
Practical Bloom filter based epidemic forwarding and

congestion control in DTNs: A comparative analysis

Ali Marandi, Mahdi Faghi Imani, Kavé Salamatian

To cite this version:

Ali Marandi, Mahdi Faghi Imani, Kavé Salamatian. Practical Bloom filter based epidemic for-
warding and congestion control in DTNs: A comparative analysis. Computer Communications,
Elsevier, 2014, 48, pp.98-110. <10.1016/j.comcom.2014.03.014>. <hal-01054039>

HAL Id: hal-01054039

https://hal.archives-ouvertes.fr/hal-01054039

Submitted on 26 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47276624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01054039

Pratical Bloom Filter based Epidemic Forwarding and

Congestion Control in DTNs: A comparative analysis

Ali Marandia, Mahdi Faghih Imanib, Kavé Salamatianc

aDepartment of Computer Engineering, Khorasgan (Isfahan) Branch, Islamic Azad
University, Isfahan, Iran

bDepartment of Computer Engineering Science and Research Branch Islamic Azad
University Tehran, Iran

cUniversity of Savoie, LISTIC, F-74000 Annecy, France

Abstract

Epidemic forwarding has been proposed as a forwarding technique to achieve

opportunistic communication in Delay Tolerant Networks (DTNs). Even if

this technique is well known and widely referred, one has to address several

practical problems before using it. Unfortunately, while the literature on

DTNs is full of new techniques, very little has been done in comparing them.

In particular, while Bloom filters have been proposed to exchange informa-

tion about the buffer content prior to sending information in order to avoid

redundant retransmissions, up to our knowledge no real evaluation has been

provided to study the tradeoffs that exist for using Bloom Filters in practice.

A second practical issue in DTNs is buffer management (resulting from finite

buffers) and congestion control (resulting from greedy sources). This has also

been the topic of several papers that had already uncovered the difficulty to

acquire accurate information mandatory to regulate the data transmission

rates and buffer space. In this paper, we fill this gap. We have been im-

plementing a simulation of different proposed congestion control schemes for

epidemic forwarding in ns-3 environment. We use this simulation to compare

Preprint submitted to Computer Communications April 1, 2014

different proposed schemes and to uncover issues that remain in each one of

them. Based on this analysis, we proposed some strategies for Bloom filter

management based on windowing and describe implementation tradeoffs. Af-

terwards, we propose a back-pressure rate control as a well as an aging based

buffer managing solution to deal with congestion control. By simulating our

proposed mechanisms in ns-3 both with random-waypoint mobility and real-

istic mobility traces coming from San-Francisco taxicabs, we show that the

proposed mechanisms alleviate the challenges of using epidemic forwarding

in DTNs.

Keywords: Delay tolerant network, Epidemic forwarding, Bloom filter,

Buffer management, Congestion control, Back-pressure

1. Introduction

Delay tolerant networks (DTNs) like Wireless sensor networks, vehicular

networks (VANETs), and spontaneous networks are characterized by sev-

eral major challenges such as intermittent and transient connectivity, volatile

links and long delays, that make particular methods and mechanisms manda-

tory for transmitting over them. In DTN applications, data forwarding fol-

lows opportunistic approaches based on store-carry and forward scheme, i.e.

relay nodes store packets and carry them until an appropriate forwarding

opportunity arises. The forwarding decision might be based on the iden-

tity of an encountered node when there are information on the likelihood

of future contacts, e.g. in Prophet [1] where the message with the highest

likelihood of being delivered by the encountered node to its final destination

is forwarded. However, in several cases such future contacts information are

2

not available, e.g. in very dynamic environments where past cannot be used

to predict the future like some VANET scenarios, or even at the initial stage

of any DTN scenarios where there is not yet enough historical information to

direct the forwarding decision. In these situations, DTN routing techniques

like Prophet are not usable and only epidemic forwarding is applicable. This

has motivated techniques like spray and wait [2] or spray and focus [3] that

begins by a first stage of Epidemic Forwarding limiting the spread of each

message to L copies and followed by a stage of waiting or routing to reach

the final destination.

”Opportunistic Forwarding” consists of deciding which packet to for-

ward only based on information exchanged between encountering about their

buffers’ content. “Epidemic Forwarding” [4] is differentiated from other op-

portunistic forwarding approaches by not making the forwarding decision

based on destinations of messages as no information is available about future

contact (besides the case where the encountered node is the destination of

some packets and these packets are sent in priority). Packets will be even-

tually delivered to their destinations by epidemic forwarding, since one of

carriers will likely encounter the destination.

Indeed the major issue and challenge of epidemic forwarding is to con-

trol the redundancy and to avoid useless transmissions. In order to achieve

this Vahdat and Becker [4] proposed to exchange between nodes a summary

bitmap indicating which packets are already present in encountering nodes

buffers. However, this idea is not practical because the nodes need to be

informed of an ordered list of all messages circulating in the network in order

to interpret the bitmaps. Building and diffusing this list seems impracti-

3

cable especially in an asynchronous multi-source/multi-destination scenario.

Therefore, the proposed summary bitmaps is in fact a list of received packet

IDs and its exchange can impose a relatively large overhead. Vahdat and

Becker [4] suggested therefore using a Bloom filter in order to substantially

reduce the space overhead associated with the summary vector. Despite this

approach being known from a long time, there is a relatively small number

of works that describe practically how to implement Bloom filter based epi-

demic forwarding and discussed the involved trade-offs. In particular, one

needs to deal with defining in a distributed way Bloom filters and how to

achieve good transmission overheads vs. transmitted redundancy trade-offs.

One of the aims of this paper is to discuss this issue.

In addition, Epidemic Forwarding and more generally DTN opportunistic

forwarding schemes have to address some practical challenges in order to be

usable. A major issue in all networks is congestion control that happens when

the rate of input packets is larger than what the network can accommodate.

This issue is more vital in DTNs as packets are likely to stay in buffers for

a longer time than in traditional networks. A large part of the literature

has assumed unlimited buffers and showed good performance for epidemic

forwarding, however the performance is strongly affected by limited buffers,

as nodes have to drop packets when their buffers become full. Therefore,

congestion control and buffer management are of vital importance in DTNs

and influence directly the performance. The issue of congestion control has

been studied extensively in the Internet and traditional networks. But due

to lack of continuous end-to-end connectivity in DTNs, classical congestion

control approaches are not applicable there. Therefore, we need particular

4

congestion control mechanisms for DTNs that base their decisions only on

local information. Another issue is relative to buffer management and decid-

ing what to store in buffers and what to drop. This issue is closely related to

indicating packets received at destinations in order to not forward them and

to free the space occupied by them. Both buffer management and conges-

tion control have been the subject of different papers each addressing only

a small subset of the large set of challenges an epidemic forwarding scheme

has to address. Up to our knowledge no comparative analysis of the schemes

proposed in the literature, has been implemented, and more globally no one

of the previous works have tackled together with the above three challenges:

distributed Bloom Filter design, congestion control and buffer management.

In this paper, we will first describe a distributed Bloom filter buffer con-

tent exchange scheme that could be used for any opportunistic forwarding

scheme (either epidemic or not). We also propose a global framework that

integrates most of previous work done on congestion control and buffer man-

agement of epidemic forwarding in DTNs. The framework consists of three

mechanisms: a back-pressure based injection rate control that controls the

rate of injection of new packets from sources in order to ensure that a fast

source is not submerging its neighbourhood, a buffer management scheme

that discards oldest packets and frees space in buffers following a packet ag-

ing similar to [5], and a flow control scheme similar to the one implemented

in [6] that prevents congestion by postponing message transfers to congested

node until adequate resources are available. Most techniques proposed in the

literature can be reduced to particular instantiation of different parameters

of the above three steps. We implemented the framework in the ns-3 simu-

5

lation environment. This enables us to do a comparative analysis of different

proposed schemes over the same scenarios and to analyze their strengths

and shortcomings. The comparative analysis is done over both random way-

point mobility, and real mobility traces coming from San Francisco taxis.

This comparative analysis will lead us to propose a combination of all three

mechanisms that achieve a better performance over the simulated scenarios.

In a nutshell the contributions of this paper are as follow. We first present

an in-depth analysis of Bloom Filtered based epidemic forwarding, discuss

the alternatives and present practical way of implementing it. Up to our

knowledge while proposing Bloom Filter has a long history, no proposition

implementable in practice have been provided. This paper fills this gap. A

second contribution is relative to the three stage framework, i.e., source injec-

tion rate control, buffer management, flow control, proposed for categorizing

different DTN congestion control schemes. This framwework provides a tax-

onomy of the different congestion control schemes that help in understanding

the strengths and weaknesses of each proposed scheme. While solutions be-

longing to each single stage have been proposed, the framework leads to

proposing a new congestion control scheme combining elements from exist-

ing schemes that cover each of the shortcomings of the individual schemes.

The last contribution of this paper is relative to the application of the de-

velopped framework to simulate and compare the performance of several of

the proposed DTN congestion control schemes. Up to our knowledge no such

large scale comparison have been done in the literature. In addition to the

trivial interest of making a comparison to know which scheme has the best

performance, our comparative analysis provides a marginal benefit analysis

6

of the different stage of congestion control, showing that this is the node

to node flow control that has the largest impact by increasing delivery and

reducing strongly packet drop caused by congested buffers.

The rest of this paper is organized as follows. Sec. 2 describes related

work. Then we describe in Sec. 3 windowing based Bloom filter management

strategies. Next, in Sec. 4 we discuss the importance of congestion control

and buffer management and propose some mechanisms to deal with it. Sec.

5 presents our Congestion Control framework. Afterwards, we present a

simulation based comparative analysis of different schemes and show how to

improve them by combining the three mechanisms. Finally, Sec. 7 concludes

the paper.

2. Related Work

Epidemic forwarding was initially proposed in [4]. In order to use better

the scarce communication resources in DTNs and to avoid useless transmis-

sions, Vahdat and Becker proposed to exchange between nodes a summary

bitmap indicating which packets are already received in nodes. However, as

explained before this idea is not practical as building and diffusing an ordered

list of all messages circulating in the network seems impracticable especially

in an asynchronous multi-source/multi-destination scenario, resulting in ex-

changing in most implementations of DTNs a list of received packet IDs in

place of a bitmap, and imposing a relatively large overhead to exchange this

information. Vahdat and Becker [4] already suggested to use a Bloom filter

to reduce the overhead associated with the summary vector. However de-

spite this approach being known from a long time, there is a relatively small

7

number of works that describe how to implement and describe the involved

trade-offs of designing a distributed Bloom filter exchange scheme in order

to exchange buffer content IDs. A thorough survey of the literature shows

that the only case that a Bloom Filter implementation is described for buffer

content exchange is in the IBR-DTN implementation [7], however the issues

are not described. Out of this, all papers just state that ”To reduce the size

of the summary vector, it may be possible to use compression techniques

such as a Bloom Filter”, or put the use of Bloom Filter as a future work.

Use of Bloom filter has also been advocated for use in ad-hoc networks

however with slightly different aims that exchanging buffer contents. For

example, B-SUB (Bloom-filter-based pub-SUB system) [8] is a content-based

publish-subscribe system for pocket-switched networks that uses Temporal

Counting Bloom Filter (TCBF) to perform content-based networking tasks.

Yoneki et al. in [9], proposed another content-based publish/subscribe in

mobile ad-hoc networks that uses Bloom filters based aggregated summaries

of content subscriptions for building a dynamic event dissemination system

and extend ODMRP (On-Demand Multicast Routing Protocol). In [10], Aad

et al. a Bloom filter is used to provide anonymity in ad-hoc networks. In

[11], Parris et al. designed an Obfuscated Social Network Routing (OSNR)

scheme that use Bloom filter data structure to embed the friends list instead

of transmitting it in plain text.

Bloom filters have been proposed by [12] to collect the set of relay nodes

a packet has crossed from its source to its destination. This collection eases

the decision to forward subsequent data packets. IRTF DTN IP Neighbour

Discovery (IPND) Internet draft [13] advocated another usage of Bloom Fil-

8

ters to determine whether a link is bidirectional. In [14] Bloom Filter is used

to piggyback in each packet the neighbourhood of the sender at the time of

transmission. A relay node use this information to decide to forward a re-

ceived message only if its neighbourhood is not strictly included into the one

of the senders. This approach stops a relay from forwarding messages that

are likely to have been received by all neighbours in previous transmissions.

However transmission of redundant packets is still possible as a packet might

have been received in different neighbourhood, meaning that this scheme

does not replace the need for nodes to exchange their buffer contents.

The spray and wait/focus schemes [2, 3] are two hybrid scheme mixing

epidemic forwarding at initial stage of the propagation and routing in the

second stage. The idea of limiting the number of copies generated in the

initial spray phase has a strong congestion control motivation. However, it

has not be presented and evaluated as so. As we will see later the congestion

à la spray and wait can be interpreted inside aging framework.

N-Drop [15] is a congestion control strategy under epidemic routing in

DTNs. In this strategy, N is determined as a threshold for buffer size and

nf is a counter containing the number of times a packet is forwarded. When a

node with a full buffer receives a new packet, it checks whether for any packet

nf > N . The node removes these packets. If nf ≤ N for all packets, the

received packet is dropped. In [16], the AFNER congestion control strategy

is proposed. In this strategy, each node sorts the list of packets in its buffer

in ascending order of their number of forwarding. At each forwarding slot,

packets with smaller forwarding numbers are privileged. When a congestion

is detected and the buffer becomes larger than a threshold, packets that have

9

forwarding numbers larger than the average forwarding number needed for

packets to reach their destination are assumed to have been delivered to their

destinations, and are removed from the buffer. A main issue with AFNER

is that finding the average forwarding number needed for packet to reach

their destination is not obvious in a decentralized way. Whether N-Drop

[15] and AFNER [16] are interesting approaches, they lack some essential

components. In particular, this is not only the number of forwarding that

controls the interest of storing a packet in the buffer, the number of copies

of this packet existing in the neighbourhood is also important. Moreover,

without source injection rate control a source can overflow its neighbourhood

or send useless packets.

In [17], Grundy et al. proposed, CAFé, a congestion-aware framework

for single copy forwarding, that adaptively chooses the next hop based on

contact history and statistics, as well as storage statistics. The goal is to

distribute the load away from the storage hotspots in order to spread the

traffic around. In [18], they extend their approach to multi-copy forward-

ing and proposed a unified congestion control framework for DTN routing,

which encompasses adaptive forwarding and adaptive replication manage-

ment. However, as stated in the introduction we are interested in this paper

in scenarios where a node cannot predict next contacts using history and

statistics and has to use epidemic forwarding. Most of the mechanisms pro-

posed in [17] and [18] cannot be applied in such a context. In this paper, we

propose congestion control techniques applicable to these challenging cases.

In [19], the authors first describe the looping problem that happens when

a node that has removed one packet from its buffer continues to receive it

10

from other nodes and proposed an Effective Looping Control solution to

it. After that they propose a congestion control policy called Credit-based

Congestion Control (CCC) that is based on the concept that the oldest as

well as most-forwarded messages should be dropped first. In this paper, we

use Bloom filters to implement a much more efficient way of dealing with

the looping problem than what is proposed in [19]. Moreover, we reuse the

aging framework described in [5] that enables a more flexible and easy way

to implement buffer management.

Autonomous Congestion Control [20] uses an economic model for a rule-

based congestion control mechanism where each router can autonomously

decide whether to accept a data packet based on local information such as

available storage and the value or risk of accepting the bundle derived from

historical statistics. Congestion control is implemented through a backpres-

sure scheme that will inform source nodes of congestion in network by back

propagating the denial of storage by an intermediate node through the net-

work. However, this approach is unfortunately not applicable for the scenario

of interest in this paper that entails not knowing future contacts and not hav-

ing a path back to the source to back-propagate the feedback. Nonetheless,

the schemes presented in this paper can be considered as autonomous as the

decision to forward or drop a packet will only depend on local information.

Thompson et al. [21] developed a congestion control algorithm for in-

termittently connected networks. In their scheme, a measured congestion

level indicator that is derived through information exchanged between nodes

about message drops and replications dynamically controls message repli-

cation. In [6], a flow control scheme named Buffer Space Advertisement

11

(BSA) is proposed. It consists of piggybacking in data and keep-alive mes-

sages the available free space in node’s buffer. This information is used by

neighbours to avoid sending messages to nodes whose buffers are almost full.

The paper proposes an adaptive buffer space advertisement that uses a con-

gestion coefficient that is, similarly to the Additive Increase Multiplicative

Decrease (AIMD) scheme in TCP congestion control, linearly increased when

no packet drop happens and multiplicatively decreased when a packet loss

happens. The congestion coefficient is used to reduce the total available

space of the buffer and therefore to reduce the advertised buffer space. The

proposed mechanism maximizes resource utilization by preventing congestion

by postponing message transfers until adequate resources are available. We

are implementing a similar local flow control scheme in this paper that can

be used to implement both the schemes in [21] and [6]. However as shown

in [6] the simpler BSA with adaptive buffer space feedback outperformed

the congestion control scheme in [21]. For this reason, we only compare our

proposed scheme with what developed in [6].

The authors of [22] (SR) proposed for a node that is confronted with

congestion to forward newly received packets to non-congested neighbours,

i.e. neighbours that have still free space in their buffers, to avoid dropping

them. Later when the congestion will reduce, the node might retrieve mi-

grated packets. Therefore, congestion control in SR acts as a local routing

protocol that diverts messages from their typical routing path and as a re-

sponse protocol to retrieve them for later forwarding. However, this approach

is not applicable in sparse networks where there are no “other” neighbours.

Moreover, there is no guarantee that a node can find such non-congested

12

networks.

Krifa et al. [23] presented different buffer management policies for DTNs

showing that the classical drop tail policy is sub-optimal. An optimal buffer

management policy either to minimize the average delay or to maximize the

average delivery ratio, is proposed that is based on global knowledge about

the network. Krifa et al. propose a distributed algorithm that uses statistical

learning to approximate the global knowledge. However, the aging framework

presented in this paper is more general than the one developed in [23].

The more relevant work to this paper is [5] that describes some of the

components reused in this paper. However, besides [5] never being published

and having stayed as a technical report, it lacks some major components

that have been added in this paper. In particular in this paper, we add a

Bloom Filter mechanism enabling nodes to know about their local contents,

we do a comparative analysis with other congestion control schemes, and a

flow control scheme is introduced.

3. Bloom Filter based Epidemic Forwarding

As explained in the introduction, even if the idea of using a Bloom filter

to reduce the overhead of exchanging the buffer contents, goes back to the

initial paper on epidemic forwarding [4] and it has been reused frequently in

the literature. However, most of the paper just stated a sentence saying that

Bloom filters might be used to reduce the size of the exchanged summary

vector, or proposing the use of it in future work. As detailed in the previous

section, there are rare exceptions like [7] that have implemented Bloom filters

for buffer content exchange, however the issues and challenges have not been

13

described. In this section, we will describe the existing issues and we will

propose solutions to solve them.

3.1. Issues and challenges

DTNs are networks that are characterized by the fact that node encoun-

ters happen randomly so that finding a deterministic path from the source of

information to its destination is not feasible. Whenever one of two encoun-

tering nodes is the destination of a packet sitting in the buffer of the other

node, a final delivery occurs. If it is not the case, the receiving node acts as

a relay and will transport the packet to its final destination or another relay.

Because of the dis-connectivity and contact uncertainty, DTN nodes have to

transport several packets in their buffers in order to deliver them later.

Basically, DTN routing consists of deciding based on the characteristic of

an encountered node and the buffer content which packets to forward to it.

In classical routing, the decision about the next node to forward a received

packet is made based on the packet’s destination, i.e. a packet is forwarded

to a node that is in the path for reaching the final destination based on

the routing table. However, in DTNs the situation is more complex, as the

nodes mobility is uncertain and the node does not know precisely its upcom-

ing contacts. In situations where a node cannot decide (because of lack of

information or because of high dynamicity of the network) about the likeli-

hood of an encountered node delivering its forwarded message, the identity

of the encountered node is not anymore useful for the forwarding decision.

In such situation, Epidemic Forwarding is used. In Epidemic Forwarding,

whenever two nodes encounter they make the relaying decision without con-

sidering the packets destination (besides when the encountered node is the

14

final destination of the packet) but only based on their buffer content. In

particular, when two nodes become in contact they should avoid sending

packets that the other node has already received.

The above description defines four main challenges and issues for Epi-

demic forwarding in DTNs:

1. Nodes’ Buffer Comparison: in order to avoid exchanging redundant

packets (packets that the encountered node has already received), the

two encountering nodes have to inform each other of the content of

their buffers. In their seminal paper, Vahdat and Becker [4] proposed

to use a summary bitmap indicating which packets are already received

in nodes and to exchange this summary between nodes. However, this

idea is not applicable in practice as the nodes need to have access to an

ordered list containing all messages circulating in the network in order

to build and interpret the bitmaps. Exchanging this summary list can

impose a relatively large overhead especially when the contact time

between nodes is short. For this reason, [4] suggested to use a Bloom

filter in order to substantially reduce the space overhead associated

with the summary vector.

2. Reception Acknowledgment: Buffer space and connectivity band-

width, i.e., the available capacity of transmission during a contact be-

tween nodes, are the major resources that have to be used efficiently in

DTNs. A trivial way to improve the utilization of these two important

resources is to inform nodes in the network about the packets that have

reached their destinations. This information enables nodes to free the

space allocated to these packets and ensure that they do not waste the

15

scarce connectivity bandwidth by being re-forwarded. For achieving

this purpose, we need to implement a feedback scheme that will signal

the reception of packets. This scheme will also be implemented in form

of Bloom Filters to reduce its burden.

3. Neighbourhood Management: because of mobility, the neighbour-

hood of each node becomes very dynamic. However, the information

forwarding strongly depends on the neighbourhood of the node and

the knowledge that each node has about the content in the buffer of its

neighbours. Neighbourhood management has therefore a strong impact

on the performance of DTN schemes.

4. Buffer Management: as explained before, nodes in DTN scenarios

have to store a large number of packets in their buffers. However, the

buffer space is limited and a node will have to decide which packet

to store in its buffer. While this question is essential for congestion

control in DTNs and will be discussed later. Nonetheless, Bloom filters

have important impacts on Buffer management and vice-versa. We will

develop later on this last point.

All the above four issues will be addressed in this paper. In the next sections,

we will describe the system architecture, the Bloom filter management and

in particular three strategies that will address different issues.

3.2. System architecture

Let us assume that each packet injected in the network is identified by

a combination of a uniquely assigned 16 bits source node ID, and a 16 bits

serial index assigned locally by the source, i.e., each packet is identified by a

16

32 bits packet ID, we will name pktID, that uniquely identifies each packet

in the DTN and can be generated asynchronously in each node.

We assume that each node in the DTN maintains a buffer with a capacity

of N packets that the node will forward. In addition to this buffer, several

lists are maintained. For all schemes at least two lists are maintained: a

neighbours list and a destReceived list. The first list contains the information

related to nodes that are known to be in the neighbourhood of the node. In

particular, it will contain for each neighbour the last Bloom filters provided

by it. The second list contains the set of packets that are known to have been

received at destinations. This last list is used for signalling the reception of

packets at their destinations and enables nodes to remove from their buffer

packets received at destinations.

3.3. Neighbourhood management

As explained before, neighbourhood management is a fundamental issue

of DTNs. In particular, a fundamental question is how to decide if two

nodes are in reach of each other. In this paper, we will assume that there

is no particular support from lower layers (in form of synchronization or

loss of synchronization) and neighbourhood detection and management is

only done through message exchange. Whenever node A receives a message

from node B, it is in its neighbourhood and can receive messages sent from

A. A node is removed from neighbourhood if no packet is received from

it during a disconnection timer duration. We moreover assume that nodes

send periodically (with a period less than the disconnection timer) a beacon

message to keep connections and neighbourhood alive.

The above scheme has two main limitations. First, the delay between the

17

time when two nodes are physically able to exchange information and the

time when they figure out that they are neighbours can be as high as the

inter-beacon interval. This delay can be a major problem especially when

mobiles are fast moving as the contact duration might not be enough to

figure out that two nodes are in contact. Increasing beacon frequency can

reduce this effect. However, in sparse networks most of the beacons are never

received, as connectivity is scarce. Increasing the rate of beacon transmission

can result in beacon transmission pumping most of node battery.

The second issue is the dual problem. When the neighbour of a node

moves and goes out of its reach, it needs a time equal to disconnection timer

delay to decide that the node is not anymore in the neighbourhood. This

means that a node might still continue to send messages to a node that is

not anymore in its neighbourhood. This last point results in a large num-

ber of unsuccessful transmissions that consumes node energy without having

any benefit. The solution to this issue might be to reduce the disconnec-

tion delay, but as the disconnection delay should be larger than the beacon

transmission interval, this means reducing the later and leading to the same

issue as described before. This shows the importance of the beacon delay

for the performance of neighbour management and the efficiency of the Epi-

demic Forwarding scheme. Indeed a desirable mechanisms would be a lower

layer mechanism running at the physical layer and detecting the presence or

absence of a neighbour, but we will not assume such scheme in this paper.

3.4. Bloom filter management

We explained before that each packet in the network is identified uniquely

by a 4 bytes Packet ID. Now let us assume that a node has in its buffer L

18

packets and it wants to inform another encountered node about its buffer

content. As described before, several solutions for this problem have been

proposed in the literature, among which Bloom filter [24]. Bloom filter is a

data structure representing in a very compact way, set membership. There-

fore, the Bloom filter can be used to represent the content of the buffer in

a node. For this purpose, the node generates a Bloom filter that contains L

(L ≤ N) packet IDs and sends the information needed to retrieve this Bloom

filter to the encountered node that use these information to check the mem-

bership of its local packets and to decide which new packet to send back. The

information needed to retrieve the Bloom filter consists of two components:

information about the K hashing functions that are needed for the operation

of the Bloom filter, and the membership vector that contains the bits set by

the hashing functions. For the first component, we will assume that the node

ID is used as the seed of a random generator that is used to generate random

hash functions. Meaning that knowing the node ID enables to retrieve the

hash functions used by this node. The membership vector is sent directly to

the neighbours.

Bloom filters performance is controlled by the false alarm probability, i.e.

the probability that an entry that is not in the set defined by the Bloom filter

is falsely reported as being in the set. This probability can be derived as a

function of the number of hash functions K and the length of the membership

vector M through a well-known relationship [24]. Generally, one chooses K

in order to minimize the probability of false alarms. With this choice, if

one wishes to insert N values in the Bloom filter and set a target false alarm

probability p, the minimal length of the membership vectorM and the needed

19

number of hash functions that can achieve this false alarm rate is given as:M = − N ln p
(ln 2)2

K = M
N

ln 2

(1)

For example, if one wants to insert 50 pktIDs in its buffer in a Bloom filter

and achieve a false alarm probability less than 2% (one packet per Bloom

filter), one will need M = 407.11 bits and K = 5.6 hash functions. By

rounding these values, and aligning the memory to byte units, one needs 51

bytes to transfer the Bloom filter to neighbours in place of the 200 bytes

needed to transfer 50 packet ID of 4 bytes each. The above Eq. shows

that the memory requirements of Bloom filter increases with the number of

inserted values. One has to limit the number of inserted values or to increase

the acceptable false alarm rate in order to control the size of the Bloom filter.

Nonetheless, over the time, the number of packets in the buffer of a node

increases and therefore the number of values that have to be inserted in the

Bloom filters increases, resulting in an linearly (with N) increasing Bloom

filter size or an increasing false alarm probability if the size is held constant.

We have therefore to use a sliding window in order to manage the Bloom filter

contents. A major trade-off results between sliding window length (and the

Bloom filter size) and the probability of retransmitting a redundant packet

(resulting from a Bloom filter false alarm or from an active packet being

dropped out of the window). This trade-off represents the buffer management

challenge and has major performance impact on epidemic forwarding. In the

forthcoming, we will describe two different strategies to deal with the above

trade-off.

20

3.4.1. Strategy A: Simple Bloom Filter

The first and trivial strategy, we will call strategy A, consists of choosing

a maximal number of inserted values N (N can be larger than L the node

buffer size to account for packet that are destined to the node and have been

removed from the buffer) and an acceptable false error probability p and

designing and simply sending in each packet a Bloom filter containing the

pktIDs of last N packets received by the node. The receiving node uses these

Bloom filters to detect which packets have been received by the neighbour

in order to not forward them. Moreover, by checking the destination node

ID of a packet with the reception status of the neighbour indicated by its

Bloom filter, one can detect if a packet has reached its destination and to

remove it from its buffer. In this case, the trade-off is between the size N (or

equivalently the size of the Bloom filter) and the probability of transmitting

a redundant packet.

3.4.2. Strategy B : Differential Encoding

The second strategy, named B, consists of extending the idea of differen-

tial encoding to Bloom filter. Differential encoding has been widely used in

compression and consists of first encoding completely an item and to send

thereafter only the difference of the fully encoded item with its followers.

This achieves a larger compression ratio as the differences can be encoded

with much less bits than a full encoding. One can periodically fully re-encode

an item in order to resynchronize. Extension of this idea to Bloom filters is

straightforward. We assume that each beacon sends periodically by the node

to announce its presence, contains a ”big Bloom filter”, named bBF, con-

taining N entries, while each packet send by the node piggybacks a ”small

21

Bloom filter”, named sBF, containing the n << N last entries. A node

checking the reception of a packet by a neighbour will first check the small

Bloom filter and check thereafter the big one if the first check is negative.

This strategy achieves a better trade off than strategy A, but at the cost of

an eventual loss of synchronization that results from beacons being send in

larger interval times.

3.4.3. Strategy C: Adaptive Differential Encoding

The third strategy is an extension of Differential Encoding that puts

in the sBF piggybacked on each data packet, only packets that have been

added from the time of generation of the previous beacon. This enables to

decide on the size of the forwarded sBF at the time of transmission and

adapt the parameters it in order to minimize the overhead size. Clearly

Strategy C should achieves the least overhead but is the more prone to loss

of synchronization issues.

3.5. Explicit Reception Notification

Buffer space and connectivity bandwidth are the major resources that

have to be used efficiently in DTNs. A trivial way to improve the utilization

of these resources is to inform nodes in the network about the packets that

have reached their destinations. This information enables nodes to free the

space allocated to these packets and ensure that they do not waste the scarce

connectivity bandwidth by being re-forwarded. For achieving this purpose,

we need to implement a Explicit Reception Notification (ERN) feedback

scheme that will signal the reception of packets. This has already be pointed

out in [25] where the IMMUNE and VACCINE approaches are developed for

22

communication among instrumented whales. [25] propose to use an ”anti-

packet” containing an explicit notification of the reception of a message by

its final destination and exchanging it between encountering nodes.

In this paper we adapt a similar idea to the context of using piggybacked

Bloom filters. We implement the ”anti-packet”” feedback by adding into

beacons a Bloom filter, named the explicit Bloom Filter, eBF, containing a

list of J last packets received by its destination. Whenever a node receives

an eBF Bloom filter it checks all packets in its buffer and adds the packet

matched by the eBF into a local “destReceived” list before removing them

from its buffer. This list is used thereafter to generate the eBF Bloom filter

of that node that can be inserted in each beacon along with for example

the bBF of Strategy B that contained packets in the buffer. The eBF plays

an important role as it acts as a collective acknowledge propagating in the

network and freeing buffer space occupied by packets that have been delivered

(implement something similar to the VACCINE scheme in [25] however with

larger scope as the overhead of the Bloom Filter is lower than explicitly

exchange delivery notifications). We will assume in the forthcoming that the

eBF is implemented in Buffers, i.e., the beacon in Strategy B consists of two

components: a bBF with a maximal size limit L, and an eBF containing a

list of the J last packets received by its destination. More details about the

performance of this scheme and the trade-off involved are presented in the

forthcoming.

3.6. Forwarding scheme

We assume that the node maintains for each “active” neighbour a data

structure containing the set of Bloom filters provided by the neighbour (the

23

sBF, bBF and eBF filters), a list of PktID named notReceivedYet list con-

taining the IDs of packets in the node buffers but not yet received at this

neighbour, and information about the last packet forwarded to this neigh-

bour. When a node has an opportunity (given by the scheduler or resulting

from a contact) to send a packet to a neighbour, it first checks (using the

last Bloom filters received from the neighbour) among the packet received

from the time the last packet was forwarded to the neighbour which one

are not received at the neighbour and adds them to the notReceivedYet list.

This last list enables a node to simply avoid forwarding duplicate packets

to their neighbours by only sending packets from their notReceivedYet lists.

Among packets in this list, packets that have as destination the neighbour

have priority and will be forwarded first. Otherwise, a randomly selected

packet from the notReceivedYet is forwarded to the neighbour. A forwarded

packet is removed from the notReceivedYet list. To ensure synchronization

and to manage packets not received by the destination, the notReceivedYet

is fully reconstructed (by checking if any packet in the buffer is not received

by the neighbour) whenever a beacon is received.

The scheduling between neighbours is also simply done by first checking

if anyone of them is the final destination of a packet in the buffer. If it

is the case the node is given priority. If no final destination exists among

neighbours, one node is chose at random and packets are forwarded to it. The

priority given to final destination node decreases the average delivery delay.

However, provided no destination exists in the neighbourhood, we choose one

of the neighbours randomly and send a randomly selected packet to it to avoid

discrimination. The sequence number of the sent packet should be removed

24

from notReceivedYet of the receiver. This scheduling policy can be refined to

accommodate for congestion situations, e.g., in case on congestion packets

likely to be discarded from buffer are getting higher priority in order to

eventually find place in neighbours (hot potatoes scheduling used for example

in [22]). We will use such a congestion-aware scheduling as explained in sec.

6.1.4.

The forwarding scheme presented here can be adapted to accommodate

any specific DTN routing scheme by choosing a particular packet to forward

in the notReceivedYet list in place of a random one like in Epidemic Forward-

ing. This shows that the Bloom Filter management system presented in this

paper is not only relevant to Epidemic Forwarding but also to other DTN

routing schemes like Prophet [1], etc. However, in this paper we will focus

on its use in Epidemic Forwarding schemes.

4. Congestion Control and Buffer management

Congestion control is a major issue both in DTNs and connected net-

works. As DTNs are intermittently connected, packets remain for a long

time in nodes’ buffers waiting for a transmission opportunity. Congestion

appears in DTNs when buffers are full and nodes have to drop incoming

packets, not playing anymore the role of relay. Moreover, as these packets

are not put in buffers, the neighbors keep in retransmitting them resulting

in severe waste of bandwidth. Therefore, a practical system using epidemic

forwarding needs a congestion control mechanism. The congestion control

consists of at least three components: a source injection rate control mech-

anism that ensures that a greedy packet source do not fill the buffers both

25

locally and in the neighborhood, a buffer management mechanism that wisely

manages which packet should stay in the buffer and decides which should be

removed, and a flow control mechanism that uses information about neighbor

buffer occupancy to decide to forward packets or refrain from it. Because of

its major importance and impact on DTN performance, Congestion Control

has been investigated thoroughly in the literature as described in the Related

Works section. In this section, we will present a framework inspired by what

described in [5] regrouping most of the existing work on congestion Control

and Buffer management.

4.1. Buffer management

As explained before, congestion happens in DTNs by buffers becoming

full. Buffer management aiming into deciding which packet should stay in

the buffer and which should be removed is a fundamental part of congestion

control. Generic buffer management can be implemented using the “aging”

concept introduced in [5]. The idea is to assign to each packet an age that

can depends on several parameters, like the time from packet generation,

the number of time the packet was forwarded, the number of hop the packet

has travelled, or even socio-economical parameters like the monetary cost

of storing or forwarding a packet, etc. The age represents the benefit of

storing a packet in buffer, the smaller it is the more valuable is the packet.

Aging framework offers a very flexible framework that encompasses several

other buffer management proposals in the literature like [2, 3, 15, 16, 18, 19].

All these schemes can be re-expressed as aging schemes with different aging

functions. Moreover, as suggested in [5] the TTL field in the IP header is a

very good target for transporting the age of a packet. For this purpose, let us

26

assume that the maximal age of a packet is 255. Instead of only decrementing

the TTL at each hop as is traditionally done in networks, one can decrement

or increment this field to represent a quantified remaining Time To Live for

the packet. At packet creation time, the TTL field is set to 255, and every

time it is forwarded it is, its TTL is set to 255-AGE, meaning that the TTL

is decremented following an aging function. Whenever the TTL hits zero,

the packet is erased from buffers and not forwarded anymore. In this paper

we have used the below described aging function:

• In order to control the spread of the packets in the network, every

time a packet is going to be forwarded, its age in buffer is incremented

by a fixed amount K0, and the TTL of the forwarded packet is set

accordingly. Therefore, K0 plays the role of hop count and limit the

number of time a packet is forwarded by a node.

• In order to control the number of copy of a packet in the DTN, we

use a homeostatic approach; whenever a node encounters a node that

has received the packet, it increases by K1 the age of it in its buffer,

reducing the lifetime of the packet. This will implement the limitation

to a limited number of copies of any message as proposed for example

in [2, 3].

• We also need to control the lifetime of packets in the network. How-

ever the amount of time a packet can live in a buffer depends on the

contact statistics, i.e. if the network is sparse and the contacts not

frequent, packets should live longer in order to have the opportunity

to be delivered, while they should live less when the contacts are more

27

frequent. Therefore, we use each packet reception as a clock tick and

increase the age of all packets in a node’s buffer by K2.

• Nevertheless, the role of buffer management is to deal with situation

when the buffer becomes full and a new packet should be accommo-

dated. In this case, an incoming packet that is younger (has a larger

TTL) than the oldest packet in buffer, replaces it. We call this the

“oldest discard” scheme. However in order to avoid the looping effect

described in [19], even if a packet is erased from the buffer (or is not

put in buffer because it is was too old), its ID should still be announced

in the next Bloom Filters. For Strategy B, we will just do this for the

sBF.

Based on the above described mechanisms, if packets arrive on average each

∆ time units, one can expect the lifetime of a packet in a the network to

be at most min{255
K2

∆, N∆}. Roughly if 255
K2

< N aging controls the message

lifetime, otherwise this is the buffer size that controls the lifetime of a packet.

Nonetheless, packets have to be alive enough time to ensure that the network

will find the opportunity to find a path from packet source to its destination

to deliver it. This gives a rule of thumb for setting K2. If we want to ensure

that packet lifetime in the network does not go beyond Tmax, one should

control the packets’ lifetime through K2 and set K2 <
255

Tmax∆
. However this is

valid if the buffer never gets full. Therefore, it is important to avoid packet

drops resulting from full buffer. The last mechanism of congestion control

achieves this.

28

4.2. Flow control

We need to avoid packet drops resulting from full buffers. For this purpose

we can, similarly to the flow control mechanism proposed in [6], upon a node’s

buffer becoming full, ask the neighbors to refrain from sending new packets.

This can achieved by explicitly piggybacking into the header of send packets

(both data packets and beacons) a field containing the available space in the

node buffer. This field will be used by neighbors to refrain from sending

new packets that can lead to killing packets before natural death by age.

However this heuristic has a side-effect; aging efficiency is directly related to

the number of piggy backed Bloom filters that each node receives, and the

network time scale is controlled by the rate of packet arrivals. In order to

not disturb the aging process, nodes that refrain from sending data payloads

still continue to send Bloom filters as well as buffer capacity. Although this

flow control idea largely decreases the number of packet drops, some packet

drops are still observed due to concurrent transmissions from different nodes

to each node and therefore the “oldest discard” scheme is still needed. In

addition to the above mechanisms, the ERN described earlier plays also an

important role in buffer management.

4.3. Source injection rate control

Another major component of congestion control component is the control

of injection rate of new packets by the sources. An uncontrolled source

can submerge its own node’s and neighbors’ buffer, contributing strongly to

congestion and creating fairness issues. We therefore need a way of controlling

the source injection rate, such that it is not too high and overflow the network,

or too low and starving the network from new packets. The rule of thumb

29

here is to ensure that the rate of injection of new packets do not exceed the

capacity of the network to transfer these packets.

We need to precise the meaning of capacity here. When N packets co-

exist in a node’s buffer, the competition between these packets to access the

communication capacity, when another node is encountered, results for each

packet in an inter-node capacity of 1
N

of the communication capacity. The

same issue happening in all hop of the communication, its meaning that the

capacity depend on the intermediate node buffer occupation. Overall the

available communication capacity for a single packet from source to desti-

nation is the sum over all possible paths from source to destination of the

minimal inter-node capacity between all nodes in the paths. Unfortunately,

this value is impossible to derive for a node, in particular for DTNs without

permanent connectivity. We therefore need a heuristic that can, using only

local information, at least gives an upper bound for this capacity. The idea is

that the capacity to forward a packet out of the neighborhood of its source is

an upper bound of the overall available capacity for forwarding a packet. In

other terms, the upper bound on the capacity is obtained by trying to infer

the capacity of transmission in its two hop neighborhood. This capacity is

inferred by this heuristic: let us assume that a node generated a packet at

time T0, and the node saw later at time T0 + ∆ the same packet reported by

the Bloom Filter of an encountered node that he has not itself given him the

packet, the source node can conclude that the overall capacity for forwarding

this packet is at least one packet per interval ∆. Indeed, this heuristic is very

rough, and it can even be seen as too restrictive as the delay between the

reception of a packet by a remote node and the time the source node sees it

30

can be relatively long. However it is hard to be improved taking into account

the very low information that a DTN gives about upstream capacity.

The injection rate control is implemented by a token bucket rate control

scheme using a list named waitingList that contains up to σ pktIDs generated

by the source. The source can inject new packets in the node buffer only if

there is empty space in the waitingList. The injection rate is controlled

by removing a packetID from waitingList whenever one of the below events

happen: following the above described heuristic, whenever a source S receives

a Bloom filter that indicates that a pktID in the waitingList has been received

by node A, and the source has not forwarded itself the packet with that

pktID to A ; when the source comes in direct contact with the destination of

a packet it has generated. The sum of the occurrence rates of the two above

events acts as an upper bound to the capacity of the network. This source

injection rate control scheme acts as a back pressure mechanism that limits

the rate of injection of new packets in the network. However its performance

is highly dependent on the mobility characteristics and on the sparsity of a

network. We will evaluate its performance later in the paper.

5. Congestion Control framework

As we mentioned before, we propose a framework that implements most

of the existing work on congestion control and Buffer management. Now, we

add more details about the implementation of each mechanism.

N-Drop scheme [15] will forward a packet at most N time before dropping

it. N-Drop can be emulated in our framework by initializing K1, and K2 to

zero, and setting K0 = 255
N

. Through this choice a packet is forwarded at

31

most N time before reaching a TTL=0.

AFNER scheme [16], is implemented simply by setting, similarly to N-

Drop, K1, and K2 to zero, and setting K0 = 255
N̄

, where N̄ is the mean number

of forwarding needed to reach the destination. We also need a slight change

in the scheduler that has to forward the youngest packet in the buffer rather

than choosing it randomly.

The Buffer Space Advertisement (BSA) is implemented through space ad-

vertisement in the beacon and packet headers, with setting K0, K1, K2 to 0.

The advertised free buffer space is derived using the Additive Increase, Mul-

tiplicative Decrease scheme described and using the same set of parameters

that suggested in [6]. We name this implementation BSA-AIMD.

Storage Routing (SR)[22] is also implemented in our proposed framework,

by giving, in case of congestion, higher priority in the scheduler to older

packets in the buffer and to forward them to nodes with buffer capacity.

However, in order to know about available space in neighbours, we have

implemented in SR a Buffer Space Advertisement piggybacked in packet

headers. Meaning that the SR implementation is also using a Flow control

based on buffer space announcement that is not proposed in the initial SR

proposition. This means that we can expect the performance of our SR

implementation to be better than the one proposed initially in [22].

6. Performance Evaluation

In order to evaluate the performance of the proposed practical Bloom fil-

ter based epidemic forwarding methods and congestion control mechanisms,

we implemented in the ns-3 simulation environment the proposed schemes.

32

We are indeed aware of the shortage of simulation relative to representative-

ness and generalization. However, the simulation can show weaknesses and

needs indeed to be comforted with real deployment. In order to evaluate

the proposed schemes we have used random waypoint mobility as well as the

mobility resulting from San Francisco taxi traces [26]. We are aware of the

shortcoming of simulation based on random waypoint mobility described in

[27] and we will therefore not draw our conclusions only based on these simu-

lations but are evaluating also on more realistic traces like the San Francisco

Taxi traces.

6.1. Random Waypoint mobility evaluation

6.1.1. Neighbourhood Management

Let us first evaluate the impact of neighbour management we described in

section 3.3. For this purpose we simulated 40 nodes moving in a 1000× 1000

grid with a WiFi transmission range of 50 unit each, i.e. around 30% of

the mobility area is covered by connectivity, with a rate of 1 Mbps. Each

node implements the neighbourhood strategy, described earlier with beacons

broadcast and disconnection delay. We set the disconnection delay as 10%

larger than the beacon interval. We have used strategy A and 50 bytes of

Bloom filters. We show in Fig. 1 the number of forwarded and received pack-

ets for different beacon delays ranging from 0.1 sec to 5 sec. The gap between

the two curves is the number of packets forwarded but that are not received

by any node. We show in Fig. 1, the connectivity and efficiency. Connec-

tivity is defined as the ratio of the number of packets and beacons received

to the overall number of packets and beacons sent. Efficiency is accounting

the energy efficiency, i.e., it evaluates the energy cost of the neighbour man-

33

0 1 2 3 4 5
36

38

40

42

44

46

48

Beacon Interval (sec)

P
e
rc

e
n
ta

g
e

Efficiency and Connectivity vs. Beacon Interval

Efficiency

Connectivity

Figure 1: Impact of beacon delay on number of forwarded and received packets

34

agement and packet transmission vs. its benefits as data packet received at

nodes. To account for the smaller size of beacon compared to data packet,

50 bytes vs. 1000 bytes, we have accounted the energy cost of beacon packet

as 5% of data packets. Interestingly the both the connectivity and efficiency

curve first increase to attain a peak a decreases thereafter. This behaviour

comes from the fact that a short beacon interval results in a large overhead

of beacon transmission while a too long beacon interval results in loosing

transmission opportunity. It can be observed that at best the efficiency is

47% for beacon interval 0.2 sec. This low efficiency is explained by the fact

the connectivity is also very low (less than 45%). The connectivity and ef-

ficiency drop fast to 36% with larger beacon intervals. Based on the above

curve we decided to set in the forthcoming a beacon delay of 0.5 sec that

maximize the connectivity and is at 1% of the maximum of efficiency.

6.1.2. Bloom Filter Management

We thereafter evaluated on the same simulation scenario (40 nodes mov-

ing in a 1000 × 1000 grid with a WiFi transmission range of 50 unit), a

scenario where each node acts simultaneously as source, relay and destina-

tion. The sources are assumed to be greedy meaning that whenever there

is an opportunity to insert a new packet in the network they have data to

send and insert it. We moreover assume that each packet has 1000 bytes of

payload. The destination of messages is chosen randomly among all 40 nodes

in the network. The buffer size of nodes is assumed to be 50 packets. After

a node is detected to be in the neighbourhood, packets are sent to it directly

(no broadcast is used for data packets). No other congestion management

scheme is applied. All Bloom filters are designed with a target false alarm

35

1 2 3 4 5 6 7 8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Bloom Filter Overhead (%)

R
e
d

u
n

d
a
n

c
y
 (

%
)

Strategy A: Simple
Strategy B: Differential
Strategy C: Adaptive

Operating Point

Figure 2: Comparison of redundancy vs. Bloom Filter overhead with different Bloom filter

sizes for several Bloom filter management strategies

probability of 2%. We show in Figure 2 the evaluation of the redundancy,

defined as the proportion of redundant packets received versus the overhead,

that is measured as the proportion of received bytes that are dedicated to

Bloom filters (both in sBF and bBF). This is measured for the three Bloom

filter management strategies. The simple strategy A is measured for Bloom

filter size of 10, 20, 50, 70 and 120. The Differential encoding strategy B is

implemented with bBF size of 50 (so that all packet in buffer are reported)

and sBF size ranging from 10 to 30 (each data packet contains from 10 to 30

last packet received). The adaptive strategy C is implemented for bBF size

ranging from 30 to 120 and sBF size calculated adaptively. The curve shows

that as expected the larger is the Bloom Filter used, the larger the overhead

becomes and the smaller the redundancy. This is very visible in particular

for the strategy A, where the redundancy decreases constantly with larger

36

overhead. However the Differential encoding strategy B has also a similar

behaviour with almost same overhead vs. redundancy behaviour. It would

have been expected that the trade-off should be more favourable for strategy

B. However as explained strategy B suffers from loss of synchronization that

happens every time a beacon is lost. This effect is more visible in Adaptive

Strategy C, where the overall redundancy is larger than strategy A and B

because of inserting in sBFs only packets received till the last beacon trans-

mission. Figure 2 shows the efficiency of using the Bloom filters in place of

summary reports. With less than 2% of overhead the redundancy falls be-

low 2%. Based on these results we decided to use throughout the paper the

strategy B, with bBF=50 and sBF=12 that achieves a redundancy 1.71%

with an overhead of 2.11% (indicated as operating point in Fig. 2). The

choice of strategy B in place of strategy A was motivated by the fact that

for each data packet transmission in strategy A, we have to insert up to 50

packets in the piggybacked BF, while in strategy B this is reduced to 12

packets resulting in almost division by four of the processing time for each

data packets transmission for the same performance.

6.1.3. Explicit Reception Notification scheme

We validate in this section the ERN Bloom Filters based schemes de-

scribed in section 3.5. We implemented an ERN scheme putting the pktID

of up to 150 packets that are known to be received in beacons and broadcast-

ing them to neighbours. We show in Fig. 3 the evolution of the number of

packets received at destination with two hypotheses: without ERN and with

ERN. In this simulation, no other Congestion Control or Buffer management

schemes are used beyond ERN. The curve shows clearly the saturation ef-

37

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

Time

N
u
m

b
e
r

o
f
p
a
c
k
e
t
re

c
e
iv

e
d
 a

t
d
e
s
ti
n
a
ti
o
n

Without ERN

With ERN

Figure 3: Comparison of number of packet received at destination over time with Explicit

Reception Notification and without it.

fect of congestion. After around 1300 sec the network get saturated and the

number of packets reaching their destination without ERN reaches a plateau,

while the usage of ERN frees space in buffers and enables a sustained packet

delivery over the network. At the end of the simulation, the number of

packets received with ERN is almost doubled compared to the use of ERN.

6.1.4. Congestion Control

In this section, we will evaluate the different congestion control propo-

sitions and in particular the mechanisms proposed in this paper. As ex-

plained before, we have implemented the aging-based Buffer Management,

the flow control and the injection rate control described in section 4. By

setting the value of different parameters, we have implemented 5 concurrent

congestion control propositions, namely Drop-N, AFNER, SR, and BSA-

38

AIMD, and compared them with the different mechanisms presented in this

paper. In order to understand the marginal impact of each mechanism,

we have implemented them incrementally, i.e., we first implement a DTN

system with Aging based Buffer management (denoted by Ag) by setting

K0 = 25, K1 = 10, K2 = 0.25; it is improved by adding a flow control based

on Buffer Space announcement piggybacked in packet and beacons (system

Ag+FB); finally a source injection control based on Back Pressure is added

resulting in a Ag+FB+BP. This means that we are comparing 8 epidemic

forwarding schemes. All these implementations take advantage of the Bloom

Filter management strategy B described earlier with sBF containing up to

12 packets and bBF containing up to 50 packets as well as the ERN scheme.

Indeed, these schemes were not implemented in the original propositions of

Drop-N, AFNER, SR, and BSA-AIMD, meaning that the provided perfor-

mance can be expected to be better that what originally proposed. All the

simulation are run over 10 execution with different random seed and the

average along with 2 standard deviation confidence interval are presented.

As we have several schemes to compare, in order to simplify the com-

parison we have divided the set of concurrent schemes into two subsets:

buffer management alone schemes consisting of Drop-N, AFNER and Ag

scheme, and Flow Control based schemes consisting of BSA, SR, Ag+FB,

Ag+FB+BP. We show in Fig. 4 the performance in term of number of

packets received at final destinations, as a function of time for the different

concurrent congestion control schemes. As can be seen, all curves are almost

linearly increasing, meaning an almost constant goodput. However, there is a

clear separation between schemes using only buffer management and spread

39

! "!! #!!! #"!! $!!! $"!! %!!! %"!!
!

"!!

#!!!

#"!!

$!!!

$"!!

%!!!

%"!!

&!!!

&"!!

'()*+,-.(/0(10*+23450,424*5-(/0+5064.5-/+5-(/07-5806-114,4/502(/94.5-(/02(/5,(:0.284)4.

0

0

;9

;<=>?

@A; ;BCD

= D,(*

;9E<@

;9E<@E@F

;9E<@E@FEAG

A?

<:(70'(/5,(:0A284)4.

@H114,0)+/+94)4/50.284)4.

Figure 4: Comparison of number of packets received at destinations per unit of time for

congestion control mechanisms for Random Waypoint mobility

control, Drop-N, AFNER and Aging, with schemes, like SR, BSA-AIMD,

Ag+FB and Ag+FB+BP, adding Flow control in form of buffer space an-

nouncement. The goodput in the second group of techniques is around 30%

larger than in the first group. Interestingly, as can be seen from confidence

interval (that are shown for different shifted value to ease the reading of

the figure), the difference in the three buffer management alone scheme are

not statistically significant at least after one hour of simulation. However

the flow control schemes show more separated performance as observed by

almost non crossing confidence intervals. In order to have a better under-

standing, we plot in Fig. 5 the evolution of the number of drops observed in

the same set of schemes. A packet drop happens when a packet is received

by a node but it cannot put it in its buffer because of lack of space and has

to drop it, e.g. using Oldest Discard approach, a packet drop happens only

when the received packet is older than all packets in the buffer. Fig. 5 shows

that with buffer management techniques, drops happen very frequently with

40

10-15% of send packets being dropped. However, adding Flow control in

form of Buffer Space Advertisement, reduces strongly the packet drops. In

particular, BSA-AIMD almost removes all drops, but cannot achieve a good

delivery to final destinations. A more precise investigation shows that while

the AIMD scheme has succeed in avoiding the buffer to become full, it has

also decreased the exchange between node and reduced the diversity of pack-

ets in buffers, resulting in a lower delivery performance. Interestingly the SR

scheme achieves better delivery performance than the BSA-AIMD scheme.

This can be explained by observing that SR adds to the BSA flow control

a specific scheduling that consists of giving higher priority to older packets

when the buffers are full. This means that in place of just discarding a packet

when it becomes the oldest packet in a buffer, SR scheme tries to forward it to

a neighbour with available capacity. However, the drop observed when using

SR is much larger than other Flow Control schemes. This can be explained

by the fact that an old packet forwarded to node’s neighbours is more likely

to be older than all packets in the receiver and being dropped. In comparison

with the BSA-AIMD and SR schemes, the Ag+FB+BP scheme presented in

this paper achieves a better delivery performance with relatively low drops.

The interest of the Back Pressure injection rate control is also visible in the

graph as the delivery is increased by 15% by adding the Back Pressure with-

out increasing the drops (the curve for drops in Ag+FB and Ag+FB+BP

are almost superposed so we do not show the curve of Ag+FB in Fig. 5).

However the good performance of SR techniques motivates us to investigate

if in addition to Aging, Flow control and Back Pressure described earlier, one

could benefit from the clever scheduling used in SR, i.e., giving old packet

41

! "!! #!!! #"!! $!!! $"!! %!!! %"!!
!

$

&

'

(

#!

#$
)*#!

& +,-./0*1234*,0*560/27/85,0/*638/9

*

*

:;

:<=>?

@A: :BC1

= 1234

:;D<@D@+

:;D<@D@+DAE

A?

Figure 5: Comparison of number of packet drops per unit of time for congestion control

mechanisms for Random Waypoint mobility

more forwarding priority. For this purpose we added to the Ag+FB+BP

scheme a SR type of Scheduling and named it a Ag+FB+BP+Sq. As can be

seen from 4, this scheme achieves the best delivery performance at the cost

of a slightly higher drop rate (compared to Ag+FB+BP) that results from

the older packets to be more likely to be dropped at reception than younger

packets. Comparing the curve of packet drop of SR and Ag+FB+BP+Sq

gives also some more insights. The packet drops are strongly reduced by the

use of Aging that reduces the buffer occupation and therefore the likelihood

of need for packet drop in neighbours. For all curves we have also provided

confidence intervals in order to evaluate the statistical significance of the

results.

We show in table 1 the overall performance in terms of delivery ratio,

mean delay of packets received at destinations (measured in minutes), and

mean buffer size. As can be seen the delivery ratio increases strongly from

42

Table 1: Overall performance comparison for the Random Waypoint Mobility

Scheme Delivery Mean Mean

Ratio Delay (min) Buffer

N-Drop 13.04% 15.54 49

OD 13.83 % 11.4 49

Aging 14.56 % 4.3 49

AFNER 14.73 % 4.23 49

BSA-AIMD 16.31 % 3.73 49

Ag+FB 17.39 % 3.22 49

SR 26.24 % 2.99 49

Ag+FB+BP 26.85 % 2.98 48

Ag+FB+BP+Sq 45% 2.85 48

13% for the worst scheme to 45% for the Ag+FB+BP+Sq that achieves the

best performance and the mean delay also decreases from 15.5 to 2.85 mins.

The above evaluation shows that all the four components described in

Sec.4: buffer management, flow control, scheduling and injection rate control

have a strong impact on the final delivery performance. All in all, the schemes

proposed in this paper, succeed for a random waypoint mobility model in re-

ducing strongly the congestion (evaluated by packet drops), while improving

the packet delivery to final destinations by 20% compared to BSA-AIMD

that was the previously best-known congestion control scheme.

6.2. San Francisco Trace evaluation

The random waypoint gave some insights about the performance of the

different strategies and congestion control schemes. However as explained

43

! " # $ % & ' ()

*+"!
%

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

(!!!

)!!!

,!!!

"!!!!

""!!!

-./01234.5+.6+01789:+29790:3.5+35+;15+<2157347.+:1*3+4795123.

+

+

=>

=<?@A

B;= =CDE

? E2.0

=>F<B

=>F<BFBG

=>F<BFBGF;H

;A

BI6692+D151>9/95:+47J9/94

<K.L+-.5:2.K+;7J9/94

Figure 6: Comparison of number of packets received at destinations per unit of time for

congestion control mechanisms for the Taxi trace

before, random waypoint simulations are plagued with convergence issues

as described in [27]. In order to evaluate the different congestion control

schemes in a more realistic mobility model, we used traces coming from San

Francisco GPS dataset. This dataset contains GPS coordinates of approxi-

mately 500 taxis collected over 30 days in the San Francisco Bay Area [26].

We assumed that the taxis are instrumented with WIFI receivers with a range

of 100 meters and we only used 100 taxis among the 500 in the dataset. This

scenario is sparser than the previous random waypoint one and we had to

run it for a longer time, one day or equivalently 84 000 seconds. We show

in Fig. 6 the results in term of number of packets received at their final

destinations for different strategies. The results obtained in Fig.6 are very

similar to what observed in Fig.4, with the same ranking between the differ-

ent schemes. We show in table 2 the performance attained by the different

schemes. The achieved delivery ratios are less than what attained in Random

44

Waypoint. This can be explained by the high sparseness of the network. The

achieved mean delay decreases from 256 to 66.9 that is relatively large but

understandable with regards to the sparsity of the network.

A more precise analysis of the Fig.7 shows that the Flow control plays

well its role and reduces the packet drop by 92% (from 161,187 to only 1511

for Ag+FB+BP+Sq scheme) resulting in a notable increase of the number

of received packets. Sparser, resulting in lower opportunity for packet ex-

change and that the value of K2 is relatively smaller, resulting in a lower

impact of the aging mechanism. Another noteworthy observation from Fig.6

is relative to the fact that the number of received packets for the scenario

with source control rate is initially less than for case without the source con-

trol rate. However source control rate catches up later. This can also be

explained by the sparsity of this scenario. At the beginning, the source injec-

tion rate control reduces the number of new packets that can be injected into

the network, resulting in a lower number of circulating packets in the net-

work and therefore a smaller number of packet delivery, however with time

the buffers become full and the role of source injection rate control shows

itself. The analysis of the San Francisco scenario illustrates also that all

mechanisms of congestion control are needed and have a considerable impact

on performance. Interestingly in this scenario the confidence intervals are

smaller (they can hardly be seen). This is explained comparitively with the

random waypoint case that the mobility in this scenario is not random while

the previous scenarios also had random way point mobility that is know to

induced large variations.

45

! " # $ % & ' ()

*+"!
%

!

#

%

'

)

"!

"#
*+"!

% ,-./01+2345+67+671038026-10+74209+67+:-7+;3-7.69.4+<-*6+9.07-364

+

+

=>

=;?@A

B: =CDE

? E345

=>F;BFB,F:G

=>F;BFB,

:A

Figure 7: Comparison of number of packets drop for different congestion control mecha-

nisms over the Taxi trace

Table 2: Overall performance comparison for the San Francisco Taxies Mobility

Scheme Delivery Mean Mean

Ratio Delay (min) Buffer

N-Drop 5.52% 256.58 44

OD 6.43 % 192.26 43

Aging 7.2 % 140.99 43

AFNER 7.36 % 134.17 43

BSA-AIMD 10.12 % 85.93 42

Ag+FB 15.87 % 74.93 42

SR 16.61 % 72.43 41

Ag+FB+BP 18.12 % 71.38 41

Ag+FB+BP+Sq 22.9% 66.95 41

46

7. Conclusions

We described in this paper how to use in practice Bloom Filters to ex-

change buffer content in epidemic forwarding schemes. We proposed three

Bloom Filter strategies : a simple, a differential and an adpative strategy and

compared their performance in term of the redundancy to overhead tradeoff.

We also proposed an explicit Reception Notification scheme using Bloom

Filters send back in keep-alive beacons. We moreover described the issue

of congestion control in DTNs by showing that it can be decomposed into

four components: buffer management, flow control, source injection rate con-

trol and scheduling. We thereafter compared 4 existing congestion control

schemes : N-Drop, AFNER, SR and BSA-AIMD with an incremental imple-

mentation of the different scheme proposed in the paper. The comparison

was done using a ns-3 simulation of all the concurrent schemes. We showed

that the presented congestion control mechanisms improve the performance

incrementally and improve over the best known congestion control schemes.

The major conclusions of this paper are as follow.First, by comparing

several possible Bloom filter design, we proposed a practical based on a dif-

ferential coding that is using both short Bloom Filter piggybacked in each

sent packet and big Bloom Filter send only in periodic beacons. This scheme

ensure that by adding an overhead of only 2% the likelihood of sending to

a node a message it has already received become less than 2%. We also

proposed a three staged congestion control framework and showed through

analysis and simulation validation that among these three stages the flow

control based on Buffer Space announcement piggy backed in packet and

beacons ensuring that the rate of packet transmission to congestionned node

47

is reduced, has the largest marginal impact, followed by buffer management

and finally source injection rate management. The combination of these

three mechanisms attain 30% higher goodput than any of the alternative

schemes previously proposed with 1/4 to 1/5 of their packet drops. Last but

not least the main conclusion of the paper is to provide a practical solution

for deployment of epidemic forwarding based DTN solutions that addresses

the major challenges of highly dynamic network environments where DTN

routing cannot be implemented.

References

[1] A. Lindgren, A. Doria, O. Schelén, Probabilistic routing in intermit-

tently connected networks, ACM SIGMOBILE Mobile Computing and

Communications Review 7 (3) (2003) 19–20.

[2] T. Spyropoulos, K. Psounis, C. S. Raghavendra, Spray and wait: an ef-

ficient routing scheme for intermittently connected mobile networks, in:

Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant

networking, ACM, 2005, pp. 252–259.

[3] T. Spyropoulos, K. Psounis, C. S. Raghavendra, Spray and focus: Ef-

ficient mobility-assisted routing for heterogeneous and correlated mo-

bility, in: Pervasive Computing and Communications Workshops, 2007.

PerCom Workshops’ 07. Fifth Annual IEEE International Conference

on, IEEE, 2007, pp. 79–85.

[4] A. Vahdat, D. Becker, et al., Epidemic routing for partially connected ad

48

hoc networks, Tech. rep., Technical Report CS-200006, Duke University

(2000).

[5] A. El Fawal, J. Le Boudec, K. Salamatian, Performance analysis of

self limiting epidemic forwarding, Tech. rep., Technical Report LCA-

REPORT-2006-127, EPFL (2006).

[6] J. Lakkakorpi, M. Pitkänen, J. Ott, Using buffer space advertisements

to avoid congestion in mobile opportunistic DTNs, Wired/Wireless In-

ternet Communications (2011) 386–397.

[7] S. Schildt, J. Morgenroth, W.-B. Pottner, L. Wolf, IBR-DTN: A

lightweight, modular and highly portable bundle protocol implemen-

tation, in: Electronic Communications of the EASST, 2011.

[8] Y. Zhao, J. Wu, B-sub: A practical bloom-filter-based publish-subscribe

system for human networks, in: Distributed Computing Systems

(ICDCS), 2010 IEEE 30th International Conference on, IEEE, 2010,

pp. 634–643.

[9] E. Yoneki, J. Bacon, An adaptive approach to content-based subscrip-

tion in mobile ad hoc networks, in: Pervasive Computing and Com-

munications Workshops, 2004. Proceedings of the Second IEEE Annual

Conference on, IEEE, 2004, pp. 92–97.

[10] I. Aad, C. Castelluccia, J. Huubaux, Packet coding for strong anonymity

in ad hoc networks, in: Securecomm and Workshops, 2006, IEEE, 2006,

pp. 1–10.

49

[11] I. Parris, T. Henderson, Privacy-enhanced social-network routing, Com-

puter Communications 35 (1) (2012) 62–74.

[12] M. Särelä, J. Ott, J. Ylitalo, Fast inter-domain mobility with in-packet

bloom filters, in: Proceedings of the fifth ACM international workshop

on Mobility in the evolving internet architecture, MobiArch ’10, ACM,

New York, NY, USA, 2010.

[13] D. Ellard, R. Altmann, A. Gladd, D. Brown, Dtn ip neighbor discovery

(ipnd) internet draft (2012).

URL http://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-02

[14] F. Angius, M. Gerla, G. Pau, Bloogo: Bloom filter based gossip algo-

rithm for wireless ndn, in: Proceedings of the 1st ACM workshop on

Emerging Name-Oriented Mobile Networking Design - Architecture, Al-

gorithms, and Applications, NoM ’12, ACM, New York, NY, USA, 2012,

pp. 25–30.

[15] Y. Li, L. Zhao, Z. Liu, Q. Liu, N-drop: congestion control strategy

under epidemic routing in DTN, in: Proceedings of the 2009 Interna-

tional Conference on Wireless Communications and Mobile Computing:

Connecting the World Wirelessly, ACM, 2009, pp. 457–460.

[16] L. Yun, C. Xinjian, L. Qilie, Y. Xiaohu, A novel congestion control

strategy in delay tolerant networks, in: Future Networks, 2010. ICFN’10.

Second International Conference on, IEEE, 2010, pp. 233–237.

[17] A. Grundy, M. Radenkovic, Promoting congestion control in oppor-

50

tunistic networks, the Proceedings of IEEE WiMob 2010, Niagara Falls,

Canada, pp 324-330.

[18] M. Radenkovic, A. Grundy, Framework for utility driven congestion

control in delay tolerant opportunistic networks, in: IWCMC, 2011, pp.

448–454.

[19] L. Leela-Amornsin, H. Esaki, Heuristic congestion control for message

deletion in delay tolerant network, Smart Spaces and Next Generation

Wired/Wireless Networking (2010) 287–298.

[20] S. Burleigh, E. Jennings, J. Schoolcraft, Autonomous congestion control

in delay-tolerant networks.

[21] N. Thompson, S. C. Nelson, M. Bakht, T. F. Abdelzaher, R. Kravets,

Retiring replicants: Congestion control for intermittently-connected net-

works, in: INFOCOM, 2010, pp. 1118–1126.

[22] M. Seligman, K. Fall, P. Mundur, Storage routing for DTN congestion

control, Wireless communications and mobile computing 7 (10) (2007)

1183–1196.

[23] A. Krifa, C. Barakat, T. Spyropoulos, Message drop and scheduling in

DTNs: Theory and practice, IEEE Trans. Mob. Comput. 11 (9) (2012)

1470–1483.

[24] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,

Commun. ACM 13 (7) (1970) 422–426.

51

[25] Z. J. Haas, T. Small, A new networking model for biological applications

of ad hoc sensor networks, Networking, IEEE/ACM Transactions on

14 (1) (2006) 27–40.

[26] M. Piórkowski, N. Sarafijanovic-Djukic, M. Grossglauser, A parsimo-

nious model of mobile partitioned networks with clustering, in: Com-

munication Systems and Networks and Workshops, 2009. COMSNETS

2009. First International, IEEE, 2009, pp. 1–10.

[27] J. Le Boudec, M. Vojnovic, Perfect simulation and stationarity of a

class of mobility models, in: INFOCOM 2005. 24th Annual Joint Con-

ference of the IEEE Computer and Communications Societies. Proceed-

ings IEEE, Vol. 4, Ieee, 2005, pp. 2743–2754.

52

