denotes the torsion component

T (M) = Zp1
⊕ Zp2

⊕ · · · ⊕ ZpN , (26)

in which the integer torsion numbers {p1, p2, ..., pN} satisfy the requirement that pi divides pi+1

(with p1 > 1), and Zp ≡ Z/pZ. Let {g1, ..., gB} and {h1, ..., hN} denote the generators of F (M) and
T (M) respectively; all generators commute and the generator hi, with fixed i = 1, 2, ..., N , satisfies
pihi = 0.

The gauge orbits of U(1) flat connections in the manifold M are determined by the homology
group H1(M). The two independent components F (M) and T (M) of H1(M) correspond to two
different kinds of flat connections.

To each element γ ∈ T (M) is associated the gauge orbit A0
γ of a flat connection. Since the

de Rham cohomology does not detect torsion [21], the gauge orbits A0
γ with γ ∈ T (M) cannot be

described by 1-forms; in fact, the class A0
γ can be represented by the connection

A0
γ ↔ {0,Λab(γ), Nabc(γ)} , (27)

where the first (1-form) component is vanishing, Λab(γ) are rational numbers and Nabc(γ) are
necessarily nontrivial if γ is not trivial. The curvature associated with A0

γ is vanishing, dA0
γ =

0, because the first component of the representative connection (27) is vanishing. An explicit
construction of the class (27) can be found in Ref.[1]. Clearly, the gauge orbit A0

0 can be represented
by the vanishing connection {0, 0, 0}. The classes (27) can be taken as canonical origins for the
fibres of H1

D(M) over H1(M) which are labelled by the elements of the torsion group T (M).
To each generator gj (with j = 1, 2, ..., B) of the freely generated subgroup F (M) corresponds

a normalized zero mode βj ∈ Ω1(M); βj is a closed 1-form which is not exact

dβj = 0 , βj 6= dξj , ∀j = 1, 2, ..., B , (28)

thus βj belongs to the first de Rham cohomology space H1
dR(M). In facts the dimension of the

linear space H1
dR(M) —or the first Betti number— is given precisely by B. Zero modes can be

normalized so that, if the knot Cgj ⊂ M represents the generator gj ,

∮

Cgj

βi = δ i
j , (29)

and, if the homology class of a knot C ⊂ M has no components in F (M), one has
∮

C

βj = 0 . (30)
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Remark 6. For each mode βj , let us consider the class [βj ] of 1-forms {βj + dξj} with varying
ξj ∈ Ω0(M); one can represent this class [βj ] by a specific distributional configuration—or de Rham-

Federer current— that can be denoted by β̃j . The 1-current β̃j has support on a closed oriented
surface Σj that does not bound a 3-dimensional region of M and thus Σj represents an element of
the second homology group H2(M). Indeed the group H2(M) is independent of torsion and it is
only related with F (M). More precisely, for each generator gi of F (M) (with i = 1, 2, ..., B) one
can find a closed oriented surface Σi ⊂ M which represents a generator of H2(M) such that the

oriented intersection of Σi with Cgj is given precisely by δ i
j . Thus the 1-currents β̃

j with support on
Σj give an explicit distributional realization [9] of the normalized zero modes satisfying equations
(29) and (30).

Let us now consider the gauge orbits of flat connections that are determined by the zero modes.
For each zero mode βj one can introduce a set of DB classes ω0(θj) ∈ Ω1(M)/Ω1

Z
(M) which can

be represented by
ω0(θj) ↔ {θjβ

j
a, 0, 0} , (31)

where βj
a is the restriction of βj on Ua and the real parameter θj is the amplitude of the mode βj in

the class ω0(θj). Since in each gauge orbit one needs to factorize the action of gauge transformations
defined by closed 1-forms with integral periods, ω0(θj) → ω0(θj)+χ with χ ∈ Ω1

Z
(M), the amplitude

θj must take values in the circle S1 which is given by the interval I = [0, 1] with identified boundaries;
that is 0 < θj ≤ 1. The classes ω0(θj) describe a set of gauge orbits of flat connections because, for
any fixed value of the amplitude θj, one has dω0(θj) ↔ {θj dβ

j
a = 0, 0, 0} = 0.

Definition 2. The zero modes, which are associated with the subgroup F (M) of the homology,
determine a set of gauge orbits of flat connections ω0(θ) ∈ Ω1(M)/Ω1

Z
(M) given by

ω0(θ) ↔ {θ1β
1
a + θ2β

2
a + · · ·+ θBβ

B
a , 0, 0} , (32)

in which βj
a is the restriction of βj on Ua and the real parameters {θj} satisfy 0 < θj ≤ 1 for

j = 1, 2, ..., B.

Therefore a generic element ω ∈ Ω1(M)/Ω1
Z
(M) can be decomposed as

ω = ω0(θ) + ω̃ , (33)

where ω̃ denotes what remains of the ω variables after the exclusion from Ω1(M)/Ω1
Z
(M) of the

gauge orbits ω0(θ), and the functional integration takes the form

∫
Dω F [ω] =

∫ 1

0

dθ1

∫ 1

0

dθ2 · · ·

∫ 1

0

dθB

∫
Dω̃ F [ω0(θ) + ω̃ ] . (34)

To sum up, the map of the gauge orbits of flat connections is given by

H1(M)
flat

−−−−→

{
T (M) → A0

γ canonical origins for the fibres over γ ∈ T (M);
F (M) → ω0(θ) zero modes contributions to Ω1(M)/Ω1

Z
(M) .

Finally, let us recall that the holonomies {exp
(
2πi

∮
C
A0

)
} —which are associated with the

knots {C ⊂ M}— of a flat connection A0 give a U(1) representation of the fundamental group of
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M , which coincides with a U(1) representation of H1(M) because the structure group is abelian;
the gauge orbit of a flat connection is completely specified by this representation.

For each zero mode βj , with j = 1, 2, ..., B, let us consider the homomorphism ρ(j) : H1(M) →
U(1) which is defined by the holonomies of the flat connection A0 = θjβ

j (no sum over j); equations
(29) and (30) imply

ρ(j) : gj 7→ e2πiθj ,

ρ(j) : gi 7→ 1 , for i 6= j ,

ρ(j) : hi 7→ 1 .

(35)

By varying θj in the circle R/Z ∼= S1 in equation (35) one obtains the set of characters of a free
component Z ⊂ F (M), that is to say the dual group of this component. One recovers that the dual
group of Z is U(1).

The dual group of a subgroup Zp ⊂ T (M) —which is given by the possible values of the holonomy
of a generator of Zp— coincides with the set of the p-th roots of unity, {ζ0, ζ1, ζ2, ..., ζp−1} where
ζ = e2πi/p. The characters H1(M) → U(1) defined by the holonomies of the origins classes A0

γ

(with γ ∈ T (M)) of equation (27) depend on the manifold M . A few examples will be presented in
Section 7.

5. Functional integration

This section contains the details of the functional integration for the partition function and for
the abelian CS observables in a general manifold M .

5.1. Opening

Given a framed oriented colored link L = C1 ∪ C2 ∪ · · · ∪ Cn ⊂ M , where the component Cj

has charge qj (with j = 1, 2, ..., n), one can introduce [9] a distributional DB class ηL such that the
gauge holonomy WL(A) can be written as

WL(A) = exp

(
2πi

∫

M

A ∗ ηL

)
. (36)

One can put

ηL =
n∑

j=1

qjηCj , (37)

in which the class ηCj can be represented by

ηCj ↔ {αa(Cj),Λab(Cj), Nabc(Cj)} , (38)

where αa(Cj) is a de Rham-Federer 1-current defined in the open chart Ua such that dαa(Cj) has
support on the restriction of Cj in Ua. If the knot Cj has trivial homology, then αa(Cj) can be
taken to be the restriction in Ua of a current αΣj —globally defined in M— with support on a
Seifert surface Σj of Cj , and in this case the components Λab(Cj) and Nabc(Cj) are trivial. If Cj

has nontrivial homology, αa(Cj) is no more equal to the restriction of a globally defined 1-current
and the components Λab(Cj) and Nabc(Cj) are necessarily nontrivial.

12



The homology class [L] ∈ H1(M) of the colored link L ⊂ M is defined to be the weighted sum
—weighted with respect to the values of the color charges— of the homology classes of the link
components

[L] ≡

n∑

i=1

qi[Ci] = [L]F + [L]T , (39)

where

[L]F =
B∑

j=1

ajL gj , [L]T =
N∑

i=1

biL hi , (40)

for certain integers {ajL} and {biL}. There are no restrictions on the values taken by the integers

{ajL}; whereas the possible values of the integer b
i
L, for fixed i, belong to the residue class of integers

mod pi, because pihi = 0.
In order to compute the reduced expectation value

〈〈WL(A)〉〉
∣∣∣
M

=
∑

γ∈H1(M)

∫
Dω eiS[Âγ+ω] WL(Âγ + ω)∫

Dω eiS[ω]
, (41)

let us choose the background origins Âγ . Each element γ ∈ H1(M) can be decomposed as

γ = γϕ + γτ , (42)

where γϕ ∈ F (M) and γτ ∈ T (M). In particular, one can write

γϕ = z1g1 + z2g2 + · · ·+ zBgB , γτ = n1h1 + n2h2 + · · ·+ nNhN , (43)

for integers zi ∈ Z and nj, with 0 ≤ nj ≤ pj − 1. Accordingly one can put

Âγ = Âγϕ + Âγτ , (44)

where
Âγϕ = z1η1 + z2η2 + · · ·+ zBηB , (45)

and
Âγτ = n1A

0
1 + n2A

0
2 + · · ·+ nNA0

N . (46)

The torsion components Âγτ represent the canonical origins which describe the gauge orbit associ-
ated with the flat connections of type (27). In particular, the class A0

j (with j = 1, 2, ..., N) denotes
the gauge orbit corresponding to the generator hj of T (M),

A0
j ↔ {0,Λab(hj), Nabc(hj)} . (47)

The fibres of H1
D(M) over H1(M) which are labelled by the elements γϕ ∈ F (M) do not possess a

canonical origin and, in order to simplify the exposition, the choice of Âγϕ illustrated in equation
(45) is based on the distributional DB classes ηi (with i = 1, 2, .., B) which can be represented by

ηi ↔ {αa(Cgi ),Λab(Cgi), Nabc(Cgi )} , (48)

where αa(Cgi ) is a de Rham-Federer 1-current defined in Ua such that dαa(Cgi) has support on the
restriction in the open Ua of a knot Cgi ⊂ M that represents the generator gi of F (M). It is conve-
nient to introduce a framing for each knot Cgi , so that all expressions containing the distributional

DB class Âγϕ are well defined. The final expression that will be obtained for 〈〈WL(A)〉〉
∣∣
M

does not
depend on the choice of the framing of Cgi (see Remark 7 below).
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5.2. Zero modes integration

Each gauge orbit is then denoted by

Âγ + ω = Âγϕ + Âγτ + ω0 + ω̃ , (49)

and the functional integration takes the form

∑

γ∈H1(M)

∫
Dω F [Âγ + ω] =

=
∑

γτ∈T (M)

+∞∑

z1=−∞

· · ·
+∞∑

zB=−∞

∫ 1

0

dθ1 · · ·

∫ 1

0

dθB

∫
Dω̃ F [Âγϕ + Âγτ + ω0 + ω̃ ] . (50)

We now need to determine the dependence of the action S[Âγ+ω] and of the holonomy WL[Âγ +ω]
on the field components (49). One has

S[Âγ + ω] = S[Âγϕ + Âγτ + ω0 + ω̃] =

= S[Âγτ + ω̃] + 4πk

∫

M

[
(Âγτ + ω̃) ∗ (Âγϕ + ω0)

]

+2πk

∫

M

[
Âγϕ ∗ Âγϕ + ω0 ∗ ω0 + 2ω0 ∗ Âγϕ

]
. (51)

Since the first component of the representative connections (47) is vanishing, whereas only the first
component of the representative connections (32) is not vanishing, one gets

∫

M

Âγτ ∗ ω0 = 0 mod Z . (52)

For the reason that ω̃ ∈ Ω1(M)/Ω1
Z
(M), ω0 ∈ Ω1(M)/Ω1

Z
(M) and dω0 = 0, one finds

∫

M

ω̃ ∗ ω0 =

∫

M

ω0 ∗ ω0 = 0 mod Z . (53)

The framing procedure, which defines the self-linking numbers, produces integer values for the
self-interactions of the distributional DB classes Aγϕ , thus

∫

M

Âγϕ ∗ Âγϕ = 0 mod Z . (54)

The normalization condition (29) and the definitions (32) and (45) imply

∫

M

ω0 ∗ Âγϕ =

B∑

i=1

ziθi mod Z . (55)

Therefore

exp
(
iS[Âγ + ω]

)
= exp

(
iS[Âγτ + ω̃] + 4iπk

∫

M

(Âγτ + ω̃) ∗ Âγϕ + 4iπk
∑

i

ziθi

)
. (56)
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Let us now consider the holonomy

WL[Âγ + ω] = exp

(
2πi

∫

M

[Âγ + ω] ∗ ηL

)
= exp

(
2πi

∫

M

[
Âγϕ + Âγτ + ω0 + ω̃

]
∗ ηL

)
. (57)

The distributional DB classes have integer linking

∫

M

Âγϕ ∗ ηL = 0 mod Z , (58)

and condition (29) together with the definition of the homology classes (39) and (40) give

∫

M

ω0 ∗ ηL =
B∑

i=1

aiLθi mod Z . (59)

Consequently

exp

(
2πi

∫

M

(Âγ + ω) ∗ ηL

)
= e2πi

∑
i a

i
Lθi exp

(
2πi

∫

M

(Âγτ + ω̃) ∗ ηL

)
. (60)

The expectation value (41) then becomes

〈〈WL(A)〉〉
∣∣∣
M

=
∑

γτ∈T (M)

+∞∑

z1=−∞

· · ·

+∞∑

zB=−∞

∫ 1

0

dθ1 · · ·

∫ 1

0

dθB e2πi
∑

j [2kzj+aj
L]θj ×

×

∫
Dω̃ eiS[Âγτ +ω̃]e2πi

∫
(Âγτ +ω̃)∗ηLe4πik

∫
(Âγτ +ω̃)∗Âγϕ

∫
Dω eiS[ω]

. (61)

Each single integral in the θj variable gives

∫ 1

0

dθj e
2πi[2kzj+aj

L]θj = δ(2kzj + ajL) . (62)

Both zj and ajL are integers, and the constraint (62) is satisfied provided ajL ≡ 0 mod 2k. Thus, in
order to have 〈〈WL(A)〉〉

∣∣
M

6= 0, one must have [L]F ≡ 0 mod 2k, that is

ajL ≡ 0 mod 2k , ∀j = 1, 2, ..., B . (63)

When [L]F ≡ 0 mod 2k, the sums over the z-variables have the effect of replacing in expression
(61) each variable zj by zj given by

zj → zj = −(ajL/2k) . (64)

From the definition (45) it follows then

Âγϕ

∣∣∣
zj=zj

=
1

2k
ηL•

, ηL•
= −a1Lη1 − a2Lη2 − · · · − aBLηB , (65)
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where ηL•
can be interpreted as the distributional DB class which is associated with the oriented

framed colored link L• = Cg1 ∪ Cg2 ∪ · · · ∪ CgB ⊂ M in which the component Cgj has color given

by the integer charge −ajL. So from equation (61) one obtains

〈〈WL(A)〉〉
∣∣∣
M

=
∑

γτ∈T (M)

∫
Dω̃ eiS[Âγτ +ω̃]e2πi

∫
(Âγτ +ω̃)∗(ηL+ηL• )∫

Dω eiS[ω]
. (66)

The distributional DB class
ηLτ ≡ ηL + ηL•

(67)

is associated with the link
Lτ = L ∪ L• ⊂ M , (68)

and the homology class [Lτ ] of Lτ has nontrivial components in the torsion subgroup exclusively,
more precisely

[Lτ ] = [L]T =
N∑

i=1

biL hi . (69)

Remark 7. The generators of the torsion subgroup T (M) are not linked with the generators of
F (M), therefore in the computation of expression (66) the components of L• supply various integer
linking numbers between Cgi and Cgj (for arbitrary i and j) and between Cgi and the L components.
In particular, the contribution of L• to the integral (66), which depends on the framing of the knots
Cgj exclusively, is given by the multiplicative factor exp[−(2πi/4k)

∑
j(a

j
L)

2ℓk(Cgj , Cgj f)] which is

of the type (9). Consequently, since each ajL is a multiple of 2k, 〈〈WL(A)〉〉
∣∣
M

does not depend on
the choice of the framing of the knots {Cgj}.

Remark 8. Since the homology class of Lτ has no component in the group F (M), instead of
integrating over ω̃, in the functional integral (66) one can integrate directly over the whole space
of the variables ω ∈ Ω1(M)/Ω1(M)Z without modifying the result; indeed the integral over the
amplitudes of the zero modes simply gives a multiplicative unit factor. This is a consequence of the
fact that each amplitude θj of the zero modes takes values in the range 0 < θj ≤ 1.

Thus the outcome (66) can also be written in the following way:

〈〈WL(A)〉〉
∣∣∣
M

= 0 , if [L]F 6≡ 0 mod 2k , (70)

and when [L]F ≡ 0 mod 2k one gets

〈〈WL(A)〉〉
∣∣∣
M

=
∑

γτ∈T (M)

∫
Dω eiS[Âγτ +ω]e2πi

∫
(Âγτ +ω)∗ηLτ∫

Dω eiS[ω]
. (71)

In view of equations (68) and (69), one can summarize the results (70) and (71) by saying that the
functional integration over the zero-mode flat connections acts as a projection into the sector of
vanishing free homology.
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5.3. Factorization

The action S[Âγτ + ω] is given by

S[Âγτ + ω] = S[Âγτ ] + S[ω] + 4πk

∫

M

ω ∗ Âγτ ; (72)

since ω ∈ Ω1(M)/Ω1(M)Z and the canonical origins A0
j are represented by the connections (47), it

follows ∫

M

ω ∗ Âγτ = 0 mod Z . (73)

Therefore equation (71) takes the form

〈〈WL(A)〉〉
∣∣∣
M

=


 ∑

γτ∈T (M)

eiS[Âγτ ]e2πi
∫
Âγτ ∗ηLτ



∫
Dω eiS[ω]e2πi

∫
ω∗ηLτ∫

Dω eiS[ω]
. (74)

This expression shows that, as a consequence of equation (73), the path-integral over ω and the
sum over the torsion background fields given by the canonical origins A0

j factorize. The term

∫
Dω eiS[ω]e2πi

∫
ω∗ηLτ∫

Dω eiS[ω]
= e−(2πi/4k) ΛM (Lτ ,Lτ ) (75)

is called the perturbative component of 〈〈WL(A)〉〉
∣∣
M

because it coincides with its Taylor expansion
in powers of the variable 1/k and it assumes the unitary value in the 1/k → 0 limit. The integral
(75) is the analogue of expression (9); the quadratic function ΛM (Lτ , Lτ ) of the link Lτ assumes
rational values and can be defined in terms of appropriate linking numbers. On the other hand,
the term

∑

γτ∈T (M)

eiS[Âγτ ]e2πi
∫
Âγτ ∗ηLτ =

p1−1∑

n1=0

· · ·

pN−1∑

nN=0

e2πik
∑

ij ninj

∫
A0

i ∗A
0

j e2πi
∑

j nj

∫
A0

j∗ηLτ (76)

does not admit a power expansion in powers of 1/k around 1/k = 0 and it represents the nonpertur-

bative component of 〈〈WL(A)〉〉
∣∣
M
. So the gauge orbits Âγτ of the torsion flat connections control

the non-perturbative contributions to the expectation values.

5.4. Perturbative component

The path-integral (75) can be computed by using a procedure which is similar to the method
illustrated in § 2.1 and § 2.2. In order to simplify the exposition, it is convenient to use two
properties of the CS path-integral according to which one can replace the link Lτ by an appropriate
single oriented framed knot KL with color specified by the unit charge q = 1.

(a) The first property [9] reads

∫
Dω eiS[ω]e2πi

∫
ω∗ηLτ∫

Dω eiS[ω]
=

∫
Dω eiS[ω]e2πi

∫
ω∗ηL∗

τ∫
Dω eiS[ω]

, (77)

where L∗
τ ⊂ M is the simplicial satellite of Lτ , i.e. the oriented framed colored link obtained

from Lτ by replacing each component Kj of Lτ , that has color given by the charge qj 6= ±1,
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by |qj | parallel copies of Kj with unit charge; these parallel copies of Kj —together with their
framings— belong to the band which is bounded by Kj and by its framing Kjf . Thus, with a
suitable choice for the orientations of the link components, all the components of L∗

τ have unit
charge q = 1. Property (77) follows from the definition of the framing procedure [9, 18].

(b) The second property [1] states that
∫
Dω eiS[ω]e2πi

∫
ω∗ηL∗

τ∫
Dω eiS[ω]

=

∫
Dω eiS[ω]e2πi

∫
ω∗ηKL∫

Dω eiS[ω]
, (78)

where the oriented framed knot KL ⊂ M (with color q = 1) is the band connected sum [1, 19]
of all the components of L∗

τ . The sum of two knots is illustrated in Figure 5.1. Property (78) is
a consequence of the fact that if one adds or eliminates one unknot —which belongs to a 3-ball
in M and has trivial framing— the expectation values of the link holonomies are left invariant.

By construction, the homology class [KL] of the knot KL is equal to the homology class of the
link Lτ . Let us now consider the following two possibilities.

C1

C2

C1#C2

Figure 5.1. Band connected sum C1#C2 of the knots C1 and C2.

5.4.1. Trivial homology

If [Lτ ] = [KL] = 0, one can find a Seifert surface Σ ⊂ M for the knot KL and define the
associated 1-current αΣ such that

∫
M

ω ∗ ηKL =
∫
M

ω ∧ dαΣ. Note that the current αΣ is globally
defined in the manifold M , so the product (1/2k)αΣ is well defined. Then in the path-integral (78)
one can perform the change of variables

ω = η′KL
+ ω′ , (79)

where the class η′KL
is represented by

η′KL
↔
{
−
(αΣ

2k

)
a
, 0, 0

}
, (80)

and ω′ designates the fluctuating variable. The restriction of (αΣ/2k) in the open domain Ua has

been denoted by (αΣ/2k)a. Since eiS[ω]e2πi
∫
ω∗ηKL = eiS[ω′]e−2πi/4k

∫
η′

KL
∗η′

KL , in expression (78)
the functional integration over ω′ factorizes in the numerator and cancels with the denominator.
So, by taking into account equations (77) and (78), one obtains

∫
Dω eiS[ω]e2πi

∫
ω∗ηLτ∫

Dω eiS[ω]
= e−(2πi/4k) ℓk(KL,KLf) , (81)
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where the linking number ℓk(KL,KLf) —which takes integer values— is well defined because [KL] =
[KLf ] = 0.

5.4.2. Nontrivial torsion

When [Lτ ] = [KL] ∈ T (M) (with [KL] 6= 0), on can always find a integer p ∈ Z such that
p[KL] = 0. So, let us consider the satellite of KL which is made of p parallel copies of the knot KL

(each copy belongs to the band bounded by KL and its framing KLf), the band connected sum of
all these parallel knots defines a framed oriented knot Kp

L ⊂ M with [Kp
L] = 0. We call Kp

L the
p-covering of the knot KL. Let Σ

′ ⊂ M be a Seifert surface of Kp
L and let αΣ′ be the corresponding

1-current. Again, the current αΣ′ is globally defined in the manifold M , so the product (1/p)αΣ is
well defined. Let us introduce the distributional class ηKp

L
which satisfies

ηKp
L
↔

{
1

p
(αΣ′)a , 0, 0

}
. (82)

Then ∫
Dω eiS[ω]e2πi

∫
ω∗ηKL∫

Dω eiS[ω]
=

∫
Dω eiS[ω]e

2πi
∫
ω∗ηK

p
L∫

Dω eiS[ω]
, (83)

and from now on one can proceed as in the trivial homology case. Consequently one finds
∫
Dω eiS[ω]e2πi

∫
ω∗ηLτ∫

Dω eiS[ω]
= e−(2πi/4k) ℓk(Kp

L,Kp
Lf

)/p2

. (84)

5.5. Nonperturbative component

For each canonical origin Âγτ (with γτ ∈ T (M)), the amplitude

eiS[Âγτ ] = e2πik
∑

ij ninj

∫
A0

i∗A
0

j = e2πik
∑

ij ninjQij (85)

determines a Q/Z-valued quadratic form Q on T (M) which is specific of the manifold M . The value

of the CS action S[Âγτ ] can be computed by using different methods [1, 22, 23, 24]; in particular,

S[Âγτ ] can also be interpreted as an appropriate linking number. For each element γτ of the torsion
group one can choose a representative oriented knot Cγτ ⊂ M . Let Cγτ f be a framing for Cγτ . The
self-linking number of Cγτ —which is equal to the linking number of Cγτ with Cγτ f— modulo
integers determines the value of Q(γτ ). This linking number can be computed by using the method
illustrated in § 5.4. Namely, if p γτ = 0 for a given integer p ∈ Z, consider the framed satellite of
Cγτ made of p parallel copies of the framed knot Cγτ that belong to the band which is bounded
by Cγτ and Cγτ f ; finally the sum of all these components defines a framed knot Cp

γτ
. Since Cp

γτ

has trivial homology, [Cp
γτ
] = 0, there exists a Seifert surface Σ ⊂ M of Cp

γτ
and one can define the

corresponding de Rham-Federer 1-current αΣ. Let αΣf
be the 1-current which is associated with a

Seifert surface Σf of the framing of Cp
γτ
. Then the self-linking number of Cγτ is given by

ℓk(Cγτ , Cγτ f) =
1

p2

∫

M

αΣ ∧ dαΣf
=

1

p2

∫

M

αΣf
∧ dαΣ , (86)

and assumes rational values in general. One has

eiS[Âγτ ] = e−2πik ℓk(Cγτ ,Cγτ f) = e−(2πik/p2)
∫
M

αΣ∧dαΣf = e2πikQ(γτ ) . (87)

Given an integer Dehn surgery presentation ofM , the quadratic form Q can also be derived [1, 6, 25]
from the expression of the linking matrix of the surgery instructions.

19



Remark 9. Since the CS coupling constant k takes integer values, the quadratic form Q(γτ ) —
which is determined by equation (87) for arbitrary integer k— is defined modulo integers. Moreover

the value of the amplitude eiS[Âγτ ] does not depend on the particular choice of the framing Cγτ f .
Indeed, under a modification of the framing Cγτ f , the variation of the intersection number

∫
M

αΣ ∧
dαΣf

is given by

∆

(∫

M

αΣ ∧ dαΣf

)
= p2 × integer , (88)

because the knot Cp
γτ

is the band connected sum of p parallel copies of Cγτ . The change (88) of
the self-linking number

∫
M αΣ ∧ dαΣf

leaves expression (87) invariant.

Finally the value of the amplitude

e2πi
∫
Âγτ ∗ηLτ = e2πi

∑
j nj

∫
A0

j∗ηLτ (89)

can be determined by computing the linking numbers of the components of the link Lτ with the
representative knots of the generators of the torsion group. In this calculation also one can use the
methods illustrated above; the various linking numbers generally assume rational values.

5.6. Path-integral invariants

The result of the functional integration can be summarized as

〈〈WL(A)〉〉
∣∣∣
M

= δ([L]F ≡ 0 mod 2k)× e−(2πi/4k) ℓk(Kp
L,Kp

Lf
)/p2

×

×

(
p1−1∑

n1=0

· · ·

pN−1∑

nN=0

e2πik
∑

ij ninjQij e2πi
∑

j nj

∫
A0

j∗ηLτ

)
, (90)

where all the various functions which appear in the exponents represent appropriate linking num-
bers. By inserting L = 0 in equation (90), one obtains the path-integral partition function

Zk(M) ≡ 〈〈1〉〉
∣∣∣
M

=

p1−1∑

n1=0

· · ·

pN−1∑

nN=0

e2πik
∑

ij ninjQij . (91)

6. Comparison with the Reshetikhin-Turaev surgery invariants

Let us briefly recall the definition of the abelian surgery invariants of Reshetikhin-Turaev [5, 6,
7, 8]. Each closed oriented 3-manifold admits an integer Dehn surgery presentation in S3, in which
the surgery instruction is described by a framed link in S3. Suppose that the framed surgery link
L ⊂ S3, which corresponds to the 3-manifold ML, has components L = L1 ∪ L2 ∪ · · · ∪ Lm. With
the introduction of an orientation for each component of L, one can define the surgery function
ŴL(A) by means of the equation

ŴL(A) =

2k−1∑

q1=0

e
2πiq1

∮
L1

A
2k−1∑

q2=0

e
2πiq2

∮
L2

A
· · ·

2k−1∑

qm=0

e2πiqm
∮
Lm

A , (92)
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where exp
(
2πiqj

∮
Lj

A
)
denotes the gauge holonomy associated with the component Lj with charge

qj . Let L̃ be the linking matrix of the surgery link, and let σ(L) denote the signature of L̃. For
fixed integer k, the following combination Ik(ML) of expectation values on the sphere,

Ik(ML) = (2k)−m/2 eiπσ(L)/4 〈 ŴL(A)〉
∣∣∣
S3

= (2k)
−m/2

eiπσ(L)/4
2k−1∑

q1=0

· · ·

2k−1∑

qm=0

e−(2πi/4k)
∑m

ij=1
qiqj L̃ij , (93)

is invariant under Kirby moves [14, 19] and thus it represents a topological invariant of the oriented
manifold ML. Similarly, if L denotes a framed oriented colored link in the complement of L in S3,
then

Ik(ML;L) = (2k)
−m/2

eiπσ(L)/4 〈 ŴL(A)WL(A)〉
∣∣∣
S3

(94)

defines a surgery invariant of the link L in the 3-manifold ML. The defining expressions (93)
and (94) are not the result of a path-integral computation in the 3-manifold ML. The abelian
Reshetikin-Turaev invariants (93) and (94) are defined by means of appropriate combinations of
the link invariants of the sphere S3 in which one of the links is the surgery link; for this reason
expressions (93) and (94) are called surgery invariants.

Expressions (93) and (94) can be transformed by means of the Deloup-Turaev reciprocity formula
[25]. The symmetric bilinear form on the latticeW of Theorem 1 contained in Ref.[25] corresponds to

the bilinear form which is defined by the linking matrix L̃, and the sum over the elements in the dual
latticeW • is in agreement with the sum over the elements of the torsion group T (M). The vanishing

eigenvalues of L̃ are correlated with the gauge orbits (32) of flat connections ω0(θ) ∈ Ω1(M)/Ω1
Z
(M)

due to the zero modes, whereas the quadratic form Q can be understood [1] as a suitable inverse

of the minor of L̃ in the torsion subspace. As a consequence of Theorem 1 of Ref.[25], one has

〈〈WL(A)〉〉
∣∣∣
ML

= (2k)
−B/2

(p1p2 · · · pN )1/2 Ik(ML;L) . (95)

In particular, as far as the partition function is concerned, equation (95) gives

Zk(ML) = (2k)
−B/2

(p1p2 · · · pN )1/2 Ik(ML) . (96)

So, when Zk(ML) 6= 0, the standardly normalized path-integral expectation values (22) coincide
[26] with the ratios of the Reshetikhin-Turaev invariants

〈WL(A)〉
∣∣∣
ML

=
〈〈WL(A)〉〉

∣∣∣
ML

Zk(ML)
=

Ik(ML;L)

Ik(ML)
. (97)

7. Examples

The effects of the topology of the manifold M on the path-integral invariants (90) are of two
types. The free component F (M) of the homology group is simply related with the δ([L]F ≡
0 mod 2k) factor, whereas the nontrivial topology contribution is described by the quadratic form
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Q on the torsion group T (M). So let us present examples of 3-manifolds with homology groups
containing the torsion component exclusively.

Let us consider the lens spaces Lp/r in which the two coprime integers p and r satisfy p > 1
and 1 ≤ r < p. When p 6= p′, the lens spaces Lp/r and Lp′/r′ are not homeomorphic; the manifolds
Lp/r and Lp/r′ are homeomorphic iff ±r′ ≡ r±1 (mod p). The fundamental group is abelian
π1(Lp/r) = Zp and coincides with the homology group H1(Lp/r) = T (Lp/r) = Zp. A generic
element γ ∈ T (Lp/r) can be written as γ = nh where h is the generator of T (Lp/r) and satisfies
ph = 0. The manifold Lp/r admits [27] a surgery presentation in S3 in which the surgery instruction
is given by the unknot U ⊂ S3 with surgery coefficient p/r. Let V be a tubular neighbourhood

of U ; Lp/r is obtained by removing the interior V
◦

of V from S3 and by gluing V with S3 − V
◦

according to a homemorphism f∗ : ∂V → ∂(S3 − V
◦

) which sends a meridian µ of V into a (p, r)

torus knot in ∂(S3 − V
◦

). Therefore, by using the method described in [1], one can determine the
corresponding quadratic form Q on the torsion group

Q(γ = nh) = n2r/p . (98)

Consequently the path-integral partition function (91) is given by

Zk(Lp/r) =

p−1∑

n=0

exp

(
2πikr

p
n2

)
. (99)

Let us now consider the link L = C1 ∪C2 ⊂ Lp/r which, in a surgery presentation of Lp/r, is shown
in Figure 7.1(a).

C1

C2 C2 D1

B1

p/r p/r

(a) (b)

Figure 7.1. Links in the lens space Lp/r.

Let q1 and q2 be the charges associated with C1 and C2 respectively, and suppose that the orien-
tations and the framings of the link L are specified by the following data

ℓk(C1, C2)
∣∣∣
S3

= 1 , ℓk(C1, C1f)
∣∣∣
S3

= f1 , ℓk(C2, C2f)
∣∣∣
S3

= f2 , (100)

where the linking numbers refer to the sphere of the surgery presentation. The component C1

—whose homology class is nontrivial— can be understood as the band connected sum of the two
knots B1 and D1 shown in Figure 7.1(b); therefore

〈〈WC2
WC1

〉〉
∣∣∣
Lp/r

= 〈〈WC2
WD1

WB1
〉〉
∣∣∣
Lp/r

. (101)
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Note that the link C2 ∪D1 belongs to the interior of a 3-ball in Lp/r and then its contribution to
the expectation value factorizes and coincides with the contribution in the sphere S3,

〈〈WC2
WD1

WB1
〉〉
∣∣∣
Lp/r

= 〈〈WC2
WD1

〉〉
∣∣∣
S3

〈〈WB1
〉〉
∣∣∣
Lp/r

. (102)

The knots B1 and D1 have charge q1 and their orientation is determined by the orientation of C1;
let us now consider the framings. It is convenient to choose the framing of B1 to be trivial with
respect to the sphere S3 of the surgery presentation, i.e. ℓk(B1, B1f)|S3 = 0. In fact in this case
one has ℓk(D1, D1f)|S3 = ℓk(C1, C1f)|S3 = f1, and therefore the link D1 ∪ C2 would be ambient
isotopic with the original link C1 ∪ C2 in S3 if the surgery instructions are neglected, that is

〈〈WC2
WD1

〉〉
∣∣∣
S3

= 〈WC2
WD1

〉
∣∣∣
S3

= 〈WC2
WC1

〉
∣∣∣
S3

. (103)

So one finds

〈〈WC1
WC2

〉〉
∣∣∣
Lp/r

= 〈WC1
WC2

〉
∣∣∣
S3

〈〈WB1
〉〉
∣∣∣
Lp/r

= exp
[
−(2πi/4k)

(
f1q

2
1 + f2q

2
2 + 2q1q2

)]
〈〈WB1

〉〉
∣∣∣
Lp/r

. (104)

The knot B1 has charge q1 and has trivial framing with respect to the sphere S3 of the surgery
presentation. Since B1 is a representative of the generator h ∈ T (Lp/r), the knot Bp

1 —which
denotes the p-covering of the knot B1, as in § 5.4— is homologically trivial and, since it is ambient
isotopic with f∗(µ), its linking number in Lp/r is given by

ℓk(Bp
1 , B

p
1f)
∣∣∣
Lp/r

= −pr . (105)

Therefore the perturbative component (84) of 〈〈WB1
〉〉
∣∣
Lp/r

is given by

∫
Dω eiS[ω]e

2πiq1
∮
B1

ω

∫
Dω eiS[ω]

= exp

[
−
2πi

4k
q21

(
−pr

p2

)]
. (106)

Let us now consider the nonperturbative component (76) of 〈〈WB1
〉〉
∣∣
Lp/r

. The canonical origin A0
γ

of the H1
D(Lp/r) fibre over γ = nh ∈ T (Lp/r) can be written as

A0
γ = nA0 , (107)

where A0 is the gauge orbit of a flat connection which corresponds to the generator of the torsion
group. In agreement with equation (98), the value of the CS action S[A0] reads

e2πik
∫
A0

∗A0

= e2πik r/p , (108)

and the holonomy along B1 —which can be evaluated by using the methods described in [1, 9]—
is given by

e
iq1

∮
B1

A0

= e2πiq1r/p . (109)
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Consequently, the nonperturbative component of 〈〈WB1
〉〉
∣∣
Lp/r

takes the form

p−1∑

n=0

e2πikn
2
∫
A0

∗A0

e
2πin

∮
B1

A0

=

p−1∑

n=0

exp

[
2πir

p
(kn2 + nq1)

]
. (110)

By combining expressions (106) with (110) one finds

〈〈WB1
〉〉
∣∣∣
Lp/r

=

p−1∑

n=0

exp

[
2πikr

p
(n+ q1/2k)

2

]
. (111)

Expression (111) is defined for values of q1 that belong to the residue classes of integers mod 2k, as
it should be. A second check of equation (111) can be obtained by putting q1 = p. Indeed the knot
B1 with charge q1 = p is equivalent to the knot Bp

1 (the p-covering of B1) with unit charge. Since
Bp

1 belongs to a 3-ball in Lp/r and has self-linking number shown in equation (105), expression (111)
should be equal to the expectation value in S3 of the unknot (with charge = 1) with self-linking
number −pr multiplied by the partition function Zk(Lp/r). And in fact, when q1 = p, expression
(111) becomes

〈〈WB1
〉〉
∣∣∣
Lp/r , q1=p

= e−(2πi/4k)(−pr)

p−1∑

n=0

exp

[
2πikr

p
n2

]
, (112)

which is in agreement with equation (99).

8. Conclusions

The successful definition and evaluation of the functional integration in the U(1) Chern-Simons
theory —which is defined in a general 3-manifold M— illuminates some open problems that one
encounters in gauge quantum field theories when the space (or spacetime) manifold has nontrivial
topology.

The group of local U(1) gauge transformations is extended with respect to the S3 case and is
described by the set of closed 1-forms with integral periods. The path-integral is defined in the
space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal
bundles over M . The integration in each sector of the configuration space takes the form of a
standard functional integration over 1-forms (modulo gauge transformations) in the presence of
appropriate background connections; the sum over all the inequivalent principal bundles is given
by a sum over the backgrounds. When the manifold M has nontrivial topology the central issue
is the choice of the normalization of the path-integral. With structure group U(1), the functional
integration over the gauge orbits of the connections which belong to the trivial U(1) principal
bundle over M represents the canonical normalization, which generalises the ordinary path-integral
normalization in the case of the sphere S3 and permits to give a meaningful definition of the
partition function in a general manifold M .

A few technical aspects of the actual nonperturbative computation of the U(1) Chern-Simons
path-integral are based on the particular form of the action and of the observables. In the computa-
tion of gauge-invariant observables, any gauge-fixing procedure can be avoided and in the presence
of zero modes —where standard perturbation theory cannot be used because the fields propagator
does not exist— one can still carry out the functional integration; indeed the amplitudes of the
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zero modes take values in a compact space (because local gauge transformations are described by
closed 1-forms with integral periods) and the corresponding path-integral is finite. The topology of
the manifold M is revealed by the gauge orbits of flat connections, which dominate the functional
integration in a real way (not only in the semiclassical approximation).

The path-integral invariants are related with the Reshetikhin-Turaev surgery invariants by a
multiplicative factor that, according to the Deloup-Turaev reciprocity formula, only depends on
the torsion numbers and on the first Betti number of the manifold M .

The U(1) Chern-Simons gauge field theory and its description in terms of the Deligne-Beilinson
formalism admit a natural extension [28] to the case of closed (4n + 3)-manifolds. Also in these
higher-dimensional models, the computation of the path-integral invariants —like the partition
function and the expectation value of the gauge-invariant holonomies— can be achieved by using
the methods illustrated in the previous sections. Similarly to the 3-dimensional formula (90),
the path-integral invariants depend on the higher-dimensional linking numbers and on a linking
quadratic form on the appropriate torsion group. Note that one can always transform an expression
of the type (90) and rewrite it [29] as a suitable combination of invariants —functions of linking
numbers— computed in the sphere S(4n+3). Let us now consider the higher-dimensional surgery
invariants. A generic (4n + 3)-manifold with n ≥ 1 is not necessarily cobordant with the sphere
and then it may not admit a Dehn surgery presentation in S(4n+3); thus a general construction
of surgery invariants, which are the analogue of the 3-dimensional Reshetikhin-Turaev invariants,
appears rather problematic. Nevertheless, the possibility of finding an appropriate combination of
abelian invariants of the sphere S(4n+3) which represents an invariant of a (4n+3)-manifold —even
in the absence of a general Dehn surgery presentation of the manifold in the sphere S(4n+3)— has
been recognised by Deloup in Ref.[30]. Thus, the path-integral invariants of the U(1) Chern-Simons
field theory defined in a (4n+ 3)-manifold give an explicit realisation of the Deloup prediction.

We have shown that the U(1) Chern-Simons path-integral invariants can be written as sums of
exponentials of specific linking numbers. Now, appropriate combinations of linking pairings can also
be used to define new topological invariants; one (cubic) example of this type has been produced
by Lescop [31].

In addition to the path-integral method of quantum field theory that has been discussed in the
present article, one can consider different and mathematical approaches to the U(1) Chern-Simons
theory as presented, for instance, in the papers [32]–[51].

Appendix A. Fundamentals of abelian gauge symmetry

This appendix contains some basic definitions concerning abelian gauge theories in a general
topologically nontrivial manifold, and includes the used conventions of the Deligne-Beilinson for-
malism [11, 12, 52, 53, 54, 55].

Appendix A.1. Good cover and polyhedral decomposition

It is convenient to provide the closed oriented 3-manifold M with a good cover U , which is given
by a collection of open sets Ua of M such that

⋃
a Ua = M ; moreover each non-empty open set

Ua1a2···am := Ua1
∩ Ua2

∩ · · · ∩ Uam is homeomorphic to R3 and hence it is contractible. The index
of Ua1a2···am is refereed as the Čech index of this intersection and the integer m as its Čech degree.
For later convenience, we only consider intersections Ua0a1···am whose Čech indexes are ordered
according to a0 < a1 < · · · < am. We say that U is an ordered good cover. Furthermore, since M
is compact, we can assume that U is finite.
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Poincaré lemma applies in any intersection of the finite ordered good cover U ; this means
dω = 0 ⇔ ω = dχ in any Ua0a1···am . Strictly speaking Poincaré lemma only holds for p-forms with
p > 0. If f is a 0-form (i.e., a function) defined in Ua0a1···am such that df = 0, then f = constant
in Ua0a1···am ; one then extends the de Rham exterior derivative d by the canonical injection of
numbers into (constant) functions, denoted d−1, so that Poincaré lemma also extends to functions.
Obviously dd−1 = 0, and hence the fundamental property d2 = 0 is still fulfilled.

The space of (singular oriented) p-cycles in M is denoted by Zp(M), 0 ≤ p ≤ 3. The complete
mathematical description of cycles in M is not required so one can see p-cycles in M as closed
p-dimensional submanifolds of M , and p-chains as p-dimensional submanifolds whose boundaries
are a closed (p − 1)-dimensional submanifolds, the boundary operator being denoted by b. For
instance, a knot is a smooth mapping C : S1 → M such that C(S1) is homeomorphic to S1. The
space Zp(M) is a Z-module: any integral combination of p-cycles is a p-cycle. For instance, −C
amounts to reversing the orientation of the knot C, whereas —at the classical level— nC amounts
to travel n times along the knot C. The integer n is also refereed as the charge of the colored knot
nC.

In order to address integration in M , we shall use the concept of polyhedral decomposition. A
polyhedral decomposition subordinate to a good cover U of a p-cycle N of M is defined as follows:
first, decompose N into p-dimensional components Na0

p such that

N =
∑

a0

Na0

p , Na0

p ⊂ Ua0
. (A.1)

To prevent overcounting one has to select which Na0

p is nonvanishing and really does contribute to
the previous sum and which does not. In other words, one associates to each Ua a component Na

p

of N and some of these components may be zero. Note that the finiteness of U ensures that the
sum is always finite.

The boundaries bNa0

p form a collection of (p− 1)-submanifolds each of which is decomposed on
its turn into (p− 1)-dimensional pieces Na0a1

p−1 according to

bNa0

p =
∑

a1

(Na1a0

p−1 −Na0a1

p−1 ) , Na0a1

p−1 ⊂ Ua0a1
. (A.2)

As in the previous step, one has to select which Na0a1

p−1 really contributes to the decomposition,
putting all the others equal to zero. Furthermore, the ordering of U induces an ordering in the
indices of the components Na0a1

p−1 . For instance, suppose that in the decomposition of bNa0

p the
component Na0a1

p−1 is nonvanishing and a0 < a1, in this case, it is the term −Na0a1

p−1 (and not
+Na1a0

p−1 ) which really contributes to the sum (A.2). Whereas in the decomposition of bNa1

p it is
the term +Na0a1

p−1 which contributes to the sum.
The ordered components Na0a1

p−1 also have boundaries, and hence the decomposition is continued
according to:

bNa0a1

p−1 =
∑

a2

(Na2a0a1

p−2 −Na0a2a1

p−2 +Na0a1a2

p−2 ) , Na0a1a2

p−2 ⊂ Ua0a1a2
. (A.3)

If Na0a1a2

p−2 is nonvanishing in the decomposition and if a0 < a1 < a2, then it is the term +Na0a1a2

p−2

which contributes to the sum (A.3), whereas the term −Na0a1a2

p−2 really contributes to the sum for
the decomposition of bNa0a2

p and the term +Na0a1a2

p−1 contributes to the sum for bNa1a2

p .
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The construction illustrated above is iterated, thus generating a collection of (p−3)-dimensional
submanifolds Na0a1a2a3

p−2 ⊂ Ua0a1a2a3
such that

bNa0a1a2

p−2 =
∑

a3

(Na3a0a1a2

p−3 −Na0a3a1a2

p−3 +Na0a1a3a2

p−3 −Na0a1a2a3

p−3 ) , (A.4)

with the same ordering convention as before and the same selection principle on the contributing
components. This is the last step of the decomposition process since the submanifolds of a 3-
manifold are at most of dimension 3 so that Na0a1a3a2

p−3 are points when p = 3. The procedure stops
at the first stage when p = 0, at the second stage when p = 1 and at the third stage when p = 2. In
other words, a polyhedral decomposition subordinate to U gives the following possible sequences:

M : {Ma0

3 , Sa0a1

2 , la0a1a2

1 , xa0a1a2a3

0 }
Σ : {Σa0

2 , la0a1

1 , xa0a1a2

0 }
C : {Ca0

1 , xa0a1

0 }
X : {xa0

0 } ,

(A.5)

where Σ is a closed surface in M , C a knot in M and X a collection of points in M . One can
check that for a fixed U not all p-cycles of M admit a polyhedral decomposition subordinate to U .
However, it is always possible to find an ordered good cover of M with respect to which a given
p-cycle admits a polyhedral decomposition. So we will always assume that a well-adapted finite
ordered cover has been chosen when dealing with a polyhedral decomposition.

Figure A.1. A non-oriented polyhedral decomposition of a triangular knot.

As a first example, let us consider an oriented triangle T (1) as a 1-cycle in M . This triangle is the
sum of its three oriented edges, l1, l2 and l3, as depicted in Figure A.1. Hence: T (1) = l1+l2+l3. The
ends of these edges are made of three points such that bl1 = (x21−x12)+ (x31 −x13) = −x12−x13,
bl2 = (x12 − x21) + (x32 − x23) = x12 − x23 and bl3 = (x13 − x31) + (x23 − x32) = x13 + x12. Then:
bT (1) = bl1 + bl2 + bl3 = −x12 − x13 + x12 − x23 + x13 + x12 = 0, as it has to be.

As a second example, let us consider an oriented tetrahedron T (2) as a 2-cycle in M . It is made
of 4 oriented triangular faces, ∆a (a = 1, · · · , 4), bond to each other on their edges, as depicted in
Figure A.2.
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Figure A.2. A non oriented polyhedral decomposition of a tetrahedral surface.
The face ∆3 is the front face and has been omitted.

Note that T (1) is a topological representative of a 2-sphere. Then one has:

b∆1 = (l21 − l12) + (l31 − l13) + (l41 − l14) = −l12 − l13 − l14 ,
b∆2 = (l12 − l21) + (l32 − l23) + (l42 − l24) = +l12 − l23 − l24 ,
b∆3 = (l13 − l31) + (l23 − l32) + (l43 − l34) = +l13 + l23 − l34 ,
b∆4 = (l14 − l41) + (l24 − l42) + (l34 − l43) = +l14 + l24 + l34 ,

with bP =
∑

a b∆a = 0 as expected. And finally:

bl12 = (x312 − x132 + x123) + (x412 − x142 + x124) = +x123 + x124 ,
bl13 = (x213 − x123 + x132) + (x413 − x143 + x134) = −x123 + x134 ,
bl14 = (x214 − x124 + x142) + (x314 − x134 + x143) = −x124 − x134 ,
bl23 = (x123 − x213 + x231) + (x423 − x243 + x234) = +x123 + x234 ,
bl24 = (x124 − x214 + x241) + (x324 − x234 + x243) = +x124 − x234 ,
bl34 = (x134 − x314 + x341) + (x234 − x324 + x342) = +x134 + x234 .

One can check that: bl12 + bl13 + bl14 = 0, bl12 − bl23 − bl24 = 0, bl13 + bl23 − bl34 = 0 and
bl12 + bl24 + bl34 = 0, which is consistent with b2 = 0. The 4 points defining the vertices of T (2)

inherit an orientation from the previous equations.
If in these examples the indices of the various faces, edges and vertices are referring to the

intersections of a good cover U of M , then the two decomposition are subordinate to U .

Appendix A.2. Gauge orbits

A U(1) gauge field A on M is defined by a triplet of local variables

A = {va, λab, nabc} , (A.6)

where the “vector” fields va’s are 1-forms in the open sets Ua, whereas the scalar fields λab’s are
0-forms (functions) in the intersections Uab, and the nabc’s are integers defined in the intersections
Uabc such that the d−1nabc’s are constant scalar fields. The various variables appearing in expression
(A.6) are ordered with respect to the values of their degrees; more precisely, when the de Rham
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degree (i.e., the form degree) lowers, then the Čech degree increases. The functions λab specify how
the 1-forms va and vb are related in the intersection Uab:

(δv)ab := vb − va = dλab . (A.7)

These relations encode the gauge ambiguity of the local vector fields va. Similarly, the integers nabc

describe the behavior of the 0-forms λab, λac and λbc in the intersections Uabc,

(δλ)abc := λbc − λac + λab = d−1nabc = nabc , (A.8)

so that:
(δn)abcd := nbcd − nacd + nabd − nabc = 0 , (A.9)

is tautologically fulfilled in the intersections Uabcd. This last equation means that the collection
{nabc} is an integral Čech cocycle of U . On the other hand, equation (A.7) implies that, in each
intersection Uab, the local 2-form dva and dvb satisfy dvb − dva = d(vb − va) = d(dλab) = 0. Hence,
the collection {dva} can be identified with the set of local representatives of a closed 2-form FA.
This form is precisely the curvature of A. Finally equations (A.7)–(A.9) imply that FA has integral
periods; that is to say, for any closed surface Σ in M one has

∫

Σ

FA = n ∈ Z , (A.10)

which is equivalent to

exp

(
2πi

∫

Σ

FA

)
= 1 .

Indeed, if {Σa, lab, xabc} is a polyhedral decomposition of Σ then
∫

Σ

FA =
∑

a

∫

Σa

dva =
∑

a

∫

bΣa

va =
∑

a,b

∫

lba−lab

va =
∑

a,b

∫

lab

(vb − va) .

Equation (A.7) then gives

∫

Σ

FA =
∑

a,b

∫

lab

dλab =
∑

a,b

∫

blab

λab =
∑

a,b,c

∫

xcab−xacb+xabc

λab

=
∑

a,b,c

∫

xabc

(λbc − λac + λab) ,

and from equation (A.8) one gets
∫

Σ

FA =
∑

a,b,c

∫

xabc

d−1nabc :=
∑

a,b,c

(d−1nabc)(xabc) ∈ Z ,

because each (d−1nabc) is by construction a Z-valued function in Uab.
A U(1) connection on M can also be interpreted as the image on the manifold of a connection

on a U(1) principal bundle over M . The bundle transition functions gab : Ua ∩Ub → U(1) are given
by

gab = e2πiλab . (A.11)
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Equation (A.8) ensures that, in the intersections Ua ∩ Ub ∩ Uc, the consistency condition

gab gbc gca = 1

is satisfied. Thus the Čech-de Rham presentation (A.6) of the connection A actually specifies a U(1)
principal bundle with connection. In our notations the so-called connection 1-form is locally repre-
sented by 2πva and a gauge transformation —associated with the group element ga = exp(2πiξa)
in the open set Ua— takes the form

{
2πva → e−2πiξa2πvae

2πiξa − ie−2πiξad e2πiξa = 2π(va + dξa) ,
gab → e−2πiξagabe

2πiξb , nabc→nabc ,
(A.12)

where each function ξa is defined in Ua. Note that, on the components of A, a general gauge
transformation reads





va → va + dξa ,
λab → λab + ξb − ξa −mab = λab + (δξ)ab −mab ,
nabc → nabc −mbc +mac −mab = nabc − (δm)abc ,

(A.13)

where the free parameters mab’s (with mba = −mab) are integers which are defined in the intersec-
tions Ua∩Ub. These integers do not appear in equation (A.12) because the restricted transformation





va → va ,
λab → λab −mab ,
nabc → nabc − (δm)abc ,

(A.14)

preserves conditions (A.7) and (A.8) and does not modify the bundle transition functions (A.11).

Appendix A.3. Gauge holonomies

Integrals of a U(1) gauge field over 1-cycles of M (along oriented knots in M) are R/Z-valued
and define the U(1) holonomies of the gauge fields. More precisely, the holonomy of a U(1) gauge
field A on M is a morphism W : Z1(M) → U(1), where Z1(M) is the abelian group of 1-cycles
of M . In the quantum field theory context, one really has to consider oriented and framed knots
in M because products of fields at the same point give rise to ambiguities in the mean values. In
fact, this is precisely the reason why the quantum expectation values of the knot holonomies need
to be defined for framed knots. If the knot C ⊂ M belongs to a single chart Ua, the holonomy of
the gauge field A along C is defined by

WC(A) = e2πi
∮
C

A = e2πi
∮
C

va .

For a generic knot C ⊂ M , one first introduces a polyhedral decomposition {Ca, xab} of C (subor-
dinate to U) and then consider the sum of integrals

H1 =
∑

a

∫

Ca

va . (A.15)

If the collection of local 1-forms va defines a global 1-form on C then this sum reduces to the standard
definition of the integral over C. Unfortunately, under a gauge transformation va → va + dξa,
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expression (A.15) transforms as

H1 → H1 +
∑

a

∫

Ca

dξa = H1 +
∑

a

∫

bCa

ξa = H1 +
∑

a,b

∫

xba−xab

ξa

= H1 +
∑

a,b

∫

xab

(ξb − ξa) ,

where integration over points means evaluation. In order to eliminate the last term in this equation,
one can simply add to H1 the term

H2 = −
∑

a,b

∫

Xab

λab , (A.16)

because a gauge transformation va → va + dξa is accompanied by a transformation λab → λab +
ξb − ξa. Finally under the integral residual transformation λab → λab + d−1mab the sum H1 +H2

transforms as

H1 +H2 → H1 +H2 +
∑

a,b

∫

Xab

d−1mab ,

which does not modify the exponential e2iπ(H1+H2). Hence, the reduction of H1 +H2 to R/Z is a
good candidate for defining

∮
C
A. With this definition of the holonomy of a U(1) gauge field, gauge

equivalent fields have the same holonomy along C, and any other polyhedral decomposition of C
(subordinate to U) changes H1+H2 by integral contributions thus defining also the same holonomy.

Hence, for any polyhedral decomposition {Ca, xab} of an oriented knot C ⊂ M , with color
specified by the integer charge q, the holonomy WC(A ; q) of the gauge field A = {va, λab, nabc}
along C is defined by

WC(A , q) = exp

(
2πiq

∮

C

A

)
≡ exp


2πiq


∑

a

∫

Ca

va −
∑

a,b

∫

xab

λab




 . (A.17)

When the knot C is homologically trivial, C = bΣ, Stokes theorem implies

WC(A , q) = e2πiq
∫
Σ
FA .

When the charge is quantized, the holonomy (A.17) represents a gauge invariant function of the
gauge connection; therefore WC is really well defined for the DB classes in H1

D(M). In other words
the holonomy of a DB class (i.e., of a gauge orbit) A along a knot C is defined as the holonomy of
any of its representative along C.

Appendix A.4. The abelian Chern-Simons action

Equations (A.7)–(A.9) imply that, in general, va is not the restriction in the open set Ua of a 1-
form belonging to Ω1(M). Similarly, the field combination va∧dva is not necessarily the restriction
of a 3-form which is globally defined in M . Thus the lagrangian of the CS gauge field theory with
structure group U(1) —which is is defined in a generic 3-manifold M— cannot be written as A∧dA
where A ∈ Ω1(M). In R3 the CS lagrangian takes the form A ∧ dA with A ∈ Ω1(R3) because any
U(1) principal bundle over R3 is trivial (there is no nontrivial gluing procedure to implement).
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The action of the U(1) Chern-Simons gauge field theory in the 3-manifold M is given by

S[A] = 2πk

∫

M

A ∗A , (A.18)

where A represents the gauge orbit (or DB class) of a U(1) gauge field on the manifold M , and A∗A
denotes the canonical DB product of A ∈ H1

D(M) with itself. The ∗-product represents a pairing
H1

D(M) × H1
D(M) → H3

D(M) ≃ R/Z that provides an appropriate generalization of the A ∧ dA
expression —which is well defined for 1-forms— to the case of gauge orbits of U(1) conenctions.

In order to produce the explicit expression of
∫
M A∗A, let us consider the gauge field (A.6) and

the collection of local 3-forms va ∧ dva which are defined in the open sets Ua. As in the case of the
holonomy, it is convenient to use a polyhedral decomposition {Ma, Sab, labc, xabcd} of M in order
to try to define the desired integral. One first integrates the 3-forms va ∧ dva on the 3-polyhedrons
Ma and sum over all the polyhedra

I1 =
∑

a

∫

Ma

va ∧ dva . (A.19)

If the local fields va actually define a 1-form v on M then I1 reduces to the well-defined standard
form

∫
M

v ∧ dv. Under a gauge transformation va → va + dξa one has I1 → I1 +∆I1 with

∆I1 =
∑

a

∫

Ma

dξa ∧ dva =
∑

a

∫

Ma

d(ξa dva)

=
∑

a

∫

bMa

ξa dva =
∑

a,b

∫

Sba−Sab

ξa dva .

Since dva is the restriction in Ua of a 2-form which is globally defined on M (the curvature of A),
one has

∆I1 =
∑

b,a

∫

Sab

(ξb − ξa)dvb .

Hence ∆I1 can take any value, thus preventing e2πiI1 from being gauge invariant. In order to cancel
∆I1, one can introduce a new term I2

I2 = −
∑

a,b

∫

Sab

λabdvb . (A.20)

Under the transformation va → va + dξa and λab → λab + ξb − ξa, one finds that I2 → I2 + ∆I2
with

∆I2 = −
∑

a,b

∫

Sab

(ξb − ξa)dvb .

Therefore the sum I1+I2 is invariant under the transformation va → va+dξa and λab → λab+ξb−ξa.
Unfortunately I1 + I2 is not invariant under the integral residual transformations λab → λab +
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d−1mab, indeed under these transformations one finds I1 + I2 → I1 + I2 + ∆̃I2 with

∆̃I2 =
∑

a,b

∫

Sab

mabdvb =
∑

a,b

∫

Sab

d(mabvb)

= −
∑

a,b

∫

bSab

mabvb =
∑

a,b,c

∫

lcab−lacb+labc

mabvb

=
∑

a,b,c

∫

labc

(mbcvc −macvc +mabvb)

=
∑

a,b,c

∫

labc

(δm)abcvc +
∑

a,b,c

∫

labc

mab(δv)bc .

Hence the combination I1 + I2 is not gauge invariant. In order to cancel the first term in the
right-hand side of ∆̃I2, one can introduce the additional term I3 given by

I3 =
∑

a,b,c

nabc

∫

labc

vc . (A.21)

Under the transformation λab → λab − d−1mab and nabc → nabc − (δm)abc one has I3 → I3 + ∆̃I3
with ∆̃I3 exactly compensating the first term of ∆̃I2. The second term in ∆̃I2 fulfills:

∑

a,b,c

∫

labc

mab(δv)bc =
∑

a,b,c

∫

labc

d(mabλbc) =
∑

a,b,c,d

∫

xdabc−xadbc+xabdc−xabcd

mabλbc

= −
∑

a,b,c,d

∫

xabcd

(δm)abcλcd −
∑

a,b,c,d

∫

xabcd

mab(δλ)bcd

= −
∑

a,b,c,d

∫

xabcd

(δm)abcλcd −
∑

a,b,c,d

∫

xabcd

mabnbcd .

The last term of this expression is an integer so it does not break the gauge invariance of e2iπ(I1+I2+I3)

whereas the first term does. In order to compensate this contribution one can introduce a last con-
tribution I4

I4 = −
∑

a,b,c,d

∫

xabcd

nabcλcd . (A.22)

One can now verify that e2iπ(I1+I2+I3+I4) is gauge invariant. Similarly, one can check that e2iπ(I1+I2+I3+I4)

is invariant under a change of polyhedral decomposition of M . Note that gauge invariance ensures
that the result depends on the gauge orbit A and not on its representatives.

Hence, for any polyhedral decomposition {Ma, Sab, labc, xabcd} of M and any representative
{va, λab, nabc} of the class A ∈ H1

D(M), the quantum U(1) Chern-Simons action, as a R/Z-valued
quantity, is given by

S[A] = 2πk

∫

M

A ∗A = 2πk

{∑

a

∫

Ma

va ∧ dva −
∑

a,b

∫

Sab

λabdvb

−
∑

a,b,c

nabc

∫

labc

vc −
∑

a,b,c,d

nabc

∫

xabcd

λcd

}
. (A.23)
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Under a gauge transformation the action (A.23) transforms as S → S +∆S, where

∆S

2πk
=
∑

xdcba

(mbc −mac +mab)mcd (A.24)

takes integer values. Therefore the amplitude eiS[A] has no ambiguities when the coupling constant
k is an integer. In facts, consistency of the formalism requires that, in addition to the values of the
knot charges, the coupling constant k also must have integer values. For a generic closed 3-manifold
M , S[A] is well defined (mod Z) and reduces to the integral of A∧dA when M is a homology sphere.

Expression (A.23) of
∫
A ∗ A can also be used to define the integral of A ∗ B on M in terms

of the representative field components of A and B. In facts one can use the relation 2
∫
A ∗ B =∫

(A + B) ∗ (A + B)−
∫
A ∗ A−

∫
B ∗ B. It can be shown that any oriented knot C in M can be

represented by a Deligne-Beilinson distributional class ηC so that the integral of A along C coincides
(modulo integers) with the integral of A ∗ ηC over M ; this implies that the value of the exponential
term exp

(
2πi

∫
A ∗ ηC

)
is uniquely defined and verifies exp

(
2πi

∫
A ∗ ηC

)
= exp

(
2πi

∮
C
A
)
, where

A ∗ ηC is defined according to the previous construction of A ∗A.
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