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SUMMARY

In this thesis we consider mathematical problems related to different aspects of

hard sphere systems.

In the first part we study planar billiards, which arise in the context of hard sphere

systems when only one or two spheres are present. We show that the standard design

principle of planar hyperbolic billiards with focusing boundary components fails as

soon as non-absolutely focusing components are present. This result thus provides

a characterization of which focusing boundary components can be used to construct

hyperbolic billiards.

A more detailed analysis of this phenomenon is provided for C2 stadium-like bil-

liards. Here the problem is that unlike in the previous setting we are given a specific

billiard table. We show that for a large class of such tables elliptic periodic orbits

exists, which is in sharp contrast to the ergodicity of the classical stadium billiard.

In the second part of this thesis we consider hard sphere systems with a large

number of particles, which we model by the Boltzmann equation. We develop a

new approach to derive hydrodynamic limits, which is based on classical methods

of geometric singular perturbation theory of ordinary differential equations. This

approach provides new geometric and dynamical aspects of hydrodynamic limits,

and we were able to apply these methods also to the dissipative Boltzmann equation.

In particular the problem of higher order (Burnett order) corrections is addressed.

viii



CHAPTER I

INTRODUCTION

One of the fundamental models of many particle systems is the hard sphere system.

It consists of a number of perfect spheres, which move freely inside a container. Upon

collision with the boundary of the container or with other spheres they undergo a

specular reflection. Thus it represents a Hamiltonian dynamical system, and can be

viewed as a geodesic flow with specular reflection as boundary conditions.

There are several reasons why the study of dynamical properties of such systems is

generally very complicated. In a certain sense, the simplest possible setup is to have

only one sphere (disk) in a planar container. By choosing center of mass coordinates

the case of two disks on a flat torus can be reduced to the case of one disk in a planar

domain with boundary, which is called a planar billiard.

Planar billiards are one of the best rigorously studied dynamical systems, which

can display stable and hyperbolic motion. The mathematical theory of these systems

was pioneered by Birkhoff and later Sinai and many others. In view of applications to

models of statistical mechanics proving statistical (ergodic) properties of the billiard

dynamics are of significant importance.

At the heart of the appearance of statistical limit laws in (deterministic!) dynam-

ical systems is generally hyperbolicity. In billiards scattering boundary components

naturally generate hyperbolic dynamics, which lead Sinai to proof in [62] ergodicity

and hyperbolicity of such billiards. Later the more general mechanism of defocus-

ing was discovered by Bunimovich, who proved in [14] (see also [15]) ergodicity and

hyperbolicty of certain planar billiards with focusing circular boundary components.
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In the first part of this thesis we investigate the class of focusing boundary com-

ponents, which are admissible in the standard procedure of constructing hyperbolic

billiards with focusing boundary components, as proposed by Wojtkowski in [66].

The main result in this direction will be that as soon as non-absolutely focusing

boundary components are present, the construction of hyperbolic billiards becomes

more difficult. In fact, we show that for a large class of such planar billiards have

elliptic periodic orbits.

To make the importance of the impact of non-absolutely focusing boundary com-

ponents on the billiard dynamics more clear, we also investigate smooth stadium-like

billiards. In this situation the billiard tables are essentially given, so that the freedom

of designing tables with elliptic is not available anymore.

Yet, we show that there is a large class of smooth stadia which have elliptic periodic

orbits. This, of course, is in sharp contrast to the usual stadium billiard, which is

ergodic and hyperbolic. It will be made clear, that the appearance of the elliptic

orbits is due to the non-absolutely focusing property of the smoothed out boundary

component.

Planar billiards provide a model with applications to statistical mechanics, for

which a large class of rigorous results are available. In fact, planar billiards are

essentially the only Hamiltonian systems where detailed statistical properties are

rigorously proven. On the other hand, in applications it is also important to study

collective aspects of motion of a large number of particles. In particular transport

phenomena are of great interest.

The study of hard sphere systems (or any other related Hamiltonian system for

that matter) for a large number of degrees of freedom seems currently out of reach.

Despite some partial results on the limit of Hamiltonian dynamics as the number

of degrees of freedom tends to infinity, e.g. [50, 49, 48, 47], not much is rigorously

known.
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But it is generally believed that in the Grad limit the resulting infinite dimensional

system is the Boltzmann equation. This model of high dimensional Hamiltonian sys-

tems was originally introduced by Boltzmann, and is a standard model in engineering

and physics.

In the second part of this thesis the Boltzmann equation is taken as the starting

point. In fact, we will even allow for non-Hamiltonian interactions, which dissipate

energy due to inelastic collisions. This is of great interest in the modeling of driven

granular systems, which were the main motivation of our work.

One major success of the Boltzmann equation is the derivation of a hydrodynamic

description of the underlying (infinite) particle system. Furthermore, the transport

terms can be directly computed, based on the properties of binary collisions only.

However, derivations of such hydrodynamic limits have not been considered from

a dynamical systems point of view. In this thesis we will develop a novel approach

to this problem, and show how methods from geometric singular perturbation theory

can be applied.

It will be shown how these ideas provide a new, geometric, interpretation of the

classical Chapman-Enskog method of kinetic theory. Furthermore, our derivation of

the hydrodynamic limit shows that it is possible to treat the convective and dissipative

transport on the same footing, without the introduction of multiple time scales or

the like. The Chapman-Enskog method provides these to transport terms separately,

where the dissipative one is obtained as a higher order correction to the convective

one.

Finally, since we allow also for non-Hamiltonian interactions we can apply our

methods to the much less investigated hydrodynamic limits of the dissipative Boltz-

mann equation. In this setting the difference between our method and the usual

Chapman-Enskog method becomes much more pronounced.

In fact, it is argued in the literature that for dissipative systems one has to go

3



beyond the Navier-Stokes order. We show that with our expansion method, this

argument can be addressed already at the Navier-Stokes order.

Therefore, this new expansion method not only provides new interpretations of

the hydrodynamic limits of the classical (non-dissipative) Boltzmann equation, but

it seems to provide a new result and simpler expressions in the dissipative setting.

The organisation of the thesis is as follows. Basic facts about billiards are re-

viewed in Chapter 2. In Chapter 3 we show that the absolute focusing property is

essentially necessary in the construction of hyperbolic billiards with focusing compo-

nents. The construction of elliptic periodic orbits for C2-stadia is the main result of

Chapter 4. The singular perturbation analysis of hydrodynamic limits of the dissi-

pative Boltzmann equation is presented in Chapter 5. For convenience every chapter

includes a separate introduction, which provides more details on the problem studied.

Also, summaries of the results are provided at the end of each chapter in form of a

conclusions section.

4



CHAPTER II

BASIC PROPERTIES OF BILLIARDS

2.1 Basic Facts about Billiards

In this section the basic properties of billiards we will need are described. The notation

used is close to the one used in [25], which contains most of the results listed below.

Let Q ⊂ R2 denote an open bounded domain with piecewise C3 boundary ∂Q.

The dynamics generated by a point-like particle moving along straight lines inside Q

and having specular reflections off the boundary ∂Q is called billiard flow Φt on the

billiard table Q. The induced first return map F to the boundary ∂Q, where only

the state right after the reflection is considered, is called the associated billiard map.

These constructions yield

Φt : Q× S1 → Q× S1 and F : ∂Q × [−π/2, π/2] → ∂Q× [−π/2, π/2]

which are defined almost everywhere with respect to the Lebesgue measure.

The natural coordinates for the billiard map are the arc length parameter s along

the boundary, which we will assume to be oriented in counterclockwise direction,

and the angle of reflection ϕ relative to the normal direction. For the billiard flow

the natural coordinates are the angle ω giving the direction of the velocity vector

relative to the horizontal direction, and (x, y) denoting the position inside of Q. It

is well known that the billiard map preserves the measure dµ = cosϕdϕ ds and that

dν = dω dx dy is preserved by the billiard flow. (Indeed, even the volume forms are

preserved.) In particular, the billiard map is symplectic in the coordinates (s, sinϕ).

When working with the billiard flow it is often more convenient to use the so

called Jacobi coordinates (η, ξ, ω), which in infinitesimal form read

dη = cosω dx+ sinω dy and dξ = − sinω dx+ cosω dy .

5



The derivative of Φt then becomes

DΦt =




1 0

0 Ut



 with Ut =
∂(ξt, ωt)

∂(ξ, ω)
and detUt = 1

since η measures the distance in direction of the flow. We will refer to Ut as the

reduced Jacobian of Φt.

Throughout we denote by K = K(s) the (signed) curvature of the boundary at

the point corresponding to the arc length parameter s. The sign of K is chosen such

that it is negative for convex shaped boundary components, as in the case of a billiard

inside a circle. Correspondingly, we shall call boundary components for which K < 0,

K = 0, K > 0 focusing, neutral, dispersing, respectively.

The derivative of the billiard map is given by

DF(s, ϕ) = − 1

cosϕ1




τ K + cosϕ τ

τ KK1 + K cosϕ1 + K1 cosϕ τ K1 + cosϕ1





where we set (s1, ϕ1) = F(s, ϕ) and τ the distance (free path) between the two points

along the straight line connecting them. In particular, the billiard map is of class

Ck−1 if the boundary components are of class Ck.

Another well known fact is that the (local) generating function of the billiard

dynamics is (locally) given by the Euclidean distance along the straight line segments

connecting the points of reflection. More precisely, consider a point (s0, ϕ0) such

that (sk, ϕk):=Fk(s0, ϕ0) is well defined for 0 ≤ k ≤ n. Denote by Γi the boundary

component on which the i-th reflection occurs (i.e. on which (si, ϕi) lies), so that

Γi(si) is the point of the i-th reflection in the plane. Then

L(s0, . . . , sn):=

n∑

i=1

‖Γi(si) − Γi−1(si−1) ‖

is the Euclidean length of the corresponding trajectory of the billiard flow, and

∂s0
L = − sinϕ0 , ∂si

L = 0 for 1 ≤ i ≤ n− 1 , ∂sn
L = sinϕn

6



hold, which is why L is the generating function (cf. Sections 47 and 48 in [1] for

details on generating functions).

2.2 Some Important Formulas

For a quantitative study of the billiard dynamics one needs the derivative of the

billiard flow, or the billiard map. The expression for the billiard map was already

given. For the billiard flow it is, however, much easier to compute its derivative. As

long as there is no reflection off the boundary we have dξt = dξ + t dω, dωt = dω.

Therefore, the reduced derivative of the billiard flow reads

DΦt
∣∣∣
reduced

≡ Ut =




1 t

0 1



 .

The change of the Jacobi coordinates from right before the moment of a reflection to

right after is given by dξ+ = −dξ−, dω+ = −R dξ− − dω−. Hence

DΦ0+
∣∣∣
reduced

≡ LR = −




1 0

R 1



 with R =
2K

cosϕ

for the reduced derivative of the billiard flow at the moment of reflection.

Combining these two parts of the derivative one can compute the Jacobian of

the billiard flow along an arbitrary trajectory segment. By using the multiplicative

property of the Jacobian we obtain

DΦt = Utn+1
L

(n)
R · . . . · Ut1L

(1)
R Ut0

along a sequence of n consecutive reflections.

An important quantity to describe the derivative of the billiard flow is the wave-

front curvature B:=dω/dξ. The geometric meaning of B is the slope of a curves in

Q equipped with normal framing, where the normal vectors are the corresponding

velocities. The corresponding slope V = dϕ
ds

for the projection onto the state space of

the map is given by

V = B+ cosϕ−K = B− cosϕ+ K .

7



The above expressions for the derivative of the billiard flow show

Bt =
1

1

B0

+ t

for a free flight of length t

B+ = B− + R with R:=
2K

cosϕ
at a point of reflection.

for the evolution of the wave front curvature. In geometric optics the second relation

is called mirror formula.

The fact that the double fraction appears for a free flight can be used to compute

the wavefront curvature along a sequence of consecutive reflections as a continued

fraction. Another way of computing this expression is to use the Jacobian of the flow,

which thus shows

Bt =
ct + dt B0

at + bt B0

for Ut =




at bt

ct dt





as the relation between the wavefront curvature and the derivative of the flow.

For a segment of a billiard trajectory γ we denote the wavefront curvature of an

initially parallel beam of rays sent along γ by Bout(γ). From the above we conclude

that

Bout(γ):=
c

a
with U(γ) =




a b

c d



 (1)

where U(γ) is the reduced Jacobian of the billiard flow along γ.

Another important observation is that the billiard flow is the suspension flow over

the billiard map, where τ is the return time. This implies

dµ =
1

2 |∂Q| cosϕdϕ ds and dν =
1

τ̄
dt dµ with τ̄ =

∫

M
τ(r, ϕ)µ(ds, dϕ)

for the relation of the invariant measure for the map and the flow, respectively. In

particular, we obtain

2π |Q| = 2 |∂Q| τ̄

for the mean free path τ̄ .
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2.3 Dispersing Billiards

Dispersing (or Sinai) billiards are billiard tables with scattering boundary components

without cusps. The free path could be bounded or unbounded. The ambient space

could be either R2 or T2, where only in the latter case the free path can be unbounded.

Typical examples are shown in Fig. 1.

Figure 1: Typical dispersing billiards. On the left the ambient space is T
2; this

table is also known as periodic Lorentz gas. The table on the right is part of R2.

These billiards where the first class of billiards for which hyperbolicity and er-

godicity was established, see [62]. The reason for the hyperbolicity is that nearby

trajectories will diverge upon a reflection off a scatterer. A sketch of this is shown in

Fig. 2.

Figure 2: An illustration of the source of hyperbolicity in dispersing billiards.

9



Consider two disk-like particles on a flat torus (alternatively one could think of this

as an infinite periodic configuration with infinitely many particles), which undergo an

elastic reflection upon collision. By changing to center of mass coordinates, one can

reduce this system to the billiard (of a point particle) on the flat torus with a spared

out disk. This configuration is a special case of the periodic Lorentz gas, as shown

on the left in Fig. 1. Due to this interpretation dispersing billiards are important

models in rigorous statistical mechanics, for which strong statistical properties like

exponential decay of correlations or the central limit theorem can be proven.

2.4 The Mechanism of Defocusing

By looking at Fig. 2 it is easy to see that after a reflection off a focusing bound-

ary component (opposed to the shown dispersing one) two nearby trajectories will

converge, and not diverge. Thus establishing hyperbolicity in billiards with focus-

ing boundary components is much more delicate. In fact, while dispersing billiards

are always hyperbolic, billiards with focusing boundary components can have elliptic

periodic orbits, a mixed phase space, or they can be completely integrable (e.g. the

billiard in an ellipse).

In [14], see also [15], Bunimovich constructed a class of hyperbolic and ergodic

billiards with focusing boundary components. The mechanism behind the hyperbol-

icity is a generalization of the dispersing scattering (see Fig. 2), and is called the

mechanism of defocusing.

The key is that even though right after a reflection off a focusing boundary compo-

nent nearby trajectories will converge, they will eventually pass through a conjugate

point. Once they pass through the conjugate point the trajectories will move apart.

If the free path after the conjugate point is sufficiently large, then this expansion

can compensate for the initial contraction. Thus, after a long enough free path the

evolution of the wave front curvature is just as in the case of dispersing billiards. This

10



is illustrated in Fig. 3. A typical billiard table where the hyperbolicity of the billiard

DispersingDefocusing

vs.

Figure 3: A comparison of the evolution of the wave front curvature within the
mechanism of defocusing (left) and dispersing scattering (right).

dynamics is generated by the mechanism of defocusing is the stadium billiard. This

billiard table was first constructed in [14, 15]. It consists of two semi-circles, which

are connected by straight lines, as shown in Fig. 4.

Figure 4: The stadium billiard.
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CHAPTER III

ABSOLUTELY FOCUSING BOUNDARY COMPONENTS

3.1 Introduction and Statement of the Main Results

The foundation of the theory of hyperbolic systems with singularities was laid in

Sinai’s seminal paper [62] where hyperbolicity and ergodicity for billiards with smooth

dispersing boundary was proven.

The situation changes drastically if a billiard table has at least one focusing com-

ponent. Billiards with focusing boundaries demonstrate behaviors from completely

regular to strongly chaotic. In fact, Lazutkin proved in [51, 52] that for any strictly

convex billiard table with smooth enough boundary there exist caustics near the

boundary, which prevent global ergodicity and hyperbolicity. However, certain classes

of hyperbolic and ergodic billiards with focusing boundary components were found

in [14, 15].

The mechanism behind this is called the mechanism of defocusing. It relies on the

fact that a focusing beam will eventually go through a conjugate point, and will be

dispersing afterwards. Therefore, if the free path to the next reflection is sufficiently

large an essentially analogous situation to the case of dispersing billiard tables arises.

This method of placing focusing boundary components sufficiently far away from other

boundary components is the only known general procedure of constructing hyperbolic

billiard tables [66].

Therefore, after the discovery of the mechanism of defocusing the question of which

focusing components could be components of the boundary of a chaotic (hyperbolic)

billiard was raised. Two dual classes of such focusing components were introduced

in [66] and [56]. Then a much more general class of focusing components, admissible
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for chaotic billiard tables, was introduced in [16, 17, 18] and [32]. (Formally the

class of focusing components introduced in [32] seems to be more restrictive than the

one in [17]. However, these two classes coincide [18].) These focusing components

are called absolutely focusing, and were shown in [19, 29] to allow for hyperbolicity

and ergodicity. It was conjectured in [17] that in hyperbolic billiards each focusing

component of the boundary must be absolutely focusing, and it was outlined there

how one can construct a stable periodic orbit if at least one focusing component is

not absolutely focusing.

In this part of this thesis we show along the lines described in [17, 19] that as

soon as the absolutely focusing property of focusing boundary components fails to

hold the general procedure of designing chaotic billiard tables generally fails. Even if

one makes the free path after a reflection from a non-absolutely focusing component

arbitrarily large, such billiards can still have elliptic periodic points. Thus these

billiards have islands of stability and are not completely hyperbolic. These results,

once again, indicate that the mechanism of defocusing plays a key role in generic

Hamiltonian systems which exhibit coexistence of islands of stability (KAM-islands)

and chaotic hyperbolic components. The main result is the following:

Theorem 3.1.1. Let Γ be a C5 non-absolutely focusing curve of minimal length which

encloses an angle of no more than π, or a small enough extension of such a curve.

Then for every L > 0 there exist an open set (in the sense of C5) of billiard tables

Q(L,Γ), Γ ⊂ ∂Q(L,Γ), which all have a nonlinearly stable periodic orbit with free

path of length at least L before and after a sequence of consecutive reflections off of

Γ.

The C5 (Ck) closeness of two billiard tables simply means that there are pa-

rametrizations of their respective boundaries, which are piecewise C5 (Ck) and are

piecewise close in the C5 (Ck) sense as functions from [0, 1] → R2.

Remark 3.1.2. We would like to mention at this point that the corresponding result
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for a linearly stable, non-resonant periodic orbit can be proved when assuming only

C3–smoothness, cf. Theorem 3.2.6 below. This is the usual assumption in the theory

of hyperbolic billiards, which deals with the first derivative of the billiard map (or flow)

only. To deduce nonlinear stability, however, we need, for technical reasons, to assume

C5 smoothness in order to be able to apply KAM theory (Moser’s twist theorem [59]),

because it takes higher order derivatives of the billiard map into account.

Dynamics on KAM islands is characterized by a balance between focusing (conver-

gence of nearby orbits) and defocusing (their divergence) while on chaotic components

defocusing dominates focusing. Recall that dispersing is just a special case of defo-

cusing (when the focusing time is negative) and neutral components of the boundary

cannot generate by themselves a chaotic behavior [9]. Therefore, our results show that

there are no other mechanisms of hyperbolicity in billiards besides dispersing and de-

focusing. If both dispersing and focusing components are present, then they should

be arranged in such a way that any initially parallel (infinitesimal) beam of rays in

the course of its dynamics arrives at any curved (dispersing or focusing) component

of the boundary as a dispersing beam. Then dispersing either takes over focusing,

which occurs in the part of phase space where hyperbolicity emerges, or these two are

balanced, [20, 22]. This happens on the part with regular dynamics (KAM-island).

Thus defocusing is a fundamental mechanism of hyperbolicity (at least in billiards)

and its violation leads to the creation of KAM-islands.

The structure of this chapter of the thesis is the following. In Section 3.2 we

describe the construction of a linearly stable periodic orbit with a series of consecu-

tive reflections off a non-absolutely focusing components. The nonlinear stability is

first established for a very general setting in section Section 3.3 and then applied in

Section 3.4 to the linearly stable orbit constructed before, which will prove our main

result Theorem 3.1.1.
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3.2 Construction of Linearly Stable Periodic Orbits

In this section let Γ be a (focusing) C3 curve of length l > 0, parametrized by its arc

length.

Definition 3.2.1 (Absolutely Focusing; see [16, 17]). A closed, focusing component

Γ is called absolutely focusing if every incoming infinitesimal beam of parallel rays

leaves Γ, after a complete sequence of consecutive reflections, as a focusing beam.

It was shown in [18, 19, 29, 32] that the defocusing mechanism applies to focusing

boundary components which are absolutely focusing. Furthermore, it was also shown

in [32] that every short enough piece of a focusing curve is absolutely focusing. This,

in particular, motivates the following notion to characterize the transition between

absolutely and non-absolutely focusing curves.

Definition 3.2.2 (Non-Absolutely Focusing of Minimal Length). A focusing curve

Γ is called non-absolutely focusing of minimal length, if every of its closed sub-arcs is

absolutely focusing, but the curve itself is not absolutely focusing.

Our approach is based on the one outlined in [17]. The first step is to show that

for a non-absolutely focusing curve there exists an infinitesimal beam of parallel rays

falling onto Γ which leaves Γ after its last reflection as arbitrary weakly focusing. In

the second step such a beam is used to construct a stable periodic orbit.

It is well known that the billiard map satisfies the twist property ds1/dφ < 0, no

matter which type of boundary components are considered. It is also well known,

that compositions of twist maps, and iterates of a twist map are in general no longer

twist maps. However, it was observed in [32] (Proposition 3.6) that when restricting

the billiard map to absolutely focusing boundary components, then its iterates will

still be twist maps. This property is the main technical step in the following key

lemma, whose result is illustrated in Fig. 5.
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Figure 5: Illustration of the family of trajectories constructed in Lemma 3.2.3.

Lemma 3.2.3. Let Γ be a Ck (k ≥ 3) non-absolutely focusing curve of minimal length

enclosing an angle of no more than π, and let γ be a part of a billiard trajectory with

N consecutive reflections off of Γ (possibly off its endpoints). Then there exists a

family of trajectories (γǫ)ǫ≥0 with a Ck−1 dependence on ǫ, such that γ0 = γ, and for

all ǫ > 0 the trajectory γǫ has a sequence of N consecutive reflections off of Γ with no

reflections off its endpoints.

Proof. If all reflections of γ off of Γ are already in the interior of Γ, just set γǫ ≡ γ,

so that we only consider such a γ with at least one reflection off of an endpoint of Γ

in the following.

If N = 1, then denote by γǫ the trajectory obtained by moving the point of

reflection of γ by ǫ into the interior of Γ, while, say, keeping the angle of reflection

constant. For N = 2, denote by γǫ the trajectory obtained by moving both points of

reflection of γ by ǫ into the interior. The corresponding angles of reflection are then

determined by the location of the new points of reflection.

It remains to consider the case N ≥ 3. Since Γ does not enclose an angle of more

than π, there are no back reflections possible. Hence the second point of reflection

must be in the interior of Γ. Furthermore, by assumption on Γ, the sub-arc on which

the 2-nd up to the N -th reflection take place is absolutely focusing.

To construct γǫ proceed as shown in Fig. 5. Increase the (absolute value of the)

angle of reflection φ2 by ǫ. Then Proposition 3.6 in [32] shows that the i-th reflection

points, 3 ≤ i ≤ N , all move closer to the second one. And since the billiard map is of
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class Ck−1, the implicit function theorem asserts in this case that the dependence of

new points of reflection on ǫ is Ck−1. Since the location of the second reflection does

not change, the general twist property applied to the first reflection point shows that

it also moves towards the second reflection point.

Therefore the family of rays γǫ depends Ck−1–smooth on ǫ, and γǫ for ǫ > 0 has

reflections only off the interior of Γ, as desired.

Remark 3.2.4. Although the result of Lemma 3.2.3 seems entirely obvious, espe-

cially when looking at Fig. 5, this is not so. In fact, this is the only point where the

restriction to curves enclosing an angle of no more than π comes in.

The reason is that, in general, changing the angle of incidence (at some point of

reflection) in either direction may not move all points of reflection into the interior of

Γ, as stated in Lemma 3.2.3, because of possibly existing back-reflections. This makes

the argument in the construction of the family of orbits of Lemma 3.2.3 fail in general

when applying it to curves enclosing an angle of more than π.

However, there are certainly situations where the result of Lemma 3.2.3 is true for

such curves as well, e.g. for extensions to a curve enclosing an angle of more than π

which do not destroy the constructed family of orbits.

It was conjectured in [17] that for any non-absolutely focusing curve Γ there exists

an infinitesimal beam of parallel rays falling onto Γ and leaving it as parallel beam.

The next statement proves this claim in a slightly more restricted setting.

Proposition 3.2.5. Let the Ck (k ≥ 3) curve Γ be a small enough extension of a

non-absolutely focusing curve of minimal length, which encloses an angle of no more

than π. Then there exists a family of rays (γǫ)ǫ≥0, depending Ck−1–smoothly on ǫ,

such that they all have the same number of reflections off of Γ, and a parallel beam

sent along γǫ leaves Γ as a focusing one (parallel one) if ǫ > 0 (ǫ = 0).

Proof. Consider first the case where Γ is non-absolutely focusing of minimal length,
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enclosing an angle of no more than π. Then, by definition, there exists an incom-

ing infinitesimal beam of parallel rays, say γ0, which leaves Γ after a sequence of

consecutive reflections as either a parallel or dispersing beam.

By Lemma 3.2.3 there is a Ck−1–smooth family (γǫ)ǫ≥0 such that for any ǫ > 0 the

ray γǫ has reflections off the interior of Γ only. Since any sub-arc of Γ is absolutely

focusing, a parallel incoming beam sent along γǫ must leave as a focusing one. Hence

the continuous dependence on ǫ shows that the parallel incoming beam along γ0 must

leave as a parallel one, and the family (γǫ) is as desired.

Clearly, the constructed family (γǫ)ǫ≥0 is not destroyed if we allow for small enough

extension of Γ, hence the above construction carries over to this more general case.

In order to construct a linearly stable periodic orbit it is more convenient to work

with the billiard flow, rather than the billiard map. Later on we will see that this

changes when we want to establish nonlinear stability.

The next statement shows that if a curve Γ is non-absolutely focusing, then, re-

gardless of how large the free paths before and after a series of consecutive reflections

off of Γ are, a linearly stable periodic orbit can exist. To establish later nonlin-

ear stability we need this (linearly stable) periodic orbit to be non-resonant, that

means that the eigenvalues λ = e±i α of the corresponding monodromy matrix satisfy

λ2, λ3, λ4 6= 1.

Theorem 3.2.6. Let Γ be a C3 non-absolutely focusing curve of minimal length

which encloses an angle of no more than π, or a small enough extension of such a

curve. Then for every L > 0 there exists a billiard table Q(L,Γ) with Γ as a focusing

boundary component which has a linearly stable, non-resonant periodic orbit γ with

free path of length at least L before and after a sequence of consecutive reflections off

of Γ.

Proof. Let (γǫ)ǫ≥0 be as in Proposition 3.2.5. From (1) we conclude that the reduced
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Jacobian Uǫ along γǫ must read

Uǫ =




U11 + aǫ U12 + bǫ

cǫ
1

U11
+ dǫ



 with aǫ, bǫ, cǫ, dǫ = o(1) as ǫց 0 .

The values of U11 and U12 satisfy

U12 cǫ + bǫ cǫ = U11 dǫ +
aǫ

U11

+ aǫ dǫ

because detUǫ = 1. Since Bout(γǫ) < 0 for all ǫ > 0 holds, we must have

cǫ
U11 + aǫ

< 0 hence cǫ sgnU11 < 0

for all ǫ small enough.

Let L > 0 be arbitrary, and consider τ with

τ > 6 (L+ |Γ|)

whose value will be chosen in the following. For every ǫ > 0 we can close up γǫ to

a periodic orbit γ̃ǫ using three plane mirrors such that the length of the free path

before and after the sequence of reflections off of Γ is at least L, and the total length

of the orbit away from Γ is τ . This is illustrated in Fig. 6. The monodromy matrix

Figure 6: Construction of the periodic orbit using plane mirrors such that the
resulting orbit has free paths before and after hitting Γ of length at least L.

Mǫ along γ̃ǫ then reads

Mǫ = −Uǫ




1 τ

0 1



 = −




U11 + aǫ U12 + bǫ + τ U11 + τ aǫ

cǫ
1

U11
+ dǫ + τ cǫ
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where the minus sign is due to the three reflections at the plane mirrors.

In particular, the trace of Mǫ is

− trMǫ = U11 + aǫ +
1

U11
+ dǫ + τ cǫ

so that

− sgnU11 trMǫ = |U11| +
1

|U11|
− τ |cǫ| + (aǫ + dǫ) sgnU11

holds for all ǫ > 0, where we used cǫ sgnU11 < 0. Now let ǫ∗ be so small that the

relations

2

3
(|U11| +

1

|U11|
) ≤ |U11| +

1

|U11|
+ (aǫ∗ + dǫ∗) sgnU11 ≤

3

2
(|U11| +

1

|U11|
)

and

|cǫ∗| 6 (L+ |Γ|) < 3

2
(|U11| +

1

|U11|
) − 2

hold. By choosing τ∗ now such that

3

2
(|U11| +

1

|U11|
) − 2 < τ∗ |cǫ∗| <

2

3
(|U11| +

1

|U11|
) − 1

we have

1 < − sgnU11 trMǫ∗ < 2

and τ∗ > 6 (L+ |Γ|). And by varying τ∗ slightly we can ensure that the two complex

eigenvalues λ = e±iα of Mǫ∗ satisfy the non-resonance condition λ2, λ3, λ4 6= 1.

Therefore closing the orbit γǫ∗ up to form a periodic orbit using three plane mirrors

as shown in Fig. 6 with a total length away from Γ equal to τ∗ yields a linearly stable

orbit with free path of length at least L before and after reflections off of Γ.

Making the three plane mirrors now slightly dispersing C3 curves, without chang-

ing the position of and tangent at the reflection points, preserves the periodic orbit,

its linear stability, and its non-resonant property. Completing the billiard table in

any way by not destroying the constructed periodic orbit finishes the proof.
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3.3 An Auxiliary Stability Result

To study the nonlinear stability of a linearly stable fixed point of a planar area-

preserving mapping T one can use the so-called Birkhoff normal form. This approach

was developed by Kolmogorov, Arnold and Moser and is usually referred to as KAM

theory. The first step in this approach is finding the explicit form of the normal form,

which is given in the following lemma.

Lemma 3.3.1 ([31, 44]). Let T (s, y) be an area-preserving C4 mapping with an elliptic

fixed point at the origin

T (s, y) =




a10 s+ a01 y + a20 s

2 + a11 s y + . . .+ a03 y
3

b10 s+ b01 y + b20 s
2 + b11 s y + . . .+ b03 y

3



 + O4(s, y)

and let λ = e±iα denote the complex eigenvalues of DT (0, 0). If λ2, λ3, λ4 6= 1, then

there exists a real-analytic canonical change of coordinates taking T into its Birkhoff

normal form z 7→ λ z ei A |z|2 + O(|z|4). The first Birkhoff coefficient A reads

A = Im c21 +
sinα

cosα− 1

(
3 |c20|2 +

2 cosα− 1

2 cosα + 1
|c02|2

)

where

Im c21 =
1

8
a10

[
− a21 + 3

b10 a03

a01
− 3

a01 b30
b10

+ b12
]

− 1

8
b10

[
a12 − 3

a01 a30

b10
− a01 b21

b10
+ 3 b03

]

|c20|2 =
1

16

√
−a01

b10

[ b10
a01

a02 + a20 + b11
]2

+
1

16

√
− b10
a01

[a01

b10
b20 + b02 + a11

]2

|c02|2 =
1

16

√
−a01

b10

[ b10
a01

a02 + a20 − b11
]2

+
1

16

√
− b10
a01

[a01

b10
b20 + b02 − a11

]2

are given in terms of the aij and bij.

Theorem 2.13 in [59] shows that a nonzero Birkhoff coefficient A implies nonlinear

(Lyapunov) stability. However, since we will be considering maps without knowing too

many of theirs details, we cannot immediately make use of Lemma 3.3.1 to compute
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A directly. Therefore we seek a sufficient condition that allows us to conclude that A

is nonzero. And since the actual formula for A is quite involved, it is much easier to

try to find a map with non-vanishing Birkhoff coefficient among a continuous family

of maps.

In the rest of this section we will consider the following setting. Let s∗ ∈ R be a

point and U ⊂ R a neighborhood of s∗. For ǫ0 > 0, consider a family of C5 functions

Lǫ : U × U → R
2 for |ǫ| < ǫ0

which satisfy

∂ǫ

∣∣
ǫ=0
Lǫ(s, s1) = C

s4 + s4
1

24
+ O5(s, s1) and ∂s∂s1

L0(0, 0) 6= 0 (2)

for some C 6= 0. Denote the family of area-preserving maps generated by Lǫ by Tǫ

(see sections 47 and 48 of [1] for details of this construction) which we will write in

coordinate form as

Tǫ(s, y) ≡ (Sǫ(s, y), Yǫ(s, y)) .

Assume further that the map T0 has an elliptic fixed point (s∗, y∗)

T (s∗, y∗) = (s∗, y∗) with y∗:=∂s1
L0(s∗, s∗) = −∂sL0(s∗, s∗)

and denote the eigenvalues of DT0(s∗, y∗) by λ = e±iα. We will assume that the

non-resonance conditions λ2, λ3, λ4 6= 1 hold for the elliptic fixed point of T0. Let us

set

Lij :=∂
i
s∂

j
s1
L0(s∗, s∗)

to simplify the notations.

Proposition 3.3.2. The derivative of T0 at the fixed point (s∗, y∗) reads

DT0(s∗, y∗) = − 1

L11




L20 1

L20 L02 − L2
11 L02
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and the family of maps Tǫ satisfies

∂ǫ

∣∣
ǫ=0
Tǫ(s+ s∗, y + y∗) = −C 1

6




1

L11
s3

L02

L11
s3 + (L20 s+y

L11
)3



 + O4(s, y)

for s and y in a neighborhood of zero.

Proof. The definition of the maps Tǫ(s, y) ≡ (Sǫ(s, y), Yǫ(s, y)) in terms of the gener-

ating function Lǫ

∂sLǫ(s, Sǫ(s, y)) = −y and ∂s1
Lǫ(s, Sǫ(s, y)) = Yǫ(s, y) (3)

immediately shows

DT0(s∗, y∗) = − 1

L11




L20 1

L20 L02 − L2
11 L02



 (4)

for the derivative of T0 at the fixed point (s∗, y∗).

Differentiating equations (3) with respect to ǫ, and evaluating at ǫ = 0 yields

0 = C
[s− s∗]

3

6
+ ∂s∂s1

L0(s, S0(s, y)) ∂ǫ

∣∣
ǫ=0
Sǫ(s, y)

+ O4(s− s∗, y − y∗)

∂ǫ

∣∣
ǫ=0
Yǫ(s, y) = C

[S0(s, y) − s∗]
3

6
+ ∂2

s1
L0(s, S0(s, y)) ∂ǫ

∣∣
ǫ=0
Sǫ(s, y)

+ O4(s− s∗, y − y∗)

where we used the special property of the generating functions stated in equation (2).

Solving now for the ǫ-derivatives of Sǫ and Yǫ we obtain

∂ǫ

∣∣
ǫ=0
Sǫ(s+ s∗, y + y∗) = −C s3

6L11
+ O4(s, y)

∂ǫ

∣∣
ǫ=0
Yǫ(s+ s∗, y + y∗) = −C 1

6

[L20 s+ y

L11

]3 − C
L02 s

3

6L11
+ O4(s, y)

by Taylor expansion and (4).
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The point of the specific form of the generating functions (2) is now clear. By

Proposition 3.3.2 the change of the map to first order in ǫ is of third order in

(s, y). Comparing this to the general form of the Birkhoff coefficients Aǫ, as given in

Lemma 3.3.1, we see that ∂ǫ|ǫ=0Aǫ only involves the third order term Im c21. This we

can further exploit to obtain the main result of this section, which is the following:

Theorem 3.3.3. Let (s∗, y∗) be a non-resonant elliptic fixed point of a family of

planar area-preserving maps Tǫ which are generated in a neighborhood of (s∗, y∗) by

Lǫ satisfying (2), i.e.

∂ǫ

∣∣
ǫ=0
Lǫ(s+ s∗, s1 + s∗) = C

s4 + s4
1

24
+ O5(s, s1) for some C 6= 0

and ∂s∂s1
L0(s∗, s∗) 6= 0. Then there exists an ǫ∗ > 0 such that for every ǫ ∈ (−ǫ∗, ǫ∗)\

{0} the point (s∗, y∗) is a nonlinearly stable fixed point of Tǫ with a nonzero first

Birkhoff coefficient.

Proof. Without loss of generality assume that (s∗, y∗) = (0, 0), so that we are exactly

in the setting discussed so far in this section. Also, by rescaling ǫ by C we may also

assume that C = 1. Combining the general expression of the Birkhoff coefficient of

Lemma 3.3.1 with the specific structure of the considered family of maps as given in

Proposition 3.3.2 we obtain

∂ǫ

∣∣
ǫ=0
Aǫ = ∂ǫ

∣∣
ǫ=0

Im c21

=
1

8
a10

[
− ∂ǫ

∣∣
ǫ=0
a21 + 3

b10
a01

∂ǫ

∣∣
ǫ=0
a03 − 3

a01

b10
∂ǫ

∣∣
ǫ=0
b30 + ∂ǫ

∣∣
ǫ=0
b12

]

− 1

8
b10

[
∂ǫ

∣∣
ǫ=0
a12 − 3

a01

b10
∂ǫ

∣∣
ǫ=0
a30 −

a01

b10
∂ǫ

∣∣
ǫ=0
b21 + 3 ∂ǫ

∣∣
ǫ=0
b03

]

because only third order terms appear in ∂ǫ|ǫ=0Tǫ.

Using Taylor expansion we can express the various coefficients aij and bij in terms

of Lij as

a10 = −L20

L11
, a01 = − 1

L11
, b10 =

a10 b01 − 1

a01
, b01 = −L02

L11
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and

∂ǫ

∣∣
ǫ=0
a30 = −1

6

1

L11
=
a01

6
, ∂ǫ

∣∣
ǫ=0
b30 = −1

6

L02

L11
− 1

6

L3
20

L3
11

=
1

6
[b01 + a3

10]

∂ǫ

∣∣
ǫ=0
a21 = 0 , ∂ǫ

∣∣
ǫ=0
b21 = −1

2

L2
20

L3
11

=
1

2
a2

10 a01

∂ǫ

∣∣
ǫ=0
a12 = 0 , ∂ǫ

∣∣
ǫ=0
b12 = −1

2

L20

L3
11

=
1

2
a10 a

2
01

∂ǫ

∣∣
ǫ=0
a03 = 0 , ∂ǫ

∣∣
ǫ=0
b03 = −1

6

1

L3
11

=
1

6
a3

01

again by using the result of Proposition 3.3.2. Therefore we obtain

16 ∂ǫ

∣∣
ǫ=0
Aǫ = −a

2
01 (1 + a4

10)

a10 b01 − 1
− a2

01 a10 b01 + a2
01 + 2 a2

10 a
2
01 .

Since we assume that the fixed point is elliptic, we must have | trDT0| = |a10 +

b01| < 2 and a01 6= 0. With

t:=
a10 + b01

2
∈ (−1, 1)

the above becomes

∂ǫ

∣∣
ǫ=0
Aǫ =

a2
01

8

[
1 + a2

10

1 + 2 (t− a10)
2

1 − t2 + (t− a10)2

]
≥ a2

01

8
> 0 .

Hence there exists an ǫ∗ > 0 such that Aǫ 6= 0 holds true for all ǫ ∈ (−ǫ∗, ǫ∗) \ {0}.

Moser’s twist theorem then implies (see theorem 2.13 in [59]) that the fixed point

(s∗, y∗) is nonlinearly stable with a nonzero first Birkhoff coefficient for all maps Tǫ

with ǫ ∈ (−ǫ∗, ǫ∗) \ {0}.

3.4 Construction of Nonlinearly Stable Periodic Orbits

In this section we consider the nonlinear stability problem for a linearly stable periodic

orbit γ on a general billiard table Q. A typical situation is shown in Fig. 7. Let N

denote the number of reflections of γ, and let si and ϕi, i = 1, . . . , N , denote the arc

length parameter and angle of reflection at the i-th reflection point of γ, respectively.

As before, let Φt and F denote the billiard flow and billiard map, respectively.
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Figure 7: General billiard table Q with an elliptic, non-resonant periodic orbit.

Since we assume that the periodic orbit γ is linearly stable, the eigenvalues of the

linearized billiard map are complex conjugate of modulus one, hence

λ1 = λ2 = ei α ≡ λ are the eigenvalues of DFN(s1, sinϕ1)

for some angle α. Furthermore we assume that γ is non-resonant, i.e. λ2, λ3, λ4 6= 1

holds.

In the non-resonant case a result due to Moser (see theorems 2.12 and 2.13 in

[59]) guarantees that there exists a real-analytic canonical change of coordinates

(s, sinϕ) 7→ z ∈ C in a neighborhood of any of the (si, sinϕi) such that it conju-

gates FN to its Birkhoff normal form

z 7→ λ z ei A |z|2 + O(|z|4)

with A ∈ R the first Birkhoff coefficient. A sufficient condition for nonlinear stability

of γ then is a nonzero value for A, cf. Theorem 2.13 in [59].

Applying this strategy to our general setup seems intractable because we would

need a way to decide whether or not A vanishes. Therefore we will not consider the

nonlinear stability problem of γ on the given table Q. Instead we will introduce a

family of tables Qǫ, which are almost identical to Q and have γ as a periodic orbit.

We then want to know whether γ is nonlinearly stable for at least some tables in that

family.
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A construction of such a family, which allows us to analyze A as a function of the

table was given in [31, 44] in the context of two-periodic orbits. It consists of a local

perturbation of the boundary curve in normal direction, maintaining a third order

contact, as shown in Fig. 8.

Figure 8: Construction of the curves Γǫ.

Lemma 3.4.1 (Local perturbation in normal direction). Let Γ be a C5 curve, pa-

rametrized by its arc length s, for s in some interval I containing a neighborhood of

s = 0. Let φ : I → R be a C5 function with φ(0) = φ′(0) = φ′′(0) = φ′′′(0) = 0. Then

the parametrization of the curve Γφ(ξ):=Γ(ξ) + φ(ξ)n(ξ) by its arc length reads

Γφ(s) = Γ(s) + φ′′′′(0)n0
s4

24
+ O(s5)

in a neighborhood of s = 0.

Proof. Denote by t(s) = Γ′(s) and n(s) = t(s)⊥ the tangent and normal vector of

Γ(s), respectively. The definition of the curvature K(s) of Γ(s) yields

n′(s) = K(s) t(s)

hence

Γ′
φ(ξ) = [1 + K(ξ)φ(ξ)] t(ξ) + φ′(ξ)n(ξ) .

In particular we obtain

ww Γ′
φ(ξ)

ww =
√

[1 + K(ξ)φ(ξ)]2 + φ′(ξ)2 = 1 + O(ξ4)
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for the length of the tangent vector of Γφ. Therefore

Sǫ(ξ) =

∫ ξ

0

ww Γ′
φ(ζ)

ww dζ = ξ + O(ξ5)

for the arc length of Γφ. The claim that Γφ and Γ have a third order contact (in

terms of their arc length parametrizations) at the reference point Γ(0) follows now

immediately from the definition of Γφ and Taylor expansion of φ and n.

This perturbation of the boundary was used in [31, 44] to study the stability of

two-periodic orbits on strictly convex billiard tables. More precisely, it was shown

that the first Birkhoff coefficient can be made nonzero using an arbitrary small local

boundary perturbation of the above type. The following theorem generalizes this

construction to arbitrary linearly stable, non-resonant periodic orbits on arbitrary

billiard tables.

Figure 9: An arbitrarily small local perturbation of the boundary (in the sense of
the C4 topology) of the billiard table that preserves the elliptic periodic orbit and
renders it nonlinearly stable.

Theorem 3.4.2. Consider a billiard table Q with a linearly stable, non-resonant N-

periodic orbit γ, which has reflections off of C5 boundary components. Let s1, . . . , sN

denote the arc length parameters corresponding to the N points of reflection. Pick any

of the si, say si∗. Then for all small enough δ > 0 there exists a billiard table Qδ,i∗,

which is C5 close to Q and coincides with Q outside the δ-neighborhood Bδ(Γ(si∗))
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of Γ(si∗), and such that γ is a nonlinearly stable periodic orbit on Qδ,i∗ with nonzero

Birkhoff coefficient.

Proof. After possibly relabeling the points we may assume that i∗ = 1, and without

loss of generality we may choose the arc length parametrization of ∂Q such that

s1 = 0.

Denote the boundary components of the i-th point of reflection by Γi. Let δ > 0

be arbitrary, but so small that Bδ(Γ(s1)) contains no other points of reflection, and

has intersection only with the boundary component Γ1 (see Fig. 9 for an illustration).

Choose a C∞ function φ : R → R with support in [−δ/2, δ/2] such that φ(0) =

φ′(0) = φ′′(0) = φ′′′(0) = 0, φ′′′′(0) = 1, |φ(s)| ≤ 1. Let n(s) denote the unit normal

vector at the point Γ1(s). Define

Γǫ
1(t):=Γ1(t) + ǫ φ(t)n(t)

for all ǫ ∈ [−δ/2, δ/2].

Clearly the graphs of Γǫ
1 and Γ1 coincide outside Bδ(Γ(0)). Moreover, for ǫ small

enough Γǫ
1 has no self-intersections and thus defines a new billiard table Qǫ by replac-

ing Γ1 by Γǫ
1.

By Lemma 3.4.1

Γǫ
1(s) = Γ1(s) + ǫ

s4

24
+ O(s5)

in a neighborhood of s = 0. In particular, the tangent line at s = 0 is preserved, and

hence the orbit γ remains N -periodic for all Qǫ.

In fact, since the generating function of the N -th iterate of the billiard map in a

small enough neighborhood of the periodic orbit γ reads

Lǫ(s1, . . . , sN , sN+1) = ‖Γ2(s2) − Γǫ
1(s1) ‖ + . . .+ ‖ΓN(sN) − ΓN−1(sN−1) ‖

+ ‖Γǫ
1(sN+1) − ΓN(sN) ‖
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the above expansion of Γǫ
1 immediately implies

∂ǫ

∣∣
ǫ=0
Lǫ(s1, . . . , sN , sN+1) = − Γ2(s2) − Γ1(s1)

‖Γ2(s2) − Γ1(s1) ‖
· ∂ǫ

∣∣
ǫ=0

Γǫ
1(s1)

+
Γ1(sN+1) − ΓN (sN)

‖Γ1(sN+1) − ΓN (sN) ‖ · ∂ǫ

∣∣
ǫ=0

Γǫ
1(sN+1)

= − cosϕ1

s4
1 + s4

N+1

24
+ O5(s1, sN+1)

because only two terms in Lǫ depend on ǫ.

The boundary curves are of class C5 in a neighborhood of the reflection points,

hence the associated (N -fold iteration of the) billiard map is of class C4. Since

cosϕ1 > 0 we can apply Theorem 3.3.3 to conclude that for all small enough nonzero

values of ǫ, the N -periodic periodic orbit γ is nonlinearly stable on Qǫ. Let Q∗(Γ, L)

denote one such table on which the periodic orbit γ is nonlinearly stable with nonzero

first Birkhoff coefficient.

Now we are in the position to prove our main result, Theorem 3.1.1.

Proof of Theorem 3.1.1. Let L > 0 be arbitrary, and Γ as in the statement of Theo-

rem 3.1.1. By Theorem 3.2.6 there exists a billiard table Q(L,Γ) with Γ ⊂ ∂Q which

has a linearly stable, non-resonant periodic orbit γ with free path of length at least

L before and after a sequence of consecutive reflections off of Γ.

Applying now the result of Theorem 3.4.2 we may assume that this orbit is actually

non-linearly stable with nonzero Birkhoff coefficient, otherwise we slightly modify the

original table Q(L,Γ) as stated in Theorem 3.4.2, which does not change the length

of the free path γ before and after Γ to a value less than L.

Notice that by the implicit function theorem the periodic orbit γ persists under

any (not just the ones of the type as in Lemma 3.4.1, cf. the proof of Theorem 3.4.2)

sufficiently small C5 perturbation of the boundary of the constructed billiard table.

The perturbed periodic orbits will have the same period and are elliptic with a free
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path before and after Γ of length at least L. By Lemma 3.3.1 the first Birkhoff coeffi-

cient depends C3-continuously on the map, hence C4-continuously on the boundary.

Thus all the perturbed periodic orbits will have a nonzero Birkhoff coefficient, and

hence are non-linearly stable, provided that the perturbation of the boundary is small

enough.

3.5 Conclusion

It is well known that if at least one focusing component is present, then in order to

ensure hyperbolicity the boundary should be arranged in such a way that all beams

of rays focus after any sequence of consecutive reflection off the focusing part of the

boundary, and defocus (i.e. pass through a conjugate point) before the next reflection

from a curved part of the boundary of the billiard table.

So far, there are only two examples [20, 22] of hyperbolic billiards where this

condition of defocusing between any reflection from a focusing component and the

next reflection off the curved part of the boundary is violated. However, both of these

classes of billiards are very special. In fact, the absence of defocusing between some

reflections from a focusing part of the boundary and the next reflection (off the curved

part of the boundary) is allowed in [20] only in those parts of the phase space where

the billiard dynamics is integrable. Therefore focusing does not dominate dispersing

in this part of the phase space while on the complementary part of the phase space the

defocusing mechanism ensures hyperbolicity in the usual way. Likewise, in [22] the

billiard table has a very specially designed part where one can control that focusing is

dominated by dispersing, although the beams do not defocus after reflections off the

focusing component, while on the complement of this part of phase space, yet again,

the defocusing mechanism generates hyperbolicity.
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Therefore, one may conclude that in all hyperbolic billiards with focusing bound-

ary components constructed so far, it is the mechanism of defocusing which is re-

sponsible for hyperbolicity. Hence, the standard strategy to construct ergodic chaotic

billiards is to choose all focusing components to be absolutely focusing, and to move

them sufficiently far away from all other regular (smooth) components of the bound-

ary, e.g. [66].

In this chapter of this thesis we have shown that for this strategy it is very essential

that all focusing components are absolutely focusing, and conjecture that in two-

dimensional billiards with at least one focusing, but non-absolutely focusing boundary

component typically there are stable periodic orbits.
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CHAPTER IV

C2-STADIA

4.1 Introduction

In 1973 Lazutkin [52] showed that for strictly convex billiard tables Q with a boundary

∂Q of class C553 there exists an uncountable family of caustics near the boundary.

The presence of these caustics prevents the billiard dynamics from being ergodic and

gives rise to nearly integrable motion close to the boundary.

Shortly after, in 1974 it was shown in [13, 14] (see also [15]) that there are convex

billiard tables on which the billiard dynamics is hyperbolic and ergodic. In billiards

with focusing boundary components the mechanism that creates the hyperbolicity is

the mechanism of defocusing. The most famous and best studied convex billiard in

this class is the stadium [14, 15], see Fig. 4, whose boundary consists of two semi-

circles connected by two straight line segments. For any (nonzero) length of the line

segments the resulting billiard is ergodic and hyperbolic. Note that the boundary of

the stadium is (globally) C1.

These two results are in sharp contrast to each other. The difference is due to the

smoothness of the boundary of the billiard table. If the boundary of a convex table is

smooth enough then the presence of caustics prevents ergodicity. If the boundary is

C1, then there are (continuous families of) convex billiard tables with ergodic and hy-

perbolic motion. Therefore, the natural question is: which class of smoothness of the

boundary of the billiard table separates convex billiards with completely chaotic dy-

namics and from non-ergodic dynamics with elliptic islands. This question was raised

immediately after the appearance of the stadium billiard in 1974 by Anosov, Katok,

Arnold, Moser and others. Later Douady [33] lowered the smoothness requirement
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for Lazutkin’s results to C6 boundaries.

In this part of the thesis we provide an answer to this long-standing question by

showing that critical smoothness of the boundary is C2. More precisely, we show

that if the boundary of the stadium is made C2 smooth, then elliptic periodic orbits

appear, so these billiards are non-ergodic.

In Chapter 3 we showed that as soon as non-absolutely focusing boundary com-

ponents are present the mechanism of defocusing can fail, and hence stable motion

can appear. In particular, focusing boundary components with vanishing curvature,

which appear when making the boundary of the stadium C2 smooth, are never ab-

solutely focusing. Therefore it seems natural to attack the above question from this

point of view, especially because the hyperbolicity in the stadium billiard is generated

solely by the defocusing mechanism.

However, the problem addressed in here is more challenging than the one of Chap-

ter 3. This is because there one was allowed to design the boundary of the billiard

table. Here the problem is that we only allow for small perturbation of a given

boundary.

4.2 Setup and Statement of the Main Results

The billiard tables we consider are obtained by the following construction. Take a

semi-circle and smooth out some part of the curve near the end points such that

the resulting focusing curve Γ has zero curvature at its endpoints, and so that Γ is

symmetric just as the semi-circle was. Consider two identical copies of the boundary

component Γ. By connecting their endpoints using straight line segments of length L

we obtain a continuous family (parametrized by L) of C2-smooth stadium-like billiard

tables, or simply C2-stadia. See Fig. 10 for the illustration of this construction.

The length L of the straight line segments will be referred to as the separation

distance between the curved boundary components. The part of the resulting billiard
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Figure 10: Illustration of the smooth stadium like billiard tables we consider.

table, which is obtained by completing the two parallel line segments to a rectangle

will be referred to as the rectangular channel.

We will prove the following main result about the dynamics of the billiard in

C2-stadia.

Theorem 4.2.1 (Large Separations). For any short enough (in terms of arc length)

symmetric smoothed-out regions (near the endpoints) of the curved boundary com-

ponents there exists constants δ, a, b > 0 and N ∈ N such that for any separation

distance L with

L ∈
⋃

n≥N

[a+ n b, a + (n+ 1) b+ δ]

the resulting C2-smooth stadium-like billiard table possesses elliptic periodic orbits.

The elliptic periodic orbits of Theorem 4.2.1 are in no sense obtained by a per-

turbation of the parabolic two-periodic orbit for L = 0. In fact, even at a heuristic

level there seems to be no obvious reason why elliptic periodic orbits as claimed in

Theorem 4.2.1 should exist.

The key observation behind the construction of these orbits is the fact that the

curved boundary component Γ is non-absolutely focusing. The elliptic periodic orbits

of Theorem 4.2.1 naturally correspond to those constructed in [21]. It means that the

violation of the absolutely focusing cannot by compensated for by making the free

path arbitrarily large.
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4.3 Elliptic Periodic Orbits for Large Separations

In order to find stable periodic orbits for large separations of the two curved boundary

components we exploit the fact that the curved components are not absolutely focus-

ing. In particular, the first step will be to find parabolic periodic orbits. This will be

accomplished by constructing billiard trajectories such that an initially infinitesimal

parallel beam will leave the curved boundary component again as a parallel beam.

4.3.1 General Results

Let (s1, ϕ1), . . . (sN , ϕN) denote a complete sequence of reflections off the curved

boundary component Γ. Denote by τk,k+1 the free path between the k-th and (k+1)-st

reflection, and set Rk = 2K(sk)
cos ϕk

.

Suppose that this sequence of reflections is symmetric along Γ. This assumption

means, in particular, that τk,k+1 = τN−k,N−k+1 and Rk = RN−k hold. Therefore, the

Jacobian of the billiard flow computed along the sequence of N reflection reads

J = (−1)N




1 0

RN 1








1 τN−1,N

0 1



 . . .




1 τ1,2

0 1








1 0

R1 1



 =




a b

c a





for some real numbers a, b, c satisfying a2 − b c = 1.

By simultaneously changing s1 and sN to s1 + α and sN − α we obtain a one-

parametric continuous family of complete sequences of reflections off Γ, provided

that |α| is sufficiently small. Denote by (s
(α)
1 , ϕ

(α)
1 ), . . . , (s

(α)
N , ϕ

(α)
N ) the corresponding

reflection points and angles, cf Fig. 11.

Since the curved boundary component Γ is symmetric and the modification of

the initially symmetric sequence of reflections respects that symmetry the resulting

complete sequences of reflections will be symmetric too. Let

Jα =




aα bα

cα aα



 with a2
α − bα cα = 1
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denote the Jacobian of the billiard flow corresponding to the sequence of reflections

for the parameter value α.

Figure 11: A symmetric, complete sequence of reflections off the curved boundary
component Γ. Shown is the case of an odd number of reflections.

Due to the imposed symmetry of the sequence of reflections we consider and the

symmetry of the boundary component Γ the angles of the billiard flow (relative to the

horizontal direction, cf Fig. 12) at the point of entering and at the point of leaving

the parallel segment of the billiard table are the same. Denote this angle by ωα.

Similarly, the points at which the incoming and outgoing trajectories cross the

vertical (cf Fig. 12) are also symmetric. Let sα denote the distance of that point from

the straight boundary segment.

Lemma 4.3.1. Any of the sequences of reflections closes up to a (symmetric) periodic

orbit if and only if

L ≡ L(α, n) =
nW − 2 sα

tanωα
, τ ≡ τ(α, n) =

L(α, n)

cosωα
+ 2Tα

hold for the separation distance L and the (corresponding) free path between the curved

boundary components τ , respectively. The distance Tα is the distance after the last
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reflection off of Γ to the point where the trajectory enters the rectangular channel, cf

Fig. 12.

Figure 12: Illustration of the construction of a periodic orbit by closing up a sym-
metric, complete sequence of reflections off the curved boundary component Γ.

Let L = Lα (and thus τα) be chosen such that (at least) the complete sequence

of reflections corresponding to the parameter value α becomes a periodic orbit. Lin-

earizing the billiard flow along this periodic orbit yields the monodromy matrix Mα,

which is given by

Mα =
[



1 τα

0 1



 Jα

]2

because of the symmetry and the fact that inside the rectangular channel the lin-

earization of the billiard flow is like the one of a free flight. In particular,

trMα = (2 aα + τα cα)2 − 2 (5)

follows for its trace.

From this relation it follows that in order to have elliptic orbits for large separation

distances Lα, and hence large values of τα, the value of cα must be close to zero. Thus,
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from now on we will assume that

for α = 0 : c0 = 0 hence J0 =




a0 b0

0 a0



 with a2
0 = 1 (6)

holds.

Lemma 4.3.2. Since c0 = 0 all periodic orbits corresponding to α = 0 are parabolic.1

An immediate consequence of Lemma 4.3.1 and Lemma 4.3.2 is the following

Proposition 4.3.3. For all separation distances L of the form L = L(0, n), where

n = 1, 2, . . ., there exists a parabolic periodic orbit.

In order to obtain elliptic periodic orbits 2 the values of α and L must be chosen

such that the resulting periodic orbit has a monodromy matrix Mα with a trace

satisfying | trMα| < 2. From (5) and Lemma 4.3.1 we obtain the following

Lemma 4.3.4. For the periodic orbit γα,n corresponding to α and n the following

equivalences

γα,n is elliptic ⇐⇒ aα +
1

2
cα τ(α, n) ∈ (−1, 1) \ {0}

⇐⇒ aα

[
1 +

1

2
Bα τ(α, n)

]
∈ (−1, 1) \ {0}

hold.

Proof. By Lemma 4.3.1 we know that the periodic orbit corresponding to α and n

exists if and only if the free path inside the rectangular channel is τ(α, n). From (5)

the trace of the corresponding monodromy matrix reads

trMα = [2 aα + cα τ(α, n)]2 − 2

1A periodic orbit is called parabolic if its monodromy matrix M satisfies tr M = 2, and thus has

eigenvalues λ1,2 = 1.
2A periodic orbit is called elliptic, if its monodromy matrix M satisfies | tr M | < 2, and thus has

a pair of (strictly) complex (conjugate) eigenvalues of modulus one.
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which always satisfies trMα ≥ −2.

Therefore, ellipticity of the periodic orbit is equivalent to

elliptic ⇐⇒ −2 < [2 aα + cα τ(α, n)]2 − 2 < 2 ⇐⇒ 0 <
[
aα +

1

2
cα τ(α, n)

]2

< 1

⇐⇒ aα +
1

2
cα τ(α, n) ∈ (−1, 1) \ {0}

which is the first of the two claimed conditions. The second condition then follows

immediately from the definition of Bα ≡ cα

aα
.

A slightly different, but more insightful way of rewriting the ellipticity condition

is provided by the following result.

Lemma 4.3.5. The periodic orbit γα,n corresponding to α and n is elliptic if and

only if

cα 6= 0 ,
1

2
τ(α, n) 6= −aα

cα
and






1
2
τ(α, n) < |bα| aα = 0

1
2
τ(α, n) < − bα sgn(aα)

1+|aα| Bα > 0

− bα sgn(aα)
1+|aα| < 1

2
τ(α, n) < 1+|aα|

|cα| Bα < 0

hold.

Proof. Another way of writing the condition | trMα| < 2 is

| trMα| < 2 ⇐⇒ −2 < [2 aα + cα τ(α, n)]2 − 2 < 2

⇐⇒ 0 <
[
aα +

1

2
cα τ(α, n)

]2

< 1

⇐⇒ 0 < |aα|2
[
1 +

1

2
Bα τ(α, n)

]2

< 1

provided that aα 6= 0. Assuming for now that

aα 6= 0 and 1 +
1

2
Bα τ(α, n) 6= 0
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we obtain

elliptic ⇐⇒ − 1

|aα|
< 1 +

1

2
Bα τ(α, n) <

1

|aα|

⇐⇒ − 1

|aα|
< 1 +

1

2
Bα τ(α, n) and 1 +

1

2
Bα τ(α, n) <

1

|aα|

⇐⇒ −1 + |aα|
|aα|

<
1

2
Bα τ(α, n) and

1

2
Bα τ(α, n) <

1 − |aα|
|aα|

which can be further simplified by observing that

1 − |aα|
|aα|

=
1 − a2

α

|aα| (1 + |aα|)
=

−bα cα
|aα| (1 + |aα|)

= −Bα
aα bα

|aα| (1 + |aα|)
follows from a2

α − bα cα = 1. Therefore

elliptic ⇐⇒ −1 + |aα|
|aα|

<
1

2
Bα τ(α, n) and 0 < −Bα

[ aα bα
|aα| (1 + |aα|)

+
1

2
τ(α, n)

]

follows. Since τ > 0 in any case we obtain the claimed third condition after a

straightforward case-by-case analysis, including the so far excluded cases aα = 0 and

1 + 1
2
Bα τ(α, n) = 0.

The interpretation of the result of Lemma 4.3.5 is the following. For small enough

values of |α| all considered sequences of complete reflections have the same (and hence

uniformly in α bounded) number of reflections off the compact boundary component

Γ. From the continuity of the Jacobian Jα it follows that the entries aα, bα, cα of Jα

are uniformly bounded.

Thus, Lemma 4.3.5 shows that arbitrarily long elliptic periodic orbits can only be

constructed for Bα < 0 in the limit as Bα → 0−.

Therefore, the strategy to construct elliptic periodic orbits for large separation

distances is the following. Start with α = 0 and some n ≥ 1 (sufficiently large), and

set the separation distance equal to L(0, n). The resulting billiard table then has a

parabolic periodic orbit γ, as was shown in Lemma 4.3.2.

Then start increasing or decreasing the separation distance L in a way that the

continuation of the periodic orbit γ becomes an elliptic periodic orbit on the new

table.
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The main problem then is the following. By how much can one change the sepa-

ration distance (starting from L(0, n)) such that the billiard table admits an elliptic

periodic orbit? We will actually consider the following more modest question. By

how much can one change the separation distance (starting from L(0, n)) such that

the continuation of the parabolic orbit is an elliptic periodic orbit?

The answer to the latter problem is weaker, because it could very well be that at

the point when the continuation of one of the parabolic orbits stops being elliptic,

other elliptic periodic orbits are present.

Theorem 4.3.6. Suppose that c0 = 0 and that there exists some constant C > 0 such

that |s0 − sα| ≤ C |ω0 − ωα| for all |α| sufficiently small. Set

∆max =
2 a0

sinω0

dωα

dcα

∣∣∣
α=0

which could be positive, or negative. Then for all sufficiently large n ≥ 1 and all

separation distances L taken from the equally spaced sequence of intervals

L ∈
{
L(0, n) + ξ∆max :

1

4
≤ ξ ≤ 3

4

}

the resulting billiard table has at least one elliptic periodic orbit.

Proof. From Lemma 4.3.1 and Lemma 4.3.4 we know that the periodic orbit γα,n

corresponding to the separation distance L(α, n) is elliptic if and only if

aα +
1

2
cα

[L(α, n)

cosωα
+ 2Tα

]
∈ (−1, 1) \ {0} with L(α, n) =

nW − 2 sα

tanωα

holds. And since we are interested in the amount by which we can change L we set

∆(α, n):=L(α, n) − L(0, n)

so that

aα + cα Tα +
1

2

cα L(α, n)

cosωα
= aα + cα Tα +

∆(α, n)

2 cosωα

cα L(α, n)

∆(α, n)
∈ (−1, 1) \ {0}
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follows for the ellipticity condition.

Notice that the definition of L(α, n) and ∆(α, n) imply

L(α, n) cα
∆(α, n)

=
L(α, n) cα

L(α, n) − L(0, n)
=

cα

1 − L(0,n)
L(α,n)

=
cα

1 − n W−2 s0

n W−2 sα

tan ωα

tan ω0

=
cα

1 − [1 − 2 s0−sα

n W−2 sα
] tan ωα

tan ω0

=
cα tanω0

tanω0 − tanωα + 2 s0−sα

n W−2 sα
tanωα

=
cα

ω0 − ωα

tanω0
tan ω0−tan ωα

ω0−ωα
+ 2 s0−sα

ω0−ωα

tan ωα

n W−2 sα

By assumption the term s0−sα

ω0−ωα
is uniformly bounded for all |α| small enough.

Therefore,

L(α, n) cα
∆(α, n)

=
cα

ω0 − ωα

tanω0
tan ω0−tan ωα

ω0−ωα
+ O(n−1)

=
cα

ω0 − ωα

tanω0

1
ω0−ωα

∫ ωa

ωα

1
cos2 x

dx+ O(n−1)

=
cα

ω0 − ωα

tanω0

1
2 cos2 ωα

+ 1
2 cos2 ω0

+ O[(ω0 − ωα)2, n−1]

where the error term is uniform for (n−1, α) → (0, 0).

Therefore the condition for γα,n to be elliptic becomes

aα + cα Tα − cα − c0
ωα − ω0

∆(α, n) sinω0
cos ω0

cos ωα
+ cos ωα

cos ω0
+ O[(ω0 − ωα)2, n−1]

∈ (−1, 1) \ {0} .

where we used the assumption c0 = 0. By Lemma 4.3.5 the orbit γα,n can only be

elliptic for large values of n if cα is close to zero, i.e. α is close to zero.

Because

cα − c0
ω0 − ωα

= − dcα
dωα

∣∣∣
α=0

[1 + o(1)] as α→ 0

and, furthermore, as α → 0 we have that cα → 0, Tα is bounded, and aα → a0 = ±1,

the ellipticity condition becomes

a0 −
1

2
∆(α, n) sinω0

dcα
dωα

∣∣∣
α=0

[1 + o(1)] [1 + O(n−1)] + o(1) ∈ (−1, 1) \ {0}

as α→ 0 and n→ ∞, where the error terms are uniformly small.
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Therefore, setting ∆max equal to

∆max =
2 a0

sinω0

dωα

dcα

∣∣∣
α=0

a sufficient condition for the ellipticity of the continuation of the orbit γα,n is (recall

that a0 = ±1)

1 − 1

2 a0

∆(α, n) sinω0
dcα
dωα

∣∣∣
α=0

= 1 − ∆(α, n)

∆max

∈
[1

4
,
3

4

]

for all sufficiently large n. This yields precisely the condition claimed in the statement

of the theorem, And the continuation of γα,n provides one elliptic periodic, as was to

be shown.

4.3.2 Existence

As long a periodic orbit has only reflections off the part of the curved boundary

component which is the original circle (i.e. no reflection off the smoothed-out part

of Γ), it will be hyperbolic. Therefore, the simplest possible elliptic periodic orbit

is symmetric and has only three reflections off the curved boundary component, as

shown in Fig. 13.

Lemma 4.3.7. For a symmetric billiard trajectory with three reflections such that

τ R2 and τ R are both finite (i.e. not ±∞), the condition

1 + τ R = 0 or (1 + τ R)
(
1 + τ

R2

2

)
= 1

is equivalent to having B−
1 = B+

3 = 0.

Proof. In general the continued fraction expansion yields

B+
3 = R3 +

1

τ23 +
1

R2 +
1

τ12 +
1

R2 + B−
1

≡ R +
1

τ +
1

R2 +
1

τ +
1

R + B−
1
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Figure 13: Illustration of the construction of the family of symmetric billiard tra-
jectories as shown in the proof of Proposition 4.3.8.

where we dropped the subscripts at the quantities, which are equal by the assumed

symmetry of the trajectory.

In the particular case B−
1 = 0, the above general relation becomes

B+
3 =

1 + τ R
τ

τ R2 + 2 τ R + τ 2 RR2

1 + τ R2 + 2 τ R + τ 2 RR2

so that B+
3 = 0 holds if and only if the claimed condition is satisfied (provided that

τ R and τ R2 are assumed to be finite).

Proposition 4.3.8. For any sufficiently short (in terms of arc length) symmetric

smoothed-out regions (near the endpoints) of the curved boundary components there

exist two continuous families (γ
(a)
α )α, (γ

(b)
α )α of symmetric billiard trajectories with

three reflections off the curved component, such that

1. An initially parallel beam will leave as a parallel beam when sent along the

trajectory γ
(a)
0 or γ

(b)
0 ;

2. An initially parallel beam will leave as a focusing or dispersing beam when sent

along the trajectory γ
(a)
α or γ

(b)
α for α 6= 0.
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Proof. By assumption the curved boundary component Γ is symmetric. Therefore,

any family of symmetric billiard trajectories with only three reflections off the curved

boundary component must be such that the second point of reflection must always

be at the midpoint of the curved boundary component.

Notice that if the first (and hence the third) point of reflection is close enough to

the second one, then all three reflections are off an absolutely focusing subsegment of

Γ. In this case the existence of conjugate points between the first and second, and

second and third point of reflection implies

1 + τ R < 0 and (1 + τ R)
(
1 + τ

R2

2

)
> 1

However, if the first (and hence third) point of reflection is off the endpoint of K,

then

1 + τ R = 1 and (1 + τ R)
(
1 + τ

R2

2

)
= 1 + τ

R2

2
< 1

hold.

By continuity there must exist two distinct arc length parameters s
(a)
1 and s

(b)
1

such that

(a) : 1 + τ R = 1 and (b) : (1 + τ R)
(
1 + τ

R2

2

)
= 1

hold for the first point of reflection at s
(a)
1 and s

(b)
1 , respectively.

By Lemma 4.3.7 the corresponding trajectories γ(a) and γ(b) are such that an

incoming parallel beam leaves Γ also as a parallel beam.

Proposition 4.3.9. For the family (γ
(b)
α )α it follows that

dcα
dωα

∣∣∣
α=0

=
2R tanϕ2

1 + τ R +
(
1 − 1

2
τ R

) 2R
(1 + τ R)2

tanϕ+
2 τ R

(1 + τ R)2

K′

K
1

cosϕ

dsα

dωα

∣∣∣
α=0

=
1

cosω0

[
T0 +

τ

1 + τ R
]

hold.

46



Proof. In general, the relation between the billiard map coordinates (s, ϕ) and the

billiard flow coordinates right after the moment of reflection (ξ, ω) is given by



dξ

dω



 = −




cosϕ 0

K(s) 1








ds

dϕ



 and




ds

dϕ



 = − 1

cosϕ




1 0

−K(s) cosϕ








dξ

dω





in infinitesimal form. However, in the case of the point of crossing the vertical line

defining the rectangular channel we have that ωα = ϕα, just by notation. Therefore

dsα

dωα
≡ dsα

dϕα

in terms of the billiard map inside the “virtual” table formed by the curved boundary

component and the vertical line defining the rectangular channel.

Notice that the curve (sα, ϕα) is the image of the curve (s2, ϕ2(α)) under the

“virtual” billiard map. Thus the pre-image is a curve of infinite slope in phase space,

which means that

dsα

dωα
≡ dsα

dϕα
=

1

cosωα

1

B∗
α

=
1

cosωα

[
Tα +

1

R +
1

τ +
1

∞

]
=

1

cosωα

[
Tα +

τ

1 + τ R
]

follows.

The linearization Jα of the billiard flow along the three refections reads

Jα =




aα bα

cα aα



 = −




1 0

R 1








1 τ

0 1








1 0

R2 1








1 τ

0 1








1 0

R 1





= −




1 + τ R2 + 2 τ R + τ 2 RR2 τ (2 + τ R2)

(1 + τ R) (R2 + 2R + τ RR2) 1 + τ R2 + 2 τ R + τ 2 RR2





where we suppressed the subscript α for notational simplicity.

Recall that the case (b) is when R2 + 2R + τ RR2 = 0 at α = 0, hence

−dcα
∣∣
α=0

= (1 + τ R) d
[
R2 + 2R + τ RR2

]
α=0

.
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Since ds2(α) = 0 we have that

dR = R
[K′

K ds+ tanϕdϕ
]
, dR2 = R2 tanϕ2 dϕ2 , dτ = sinϕds

and therefore

d
[
R2 + 2R + τ RR2

]
= (1 + τ R) dR2 + RR2 dτ + (2 + τ R2) dR

= (1 + τ R)R2 tanϕ2 dϕ2 + RR2 sinϕds+ (2 + τ R2)R
[K′

K ds+ tanϕdϕ
]

= (1 + τ R)R2 tanϕ2 dϕ2 −RR2 sinϕ
τ

cosϕ
dϕ2

− (2 + τ R2)R
[K′

K
τ

cosϕ
+ tanϕ (1 +

1

2
τ R)

]
dϕ2

follows by using the explicit formula of the derivative of the billiard map, which shows

ds = − τ
cos ϕ

dϕ2 and dϕ = −(1 + 1
2
τ R) dϕ2.

At α = 0 the family (b) satisfies

R2 + 2R + τ RR2 = 0 i.e. R2 = − 2R
1 + τ R

hence

dcα
dϕ2

∣∣∣
α=0

= 2R tanϕ2 +
(
1 − 1

2
τ R

) 2R
1 + τ R tanϕ+

2 τ R
1 + τ R

K′

K
1

cosϕ
.

Finally, notice that

dϕ2

dωα
=
dϕ2

dϕα
= − dϕ2

K ds+ dϕ
=

dϕ2

K τ
cos ϕ

dϕ2 + (1 + 1
2
τ R) dϕ2

=
1

1 + τ R

implies

dcα
dωα

∣∣∣
α=0

=
dcα
dϕ2

∣∣∣
α=0

dϕ2

dωα

∣∣∣
α=0

=
2R tanϕ2

1 + τ R +
(
1 − 1

2
τ R

) 2R
(1 + τ R)2

tanϕ+
2 τ R

(1 + τ R)2

K′

K
1

cosϕ

which finishes the proof.

As an immediate consequence of the general Theorem 4.3.6 and the existence of

certain family of periodic orbits Proposition 4.3.8 and Proposition 4.3.9 we obtain

Theorem 4.2.1.
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Figure 14: Illustration of the result of Proposition 4.3.9.

4.4 Conclusions

Since the appearance of [52] and [14, 15] it is known that the dynamics of the billiard

map depends on the smoothness of the boundary in an essential way.

More precisely, as long as the boundary of a (strictly) convex billiard table is of

class C6 it was shown in [33] that a positive measure family of caustics is present near

the boundary of the billiard table. In particular, such billiards are never completely

ergodic.

The results of [14, 15] show that the if the boundary of convex billiards is allowed

to be only C1, then the resulting billiards may be hyperbolic and ergodic. In fact,

the C1 smoothness is only imposed at a few isolated points, and off these points the

boundary can be C∞.

A typical example of billiards considered in [14, 15] is the stadium billiard. Our

result of Theorem 4.2.1 shows that if the (four) points of the boundary of the stadium,

where the curvature is discontinuous, is smoothed out, then elliptic periodic orbits

are present for a large class of such C2 stadium like billiards.

Due to the assumption that the boundary is piecewise smooth (C3), the global

smoothness either C2 (or better), or C1, C0. No fractional intermediate global
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smoothness like C1+α for some 0 < α < 1 is possible. For global C1 or C0 smoothness

[14, 15] provides large classes of completely ergodic and hyperbolic billiards. There-

fore, our results seem to indicate that for piecewise smooth (C3 is enough) convex

billiards elliptic periodic orbits are generally present if global C2 smoothness is im-

posed, and hence global C2 smoothness seems to represent the critical smoothness

where elliptic structures in convex billiards are generally present. However, a more

rigorous formulation of these ideas is currently not available and needs to be further

investigated.
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CHAPTER V

HYDRODYNAMIC LIMITS

5.1 Introduction

Gases and fluids are at the microscopic level made of many (of the order of 1023)

interacting particles. A mechanical model would thus require a very large number of

coupled ordinary differential equations to describe the dynamics of all the particles.

However, the macroscopic properties of a fluid are very well described by the (com-

pressible) Navier-Stokes equations (or Euler equation, if dissipation can be neglected).

Such partial differential equations relating temperature, density and mean velocity of

the fluid are referred to as hydrodynamic equations.

The derivation of macroscopic equations from microscopic interaction models thus

is of great importance, and has a long history in statistical physics. A typical approx-

imation is the Boltzmann equation, which takes only binary collisions of particles into

account, and assumes rapid decay of correlations in-between successive collisions.

In order to derive the hydrodynamic equations one identifies a small parameter in

the Boltzmann equation, and performs a perturbation analysis. So far scaling limits,

Grad’s moment method, and expansion methods like Chapman-Enskog and Hilbert

methods were proposed to obtain the Navier-Stokes equations from the Boltzmann

equation. Cercignani’s monograph [23] provides a comprehensive overview of these

methods.

Experiments on pattern formation in fluidized sand beds, and the availability of

fast numerical algorithms for direct simulations of granular media (see [5, 6] by Bizon,

de Bruyn, McCormick, Shattuck, Swift, Swinney) opened new approaches to studies

of interacting systems.
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Figure 15: Snapshots of computer simulations of the high (on the left) and low (on
the right) density regime of granular media.

In granular media typically two different regimes are considered. If the mean free

path between two consecutive collision is of the order of the size of the particles,

the motion of each particle is dominated by collisions. In this dense packing regime

phenomena, to the finite size of the particles, like jamming can occur, which are not

of fluid dynamical nature.

If the mean free path between two consecutive collisions is much larger than the

size of the particles, then their individual motion is dominated by free motion. Only

rarely particles will collide with each other. This is the low density gas-like regime,

to which kinetic methods apply.

Snapshots of a computer simulation of high and low density regimes are shown in

Fig. 15. A priori, kinetic models only apply to the gas-like (low density) regime. It

was demonstrated by Du, Li and Kadanoff [34] that in certain dissipative systems a

hydrodynamic description breaks down. However, direct simulations of fluidized sand

beds by Bizon et al. [61] have shown good agreement with kinetic models, even at

rather high densities.

Even though direct numerical simulations provide important insight, they are

limited to rather small particle numbers. The first macroscopic equations for granular

systems based on a phenomenological approach using balance equations were proposed
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by Haff [41]. A more direct link to microscopic models using the kinetic theory was

given by Jenkins and Richman in [43].

Another aspect of dissipative systems is that due to the dissipation the usual

Maxwell distribution no longer constitutes an equilibrium for the spatially homoge-

neous system. Rather special self-similar distributions (the so called homogeneous

cooling states) appear, and as studied by Bobylev et al. [7, 8, 38].

In the non-dissipative case, rigorous results on the hydrodynamic limits of the

Boltzmann equation are based on a variety of methods. Scaling limits result in the

Euler equations when using a hyperbolic scaling, or the incompressible Navier-Stokes

equations in the parabolic scaling. Good references for this line of approach are the

papers by Esposito et al. [36, 28]. Toscani [63] provides a good overview of the

current mathematical state of the art for the much less studied case of the dissipative

Boltzmann equation.

Whether the interactions are dissipative or not, the compressible Navier-Stokes

equations are obtained by using a series expansion in terms of a small parameter, the

ratio of microscopic to macroscopic length scales. At the leading order one obtains

the Euler equations, and including the next order correction yields the compressible

Navier-Stokes equations.

The reason why in all these methods the Euler equation appears at leading order

(in the hyperbolic scaling) and the compressible Navier-Stokes arises as a formal

higher order correction is usually explained by the presence of two different time

scales; diffusive phenomena are typically much slower than convective ones.

The aim of this part of the thesis is to present a novel derivation of the compressible

Navier-Stokes equations for a weakly dissipative collision model (and hence is also

applicable to the non-dissipative setting), by starting from the Boltzmann equation.

In contrast to usual methods based on series expansions we apply dynamical systems

methods, and construct a reduced dynamics on an invariant manifold for all times
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and all small enough dissipations. The compressible Navier-Stokes equations are then

the first order approximation when expanding the resulting manifold in terms of the

small parameter, but not the dynamical equations.

In this approach the Navier-Stokes equations are not a higher order correction to

the Euler equations. Rather, they appear as the first order correction to a stationary

Maxwellian distribution. Thus our approach is able to capture both the convective

and diffusive transport terms simultaneously.

Furthermore, in contrast to previous works, our method also generates spatial

gradient in the cooling term at the Navier-Stokes order. This shortcoming is in fact

argued (e.g. see Brey et al. [11]) to be the reason why even higher order corrections

(Burnett order) of the usual series expansion should be taken into account.

In Section 5.2 we describe the kinetic model we study. In Section 5.4 we describe

the dynamical systems methods that we use to analyze the dynamics of the dissipative

Boltzmann equation. Based on this dynamical systems approach we introduce special

coordinates for the dissipative Boltzmann equation in Section 5.5. The main results

are summarized in Section 5.6. The corresponding proofs are presented in Section 5.7

and Section 5.8. Finally, in Section 5.9 we test the derived macroscopic equations by

direct numerical simulations, and present the results on the cooling rate.

5.2 The Kinetic Model

5.2.1 The Boltzmann Equation

The system we will consider consists of a large number N of identical particles, con-

fined to a domain Ω ⊂ Rd. Physically relevant values of the dimension d are 1, 2 and

3. Other values of d are interesting, for example, for numerical simulations.

At each instant of time the state of the i-th particle

zi ≡ (xi, vi)
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is determined by its position xi ∈ Ω and its velocity vi ∈ R
d. 1 The motion of the N

interacting particles is, usually, determined by a Hamiltonian of the form

H(z1, . . . , zN) =

N∑

i=1

m

2
‖ vi ‖2 +

N∑

i<j=1

U(‖ xi − xj ‖) ,

with U the interaction potential, and m the mass of the particles. For simplicity we

did not include external forces, as they will not play any role in our considerations.

Thus the dynamics is usually given by a (smooth) flow on the state space

ΓN = (Ω × R
d)N ,

with the micro-canonical invariant measure

dΓN :=dx1 dv1 . . . dxN dvN .

For physically interesting values of N , e.g. several thousand up to 1023, this

microscopic approach of describing the system is not appropriate. Instead we will take

a probabilistic point of view. For this let ρ = ρ(x1, v1, . . . , xN , vN , t) be a probability

density on the state space. Then

f(x, v, t):=

∫

ΓN

N∑

i=1

δ(xi − x) δ(vi − v) ρ(x1, v1, . . . , xN , vN , t) dΓN

is the associated single particle or occupation number density. It satisfies the normal-

ization condition

N =

∫

Ω

∫

Rd

f(x, v, t) dx dv

and gives, up to this normalization, the probability density of finding some particle

at (x, v) at time t.

Taking only binary interactions into account and assuming loss of correlation in-

between successive interactions, the interaction part of the N -particle dynamics is

completely described by the transition rate

W(z1, z2, z3, z4)

1Traditionally in (non-relativistic classical) statistical physics velocities rather than momenta are
used in this context.

55



which gives the probability of two particles z1 and z2 to interact per unit time such

that their final states are z3 and z4, respectively. We will always assume the symmetry

relation

W(z1, z2, z3, z4) = W(z2, z1, z4, z3) (7)

which expresses the invariance of the collision process under relabeling the particles.

Within this approximation the evolution equation of the occupation number den-

sity f is given by the Boltzmann equation (without external forces)

∂tf(x, v, t) + v · ∇xf(x, v, t) = Q(f, f)(x, v, t) (8)

with the collision operator Q(f, f) defined by

Q(f, f)(z, t):=

∫ ∫ ∫
W(y3, y4, z, y2) f(y3, t) f(y4, t) dy2 dy3 dy4

−
∫ ∫ ∫

W(z, y2, y3, y4) f(z, t) f(y2, t) dy2, dy3 dy4 .

(9)

The two integrals represent the gain and loss of particles at z = (x, v) per unit time,

respectively.

An important structural property of the Boltzmann collision operator is given by

the following

Proposition 5.2.1. For any (test) function ψ(z) and any density function f(z, t)

∫
Q(f, f)(z, t)ψ(z) dz

=

∫ ∫ ∫ ∫
W(z1, z2, z3, z4) f(z1, t) f(z2, t) [ψ(z3) − ψ(z1)] dz1 dz2 dz3 dz4

=
1

2

∫ ∫ ∫ ∫
W(z1, z2, z3, z4) f(z1, t) f(z2, t)·

· [ψ(z3) + ψ(z4) − ψ(z1) − ψ(z2)] dz1 dz2 dz3 dz4

gives the weak formulation of the collision operator.

Proof. Use the symmetry relation (7).
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5.2.2 The Interaction Model

Conservative interactions preserve the total momentum and the total energy, that is

the post-collisional velocities v′1 and v′2 and pre-collisional velocities v1 and v2 satisfy

v1 + v2 = v′1 + v′2 and ‖ v1 ‖2 + ‖ v2 ‖2 = ‖ v′1 ‖
2
+ ‖ v′2 ‖

2
.

The prototypical example of such an interaction is the elastic collision of two hard

spheres, as shown in Fig. 16. The interaction the positions do not change at the

ω
1

v
2

1
v’

2
v’

v

Figure 16: Schematic illustration of the hard sphere interaction.

moment of collision, i.e.

x1 = x′1 and x2 = x′2 ,

while the velocities change by reflecting them about the plane with normal vector ω,

see Fig. 16.

For general conservative interactions we will assume that the interaction region is

spatially much smaller than the free paths. We idealize this by assuming point-like

spatial interaction regions, i.e.

W(z1, z2, z3, z4) = W(z1, z2, z3, z4) δ(x1 − x3) δ(x2 − x4)

for the transition rate. Since the interaction is assumed to be spatially localized we

will consider only the asymptotic momenta corresponding to the infinite past and the

infinite future, because the free flight does not change the velocities.
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For any conservative interaction (v1, v2) → (v′1, v
′
2) there exists a unique, up to

the sign, ω = ω(v1, v2) ∈ Sd−1, such that the post-collisional velocities (v′1, v
′
2) can be

obtained from (v1, v2) by

v′1 = v1 + [(v2 − v1) · ω]ω and v′2 = v2 − [(v2 − v1) · ω]ω

a reflection about the plane with normal vector ω, as shown in Fig. 17. The explicit

ω
v

2
v

1
v’

2
v’

1

Figure 17: Schematic illustration of the hard sphere like reflection associated to
general conservative interactions.

form of ω reads

ω = ± (v′2 − v2) − (v′1 − v1)

‖ (v′2 − v2) − (v′1 − v1) ‖
∈ Sd−1 .

Thus the details of the interaction can be encoded entirely in ω(v1, v2) and essentially

looks like a hard sphere collision.

Therefore the transition rate W will be assumed to be of the form

W(z1, z2, z3, z4) dz1 dz2 dz3 dz4 =

∫

Sd−1

B(v2 − v1, ω) δ(v′1 − v3) δ(v
′
2 − v4)·

·δ(x1 − x2) δ(x2 − x3) δ(x3 − x4) dω dz1 dz2 dz3 dz4

(10a)

for some function B, which describes the details of the interaction. Furthermore,

since the reflection plane is invariant under ω 7→ −ω, so must be the transition rate.

Hence the symmetry

B(v2 − v1, ω) = B(v2 − v1,−ω) (10b)

must hold.

58



Furthermore, in the special case where the interaction is rotationally invariant

B(R(v2 − v1), Rω) = B(v2 − v1, ω) holds for any rotation matrix R. Averaging over

all R then yields

rotational invariance =⇒ B = B
(
‖ v2 − v1 ‖ ,

|(v2 − v1) · ω|
‖ v2 − v1 ‖

)
(10c)

where the absolute value of the dot product is due to the general symmetry (10b).

To include non-conservative interactions, i.e. interaction which do not originate

from a Hamiltonian, we proceed phenomenologically. Considering again our proto-

typical example of hard sphere interactions, the simplest implementation of energy

dissipation is to consider inelastic collisions. In this case the total momentum is pre-

served and the relative momentum is reduced (compared to the conservative case)

by a factor (1 − η) with η in between 0 and 1. Thus η = 0 corresponds to the

non-dissipative (conservative) case and η = 1 to the completely sticky (in normal

direction) one. We will consider the parameter η to be a constant, i.e. independent of

relative momenta and other dynamical quantities. In general we will implement the

dissipative interactions in analogy with inelastic collisions, which model dissipation

in “normal direction”.

Assumption 5.2.2 (Dissipative Interaction Model). Throughout we assume repulsive

interactions with energy dissipation in the “normal direction” for which the post-

collisional velocities (v′1, v
′
2) are obtained from the pre-collisional velocities (v1, v2) via

v′1 = v1 +
(
1 − η

2

)
[(v2 − v1) · ω]ω and v′2 = v2 −

(
1 − η

2

)
[(v2 − v1) · ω]ω

for some η between 0 and 1, and

v∗1 = v1 +
1

2

2 − η

1 − η
[(v2 − v1) · ω]ω and v∗2 = v2 −

1

2

2 − η

1 − η
[(v2 − v1) · ω]ω

is the reverse transformation, which expresses the pre-collisional velocities (v∗1, v
∗
2) in

terms of the post-collisional velocities (v1, v2). The transition rate W is assumed to
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be given by equation (10a), i.e.

W(z1, z2, z3, z4) dz1 dz2 dz3 dz4 =

∫

Sd−1

B(v2 − v1, ω) δ(v′1 − v3) δ(v
′
2 − v4)·

·δ(x1 − x2) δ(x2 − x3) δ(x3 − x4) dω dz1 dz2 dz3 dz4

and the function B is independent of the restitution coefficient η.

This model of dissipative interactions is quite standard in the context of the dis-

sipative Boltzmann equation. See, for example, the review article by Toscani [63].

Remark 5.2.3. The change of variables (v1, v2) 7→ (v′1, v
′
2) has

| det
∂(v′1, v

′
2)

∂(v1, v2)
| = 1 − η

as its Jacobian.

Proposition 5.2.4. Let f(x, v, t) be some density function. Assuming the interaction

model as in Assumption 5.2.2, for any test function ψ(x, v)
∫

Ω

∫

Rd

Q(f, f)(x, v, t)ψ(x, v) dx dv =

=
1

2

∫

Ω

∫

Rd

∫

Rd

∫

Sd−1

B(v2 − v1, ω) f(x, v1, t) f(x, v2, t)

[ψ(x, v′1) + ψ(x, v′2) − ψ(x, v1) − ψ(x, v2)] dω dv1 dv2 dx

holds.

Proof. Applying Proposition 5.2.1 with the interaction model as in Assumption 5.2.2

to ψ yields
∫
Q(f, f)(z, t)ψ(z) dz

=
1

2

∫ ∫ ∫ ∫
W(z1, z2, z3, z4) f(z1, t) f(z2, t)

[ψ(z3) + ψ(z4) − ψ(z1) − ψ(z2)] dz1 dz2 dz3 dz4

=
1

2

∫

Ω

∫

Rd

∫

Rd

∫

Sd−1

B(v2 − v1, ω) f(x, v1, t) f(x, v2, t)

[ψ(x, v′1) + ψ(x, v′2) − ψ(x, v1) − ψ(x, v2)] dω dv1 dv2 dx

as was claimed.
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An immediate consequence of the weak form of the collision operator and the

change of variables formula is the following

Corollary 5.2.5. The explicit form of the collision operator reads

Q(f, f)(x, v1, t) =

∫

Sd−1

∫

Rd

[ 1

1 − η
B(v∗2 − v∗1 , ω) f(x, v∗1, t) f(x, v∗2, t)

−B(v2 − v1, ω) f(x, v1, t) f(x, v2, t)
]
dv2 dω

for any density function f .

5.3 Geometric and Dynamic Aspects of the Navier-Stokes

Limit

5.3.1 Introduction to the Main Ideas

In the non-dissipative case the Chapman-Enskog expansion is the standard method

to obtain the Navier-Stokes equation as a formal asymptotic expansion of solutions to

the Boltzmann equation, see [23] for a detailed exposition. We will present a geometric

and dynamical approach to derive the hydrodynamic equations from the Boltzmann

equation. In the non-dissipative case we will recover the Chapman-Enskog method,

but this new approach will also allow us to shed light on the less well established case

of weakly dissipative interaction.

In the presence of dissipation the assumed collision model, see Assumption 5.2.2,

the energies before and after a binary collision are related by

‖ v′1 ‖
2
+ ‖ v′2 ‖

2
= ‖ v1 ‖2 + ‖ v2 ‖2 − α |(v2 − v1) · ω|2 with α:=η

(
1 − η

2

)
(11)

so that α is a natural dimensionless parameter.

We are going to consider small dissipations, i.e. α ≪ 1, only. Furthermore, as in

the non-dissipative setting we will assume that the dimensionless parameter, which

is called Knudsen number [23],

ǫ:=
mean free path

spatial length-scale of f
(12)
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is also a small parameter. Rescaling space

ξ = ǫ x

captures spatial variations of f for ξ of order one. The Boltzmann equation (without

external forces) then becomes

∂tf + ǫ v · ∇ξf = Q(f, f) (13)

and we are interested in studying solutions to this equation for ǫ and α both very

small.

In general, the equations one obtains in the limit (ǫ, α) → (0, 0) do depend on

the path along which the two small parameters approach the origin simultaneously.

This reflects the fact that their relative sizes describe different physical situations.

For example, α ≪ ǫ corresponds to systems where the dissipation is small compared

to the usual non-dissipative phenomena like diffusion, whereas for α ≫ ǫ dissipation

dominates all other effects even at very short time scales.

We shall consider here the setting where α = O(ǫ), which can be thought of as a

perturbation of ordinary fluid mechanics. This also allows for α ≪ ǫ, and contains

the non-dissipative case α = 0 as a special case.

In this regime it is natural to chose the path in the parameter plane as a graph

of a function parametrized by ǫ, i.e. α = α(ǫ) is a function of ǫ which determines the

path along which we consider the limit (ǫ, α) → (0, 0), as shown in Fig. 18.

Another choice for scaling limit often found in the literature, e.g. [11], is to

fix α > 0 and let only ǫ tend to zero. The limit α → 0 is taken afterwards. This

corresponds to the regime ǫ ≪ α and thus models a spatially homogeneous cooling.
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Figure 18: Illustration of the different expansion methods.

5.3.2 Analysis of the Reference System

For ǫ = 0 our choice of the scaling limit implies that also α = 0, so that the rescaled

Boltzmann equation (13) becomes

∂tf = Q0(f, f) . (14)

Notice that the collision operator in this case is the one with with non-dissipative

interactions.

Set

g0(w):=
1

√
2π

d
e−

‖w ‖2

2 (15a)

and define

M0:=
{ n
√
T

d
g0

(v − u√
T

)
:n(x) ∈ R, u(x) ∈ R

d, T (x) ≥ 0, x ∈ Ω
}

(15b)

which is the set of all local Maxwellians. The variables n, u and T are the particle

density, velocity and temperature, respectively, see Definition 5.5.1 below.

Boltzmann’s H-theorem asserts that (we always assume repulsive interactions) for

any initial distribution the corresponding solution of the Boltzmann equation with

ǫ = 0 will converge to a local Maxwellian. And the local Maxwellians are equilibrium

solutions. A dynamical reformulation of this well known fact is given in the following
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Theorem 5.3.1 (Normally Hyperbolic Manifold). At ǫ = 0 the set of all local

Maxwellians M0 is a globally attractive, normally hyperbolic invariant manifold con-

sisting of fixed points of the (rescaled) Boltzmann equation.

Proof. Since M0 is globally attractive and invariant, linearizing the equation about

a local Maxwellian yields a linear operator. Because the interaction potential is

always assumed to be repulsive the linearized collision operator has a spectral gap

in a suitable function space. A detailed analysis for hard spheres was given in [60].

The spectral gap implies that the convergence towards the local Maxwellians occurs

(eventually) at an exponential rate, i.e. M0 is normally hyperbolic.

This basic fact is what will allow us to study the case of small, but finite, values

for ǫ. However, there will be a change of coordinates required to successfully analyze

this case. To the best of our knowledge this change of coordinates is completely novel.

In order to motivate and illustrate the reason why this change of coordinates has to

be done we first consider the analogous situation for finite dimensional differential

equations in Section 5.4.

5.4 Normally Hyperbolic Invariant Manifolds in Finite Di-

mensions

5.4.1 Singular Perturbation Setup

Formally, the (rescaled) Boltzmann equation can be written as an ordinary differential

equation in an appropriate infinite dimensional function space. The purpose of this

section is to outline the methods we are going to apply to the Boltzmann equation in

the technically simpler setting of finite dimensional differential equation

dz

dt
= H(z, ǫ) (16)

where the vector z plays the role of the distribution function f .
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Since Theorem 5.3.1 shows that for ǫ = 0 the (rescaled) Boltzmann equation

possess a manifold of fixed points, we will consider here vector fields H for which

there exists an invariant manifold M0 of fixed points for ǫ = 0.

If (16) is a singularly perturbed system, then it is very likely that the invariant

manifold M0 will persist for ǫ > 0. The first attempt to study such systems using

geometric properties of invariant manifolds was made by Fenichel [37].

5.4.2 Normal Hyperbolicity

In general, to study properties of a dynamical system, one considers how fast in-

finitesimally nearby trajectories diverge or converge. The average exponential rate of

divergence or convergence is given by the Lyapunov exponents. In general, the value

of the Lyapunov exponents can only be estimated by constructing invariant cone fields

or invariant quadratic forms. However, if the reference orbit is a fixed point, then

its Lyapunov exponents are obtained from the eigenvalues of its linearization. If M0

consists of only fixed points z, then the linearization of the vector field about z has

zero eigenvalues (i.e. zero Lyapunov exponents) corresponding to the tangent space

of M0 at z. If these are the only eigenvalues with zero real parts, then the manifold

M0 is called normally hyperbolic.

In this section we assume the normal hyperbolicity of M0 (or of most of its points).

5.4.3 The van der Pol equation

To illustrate the above results consider the extensively studied van der Pol equation

u′′ − (1 − u2) u′ + ǫ u = 0 ,

which was originally introduced as a model for non-linear circuits [65].

Rewriting it as a first order system by setting v = u′, we obtain

d

dt




u

v



 =




v

(1 − u2) v − ǫ u
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which generates a flow on R
2. It is easy to see that for ǫ = 0 the set of fixed points

of the flow is given by

M0 = {(u, v) : v = 0, u ∈ R}

which are exponentially stable for |u| > 1 and exponentially unstable for |v| < 1. In

particular, the above system is a singular perturbation problem.

Integrating the original second order equation once for ǫ = 0 suggests a different

set of coordinates

x = u′ + Φ(u) and y = u with Φ(u) =
1

3
u3 − u .

In these coordinates the van der Pol equation takes on the form

d

dt




x

y



 =




−ǫ y

x− Φ(y)



 , (17)

which generates an equivalent flow on R2, and is of standard form, cf. (19) below. A

graph of the function Φ(u) is is shown in Fig. 19.
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1

2

FHuL

Figure 19: The graph of the function Φ(u).

For ǫ = 0 the system (17) becomes

d

dt




x

y



 =




0

x− Φ(y)



 ,
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with the manifold of fixed points given by

M0 = {(x, y) :x = Φ(y)}

in terms of x and y. This manifold is the graph of Φ, which is shown in Fig. 19. Fur-

thermore, the dynamics for ǫ = 0 is readily read off the system: x stays constant, and

the sign of x−Φ(y) determines whether y increases or decreases. The corresponding

phase portrait is shown in Fig. 20. From Fig. 20 we can also see the meaning of

Figure 20: The system for ǫ = 0 on the fast time scale. The dynamics becomes very
complicated at the fold points of the invariant manifold, which are indicated by the
circles.

normal hyperbolicity. All points on M0, except for y = ±1 are normally hyperbolic.

The two special points y = −1 and y = 1 are indicated by a circle in Fig. 20. They

correspond to turning (or fold) points, at which normal hyperbolicity breaks down.

At these points, in order to “continue” the invariant manifold, one has to increase the

dimension, because the center direction has to be included. Rigorous results on the

persistence of the extended invariant manifold near M0 can be found in the recent

work of Chow, Liu and Yi [26, 27]. Normal forms around the fold points we derived

in Brunovsky, Chow and Mallet-Paret [12]. Generally, the existence of turning points
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gives rise to rather complicated features of the global dynamics for ǫ > 0 and is very

difficult to study.

The usefulness of the standard form of a singular perturbation problem can also

be illustrated with this example. For ǫ = 0 the points on M0 are fixed. For ǫ > 0,

however, they will generically start to move, as fixed points are generically isolated.

The vector field at these points will then be of the order of ǫ. In order to describe

this slow motion we introduce the slow time

τ = ǫ t

which captures the slow motion at timescales of order O(1) (opposed to O(ǫ−1) when

using t). The system (17) then becomes the associated slow system

d

dτ




x

ǫ y



 =




−y

x− Φ(y)



 . (18)

Due to the choice of the time scale we can now pass to ǫ = 0 and obtain

d

dτ
x = −y and 0 = x− Φ(y)

which yields a flow on the originally invariant manifold of fixed points. Thus, this

equation really corresponds to a scaling limit ǫ → 0 with τ = ǫ t. Differentiating the

algebraic constraint yields the equivalent form

d

dτ
y = − y

Φ′(y)
≡ − y

y2 − 1
and 0 = x− Φ(y)

which has the advantage of being a differential equation in y only. The corresponding

phase portrait can now be easily obtained and is shown in Fig. 21 below. We can see

that the slow dynamics on M0 now has an unstable fixed point at the origin, and

two stable ones at the turning points.

Of course, the actual dynamics of the van der Pol equation for ǫ > 0 is neither

given by the fast nor the slow system (each at ǫ = 0). For small ǫ > 0 the solution of
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Figure 21: The illustration of the ǫ = 0 system for the slow system. Notice that
the invariant manifold of fixed points for the fast system becomes the supporting
manifold of the slow system.

the van der Pol equation will rapidly come close to M0 as in the fast system, but will

simultaneously move slowly along M0 as in the slow system. This can be expressed

as a matched asymptotic expansion.

However, as soon as the solution approaches one of the two turning points (and it

will do so, as they are attractive in the slow system) the slow system scaling limit will

break down. The solution will “fall off” M0 near the turning point and jump, just

as the fast system would do, to another branch of M0, giving raise to a periodic like

cycle. These are not simple limit cycles, due to the complicated behavior, “canards”,

near the turning points of M0. So, even in this low dimensional example of the van der

Pol equation very complicated dynamics arises, which is not completely understood

at a rigorous level.

5.4.4 The Standard Form of Singular Perturbation Problems

The first step towards understanding the dynamical behavior of singular perturbation

problems is the introduction of appropriate coordinates which reflect the dynamical
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aspects explicitly.

Let z0 ∈ M0 be a normally hyperbolic fixed point. Then there exist [37] local

coordinates z = φ(x, y) in a neighborhood of z0 such that z0 = φ(0, 0), and the

differential equation z′ = H(z, ǫ) becomes

dx

dt
= ǫ F (x, y, ǫ) and

dy

dt
= G(x, y, ǫ) (19)

in terms of these local coordinates. Furthermore, the manifold M0 near by z0 cor-

responds to the set of coordinates {(x, y) :G(x, y, 0) = 0}. This form of the singular

perturbation problem is called the standard form.

The next step is based on the following observation. For ǫ = 0 the points with

coordinates {(x, y) :G(x, y, 0) = 0} are fixed points, and hence do not move. For

ǫ > 0, however, the vector field on these points is of order ǫ, as equation (19) shows.

In order to make this rather slow motion visible at times of order one, we use the

slow time scale

τ = ǫ t

so that

dx

dτ
= F (x, y, ǫ) and ǫ

dy

dτ
= G(x, y, ǫ)

follows for the evolution equation in terms of local coordinates. This form is called

the associated slow system, and satisfies the following key property:

Proposition 5.4.1 (Scaling Limit of the Slow System [37]). On the normally hyper-

bolic part of M0 for ǫ = 0 the slow system reduces to

dx

dτ
= F (x, y, 0) and 0 = G(x, y, 0) i.e. (x, y) ∈ M0 ,

or equivalently to

dz

dτ
= PM0

H(z, 0) for z ∈ M0 ,

where PM0
denotes the projection onto the tangent space of M0.
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5.4.5 Invariant Manifolds for ǫ > 0

In order to include first order corrections for the dynamics on the fast time scale we

need to understand what happens to the invariant manifold of fixed points M0 for

ǫ > 0.

Under the assumption of normal hyperbolicity (i.e. no additional center direction

due to turning points) it is known that the invariant manifold persists [37, 40, 27, 26,

46, 42]. A particularly easy to handle situation is when M0 is a graph with respect

to the slow variable

M0 = {(x, y) : y = Y0(x)}

in which case

Mǫ = {(x, y) : y = Yǫ(x)}

determines the invariant manifold for ǫ > 0 through the function Yǫ(x). The invari-

ance of Mǫ becomes

G(x,Yǫ(x), ǫ) = ǫ ∂xYǫ(x)F (x,Yǫ(x), ǫ) (20a)

which is a time independent equation for Yǫ(x). The dynamics on Mǫ is given by

dx

dt
= ǫ F (x, y, ǫ)

y = Yǫ(x)

(20b)

and is valid for all times and all sufficiently small values of ǫ > 0.

Using the normal fibration (parts of stable manifolds of points on Mǫ) one can

construct to any initial data (sufficiently close to Mǫ) a point on Mǫ such that

the trajectories starting at these two points converge to each other exponentially

fast. This is some times called shadowing property, and it allows one to study the

properties of the dynamics off Mǫ using the dynamics on Mǫ. Thus we only have to

consider the dynamics on Mǫ. In Fig. 22 an illustration of the shadowing property

is shown.
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Figure 22: Illustration of the shadowing of any orbit by a trajectory on the normally
hyperbolic invariant manifold. The shading point is found by projection along the
normal fibers.

Due to the shadowing property there is no restriction on the time interval on

which the approximation of some trajectory by its shadow is valid. Therefore, the

construction and analysis of the geometric properties (invariant manifold theory)

explains why formal series expansion for inner and outer solutions and their matching

work. Moreover, the geometric analysis actually tells us which parts of the dynamics

correspond to inner and which correspond to outer solutions and how the matching

is done by using boundary layer corrections. This is not at all obvious from a formal

series expansion point of view, and especially so for the case of infinite dimensional

systems.

5.4.6 The Expansion Step

In order to construct an approximate solution to the reduced dynamics (20) we will

compute the first order correction of Mǫ in ǫ. More precisely, we will assume that

Yǫ(x) is regular enough in ǫ to have

Yǫ(x) = Y0(x) + ǫY1(x) + O(ǫ2) .
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Substituting this expansion into (20a) yields

G(x,Y0(x), 0) = 0

∂2G(x,Y0(x), 0)Y1(x) + ∂3G(x,Y0(x), 0) = ∂xY0(x)F (x,Y0(x), 0)

at the first order in ǫ.

An immediate consequence of normal hyperbolicity (in direction of y) at ǫ = 0 is

that ∂2G(x, 0, 0) is invertible. Thus

dx

dt
= ǫ F (x, y, ǫ)

y = Y0(x) + ǫY1(x) + O(ǫ2)

Y1(x) = ∂2G(x,Y0(x), 0)−1
[
∂xY0(x)F (x,Y0(x), 0) − ∂3G(x,Y0(x), 0)

]
(21)

follows for the invariant manifold Mǫ and the reduced dynamics at first order in ǫ.

Of course, due to the expansion of the differential equation we now must restrict the

time interval in order to maintain the shadowing property.

5.5 Slow-Fast Coordinates for the Boltzmann Equation

Recall that by Theorem 5.3.1 the set of all local Maxwellians, M0, is a normally

hyperbolic invariant manifold consisting of fixed points for the rescaled Boltzmann

equation. And thus the study of the Boltzmann equation for small but finite values

of ǫ is a singular perturbation problem.

As was shown in Section 5.4, in order to efficiently study singular perturbation

problems we need to introduce coordinates, which parametrize the normally hyper-

bolic invariant manifold M0 and its normal direction. As definition (15) already

suggests, we will introduce the coordinates on M0 as follows.

Definition 5.5.1 (Slow-Fast Coordinates). Any f(x, v), with f(x, .) ∈ L 2(Rd), is in
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one-to-one correspondence with n, u, T and h via

n(x):=

∫

Rd

f(x, v) dv particle density

u(x):=
1

n(x)

∫

Rd

v f(x, v) dv velocity

T (x):=
1

n(x)

∫

Rd

1

d
‖ v − u ‖2 f(x, v) dv temperature

h(x, w):=
T (x)d/2

n(x)

f
(
x, u(x) + w T (x)1/2

)

g0(w)
− 1 normal component

where g0(w) = 1√
2π

d exp(−‖w ‖2 /2) is the standard normal density.

Notice that an alternative choice for h could have been

T (x)d/2

n(x)
f
(
x, u(x) + w T (x)1/2

)

which is more natural in general. However, we know from Theorem 5.3.1 that the

Maxwellians are globally attractive for ǫ = 0. Therefore we would like to compare

f to a Maxwellian for small ǫ, i.e. h to a standard normal distribution. This is the

reason why the ratio in the expression for h was chosen. Subtracting 1 makes the set

of all h a linear space, which follows from Lemma 5.5.2 below.

Since x enters in Definition 5.5.1 only as a parameter it is clear that any functions

n(x), u(x) and T (x) are admissible. The following Lemma 5.5.2 gives a necessary and

sufficient condition for h to be a normal component of some f .

Lemma 5.5.2. For a given f(x, v) the corresponding normal component h(x, w) sat-

isfies the normalization conditions

0 =

∫

Rd

h(x, w) g0(w) dw

0 =

∫

Rd

w h(x, w) g0(w) dw

0 =

∫

Rd

‖w ‖2 h(x, w) g0(w) dw

which are also necessary for h to be the normal component to some f .
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Instead of f we may as well consider the corresponding quantities n, u, T , h. By

Theorem 5.3.1 the normally hyperbolic invariant manifold M0 is parametrized by n,

u and T . Therefore h is the coordinate (of f) along the direction normal to M0,

which is why we call it the normal component (of f).

This motivates the introduction of the following weighted Hilbert spaces

g0(w) =
1

√
2π

d
e−

‖w ‖2

2

H :=L
2(Rd, g0(w) dw) with 〈h, g 〉 =

∫

Rd

h(w) g(w) g0(w) dw

H
⊥:=

{
h ∈ H : 〈h, 1 〉 = 〈 h, wi 〉 =

〈
h, ‖w ‖2 〉

= 0
}

(22a)

with

P : H → H
⊥ ⊂ H (22b)

the corresponding orthogonal projector.

Therefore Lemma 5.5.2 shows that the representation of the function f in terms

of h has the following geometric interpretation:

Proposition 5.5.3 (Formal State-Space in terms of the Fast-Slow Coordinates). The

function f(x, v) is in one-to-one correspondence

{
f(x, v) : f(x, .) ∈ H

}
↔

{(
n(x), u(x), T (x), h(x, v)

)
: h(x, .) ∈ H

⊥
}

with n, u, T , h.

Remark 5.5.4. The introduction of weighted Hilbert-spaces such as in (22) is known

in the literature, e.g. [23, 10]. However, there is an important difference between our

choice and the usual choice of the weight function g0 in the scalar product. Common

is to make the weight a local Maxwellian, which thus depends on the hydrodynamic

fields. Our choice is a standard Gaussian, and hence independent of the hydrodynamic

fields.

Therefore the distances and angles measured by the norm in H have an indepen-

dent meaning in our setup, because they do not vary in time. In particular, a true
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separation of the hydrodynamic fields and the remaining part of the velocity distribu-

tion (i.e. h) is achieved. This allows to define the solutions of the Boltzmann equation

as a dynamical system on a proper state space, which acts on the coordinates n, u, T

and h.

In view of Theorem 5.3.1 the advantage of introducing the coordinates n, u, T and

h is that these coordinates are adapted to the dynamics of the Boltzmann equation

in the singular limit ǫ→ 0.

In Section 5.4 we outlined how singularly perturbed problems can be studied in

finite dimensions by introducing such specialized coordinates. Therefore, the coordi-

nates n, u and T play the role of the slow state variables, which were denoted by x

in Section 5.4. The fast state variable y from that section corresponds here to h, and

the function f corresponds to z.

5.6 Hydrodynamic Limits – Main Results

5.6.1 Slow-Fast Decomposition

In Section 5.5 we introduced slow-fast coordinates, which are adapted to the dynamics

of the Boltzmann equation in the singular limit ǫ→ 0.

The next step is to rewrite the (rescaled) Boltzmann equation

∂tf + ǫ v · ∇ξf = Q(f, f)

in terms of n, u, T and h, instead of f . This is the content of Theorem 5.6.1, which

is the key result to study the dynamics of the Boltzmann equation for small ǫ. The

notation used in Theorem 5.6.1 will be explained below.

Theorem 5.6.1 (Slow-Fast-Decomposition). There exist real-valued functions

Π̂ij = Π̂ij(n, T, h) q̂i = q̂i(n, T, h) for i, j = 1, . . . , d

Ŝ = Ŝ(n, T, h) Ĝ = Ĝ(n, u, T, h, ǫ)
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such that the rescaled Boltzmann equation becomes

0 = (∂t + ǫ u · ∇ξ)n + ǫ n divξ u

0 = n (∂t + ǫ u · ∇ξ)ui + ǫ

d∑

j=1

∂ξj
Π̂ji

−α Ŝ = n
d

2
(∂t + ǫ u · ∇ξ)T + ǫ divξ q̂ + ǫ

d∑

i,j=1

Π̂ij ∂ξj
ui

(23a)

and

Ĝ = (∂t + ǫ u · ∇ξ)h (23b)

with

Ĝ(n, u, T, h, 0) = nPQ0(1 + h, 1 + h)

Ĝ(n, u, T, 0, ǫ) = nPQ(1, 1) − ǫ
d∑

i=1

φi ∂ξi

√
T − ǫ

d∑

i,j=1

φij ∂ξj
ui

(23c)

in terms of the coordinates n, u, T and h.

The form of the Boltzmann equation in the slow-fast coordinates as given in The-

orem 5.6.1 corresponds to the standard form (fast-slow-decomposition) of a singular

perturbation problem as in equation (19) of Section 5.4. In this form the Boltzmann

equation (formally) defines a flow on

state space =
{(
n(ξ), u(ξ), T (ξ), h(ξ, w)

)
: h(ξ, .) ∈ H

⊥
}

which will not be specified further (hence a formal definition).

Equations (23a) are the well known hydrodynamic balance equations. They can

be obtained directly from the usual Boltzmann equation ∂tf + v · ∇xf = Q(f, f) by

integrating with respect to v after multiplying both sides by 1, vi, ‖ v ‖2, respectively.

The difference to the usual non-dissipative balance equations is the presence of

the source term −α Ŝ in the balance equation for the temperature. This is due to

Assumption 5.2.2 on the interaction model, which preserves the total momentum and

particle number, but dissipates energy in binary collisions.
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The main point of Theorem 5.6.1, however, is the equation for h. This set of

four equations is equivalent to the Boltzmann equation, but is more suited to study

the dynamical properties in singular limit as ǫ → 0. Thus this choice of adapted

coordinates represents the core of our approach. The usefulness of such coordinates

is well known in the study of ordinary differential equations, and was outlined in

Section 5.4.

To the best of our knowledge this approach to study the limit ǫ → 0 is new.

For the non-dissipative Boltzmann equation a similar approach is the micro-macro

decomposition, introduced by Liu and Yu [55]. In [54, 53] this method was used to

obtain results on the long time behavior of solutions to the non-dissipative Boltz-

mann equation. We will compare our method to the micro-macro decomposition in

Section 5.10.

5.6.2 Slow-Motion Limit – Compressible Euler Equations

Before giving the proof of Theorem 5.6.1 we want to show how this rewriting of the

rescaled Boltzmann equation helps in deriving asymptotic expansions of its solutions.

As was explained in Section 5.4, once the singular perturbation problem is trans-

formed into standard form one can proceed in two different ways. Introducing a slow

time ǫ t and then passing to the limit as ǫ tends to zero yields a scaling limit for the

slow motion on the invariant manifold M0. The following Theorem 5.6.2 is the result

of Proposition 5.4.1 applied to the rescaled Boltzmann equation.

Theorem 5.6.2 (Scaling Limit of the Slow Dynamics on M0). On the slow time

scale τ = ǫ t the rescaled Boltzmann equation becomes the dissipative compressible
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Euler equations

0 = (∂τ + u · ∇ξ)n+ n divξ u

0 = n (∂τ + u · ∇ξ)ui + ∂ξi
[nT ]

−α′(0) Ŝ = n
d

2
(∂τ + u · ∇ξ)T + nT divξ u

h = 0

in the limit as ǫ tends to zero.

Remark 5.6.3. The dissipative compressible Euler equations of Theorem 5.6.2 define

a flow only on the slow manifold M0 of fixed points of the Boltzmann equation. This

is just like the slow motion limit for the van der Pol equation, as illustrated in Fig. 21,

except that here there are no fold points.

5.6.3 Normal Hyperbolicity – Compressible Navier-Stokes Equations

To obtain an asymptotic expansion of the Boltzmann equation, the second approach

of Section 5.4 is used. This approach consists of expanding the invariant manifold Mǫ,

but not the differential equations. Notice that in the case of the rescaled Boltzmann

equation the normally hyperbolic invariant manifold becomes

M0 = {n(x), u(x), T (x), h ≡ 0}

which can be written as a graph in terms of the slow variables as

Y0(n, u, T ) = 0 for all n, u, T .

As was explained in Section 5.4, in order to obtain an asymptotic expansion

of a singularly perturbed system one has to study the dependence of the invariant

manifold Mǫ on the parameter ǫ, because the flow will be asymptotic to the flow on

this manifold (and not M0).
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The key step we used in Section 5.4 to derive an asymptotic expansion for the sin-

gularly perturbed system was the persistence and regularity of the invariant manifold

Mǫ for all sufficiently small values of ǫ.

Even though the persistence of normally hyperbolic invariant manifolds, as out-

lined in Section 5.4 for the finite dimensional case, can be generalized to infinite

dimensional Banach spaces (e.g. [3, 2, 4]), we did not as of yet prove this in the case

of the Boltzmann equation. This is the reason why Theorem 5.6.4 and ultimately

our derivation of compressible Navier-Stokes equations Theorem 5.6.6 are currently

formal in the sense of an asymptotic expansions.

Theorem 5.6.4. Formally, for small enough ǫ the normally hyperbolic invariant

manifold M0 persists as Mǫ, and shadows the dynamics of the Boltzmann equation

for all times.

Remark 5.6.5. Formally, this result is “true”, because the spectrum of the lineariza-

tion has a negative real part, which is bounded away from zero. At a rigorous level,

one has to precisely define the state space and construct the invariant manifold locally.

The rigorous proof of this result is currently under investigation.

With the result of Theorem 5.6.4 we can apply the first order asymptotic expansion

(21) to the rescaled Boltzmann equation and obtain the following Theorem 5.6.6. The

details of the proof will be given in Section 5.8.

Theorem 5.6.6 (Asymptotic Expansion on Mǫ). Assume that the binary interac-

tions for α = 0 are rotationally symmetric. Then for ǫ small enough, the dissipative
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compressible Navier-Stokes equations (which are the same as (23a) above)

0 = (∂t + ǫ u · ∇ξ)n + ǫ n divξ u

0 = n (∂t + ǫ u · ∇ξ)ui + ǫ

d∑

j=1

∂ξj
Π̂ji

−α Ŝ = n
d

2
(∂t + ǫ u · ∇ξ)T + ǫ divξ q̂ + ǫ

d∑

i,j=1

Π̂ij ∂ξj
ui

together with

h = −ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1) + ǫ

d∑

i=1

∂ξi

√
T

n
L−1

⊥ φi + ǫ
d∑

i,j=1

∂ξj
ui

n
L−1

⊥ φij

and the hydrodynamic quantities

Π̂ij

nT
− δij =

ǫ

n

[
∂ξj
ui + ∂ξi

uj − δij
2

d
divξ u

] 1

2

d

d− 1

〈
L−1

⊥ φ11, φ11

〉
H ⊥

2 q̂i

n
√
T

3 = ǫ
∂ξi

√
T

n

〈
L−1

⊥ φ1, φ1

〉
H ⊥

2 Ŝ
n2 T

= C(1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1), 1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1))

+ C(L−1
⊥ φ1,L−1

⊥ φ1)
www
ǫ

n
∇ξ

√
T

www
2

+
1

2

d

d− 1
C(L−1

⊥ φ11,L−1
⊥ φ11)

d∑

i,j=1

ǫ2

n2

[
∂ξj
ui ∂ξj

ui + ∂ξj
ui ∂ξi

uj

− 2

d
∂ξi
ui ∂ξj

uj

]

are the first order asymptotic expansion of the rescaled Boltzmann equation, when

restricted to the invariant manifold Mǫ. The expression for the linear operator L−1
⊥

and the bilinear functional C will be given below.

Note that in our approach the Navier-Stokes equations of Theorem 5.6.6 are ob-

tained without rescaling time (unlike for the Euler equation). Therefore the Navier-

Stokes equations are obtained not in a scaling limit, rather are they a consequence of

the persistence of the normally hyperbolic invariant manifold Mǫ. This is precisely

what was illustrated in Fig. 20 and Fig. 22 for the corresponding situation for the van

der Pol equation.
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The normal fibration of the invariant manifold Mǫ makes the Boltzmann equation

look like a skew-product flow over the slow manifold M0. Therefore, the analysis of

the Boltzmann equation for small values of ǫ corresponds to Fenichels analysis [37] of

ordinary differential equations. Furthermore, the normal fibers also allow for rigorous

matched expansions.

At the level of the Navier-Stokes equations, not only is the scalar pressure not

affected by the dissipation, but Theorem 5.6.6 shows that for rotationally invariant

interactions (in the non-dissipative setting) also the stress tensor and the heat con-

ductivity are the same expressions as in the non-dissipative case. Thus the effect of

the dissipation at the level of the Navier-Stokes equations is the extra source term in

the energy balance equation. The transport coefficients are affected by the dissipation

only indirectly through their dependence on the temperature.

The fact that the momentum-tensor (i.e. the scalar pressure and the stress tensor)

and the heat conductivity are unaffected by the dissipation at the level of the Navier-

Stokes equation seems reasonable by the following heuristics. Due to dissipation

the temperature decreases, hence the leading order correction must be a function of

the temperature, not its gradient. And since the momentum-tensor and the heat

conductivity multiply the spatial gradients of u and T , they are not affected by the

dissipation at the leading order. Only higher order corrections will involve spatial

gradients, and thus contribute to the transport coefficients.

5.6.4 Haff’s Cooling Law

A special case of the Navier-Stokes equations is the spatially homogeneous situation.

In that case the balance equations in the Navier-Stokes system become trivial except

for the source term in the equation for the temperature. The result is summarized in

the following

Theorem 5.6.7 (Haff’s Law – I). In the spatially homogeneous situation the general
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Navier-Stokes equations of Theorem 5.6.6 reduce to

0 = ∂tn , 0 = ∂tui , and

∂tT = −α nT
d

C(1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1), 1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1)) .

Actually the equation for the temperature in Theorem 5.6.7 is not the usual Haff

law (e.g. [41]). As will be clear from the definition of the bilinear functional C, under

natural assumptions we have that C ∼
√
T as T → 0. More precisely we have the

following result

Corollary 5.6.8 (Haff’s Law – II). Suppose that the collision kernel B(v, ω) is contin-

uously differentiable with respect to v at v = 0. Then the equation for the temperature

of Theorem 5.6.7 becomes asymptotically

1√
T (t)

− 1√
T (0)

= α
n

2 d
C0(1, 1) t with C0(1, 1):= lim

T→0

C(1, 1)√
T

as T → 0 and ǫ→ 0.

Proof. The differentiability assumption we impose on B imply that the limit

C0(g, g):= lim
T→0

C(g, g)√
T

is well defined for any function g (independent of T ). Therefore by Taylor’s theorem

we can simplify the equation for the temperature of Theorem 5.6.7 to

∂tT = −α n
√
T

3

d
C0(1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1), 1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1)) + α o(

√
T

3
)

= −α n
√
T

3

d
C0(1, 1) + α [o(

√
T

3
) + O(ǫ)]

as T → 0 and ǫ → 0.

Therefore at leading order we obtain

∂tT = −α n
√
T

3

d
C0(1, 1)

which can be integrated by separating the variables, because C0(1, 1) does not depend

on T .
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Remark 5.6.9. The equation for the temperature of Corollary 5.6.8, which describes

the asymptotic cooling law for spatially homogeneous systems is the usual form of

Haff’s law. It predicts that eventually (i.e. for small enough temperatures) the cooling

is such that t 7→ 1/
√
T (t) is a straight line, regardless of the details of the inter-

particle interaction.

5.7 Hydrodynamic Limits I – Proof of Theorem 5.6.1

In this section we will prove the results stated in Section 5.6. The first step is to

derive the form of the Boltzmann equation in terms of the coordinates n, u, T and

h, as introduced in Definition 5.5.1.

Recall the rescaled Boltzmann equation (without external forces)

∂tf + ǫ v · ∇ξf = Q(f, f)

in terms of f , and the associated coordinates n, u, T , h as in Definition 5.5.1. Fur-

thermore, we will keep using

g0(w) =
1

√
2π

d
exp(−‖w ‖2 /2)

to denote the standard normal density.

Definition 5.7.1. Let B denote the kernel of the collision operator Q as in Corol-

lary 5.2.5. For any g(w) 2 define

Q(g, g)(w1):=

∫

Sd−1

∫

Rd

[B(
√
T [w∗

2 − w∗
1], ω)√

1 − 2α
g(w∗

1) g(w
∗
2) e

− 1

2
α |(w2−w1)·ω|2

−B(
√
T (w2 − w1), ω) g(w1) g(w2)

]
g0(w2) dw2 dω

which generates a symmetric, bilinear operator.

2To simplify the notation we dropped the dependence of g on ξ, because the operator Q acts on

w only. We will use this slight abuse of notation without further notice wherever it does not cause

confusion.
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The following Lemma 5.7.2 relates the collision operator Q(f, f) in the Boltzmann

equation to the corresponding expression Q(1 + h, 1 + h) in terms of h.

Lemma 5.7.2. For any f(ξ, v) and its associated coordinates n(ξ), u(ξ), T (ξ), h(ξ, v)

the identity

√
T

d

n2 g0(w)
Q(f, f)(ξ, u+ w

√
T ) = Q(1 + h, 1 + h)(ξ, w)

holds.

Proof. Since ξ only enters as a parameter inQ(f, f) we do not indicate the dependence

on ξ explicitly to shorten the notation. By Definition 5.5.1 f and h are related via

f(u+ w
√
T ) = [1 + h(w)]

n
√
T

d
g0(w) .

In Corollary 5.2.5 the explicit form of Q

Q(f, f)(v1) =

∫

Sd−1

∫

Rd

[ 1√
1 − 2α

B(v∗2 − v∗1, ω) f(v∗1) f(v∗2)

−B(v2 − v1, ω) f(v1) f(v2)
]
dv2 dω

in terms of f was shown.

The change of variables v1 = u+ w1

√
T , v2 = u+ w2

√
T then shows

Q(f, f)(u+ w1

√
T ) =

=
√
T

d
∫

Sd−1

∫

Rd

[B(
√
T (w∗

2 − w∗
1), ω)√

1 − 2α
f(u+ w∗

1

√
T ) f(u+ w∗

2

√
T )

− B(
√
T (w2 − w1), ω) f(u+ w1

√
T ) f(u+ w2

√
T )

]
dw2 dω

=
n2

√
T

d

∫

Sd−1

∫

Rd

[B(
√
T (w∗

2 − w∗
1), ω)√

1 − 2α
[1 + h(w∗

1)] [1 + h(w∗
2)] g0(w

∗
1) g0(w

∗
2)

− B(
√
T (w2 − w1), ω) [1 + h(w1)] [1 + h(w2)] g0(w1) g0(w2)

]
dw2 dω

where we used the relation between f and h.
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Finally, notice that due to (11) and the explicit structure of the standard normal

density g0(w) the identity

g0(w
∗
1) g0(w

∗
2) = exp

(
− 1

2
α |(w2 − w1) · ω|2

)
g0(w1) g0(w2)

follows. Therefore the expression for Q(f, f)(u+ w1

√
T ) becomes

√
T

d

n2 g0(w1)
Q(f, f)(u+ w1

√
T ) =

=

∫

Sd−1

∫

Rd

[B(
√
T (w∗

2 − w∗
1), ω)√

1 − 2α
[1 + h(w∗

1)] [1 + h(w∗
2)] e

− 1

2
α |(w2−w1)·ω|2

− B(
√
T (w2 − w1), ω) [1 + h(w1)] [1 + h(w2)]

]
g0(w2) dw2 dω

which proves the claim.

For applications it is useful to have the weak form of Q. Using the explicit form

of Q we obtain the weak form of Q by the same symmetry and change of variable

argument we used in the proof of Corollary 5.2.5.

Lemma 5.7.3. For any two functions g, ψ the equation

〈Q(g, g), ψ 〉
H

=

∫

Rd

∫

Rd

∫

Sd−1

B(
√
T (w2 − w1), ω) g(w1) g(w2)·

· 1

2

[
ψ(w′

1) + ψ(w′
2) − ψ(w1) − ψ(w2)

]
dω g0(w1) dw1 g0(w2) dw2

holds, and gives the weak form of Q.

Substituting for f the corresponding h, n, u, T back into the Boltzmann equation

yields, after a straightforward but lengthy calculation, the following

Lemma 5.7.4. The rescaled Boltzmann equation ∂tf + ǫ v · ∇ξf = Q(f, f) becomes

nQ(1 + h,1 + h) = ∂th+ ǫ (
√
T w + u) · ∇ξh

+
1

n

[
∂tn+ ǫ (

√
T w + u) · ∇ξn

]
(1 + h)

− 1√
T

[
∂t

√
T + ǫ (

√
T w + u) · ∇ξ

√
T

] divw[w (1 + h) g0]

g0

−
d∑

i=1

1√
T

[
∂tui + ǫ (

√
T w + u) · ∇ξui

] ∂wi
[(1 + h) g0]

g0

in terms of n, u, T , h.
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The choice of H allows us to separate h from n, u, T by an orthogonal projection.

Observe that for all g the equations

0 = 〈Q(g, g), 1 〉
H

0 = 〈Q(g, g), wi 〉H

C(g, g):=
1

2

∫

Rd

∫

Rd

∫

Sd−1

|(w2 − w1) · ω|2B(
√
T (w2 − w1), ω)·

· g(w1) g(w2) g0(w1) g0(w2) dω dw1 dw2

= − 1

α

〈
Q(g, g), ‖w ‖2 〉

H

(24)

hold. They follow immediately by applying Lemma 5.7.3 to the particular choices of

1, wi, ‖w ‖2 for ψ. Taking the inner product (in H ) on both sides of the Boltzmann

equation with 1, wi, ‖w ‖2 then yields

0 =
1

n
∂tn+ ǫ

1

n
u · ∇ξn + ǫ divξ u

0 =
√
T ǫ

d∑

i=1

∂ξi
〈wk wi, h 〉H +

√
T

n
ǫ

d∑

i=1

〈wk wi, 1 + h 〉
H
∂ξi
n

+ 2 ǫ

d∑

i=1

〈wk wi, 1 + h 〉
H
∂ξi

√
T +

1√
T

[
∂tuk + ǫ u · ∇ξuk

]

−αn C(1 + h, 1 + h) = ǫ
√
T

d∑

i=1

∂ξi

〈
wi ‖w ‖2 , h

〉
H

+
d

n

[
∂tn + ǫ u · ∇ξn

]
+ ǫ

√
T

n

d∑

i=1

〈
wi ‖w ‖2 , h

〉
H
∂ξi
n

+
2 d√
T

[
∂t

√
T + ǫ u · ∇ξ

√
T

]
+ 3 ǫ

d∑

i=1

〈
wi ‖w ‖2 , h

〉
H
∂ξi

√
T

+ d ǫ divξ u+ 2 ǫ
d∑

i,j=1

〈wiwj , 1 + h 〉
H
∂ξj
ui

87



respectively, where we used (24) to simplify. Upon further simplifications we obtain

0 = (∂t + ǫ u · ∇ξ)n + ǫ n divξ u

0 = n (∂t + ǫ u · ∇ξ)uk + ǫ
d∑

i=1

∂ξi

[
nT (δik + 〈wk wi, h 〉H )

]

−α n
2 T

2
C(1 + h, 1 + h) =

d

2
n (∂t + ǫ u · ∇ξ)T

+ ǫ
d∑

i,j=1

nT (δij + 〈wi wj, h 〉H ) ∂ξj
ui

+ ǫ
d∑

i=1

∂ξi

[1

2
n
√
T

3 〈
wi ‖w ‖2 , h

〉
H

]

(25)

which are of the form as the claimed equations (23a) of Theorem 5.6.1.

To obtain the actual form of (23a) we introduce some standard notation from

hydrodynamics.

Definition 5.7.5. Let f(ξ, v) be some density function. Then

Π̂ij :=

∫

Rd

(vi − ui) (vj − uj) f(ξ, v) dv (reduced) momentum tensor

q̂i:=

∫
1

2
‖ v − u ‖2 (vi − ui) f(ξ, v) dv heat current

−α Ŝ:=

∫

Rd

‖ v − u ‖2

2
Q(f, f)(ξ, v) dv energy dissipation

are functions of ξ and t.

The hydrodynamic quantities of Definition 5.7.5 are associated to f , as is standard

in kinetic theory. Since we rewrite f in terms of n, u, T , h, the next Lemma 5.7.6

will be important when separating the Boltzmann equation.

To shorten the notation, we introduce the functions

φij:=wiwj − δij
1

d
‖w ‖2 = P wiwj ∈ H

⊥

φi:=wi

[
‖w ‖2 − (d+ 2)

]
= P wi ‖w ‖2 ∈ H

⊥
(26)
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Lemma 5.7.6. Let f(ξ, v) be some density function, and let n(ξ), u(ξ), T (ξ), h(ξ, w)

be the corresponding coordinates. Then

Π̂ij ≡ Π̂ij(n, T, h) = nT
[
δij + 〈φij, h 〉H ⊥

]

q̂i ≡ q̂i(n, T, h) =
n

2

√
T

3〈φi, h 〉H ⊥

Ŝ ≡ Ŝ(n, T, h) = − 1

2α
n2 T

〈
‖w ‖2 ,Q(1 + h, 1 + h)(w)

〉
H

≡ 1

2
n2 T C(1 + h, 1 + h)

are the relations between the hydrodynamic quantities and the geometry in H ⊥.

Proof. Suppressing again the dependence on ξ, we have

Π̂ij =

∫

Rd

vi vj f(u+ v) dv = T

∫

Rd

wiwj f(u+ w
√
T )

√
T

d
dw .

From the definition of h as given in Definition 5.5.1

f(u+ w
√
T ) = [1 + h(w)]

n
√
T

d
g0(w)

hence

Π̂ij = T

∫

Rd

wiwj [1 + h(w)]
n

√
T

d
g0(w)

√
T

d
dw

= nT

∫

Rd

wiwj [1 + h(w)] g0(w) dw = nT δij + nT

∫

Rd

wi wj h(w) g0(w) dw

= nT
[
δij + 〈wi wj, h(w) 〉

H

]

follows. To obtain the claimed expression notice that h ∈ H ⊥. Therefore

Π̂ij = nT
[
δij + 〈wi wj, h(w) 〉

H

]
= nT

[
δij + 〈φij , h 〉H

]

where both functions φij and h are elements of H ⊥.

The claimed expression for q̂i follows from the line of arguments as for Π̂ij

q̂i =
1

2

√
T

3
∫

‖w ‖2 wi f(u+ w
√
T )

√
T

d
dw

=
n

2

√
T

3
∫

‖w ‖2 wi [1 + h(w)] g0(w) dw =
n

2

√
T

3〈φi, h 〉H
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where the two functions in the scalar product are again both in H
⊥.

The expression for the energy dissipation source Ŝ becomes

−α Ŝ = T

∫

Rd

‖w ‖2

2
Q(f, f)(u+ w

√
T )

√
T

d
dw

so that Lemma 5.7.2 yields

−α Ŝ = T

∫

Rd

‖w ‖2

2

n2 g0(w)
√
T

d
Q(1 + h, 1 + h)(w)

√
T

d
dw

=
1

2
n2 T

∫

Rd

‖w ‖2 Q(1 + h, 1 + h)(w) g0(w) dw

=
1

2
n2 T

〈
‖w ‖2 ,Q(1 + h, 1 + h)(w)

〉
H

≡ −α 1

2
n2 T C(1 + h, 1 + h)

which finishes the proof.

Now we are in the position to proof Theorem 5.6.1.

Proof of Theorem 5.6.1. With Lemma 5.7.6 equation (25) for n, u and T becomes

0 = (∂t + ǫ u · ∇ξ)n + ǫ n divξ u

0 = n (∂t + ǫ u · ∇ξ)uk + ǫ

d∑

i=1

∂ξi
Π̂ik

−α Ŝ =
d

2
n (∂t + ǫ u · ∇ξ)T + ǫ

d∑

i,j=1

Π̂ij ∂ξj
ui + ǫ divξ q̂

which are precisely (23a) of Theorem 5.6.1.

It remains to show (23b). The rescaled Boltzmann equation of Lemma 5.7.4 can

be rewritten as

nQ(1 + h,1 + h) = (∂t + ǫ u · ∇ξ)h+ ǫ
√
T w · ∇ξh

+
1

n

[
(∂t + ǫ u · ∇ξ)n + ǫ

√
T w · ∇ξn

]
(1 + h)

− 1

2 T

[
(∂t + ǫ u · ∇ξ)T + ǫ

√
T w · ∇ξT

] divw[w (1 + h) g0]

g0

−
d∑

i=1

1√
T

[
(∂t + ǫ u · ∇ξ)ui + ǫ

√
T w · ∇ξui

] ∂wi
[(1 + h) g0]

g0
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Using (23a) we can eliminate the time derivatives of n, u, T , and obtain

nQ(1 + h,1 + h) = (∂t + ǫ u · ∇ξ)h+ ǫ
√
T w · ∇ξh

+
1

n

[
− ǫ n divξ u+ ǫ

√
T w · ∇ξn

]
(1 + h)

− 1

2 T

[
− 2

n d

[
α Ŝ + ǫ divξ q̂ + ǫ

d∑

i,j=1

Π̂ij ∂ξj
ui

]
+ ǫ

√
T w · ∇ξT

]
·

· divw[w (1 + h) g0]

g0

−
d∑

i=1

1√
T

[
− ǫ

1

n

d∑

j=1

∂ξj
Π̂ji + ǫ

√
T w · ∇ξui

] ∂wi
[(1 + h) g0]

g0

which gives the evolution equation for h.

However, since h ∈ H ⊥ for all times we also must have that (∂t +ǫ u ·∇ξ)h ∈ H ⊥

for all times. In order to make this fact a manifest part of the evolution equation of

h, we project the above to H
⊥ using the orthogonal projector P : H → H

⊥.

nPQ(1 + h,1 + h) = (∂t + ǫ u · ∇ξ)h+ ǫ
√
T divξ P[w h]

− ǫ divξ u h+ ǫ

√
T

n
∇ξn · P[w h]

+
1

n d T

[
α Ŝ + ǫ divξ q̂ + ǫ

d∑

i,j=1

Π̂ij ∂ξj
ui

]
P

[divw[w (1 + h) g0]

g0

]

− ǫ∇ξ

√
T · P

[
w

divw[w (1 + h) g0]

g0

]

+ ǫ
1

n
√
T

d∑

i,j=1

∂ξj
Π̂ji P

[∂wi
[(1 + h) g0]

g0

]

− ǫ

d∑

i=1

∇ξui · P
[
w
∂wi

[(1 + h) g0]

g0

]

where we used Lemma 5.7.6.

Furthermore, this explicit form of the equation for h immediately shows

Ĝ(n, u, T, h, 0) = nPQ0(1 + h, 1 + h)

Ĝ(n, u, T, 0, ǫ) = nPQ(1, 1) − ǫ

d∑

i=1

φi ∂ξi

√
T − ǫ

d∑

i,j=1

φij ∂ξj
ui
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where we used the definitions of φi and φij as in (26). This completes the proof of

Theorem 5.6.1.

For computations the following Proposition 5.7.7 provides a simplified formula for

C(1, 1) for rotationally invariant interactions.

Proposition 5.7.7. If the particle interactions are rotationally invariant, i.e. B(v2−

v1, ω) = B(‖ v2 − v1 ‖ , | cos θ|) with ‖ v2 − v1 ‖ cos θ = (v2 − v1) · ω then

C(1, 1) =
16

√
π

d−1

Γ
(

d
2

)
Γ
(

d−1
2

)
∫ ∞

0

∫ 1

0

B(2
√
T x, z) xd+1 e−x2

z2
√

1 − z2
d−3

dz dx .

Proof. By its definition

C(g, g) =
1

2

∫

Rd

∫

Rd

∫

Sd−1

|(w2 − w1) · ω|2B(
√
T (w2 − w1), ω)·

· g(w1) g(w2) g0(w1) g0(w2) dω dw1 dw2

for any g, where g0(w) = 1√
2π

d e
−‖w ‖2/2. Using the special form of B then yields

C(g, g) =
1

2

∫

Rd

∫

Rd

∫

Sd−1

‖w2 − w1 ‖2 | cos θ|2B(
√
T ‖w2 − w1 ‖ , | cos θ|)·

· g(w1) g(w2) g0(w1) g0(w2) dω dw1 dw2

= |Sd−2|
∫

Rd

∫

Rd

∫ π/2

0

‖w2 − w1 ‖2 | cos θ|2B(
√
T ‖w2 − w1 ‖ , | cos θ|)·

· g(w1) g(w2) g0(w1) g0(w2) | sin θ|d−2 dθ dw1 dw2

after integrating with respect to ω.
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With a change of variables we obtain

C(1, 1) = |Sd−2|
∫

Rd

∫

Rd

∫ π/2

0

‖w ‖2 | cos θ|2B(
√
T ‖w ‖ , | cos θ|)·

· g0(w1) g0(w1 + w) | sin θ|d−2 dθ dw1 dw

≡ |Sd−2|
(2π)d

∫

Rd

∫

Rd

∫ π/2

0

‖w ‖2 | cos θ|2B(
√
T ‖w ‖ , | cos θ|)·

· e−
‖ w1 ‖2+‖w+w1 ‖2

2 | sin θ|d−2 dθ dw1 dw

=
|Sd−2|
(2π)d

∫

Rd

∫

Rd

∫ π/2

0

‖w ‖2 | cos θ|2B(
√
T ‖w ‖ , | cos θ|)·

· e−‖w1+w/2 ‖2

e−
‖w ‖2

4 | sin θ|d−2 dθ dw1 dw

=
|Sd−2|
(2π)d

∫

Rd

∫

Rd

∫ π/2

0

‖w ‖2 | cos θ|2B(
√
T ‖w ‖ , | cos θ|)·

· e−‖ v ‖2

e−
‖w ‖2

4 | sin θ|d−2 dθ dv dw

hence

C(1, 1) =
|Sd−2|
√

4π
d

∫

Rd

∫ π/2

0

‖w ‖2 | cos θ|2B(
√
T ‖w ‖ , | cos θ|)·

· e− ‖ w ‖2

4 | sin θ|d−2 dθ dw

=
|Sd−2| |Sd−1|

√
4π

d

∫ ∞

0

∫ π/2

0

| cos θ|2B(
√
T r, | cos θ|)·

· rd+1 e−
r2

4 | sin θ|d−2 dθ dr

as was claimed, because |Sd−1| = 2
√

πd

Γ(d/2)
.

5.8 Hydrodynamic Limits II – Proof of Theorem 5.6.6

By introducing the slow time τ = ǫ t one can study the limiting behavior of a singularly

perturbed system in terms of a scaling limit. The main result of this procedure is

Proposition 5.4.1. Applying this result to the Boltzmann equation in its singular

perturbation form, Theorem 5.6.1, we immediately obtain the dissipative compressible

Euler equations as stated in Theorem 5.6.2.
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This scaling limit does produce the convective, but not the dissipative transport.

This is due to the use of the hyperbolic scaling. Because of the lack of the dissipative

terms, solutions to the Euler equations develop shocks. And as long as the solutions

remain smooth, the Euler equations are reversible and have no entropy production

term in them. This is in contrast to the Boltzmann equation and the Navier-Stokes

equations, which are irreversible and do increase entropy. This shortcoming of the

Euler equations is due to the fact that they are obtained through a scaling limit.

Therefore, we seek for a method to derive hydrodynamic limits without using a scaling

limit.

Note that as long as the invariant manifold Mǫ of Theorem 5.6.4 is normally

hyperbolic, all solutions to the Boltzmann equation are shadowed by some solution on

Mǫ. Thus it suffices to study the Boltzmann equation on Mǫ, and derive asymptotic

expansions only for such solutions. The asymptotic expansion to first order in ǫ is

precisely the content of equation (21). And since its derivation only assumes normal

hyperbolicity and regularity of Mǫ, we can apply this asymptotic expansion to the

Boltzmann equation in its singular perturbation form to prove Theorem 5.6.6.

The actual proof will be presented as a corollary of a slightly more general result.

Namely, so far we did not assume any special symmetry of the particle interactions.

Therefore, we will first derive the general form of the dissipative compressible Navier-

Stokes equations in Theorem 5.8.1. Then we specialize the general case to that of

rotationally symmetric interactions, which is the setting of Theorem 5.6.6.

Theorem 5.8.1 (Dissipative Compressible Navier-Stokes Equations). The solutions

of the Boltzmann equation restricted to the invariant manifold Mǫ shadow all solu-

tions of the Boltzmann equation, and have the dissipative compressible Navier-Stokes
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equations

0 = (∂t + ǫ u · ∇ξ)n + ǫ n divξ u

0 = n (∂t + ǫ u · ∇ξ)ui + ǫ

d∑

j=1

∂ξj
Π̂ji

−α Ŝ = n
d

2
(∂t + ǫ u · ∇ξ)T + ǫ divξ q̂ + ǫ

d∑

i,j=1

Π̂ij ∂ξj
ui

with

Π̂kl

nT
− δkl = ǫ

d∑

i=1

∂ξi

√
T

n

〈
L−1

⊥ φi, φkl

〉
H ⊥ + ǫ

d∑

i,j=1

∂ξj
ui

n

〈
L−1

⊥ φij, φkl

〉
H ⊥

− ǫ ∂ǫ

∣∣
ǫ=0

〈
PQ(1, 1),L−1

⊥ φkl

〉
H ⊥

2 q̂k

n
√
T

3 = ǫ

d∑

i=1

∂ξi

√
T

n

〈
L−1

⊥ φi, φk

〉
H ⊥ + ǫ

d∑

i,j=1

∂ξj
ui

n

〈
L−1

⊥ φij, φk

〉
H ⊥

− ǫ ∂ǫ

∣∣
ǫ=0

〈
PQ(1, 1),L−1

⊥ φk

〉
H ⊥

Ŝ =
1

2
n2 T C(1 + h, 1 + h)

h = −ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1) + ǫ

d∑

i=1

∂ξi

√
T

n
L−1

⊥ φi + ǫ

d∑

i,j=1

∂ξj
ui

n
L−1

⊥ φij

as their first order asymptotic expansion.

Proof. The general form of the first order asymptotic expansion of a singularly per-

turbed system is (21).

Recall that by equation (23c) of Theorem 5.6.1 we have that

Ĝ(n, u, T, h, 0) = nPQ0(1 + h, 1 + h)

Ĝ(n, u, T, 0, ǫ) = nPQ(1, 1) − ǫ

d∑

i=1

φi ∂ξi

√
T − ǫ

d∑

i,j=1

φij ∂ξj
ui

and that

Y0(n, u, T ) = 0
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is the parametrization of the invariant manifold Mǫ for ǫ = 0. Therefore the first

order asymptotic expansion of h becomes

h = −ǫ ∂h

∣∣
h=0

Ĝ(n, u, T, h, 0)−1∂ǫ

∣∣
ǫ=0
Ĝ(n, u, T, 0, ǫ) + O(ǫ2)

by using (21).

Notice that

∂h

∣∣
h=0

Ĝ(n, u, T, h, 0) = nP∂h

∣∣
h=0

Q0(1 + h, 1 + h) ≡ nL⊥

∂ǫ

∣∣
ǫ=0
Ĝ(n, u, T, 0, ǫ) = n ∂ǫ

∣∣
ǫ=0

PQ(1, 1) −
d∑

i=1

φi ∂ξi

√
T −

d∑

i,j=1

φij ∂ξj
ui

hold. Hence

h = −ǫ 1

n
L−1

⊥

[
n ∂ǫ

∣∣
ǫ=0

PQ(1, 1) −
d∑

i=1

φi ∂ξi

√
T −

d∑

i,j=1

φij ∂ξj
ui

]
+ O(ǫ2)

= −ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1) + ǫ

d∑

i=1

∂ξi

√
T

n
L−1

⊥ φi + ǫ

d∑

i,j=1

∂ξj
ui

n
L−1

⊥ φij + O(ǫ2)

for the first order asymptotic expansion of h, i.e. the first order asymptotic expansion

of the invariant manifold Mǫ.

The equations for the slow variables n, u, T depend on h only through the hydro-

dynamic quantities Π̂ij , q̂i, Ŝ. By Lemma 5.7.6 these depend on h only through certain

projections, which we compute next. Substituting the above derived expression for h

yields

〈φkl, h 〉H ⊥ = ǫ
d∑

i=1

∂ξi

√
T

n

〈
L−1

⊥ φi, φkl

〉
H ⊥ + ǫ

d∑

i,j=1

∂ξj
ui

n

〈
L−1

⊥ φij, φkl

〉
H ⊥

− ǫ ∂ǫ

∣∣
ǫ=0

〈
L−1

⊥ PQ(1, 1), φkl

〉
H ⊥

〈φk, h 〉H ⊥ = ǫ
d∑

i=1

∂ξi

√
T

n

〈
L−1

⊥ φi, φk

〉
H ⊥ + ǫ

d∑

i,j=1

∂ξj
ui

n

〈
L−1

⊥ φij, φk

〉
H ⊥

− ǫ ∂ǫ

∣∣
ǫ=0

〈
L−1

⊥ PQ(1, 1), φk

〉
H ⊥

where we dropped the O(ǫ2) terms.
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Furthermore, the linearized collision operator L⊥ is self-adjoint, e.g. [23], hence

〈
L−1

⊥ PQ(1, 1), φkl

〉
H ⊥ =

〈
PQ(1, 1),L−1

⊥ φkl

〉
H ⊥

〈
L−1

⊥ PQ(1, 1), φk

〉
H ⊥ =

〈
PQ(1, 1),L−1

⊥ φk

〉
H ⊥

follow.

Because we consider only weak (proportional to ǫ) dissipations the quantities

determining the Navier-Stokes equations in Theorem 5.8.1 are largely the same as

in the non-dissipative case. In particular, we only need to know the usual terms

L−1
⊥ φk and L−1

⊥ φkl from the non-dissipative theory to compute all hydrodynamic terms

(including the expression for h), which has significant computational advantages, as

known results from the non-dissipative theory can simply be reused to compute the

dissipative corrections.

In applications, a large class of non-dissipative interactions are rotational invari-

ant. The prime examples are interaction potentials, which depend only on the dis-

tance, and contact interactions as for hard spheres. This symmetry allows to simplify

the expressions for the hydrodynamic quantities in the general Navier-Stokes equa-

tion, Theorem 5.8.1, to the ones given in Theorem 5.6.6.

The key observation is that for rotationally invariant interactions the linear col-

lision operator preserves this symmetry. A more specific form of this property is

given by the following Corollary 5.8.3 which will be the key ingredient to simplifying

the Navier-Stokes equations of Theorem 5.8.1. Before we state Corollary 5.8.3 we

prove a more general result, which is the next Proposition 5.8.2. This result implies

Corollary 5.8.3, and the proof we will give is a generalized version of the results of

[30].

Proposition 5.8.2 (Algebraic Identities). Let a(ψ) be a linear functional and let

b(ψ1, ψ2) be a bilinear form, which satisfy a(ψ ◦ R) = a(ψ) and b(ψ1 ◦ R,ψ2 ◦ R) =
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b(φ1, ψ2) for all R ∈ O(d). Then

a(φi) = 0 , a(φij) = 0 ,

b(φi, φj) = δij b(φ1, φ1) , b(φi, φkl) = 0 , b(φkl, φi) = 0 ,

b(φij, φkl) =
[
δik δjl + δil δjk −

2

d
δij δkl

] 1

2

d

d− 1
b(φ11, φ11)

hold.

Proof. From the defintion of φi the equation

φi ◦R =

d∑

k=1

Rik φk

follows. Hence

a(φi) = a(φi ◦R) =

d∑

k=1

Rik a(φk)

holds for all R ∈ O(d), which can only be true if a(φi) = 0 for all i.

Notice that

φij ◦R =

d∑

m,n=1

Rim φmnRjn

and therefore

a(φij) = a(φij ◦R) =

d∑

m,n=1

RimRjn a(φmn)

holds for all R ∈ O(d). But this is only possible if the matrix with entries a(φij) is a

multiple of the identity matrix, i.e. a(φij) = δij a(φ11). On the other hand we have

that
∑d

i=1 φii = 0, hence a(φij) = 0 follows for all i and j.

Set Mij :=b(φi, φj), and let R ∈ O(d) be arbitrary. The assumption on the bilinear

form b yields

Mij = b(φi ◦R, φj ◦R) =

d∑

k,l=1

Rik b(φk, φl)Rjl i.e. M = RM RT .

But this can only hold true for all R ∈ O(d) if M is a multiple of the identity matrix.

Thus b(φi, φj) = δij b(φ1, φ1) must hold, which is the first of the claimed equations.
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Set Nijk:=b(φij , φk), then

Nijk = b(φij ◦R, φk ◦R) =

d∑

l,m,n=1

Rim RjnRklNmnl

holds for all R ∈ O(d). By replacing R by −R we see that Nijk = −Nijk and hence

Nijk = 0 follows. This proves the first part of the second claimed equation. The other

part, i.e. b(φk, φij) = 0 follows from the same reasoning.

It remains to show the third equation. Let Lijkl = b(φij , φkl). As soon as one index

in Lijkl appears with multiplicity one, the orthogonal matrix R which flips the sign

of that entry of w flips the overall sign of Lijkl. Hence Lijkl = 0 follows. Therefore,

all indices must appear in pairs. And since there are only for indices in total there

are only three possible ways of pairing up the indices, so that

Lijkl = δij δkl Liikk + δik δjl Lilil + δil δjk Likki − 2 δij δjk δkl Liiii

must hold.

Consider the first term Liikk. If i 6= k the identity
∑d

i=1 φii = 0 implies

i 6= k =⇒ Liikk = L11kk =
1

d− 1

d∑

k=2

L11kk = − 1

d− 1
L1111 .

Furthermore, if i 6= k we also have that Likki = L1212 = Likik, so that

Lijkl = (1 − δij) [δik δjl + δil δjk]L1212 +
[
d δjk − 1

]
δij δkl

L1111

d− 1

follows.

The symmetry property of φij yields

Lijkl = b(φij ◦R, φkl ◦R) =

d∑

o,p,q,r=1

RioRjpRkq Rlr Lopqr
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for L. In particular

L1212 =

d∑

o,p,q,r=1

R1o R2p R1r R2q Lopqr

=

d∑

o,p,q,r=1

R1o R2p R1r R2q (1 − δop) [δoq δpr + δor δpq]L1212

+
d∑

o,p,q,r=1

R1oR2p R1r R2q

[
d δpq − 1

]
δop δqr

L1111

d− 1

= L1212

d∑

p,q=1

R1q R2p R1pR2q + L1212

d∑

p,q=1

R2
1q R

2
2p − 2L1212

d∑

p=1

R2
1p R

2
2p

+
dL1111

d− 1

d∑

p=1

R2
1p R

2
2p −

L1111

d− 1

d∑

p,q=1

R1p R2p R1q R2q

for L1212. Since R is an orthogonal matrix we have that

d∑

p,q=1

R1q R2p R1pR2q = 0 and

d∑

p,q=1

R2
1q R

2
2p = 1

hence

L1212 = L1212 − 2L1212

d∑

p=1

R2
1p R

2
2p +

dL1111

d− 1

d∑

p=1

R2
1p R

2
2p

must hold for any R ∈ O(d). This is true if and only if

L1212 =
1

2

d

d− 1
L1111

which completes the proof of the third equation after some elementary simplifications.

Corollary 5.8.3. For rotationally invariant interactions (in the non-dissipative set-

ting) the identities

〈
L−1

⊥ φi, φk

〉
= δik

〈
L−1

⊥ φ1, φ1

〉
,

〈
L−1

⊥ φi, φkl

〉
= 0

〈
L−1

⊥ φij, φkl

〉
=

[
δik δjl + δil δjk −

2

d
δij δkl

] 1

2

d

d− 1

〈
L−1

⊥ φ11, φ11

〉

〈
Q(1, 1),L−1

⊥ φi

〉
= 0 ,

〈
Q(1, 1),L−1

⊥ φij

〉
= 0

hold.
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Proof. The rotational invariance of the kernel of the collision operator implies

(L−1
⊥ ψ) ◦R = L−1

⊥ (ψ ◦R) and Q(1, 1) ◦R = Q(1, 1) for all R ∈ O(d)

for any function ψ. Thus the claims follow directly from Proposition 5.8.2.

Corollary 5.8.4. Let

g = g∗ +

d∑

i=1

αi L−1
⊥ φi +

d∑

i,j=1

βij L−1
⊥ φij

for some constants αi and βij and some rotationally invariant function g∗. For rota-

tionally invariant interactions (in the non-dissipative setting) the equation

C(g, g) = C(g∗, g∗) + C(L−1
⊥ φ1,L−1

⊥ φ1)

d∑

i=1

α2
i

+
1

2

d

d− 1
C(L−1

⊥ φ11,L−1
⊥ φ11)

d∑

k,n=1

[
βkn βkn + βkn βnk −

2

d
βkk βnn

]

holds.

Proof. The bilinearity of C yields

C(g, g) = C(g∗, g∗) +

d∑

i=1

αi C(L−1
⊥ φi, g∗) +

d∑

k,l=1

βkl C(L−1
⊥ φkl, g∗)

+
d∑

n,r=1

βnr C(g∗,L−1
⊥ φnr) +

d∑

i,n,r=1

αi βnr C(L−1
⊥ φi,L−1

⊥ φnr)

+
d∑

k,l,n,r=1

βkl βnr C(L−1
⊥ φkl,L−1

⊥ φnr) +
d∑

m=1

αm C(g∗,L−1
⊥ φm)

+
d∑

i,m=1

αi αm C(L−1
⊥ φi,L−1

⊥ φm) +
d∑

k,l,m=1

αm βkl C(L−1
⊥ φkl,L−1

⊥ φm)

Applying now Proposition 5.8.2 shows that

C(g∗,L−1
⊥ φm) = 0 , C(g∗,L−1

⊥ φnr) = 0 , C(L−1
⊥ φkl,L−1

⊥ φm) = 0

C(L−1
⊥ φi,L−1

⊥ φm) = δim C(L−1
⊥ φ1,L−1

⊥ φ1)

C(L−1
⊥ φkl,L−1

⊥ φnr) =
[
δkn δlr + δkr δln − 2

d
δkl δnr

] 1

2

d

d− 1
C(L−1

⊥ φ11,L−1
⊥ φ11)
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which yields

C(g, g) = C(g∗, g∗) +
d∑

i,m=1

αi αm C(L−1
⊥ φi,L−1

⊥ φm)

+
d∑

k,l,n,r=1

βkl βnr C(L−1
⊥ φkl,L−1

⊥ φnr)

and thus the claim after simplifying the sums.

Now that we know how the symmetry affects the various geometric (in H ) ex-

pressions, which enter the hydrodynamic quantities we can prove Theorem 5.6.6.

Proof of Theorem 5.6.6. The symmetry properties derived in Corollary 5.8.3 simplify

the the general results for the hydrodynamic variables of Theorem 5.8.1 to

Π̂kl

nT
− δkl = ǫ

[
∂ξl
uk + ∂ξk

ul − δkl
2

d
divξ u

] 1

2n

d

d− 1

〈
L−1

⊥ φ11, φ11

〉
H ⊥

2 q̂k

n
√
T

3 = ǫ
∂ξk

√
T

n

〈
L−1

⊥ φ1, φ1

〉
H ⊥

Ŝ =
1

2
n2 T C(1 + h, 1 + h)

h = −ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1) + ǫ

d∑

i=1

∂ξi

√
T

n
L−1

⊥ φi + ǫ

d∑

i,j=1

∂ξj
ui

n
L−1

⊥ φij .

Comparing the form of g ≡ 1 + h with the one of Corollary 5.8.4 yields

g∗ = 1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1) , αi = ǫ

∂ξi

√
T

n
, βij = ǫ

∂ξj
ui

n

and therefore

C(1 + h, 1 + h) = C(1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1), 1 − ǫ ∂ǫ

∣∣
ǫ=0

L−1
⊥ PQ(1, 1))

+ C(L−1
⊥ φ1,L−1

⊥ φ1)
www
ǫ

n
∇ξ

√
T

www
2

+
1

2

d

d− 1
C(L−1

⊥ φ11,L−1
⊥ φ11)

d∑

k,n=1

ǫ2

n2

[
∂ξn

uk ∂ξn
uk + ∂ξn

uk ∂ξk
un

− 2

d
∂ξk
uk ∂ξn

un

]

as a consequence of Corollary 5.8.4. This completes the proof.
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5.9 The Dissipative Hard Sphere Gas

In this section we consider the dissipative hard sphere gas. As was explained in

Section 5.2, this model is the key motivation behind the kinetic model.

In addition of being a motivating example, the hard sphere gas is among the most

popular models for molecular dynamics simulations. Because hard spheres interact

only upon collisions, there is no need to numerically integrate a large systems of dif-

ferential equations describing the dynamics of all the particles. Rather one computes

the next time of a collision, and then repeatedly proceeds from one collision to the

next. The spherical shape of the particles is computationally advantageous over other

shapes in determining the point of collision.

Such simulations were carried out to understand experiments on fluidized granular

media, e.g. [57, 58, 5, 6, 64]. In particular the aspect of pattern formation and their

stability played a central theme in these works.

And since molecular dynamics simulations can handle systems with about a million

particles, one can compare the kinetic model with physical experiments and direct

simulations. In [61] such a comparison was carried out. It was shown that there is

a good agreement between the kinetic model and molecular dynamics in a vertically

oscillated thin layer of dissipative hard spheres.

Because our approach to derive a hydrodynamic description of the dissipative hard

sphere gas differs from the standard methods, we compared our predictions against

direct simulations.

Let δ denote the diameter of the hard spheres. As is shown in [24, 45], if density

fluctuations over distances of the order of δ are neglected, the kernel B of the collision

operator Q(f, f) reads

B = B(‖ v2 − v1 ‖ , | cos θ|) =
δd−1

2
|(v2 − v1) · ω| ≡

δd−1

2
‖ v2 − v1 ‖ | cos θ| (27)

for ω ∈ Sd−1.
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Lemma 5.9.1. For the hard sphere gas

C(1, 1) = δd−1
√
T

4
√
π

d−1

Γ
(

d
2

)

holds.

Proof. The general result of Proposition 5.7.7 combined with the actual form of the

collision kernel B for hard spheres (27) yields

C(1, 1) =
16

√
π

d−1

Γ
(

d
2

)
Γ
(

d−1
2

)
∫ ∞

0

∫ 1

0

δd−1

2
2
√
T x z xd+1 e−x2

z2
√

1 − z2
d−3

dz dx

= δd−1
√
T

16
√
π

d−1

Γ
(

d
2

)
Γ
(

d−1
2

)
∫ ∞

0

xd+2 e−x2

dx

∫ 1

0

z3
√

1 − z2
d−3

dz

= δd−1
√
T

8
√
π

d−1
Γ
(

d+3
2

)

Γ
(

d
2

)
Γ
(

d−1
2

)
∫ 1

0

z3
√

1 − z2
d−3

dz

= δd−1
√
T (d2 − 1)

2
√
π

d−1

Γ
(

d
2

)
∫ 1

0

z3
√

1 − z2
d−3

dz .

Using

∫ 1

0

z3
√

1 − z2
d−3

dz =
1

2

∫ 1

0

t
√

1 − t
d−3

dt =
1

2

∫ 1

0

(1 − t)
√
t
d−3

dt

=
1

2

∫ 1

0

√
t
d−3

dt− 1

2

∫ 1

0

√
t
d−1

dt =
2

d2 − 1

we obtain the claim.

With this result we immediately obtain the following prediction for the cooling,

which is Haff’s law as in Corollary 5.6.8.

Theorem 5.9.2 (Haff’s Law for the Hard Sphere Gas). For a gas of hard spheres of

diameter δ the homogeneous cooling state evolves asymptotically as

∂tn = 0 , ∂tu = 0 ,
1√
T (t)

− 1√
T (0)

= α
2
√
π

d−1

Γ
(

d
2

)
d
n δd−1 t

as ǫ→ 0.
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For comparison we carried out a direct numerical simulation of a spatially homo-

geneous hard sphere gas in dimension d = 2. The domain was chosen as a rectangular

box of length and width of size 1, with all other lengths measured in the same units.

We imposed periodic boundary conditions to reduce finite size effects. The diameter

δ of the N = 1000 spheres was set 0.002. The parameter η was set to 0.2, which

implies α = 0.18 for the dissipation coefficient. For these numbers Theorem 5.9.2

predicts

1√
T (t)

− 1√
T (0)

= α
√
π n δ t ≈ 0.638083 · t (28)

for the temperature evolution.

Initially the spheres were placed uniformly at random, non-overlapping positions

with velocity vectors drawn from a Maxwellian with T = T (0) = 1. If we denote the

velocity of the i-th particle by v(i), then the velocity and temperature of the system

was estimated by

u ≈ û =
1

N

N∑

i=1

v(i) and T ≈ T̂ =
1

N − 1

N∑

i=1

1

d

ww v(i) − û
ww2

,

which are the usual estimators for the mean and variance, respectively.

The resulting graph of 1/
√
T (t) as a function of time, together with the theoreti-

cally obtained slope 0.638083 is shown in Fig. 23. As can be seen, there is an almost

perfect agreement of the data and the prediction.

Of course, this only shows that the cooling rate of a homogeneous systems is

obtained quite satisfactorily using our methods. The real difference between our

and the standard methods is in the dependence of the cooling on spatial gradients,

and how the transport coefficients are affected by the dissipation (compared to the

non-dissipative case).

As pointed out in [61] such details a very difficult to measure using molecular

dynamics simulations, and we have not investigated this in detail.
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Figure 23: Numerical simulation of the cooling of a spatially homogeneous hard
sphere gas of N = 1000 particles, compared to the theoretical prediction 1/

√
T (t) =

1 + 0.638083 · t. The upper plot shows the graph of the prediction (in green) for
1/

√
T (t) and the simulation data (in red). The lower plot shows the graph of the

difference of the simulation data and the prediction.

5.10 Remarks on the Main Results and Comparison to Ex-

isting Results

Kinetic models of granular media differ from classical kinetic theory, because the

interactions dissipate energy. The derivation of hydrodynamic equations from the

kinetic model was done in [43] using Grad’s moment method.
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Since the appearance of [43] also the Chapman-Enskog method has been used to

derive hydrodynamic equations for granular media. There is a large body of literature

on the Chapman-Enskog method for the dissipative Boltzmann equations, e.g. [35]

and references therein. However, due to the presence of two parameters (ǫ and α)

the standard Chapman-Enskog method has to be modified in order to apply it to the

dissipative setting. It is argued often, e.g. [35], that instead of a Maxwellian (as is

done in the non-dissipative setting) a time-dependent cooling state should be used as

the reference solution. About this reference state a formal power-series expansion is

constructed, which follows the lines of the non-dissipative methods. But there are no

explicit formulas available for the cooling state (unlike for the Maxwellian). Therefore,

in order to get concrete expressions for the various hydrodynamic quantities (like

transport coefficients and the cooling rate) the distribution function is expanded into

Laguerre-polynomials.

Within this modified Chapman-Enskog framework the cooling rate does not con-

tain terms involving gradients of the hydrodynamic fields at the Navier-Stokes level.

It has been argued, e.g. [11, 39, 35], that this requires an expansion to an even higher

(Burnett) order. For example, on page 9 of [39] it is stated that “In principle, the

Navier-Stokes order hydrodynamics for inelastic collisions requires going one order

further in the Chapman-Enskog expansion (Burnett order) to obtain the cooling rate

to second order.” However, even in standard kinetic theory not much is known about

the Burnett equations; not even the boundary conditions, as is pointed out in [23] on

pages 116 and 121.

Theorem 5.6.6 indicates that our expansion method does capture the gradient

terms in the cooling rate already at the Navier-Stokes level. Furthermore, since we

set up the series expansion about the usual Maxwellian, the cooling rate can be ex-

plicitly computed without an additional expansion. The resulting expression was
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computed for a homogeneous hard sphere gas. The comparison with a direct numer-

ical simulation in Section 5.9 demonstrated that at least in this case the prediction

of our expansion methods matches very well the numerical data.

To the best of our knowledge, previous works on hydrodynamic limits of the

(dissipative) Boltzmann equation do not make use of dynamical systems ideas the

way that we propose. However, our approach has a lot in common the micro-macro

decomposition of [55], which was used in [55, 54, 53] to study hydrodynamical limits of

the non-dissipative Boltzmann equation. In particular, non-linear stability of global

Maxwellians was shown. Without dissipation one can compute how the limiting

global Maxwellian must look like just based on the initial data. But as soon as

dissipation, or external forcing is allowed, this can no longer be done by considering

the initial data only. And since our starting motivation was to model and study

pattern formation in the (time-dependent) driven dissipative Boltzmann equation,

we did not have a candidate for a possible limiting distribution. In order to study

hydrodynamical limits we introduced special coordinates, and applied methods from

dynamical systems theory as is done in geometric singular perturbation theory. These

coordinates are quite similar to the representation of the distribution function in the

micro-macro decomposition, but not the same.

The difference is quite important, because the separation of fast and slow variables

in the micro-macro decomposition is not directly applicable to a dynamical systems

setup. At least because the norms still depend on the macroscopic variables, and

hence change in time. In our approach we first implement a complete separation of

fast and slow variables. In particular, this allows for a construction of a state space

and makes the dynamical systems framework appear in a natural way.

As we demonstrated, this setup allows one to use concepts of invariant manifold

theory to study the hydrodynamic limit of the dissipative Boltzmann equation without

ad hoc series expansions. In fact, we have explained that the invariant manifold
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dictates the form of the perturbation expansion.

From the point of view of invariant manifold theory the difference of the dissipative

and non-dissipative Boltzmann equation appears as follows. In Fig. 24 we illustrate

Figure 24: Illustration of the structure of the invariant manifolds M0 and Mǫ in the
non-dissipative setting without fully separating fast and slow variables. In particular,
the global Maxwellians are on Mǫ ∩M0 and are equilibrium points for all ǫ.

how the invariant manifolds are organized in the non-dissipative Boltzmann equation

without using specialized coordinates. Since the global Maxwellians are fixed points

of the Boltzmann equation for all ǫ ≥ 0, one can use these common “landmarks” to

study the limiting dynamics as ǫ→ 0, without using a complete fast-slow separation,

which is used in the micro-macro decomposition of [55].

In the dissipative Boltzmann equation (eventually with external forcing) these

landmarks disappear, which is why we need to introduce a complete separation of

fast and slow variables. The result is a straightened-out slow manifold M0, which

is illustrated in Fig. 25. The persistence of this manifold for small enough values

Figure 25: Illustration of the structure of the invariant manifolds M0 and Mǫ after
separating fast and slow variables for the dissipative Boltzmann equation.

of ǫ follows formally from the spectral gap of the linearized collision operator. A

rigorous proof and the investigation of the possibility of fold points is currently under
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investigation.

5.11 Conclusion

Formal series expansion do not always give the right form of the asymptotic expansion

of solutions to differential equations with a parameter. For singularly perturbed

ordinary differential equations the study of invariant manifolds provides a geometric

frame for the dynamics. In particular, this geometric approach provides the correct

form of the expansion.

Hydrodynamic limits in kinetic theory are singular limits. However, to the best

of our knowledge there have not been works using geometric perturbation theory to

analyze this problem.

Motivated by experiments on pattern formation in driven granular media we in-

troduced specialized coordinates to separate slow and fast variables of the Boltzmann

equation, and apply methods from geometric singular perturbation theory to obtain

a hydrodynamic description of the dissipative kinetic model.

The results we presented are new from several points of view. It was shown that,

unlike in previous works, in our method the compressible Navier-Stokes equations

are not obtained as a correction to the Euler equation. Rather are they obtained as

the first correction to time-independent Maxwellians. Thus this expansion captures

the convective and the diffusive terms of the compressible Navier-Stokes equations

simultaneously.

Furthermore, in the context of the dissipative Boltzmann equation it is argued in

the literature that in order to obtain the cooling term to second order one needs to

go to higher than Navier-Stokes order. Our expansion gives these terms already at

the Navier-Stokes level.

In addition, since we expand about Maxwellians, as is done in the non-dissipative

case, the resulting expressions can be computed explicitly without further expansions.

110



This was demonstrated with the example of the cooling rate for dissipative hard

spheres.

Studying the normal fibration of Mǫ allows for rigorous matched expansions.

However, this and the rigorous proof of the existence of Mǫ is not part of this thesis,

and is ongoing research.

Also, the dissipative Navier-Stokes equations derived by our methods differ from

the ones obtained by other methods. In corresponding equations 6.15-6.17 of [35]

there are three effects due to the dissipation: the cooling term and two new transport

terms. In our methods the transport terms are no different than the ones of the non-

dissipative case. Only their dependence on the temperature makes them change their

numerical values in time due to the dissipation. This needs to be further investigated.

In light of the success of the micro-macro decomposition [55], which is quite sim-

ilar to our expansion, we hope that the methods we presented will provide new in-

terpretations and insight to hydrodynamic limits in the non-dissipative as well as the

dissipative case.
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